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Workflow technology is established in the business domain for several years. This 
fact suggests the need for detailed investigations in the qualification of conven-
tional workflow technology for the evolving application domain of e-Science. 
This chapter discusses the requirements on scientific workflows, the state of the 
art of scientific workflow management systems as well as the ability of conven-
tional workflow technology to fulfill requirements of scientists and scientific ap-
plications. It becomes clear that the features of conventional workflows can be ad-
vantageous for scientists but also that thorough enhancements are needed. We 
therefore propose a conceptual architecture for scientific workflow management 
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ing workflow concepts in order to improve the ability of established workflow 
technology to an application in the scientific domain with focus on scientific simu-
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1. Introduction 

Originally, workflows have been created to meet the IT support needs of the busi-
ness world. In short, they are compositions of tasks (also referred to as activities) 
by means of causal or data dependencies that are carried out on a computer. They 
are executed on a workflow management system (WfMS) [1]. A workflow that 
utilizes Web services (WSs) as implementations of tasks is usually called service 
composition. Web services are the most prominent implementation of the service-
oriented architecture (SOA). The Web Service technology is an approach to pro-
vide and request services in distributed environments independent of program-
ming languages, platforms, and operating systems. It is applied in a very wide 
range of applications where integration of heterogeneous systems is a must. 
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In recent years the workflow technology  has gained more and more attention 
in the scientific area [2] and the term scientific workflows has been coined. 
Workflows in science provide multiple benefits: (1) They contribute to sharing 
knowledge by being available as services for collaborating scientists; (2) with the 
help of workflows a community-based analysis of results is supported; (3) 
workflows are able to deal with huge amounts of data, e.g. collected by sensors or 
calculated by scientific algorithms; (4) workflows are capable of running in distri-
buted and highly heterogeneous environments—a common scenario in scientific 
computations where a great variety of platforms and programming languages is 
usually employed; (5) the automation of steps during workflow design and execu-
tion allows scientists to concentrate on solving their main scientific problems; and 
(6) workflows can be utilized to conduct scientific simulations in a parallel and 
automated manner.  

Since the WS and workflow technologies are established in the business area, it 
is reasonable to use them in the scientific domain, too, especially because the two 
areas exhibit many similar requirements on the IT support. For example, WSDL 
(Web Services Description Language) [4] can be used for the specification of ser-
vice interfaces and BPEL (Web Services Business Process Execution Language) 
[5] for the specification of scientific workflows. As there are much more WS stan-
dards and a lot of additional requirements imposed by the scientific domain, there 
is a need for an advanced analysis of usability of the WS and Workflow technolo-
gy in the field of scientific applications. This chapter discusses the requirements 
on workflows in the scientific domain, and the ability of conventional workflow 
technology regarding these requirements. Furthermore, we propose extensions of 
conventional workflow technology that significantly improve the ability to apply 
established workflow technology in the scientific domain.  

A special kind of scientific workflows we focus on are simulation workflows. 
Simulations are typically complex calculations which predestinate them for a rea-
lization with workflow technology. Examples are partial differential equations 
(PDE) that must be solved to determine temporal or spatial changes of simulated 
objects. Remote access to data outside the actual scientific workflow management 
system (sWfMS) is another characteristic of simulation workflows.  

In this chapter, after introduction we will discuss the application of convention-
al workflow technology in the scientific domain in detail. Therefore, in Section 2 
we will point out the most important requirements on scientific workflows and 
compare them with requirements on conventional, i.e. business workflows. Fur-
thermore, we will present a workflow system architecture meeting the require-
ments on scientific workflows and a prototype implementing this architecture. In 
Section 3 we will show an example scenario for the simulation of “ink diffusion in 
water” implemented with the help of our prototype. Afterwards in Section 4 we 
will present extensions of conventional workflow technology in order to bridge 
the gap between conventional workflow technology and unfulfilled requirements 
arising by the new application domain e-Science. Finally, in Section 5 we will 
conclude and look out on future work. 
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1.1. Background and Related Work 

Several approaches were already created for using workflows in scientific applica-
tions to meet some of the requirements imposed by that domain. Existing scientif-
ic WfMSs are usually built from scratch and do not rely on the workflow technol-
ogy as it is established in the business area. Here we give a short overview of the 
systems Triana, Taverna, Kepler, and Pegasus that focus on a specific scientific 
domain and/or on supporting specific functionality. Additionally we briefly intro-
duce Trident which is one of very few systems that applies conventional workflow 
technology for scientific applications. 

Triana [6] focuses on supporting services and workflow execution in distri-
buted environments. It provides predefined services, for example signal or image 
processing, static analysis and visualization, useful in diverse domains. Such local 
or remote services as well as local applications can be composed in workflows. 
Triana workflows are data-driven and specified with a WSFL1-like notation. For 
workflow and service execution Triana basically supports peer-to-peer systems 
and Grid environments that enable dynamic resource allocation. Recently, efforts 
are made towards supporting WSs and integrating WSRF [7].  

Taverna [8] is a workbench for biologists that allows a data-centric specifica-
tion and execution of workflows. In contrast to Triana, it supports only services 
with known locations. Taverna aims at supporting long-running, data intensive 
workflows and the interaction with users. It provides semantic service discovery, 
fault handling mechanisms and provenance information.  

Similarly to Taverna, Kepler [9] is mainly used in the bioinformatics domain. It 
allows the integration of different types of resources (e.g. databases or Grid re-
sources) and of different tools (e.g. MatLab2). Kepler provides a service library 
that includes services with capabilities for advanced data exchange, e.g. mediation 
or data hub functionality. These services can be used to build compositions. So-
called directors enable flexible control strategies for service compositions. For ex-
ecution a Kepler workflow is translated into a Java program and the utilized ser-
vices are mostly local Java applications, too.  

Pegasus [10] is rather a workflow compiler than a WfMS. It cooperates with 
Condor DAGMan3 and supports input of DAGMan workflows. Such workflows 
represent a template without resource bindings. These templates are the basis for 
Pegasus users to describe their demands for the resource mapping. Based on this 
template Pegasus determines an execution strategy. For optimized strategies intel-
ligent planning algorithms are used to cope with data movements and application 
runs on heterogeneous and dynamic execution environments. Additionally, Pega-
sus aims at reducing the accumulated amount of data during workflow execution. 

                                                           
1 Web Services Flow Language: http://www.ibm.com/developerworks/library/ws-
ref4/ 
2 MathWorks Website: http://www.mathworks.com/ 
3 http://www.cs.wisc.edu/condor/dagman/ 
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More precisely, it identifies existing data that does not need to be produced once 
more and it performs garbage collection. 

In contrast to previous approaches Microsoft Trident [11] applies conventional 
workflow technology. It uses the Microsoft Workflow Foundation as technology 
platform and a control flow-oriented modeling language based on the Extensible 
Orchestration Markup Language (XOML). Trident also supports some modeling 
extensions like data-flow edges. The Microsoft system consists of independent 
components for workflow modeling and execution. For some components multiple 
implementations exist. For example scientists can choose between different 
workflow composers (i.e. a modeling tool) like a text editor or a graphical mod-
eler. A workflow composer offers basic and composite activities that can be cho-
sen from a workflow catalog. Additional activities can be created by scientists us-
ing Visual Studio. Furthermore the user can customize the workflow composer by 
including domain-specific workflow packages that exist for astronomy, biology, 
meteorology or oceanography. For the execution of workflows two different ways 
are provided. First, it is possible to execute the workflow in the Trident WfMS. 
Second, a workflow can be executed by compiling it into a usual application and 
run it on Microsoft .Net platforms.  

In the remainder of this chapter we will use the terms process model, workflow 
model, process (instance) and workflow (instance) in the following meaning: In 
conventional workflow technology a process model depicts the structure of a 
process in the reality. A real word process model describes in many cases human 
interactions. A part of a process model that is executed on a computer is called a 
workflow model [1]. A workflow model specifies actions that need to be per-
formed and control or data flow dependencies between these actions. This 
workflow model can be seen as a template from which each workflow is instan-
tiated, i.e. a workflow instance created from a workflow model. After all an indi-
vidual workflow instance can be executed by a workflow engine.  
 

2. Applying Conventional Workflows for Scien-
tific Computations 

As shown in the previous section only few approaches rely on the conventional 
workflow technology as described in [1] or in the Workflow Reference Model4. 
Since it is an established technology there already exist standards and tools that 
can be used as basis for further development. Therefore, we make efforts to use 
the conventional workflow technology for scientific computations. 

At first life cycles of conventional and scientific workflows are presented and 
compared. The outlined differences in these life cycles reveal the need for exten-
sions of the conventional workflow technology when being applied for scientific 
simulations. Afterwards main requirements on WfMSs in the scientific domain are 

                                                           
4 http.//www.wfmc.org/reference-model.html 



5 

discussed and a conceptual architecture for sWfMSs is proposed that fulfills these 
demands. Finally, a prototypical implementation of this architecture is presented. 

2.1. Life Cycle of Workflows 

The workflow life cycle,  is important to understand the actions needed to set up 
and run workflows as well as the user roles that carry out these actions. In conven-
tional workflow technology,  the life cycle is well-known and accepted by the 
community [1]. It consists of different repeatable management phases that are 
dealt with by different user groups or roles (see Figure 1a).  
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Figure 1: Life cycle of business (a) and scientific workflows (b). 

 
A workflow is modeled by business specialists that know the concrete steps that 
are performed to achieve a certain business goal. A specialist with IT knowledge 
explicitly deploys the workflow on an engine, i.e. makes it executable. Execution 
of a workflow is triggered by a client or employee, often late after deployment. A 
workflow model can be instantiated multiple times. Workflow monitoring can 
deal with individual running workflow instances or aggregated information over 
several instances. It can also present statistics on the overall state of a system in-
cluding running and completed workflow instances. Hence, monitoring can be 
valuable for both administrators/IT specialists and business analysts. Finally, a 
business analyst analyses one or more workflow executions and may deduce a 
need for business process reengineering. 

The life cycle for scientific workflows heavily distinguishes from its business 
counterpart (see Figure 1b). We inferred the life cycle from observations about the 
way scientists create and conduct experiments and from known properties of 
scientific simulations and computations [12], [13], [14]. Typically, there is only 
one user group, the scientists, playing the roles of a modeler, user, administrator, 
and analyst. The focus of their work is usually on single workflow instances. To 
be precise, scientists do not distinguish between workflow models and instances or 
are not aware of a difference between models and instances, respectively. They set 
up a simulation and execute it once at a time. Because scientists typically develop 
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their workflow in a trial-and-error manner, modeling and execution phases are not 
arranged in a strict sequence. In fact, they can be carried out alternated. An addi-
tional cycle therefore leads from execution back to modeling phase with the help 
of a “suspend” operation on the workflow instance, which remains hidden from 
the scientists. Technical details are transparent for scientists altogether. For in-
stance, conventional workflow adaptation is experienced as scientific workflow 
modeling; the deployment (of parts of a workflow) is part of the “run/resume” op-
eration [15], which is also hidden for the scientist. Workflow execution starts im-
mediately after modeling. The traditional execution and monitoring phases are 
merged into a single phase in the scientific workflow life cycle because from a 
scientist’s point of view monitoring only visualizes a running workflow (instance). 
After execution a scientist can analyze the computed results and may re-model and 
re-execute the workflow possibly with different parameters.  

2.2. Main Requirements on Scientific Workflow Management Sys-
tems  

Workflows in the scientific area make use of a data-centric approach. Typically, 
huge amounts of data have to be processed, e.g. 5 GB data per day is transmitted 
by the Hubble telescope, and probably need to be processed by a workflow. The 
modeling language for scientific workflows is primarily data-driven, sometimes 
with support of a few control structures (e.g. in Taverna, Triana). That means, for 
accommodating the scientists’ needs the main focus of the modeling language 
should be on data flow while the control flow is considered secondary. Additional-
ly, the language has to provide modeling constructs for advanced data handling, 
e.g. data references, and pipeline mechanisms since typically huge amounts of da-
ta are processed [34]. 

One of the most important requirements on sWfMSs is usability since the ma-
jority of users of sWfMSs are no computer scientists. A scientist needs the support 
of easy-to-use tools, automation as far as possible and maximal flexibility in the 
usage of the sWfMS. First, this means that scientists want to model their 
workflows in a convenient way. Second, they want to run their workflows and 
store their data on resources that are specified by the user himself or automatically 
chosen by the sWfMS. Scientists need the same support for services used in tradi-
tional workflows, i.e. scientists should be able to specify the services to be used in 
a scientific workflow themselves, or to delegate the service discovery to the 
sWfMS. The need for automation in sWfMSs basically includes the deployment of 
workflows, the provisioning of workflows, services and data, the instantiation and 
execution of workflows, and the service discovery. Additionally, the automation 
of data transformation is desirable as well as support of data vs. function shipping 
decisions.  

A sWfMS should be flexible. With flexibility we denote the ability of a system 
to react to changes in its environment. Approaches to flexibility of workflows can 
be divided into two groups. First, a workflow can be modified—be it automatical-
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ly or manually—according to the changed situation (known as adaptation). Such 
modifications can address different workflow dimensions (logical, functional, or-
ganizational dimension [1]) and may be applied to workflow models or single 
workflow instances. Second, a workflow can be modeled in a way that avoids its 
modification even in the presence of a changing environment (known as avoid 
change). Avoid change can be achieved by different mechanisms (e.g. role-
oriented staff queries on organizational databases, alternative paths in the 
workflow model, automatic re-execution of a task).  

The need for flexibility mechanisms in scientific applications and simulations 
is manifold. Setting up a scientific experiment is often not a chain of actions that 
lead to the expected result right from the beginning, but rather a trial-and-error 
process (cf. Section 2.1) [33]. That means a scientist examines an experiment 
while conducting it. If it deviates from the expectations, the scientist modifies the 
workflow to get the desired course. These modifications comprise changing the 
workflow structure, adding or removing activities, correcting erroneous data, and 
others. A sWfMS is therefore required to support these kinds of process logic 
adaptation, ideally especially for running workflows.  

Usually, scientific computations are dealing with huge amounts of data or allo-
cate enormous computing resources. Thus, they are typically long-running al-
though often being conducted in powerful computer clusters or Grid environ-
ments. The reliability of the underlying infrastructure cannot be guaranteed: 
networks may fail; servers may be temporarily unavailable due to administration; 
servers may move to another location. Hence, failures during execution cannot be 
avoided especially in scenarios with long-running computations. If an application 
is not explicitly programmed to cope with such unforeseen failures, its unsuccess-
ful termination would mean a loss of data, time and money. Avoid change me-
chanisms are required: if an activity implementation (i.e. a computation) is not 
available, e.g. because of a server crash, another implementation with identical 
semantics may be invoked at run time without interrupting the workflow execu-
tion. 

During workflow execution scientists want to monitor the process run. There-
fore, a sWfMS should support the ability to monitor the status of the workflow ex-
ecution. For example, the scientist is interested in knowledge about running, fi-
nished or faulted activities, allocated resources, and the dynamical choice of a 
service implementation. Inspecting the produced data is also a need. 

After carrying out a scientific experiment its reproducibility is of utmost impor-
tance for different reasons. Scientists who are not involved in the execution of the 
workflow need to be able to retrace the simulation, have to review the findings, or 
need to use the results. The operating scientist may want to repeat a workflow or 
parts of it to draw conclusions, and to prove statements and assumptions. Addi-
tionally, the scientist may share the results with people he collaborates with. While 
following and reproducing workflow runs and their (intermediate) results scien-
tists use provenance information [16]. Data provenance enables scientists to study 
new results and determine data derivation paths. Workflow provenance enables 
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scientists to study process execution and covers the flow of a workflow instance 
including the nature and the course of decisions in the execution path, used re-
sources and services, meta data (e.g. timestamps) for service invocation, and error 
logs. All relevant data has to be stored by a sWfMS. Finally, provenance informa-
tion should be displayed in a way that (non-computer) scientists understand the 
execution of workflows including the derivation of data. 

The robustness of scientific workflows is an important issue since scientific 
workflows are long-running. The term robustness denotes the ability of being er-
ror-resistant. The needed flexibility mechanisms mentioned above are a way to 
improve the robustness of a system. But additional approaches are needed to pro-
tect the execution progress from being lost in case of unforeseeable failures, to 
reach a consistent system state even in the presence of failures, and to proceed a 
simulation/experiment after a failure.  

Scalability of sWfMSs enables acceptable performance for workflow execu-
tion. Scientific workflows should scale with the number of users, number of uti-
lized services, data or calculation resources and involved participants. Today, typ-
ical scientific workflows are mostly executed in a central manner on a single 
machine. A decentralized workflow enactment can help to scale via distributed 
process execution. It can be achieved, for example, by parallel execution in distri-
buted and heterogeneous execution environments using provisioning techniques. 

The requirements presented above are valid for the entire scientific domain. 
Certainly, there are specific requirements for each specific scientific domain, e.g. 
life science, medical science, chemistry or mechanical engineering. Specific do-
main related requirements and the fact that it is hard to cover all scientific domains 
in one WfMS create the need to extend sWfMSs and the workflow models and 
possibly adapt these models and their instances. This includes, for example, do-
main specific services, result displays or meta-models for semantic annotations. 

The special type of scientific workflows we focus on, the simulation 
workflows, imposes additional requirements on sWfMSs. Like scientific 
workflows simulations are characterized by data-intensive and compute-intensive 
load. Naturally, simulations represent long-running calculations since scientists 
frequently study complex systems. Therefore, simulation workflows require the 
support of long-running workflow instances. Additionally, simulation workflows 
demand the possibility to integrate different tools in one simulation workflow as 
well as a heterogeneous execution environment with integration of databases, 
computation nodes and sensor nets. Finally, simulations represent a special do-
main that requires domain-specific modeling language constructs. For example, 
complex simulations can consist of multiple cohering workflows. Therefore there 
is the need to share context data between these workflows in a simulation. Fur-
thermore, the user should be supported in typical simulation tasks like parameter 
searching, for example.  
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2.3. Comparing Conventional and Scientific Workflow Technology 

The main intention of (conventional) workflows is the automation of processes. In 
conventional workflow technology this comprises the instantiation and execution 
of workflows. Additionally, humans have to be integrated in the course of actions 
which results in an automated “invocation” of human beings during execution of 
workflows. This requirement is not among the most important requirements for 
scientific workflows. Nevertheless, scientific workflows can benefit in this field 
since setting up and conducting scientific experiments and simulations often in-
cludes manual tasks that are currently not part of scientific workflows. However, 
in general scientists make higher demands on automation while using workflow 
technology. As non-computer scientists they want to use the whole power of 
workflow technology without the need for further education, i.e. they require an 
automated (i.e. hidden) deployment of workflows and services since the location 
of execution is not predefined in all cases in e-Science. Rather in the workflow 
scientists want to specify the location where services have to be automatically 
deployed and executed. Supplementary, this creates the need of automated service 
and workflow provisioning. Finally, an automated data transformation as well as 
an automated service discovery is desirable for scientific users. Triana [6] pro-
vides the specification of the location for service execution. With the help of this 
mechanisms it even allows to specify the way sub-workflows have to be executed, 
i.e. how many instances of a sub-workflow have to be created and the distribution 
of these instances in the execution environment. A special control unit is responsi-
ble for data transfer realizing data dependencies between the instances. For the 
distribution of sub-workflow instances Triana also provides an automatic specifi-
cation. 

Allmost all sWfMSs provide a service catalog with predefined services. When 
starting the particular sWfMS it automatically searches for these predefined ser-
vices and if they are still available the user can choose them in the service catalog 
for integration into workflow models. Although these service catalogs are extend-
able an automatic service discovery based on semantic data is not sufficiently con-
sidered by sWfMSs in most cases until now. The sWfMS Triana provides ad-
vanced mechanisms for workflow deployment and execution since it is specialized 
on distributed execution of workflows. However, most sWfMSs are specialized by 
provided services in the service catalog. For example, Taverna[8] and Kepler[9] 
provide mainly services needed for biological algorithms or services providing 
access to biological databases. Moreover, a service catalog is an important factor 
of the usability of a sWfMS. 

Next to the service catalog the usability of a sWfMS strongly depends on sup-
ported tools needed for the realization of the whole workflow lifecycle. Hence, 
Taverna, Triana and Kepler provide the modeling of workflows (including the 
support of a service catalog), starting workflow runs “by mouse click”, integrated 
monitoring and result visualization tools. In summary easy-to-use tools in combi-
nation with wide-ranging automation are key factors of usability. In conventional 
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workflow technology required tools often exists but their usability leave a lot to be 
desired for scientific users. Additionally, service registries allowing service cata-
logs in WfMS are not sufficiently supported. As suggested before the scope of au-
tomation in conventional workflow technology needs to be extended in order to 
meet requirements on usability for scientific workflows. 

Most conventional modeling languages for business workflows are control 
flow-driven since they are designed for the implementation of control flow-
oriented processes. However, scientists think data-oriented which creates the need 
for new modeling constructs in order to allow for example an explicit specification 
of data flow in scientific workflows. The modeling languages of sWfMSs (e.g. in 
Taverna and Triana) are mostly hybrid languages that are mainly data-driven with 
support of a few control structures. Intentionally the additional control structures 
allow an enhanced support of controlling mechanisms for the data flow.  

Futhermore, modeling languages for scientific workflows have to support ad-
vanced data handling mechanisms. In conventional workflow technology the han-
dling of huge amounts of data is not a primary requirement. Therefore, new me-
chanisms should upgrade the workflow technology. For example Pegasus [10] 
optimizes the execution of scientific workflows by reusing data that was already 
generated and is still up to date. Hence, the workflows’ execution time can be re-
duced because the data does not have to be generated again. 

In conventional workflow technology the reproducibility of workflow runs par-
ticularly comprises executed activities, invoked services and corresponding re-
sources during workflow execution. For scientists research results are only ac-
cepted and usable if they are repeatable which constitutes the need for the 
collection of huge information sets in order to enable the reproducibility of almost 
the whole workflow run. Especially, existing monitoring and auditing mechanisms 
of conventional workflow technology are not sufficient. Origin of the data and 
their manipulation is not tracked but this type of information is of high importance 
for scientists. Therefore in sWfMSs a special provenance component should sup-
port the traceability and reproducibility of workflow runs. That component com-
bines information about a workflow instance including the nature and the course 
of decisions determining the path through the workflow with information about 
the origin and the manipulation of data.  

Requirements on robustness are quite similar for conventional and scientific 
workflows. Recoverability of faulty workflow runs is an important issue already 
considered by conventional workflow technology. Therefore, scientific computa-
tions seriously benefit from conventional workflow technology. However, an in-
creased flexibility of workflows would further improve their robustness [25]. Im-
agine a workflow that automatically reacts to a changed environment: if a server 
becomes unavailable, an alternative server can be chosen at runtime; if a network 
connection error occurred, a simple retry operation could solve the problem. Al-
though flexibility is a key point in scientific workflow management, it is insuffi-
ciently unaddressed in currently existing scientific workflow systems. For exam-
ple, Triana and Kepler just allow the modification of simulation/experiment 
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parameters during workflow execution as adaptation mechanism; Pegasus and Ta-
verna implement avoid change concepts such as retry of service invocation [33]. 
In conventional workflow technology, there are already many approaches address-
ing the mentioned kinds of flexibility. We believe that it is of high value to har-
ness the results of existing concepts.  

Scalability is already addressed by conventional workflow technology regard-
ing tasks in workflows, workflows themselves and humans integrated in workflow 
execution. Since scientific workflows require a dynamic infrastructure for 
workflow and service execution, scalability regarding resources strongly suggests 
the execution of scientific workflows in Grid or Cloud environments. Of course 
the execution of conventional workflows in Grids and Clouds is already an ongo-
ing issue since it seems natural to use workflow and service based execution me-
chanisms in such kind of distributed execution environments. In the scientific do-
main Pegasus is especially designed for the execution of workflows in Grid 
environments. It plans the execution of scientific workflows in Grids, i.e. Pegasus 
maps Grid resources to workflow tasks. Triana also enables the execution of 
workflows in Grids and additionally introduces an abstraction level (in the form of 
an API) that allows scientific users to integrate different types of infrastructures in 
the same way. 

For scientific of simulation workflows conventional workflow technology can 
deal with the demand on heterogeneous execution environments and their long-
running character. The mechanism for the integration of hardware like databases 
in conventional workflow technology constitutes a beginning for the integration of 
sensor nets as well. Nevertheless, further studies are needed in order to integrate 
sensor nets in an efficient way also utilizing valuable characteristics of sensor 
nets. Conventional workflow technology also easily enables the integration of dif-
ferent tools in a workflow implementing one simulation. Nevertheless, the data 
exchange between different tools is still difficult since they rarely share the same 
data format. 

The interaction between workflow models assembled in one simulation is mod-
eled in a so called choreography [3] in conventional workflow technology. How-
ever, in order to assemble simulation workflows the support of shared context data 
is missing. In the scientific domain only a small number of WfMS especially pro-
mote the application for simulations. All together do not consider choreographies 
of workflows. Amongst other things Kepler is used for the implementation of si-
mulations (cf. [21]). The support of tools like MatLab emphasizes the competence 
of Kepler for the modeling and execution of simulation workflows. A language 
that specifically addresses requirements of scientists on a workflow language for 
simulations is GriCoL [24]. For example it supports special mechanisms for pa-
rameter searching. In order to prove the concepts a use case “molecular dynamics 
simulation of proteins” was successfully implemented by biology scientists using 
GriCoL [24]. 

Finally, it has to be noticed that discussed sWfMSs except Trident [11] do not 
follow the architecture given by conventional management systems. Nevertheless, 
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they are representatives of sWfMSs established in e-Science. Typically, early 
sWfMSs set a high value on frameworks integrating tools for the support of the 
whole life cycle and emphasize less on a sophisticated runtime environment for 
workflows. Upcoming sWfMSs, e.g. Trident or Sedna [19] confirm the approach 
to use conventional workflow technology in e-Science since they successfully in-
tegrate its mechanisms and benefit from its attributes. 

2.4. Architecture for Scientific Workflow Management Systems 

In order to meet the requirements on WfMSs in the scientific domain we propose a 
conceptual architecture for sWfMSs that is shown in Figure 2. Individual compo-
nents in this architecture are discussed in the following. 

Since the user interface offers the functionality provided by the sWfMS to a 
(non-computer) scientist the usability is the main requirement to be met by the us-
er interface. We propose a Graphical User Interface (GUI) with four main com-
ponents: a service catalog, a workflow modeler, a monitor and a result display. 
The GUI is connected to the runtime environment to realize workflow deploy-
ment, execution, monitoring, and other functionalities. 

 

 
Figure 2: Architecture of a simulation workflow management system. 

 
The service catalog provides the user with a list of available services that can be 
used in the workflow modeler. The discovery of such services includes among 
other things the search for new services in the user domain and the identification 
of services that are no longer available. The underlying mechanisms should be in-
itiated either explicitly by the user or automatically by the sWfMS. 

The workflow modeler supports the scientific user during workflow specifica-
tion/modeling. Graphical modeling as well as program like “modeling” has to be 
provided since many scientists prefer to code their workflows. The modeling lan-
guage is mainly data-driven with support of control structures. Additionally, the 
language has to provide mechanisms for the handling huge amounts of data. 
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The GUI enables the user to select his favored services from the service catalog 
and compose them using the workflow modeler. The deployment information of 
such services can be specified by the service provider itself, by the workflow 
modeler, or automatically by the sWFMS. For example, lots of parallelism in 
scientific workflows is achieved by parallel workflow instances. The number of 
these instances can be huge if multi-scale simulations or for parameter search in 
simulations are conducted (where one instance for each element in the parameter 
range is created). In such cases it is reasonable to distribute the execution of in-
stances which in turn only can be decided in the workflow context. These and oth-
er scenarios impose the necessity for specification of service deployment informa-
tion by the workflow modeler. Since only advanced modelers use this feature 
default deployment information is needed for the cases where this information is 
specified neither in the service catalog nor by the user. 

Scientists should be able to execute workflows using the GUI. In order to im-
prove the usability of the GUI workflow and data provisioning, workflow and ser-
vice deployment as well as workflow instantiation and execution should be auto-
mated and thus rendered transparent to the user.  

The monitor is the third main part of the GUI. It allows the user to inspect the 
workflow execution and to identify unexpected occurrences or faults in the 
workflow execution. In order to afford a user reaction the user should have inter-
active control on workflow execution and possibility to adapt particular 
workflows. 

Using the result display the final outcome as well as intermediate results of a 
workflow are presented in an appropriate way. The kind of presentation depends 
very much on the domain and on the particular data with its specific structure. 
Support of simulations additionally requires the availability of result visualization. 
For a customized result visualization adapted to the particular simulation it is 
possible to compose special services in a visualization workflow that is part of the 
simulation workflow. Overall, the result display has to be adaptable/configurable 
in order to meet the different user requirements. 

The main purpose of the runtime environment is to carry out the workflows. 
This comprises navigation through a workflow, maintaining its state, and invoking 
service implementations, storing workflow specific run time data and dealing with 
experiment dates and simulation results. The architecture’s run time components 
(see Figure 2) are similar to those of existing conventional WfMSs but extended 
by additional functionality to meet the requirements related to the scientific area, 
e.g. provenance tracking or scientific data handling. The runtime components for 
the simulation WfMS are the execution engine, the service bus, the security and 
deployment components as well as monitoring, auditing and provenance. All men-
tioned modules may have access to persistent storage mechanisms to durably save 
process data. These process storage components differ from the scientific data 
handling components and are not shown in Figure 2 for better readability.  

The execution engine runs the scientific workflow instances, which means that 
it instantiates workflow models with provided input data, navigates through the 



14  

graphs of activities, and triggers the execution of activity implementations and 
handles faults and events from the outside. The engine thereby maintains instance 
data such as the state of a workflow instance and its activities and variables. Fur-
thermore, the execution engine should support transaction concepts in order to 
support fault handling, e.g. by compensation of completed work. The engine 
should provide mechanisms to cope with workflow model and instance adapta-
tions at run time.  

The service bus primarily deals with the task of invoking services that imple-
ment workflow activities. Therefore it discovers and selects services, routes mes-
sages, and transforms data. Two major components can be distinguished: the re-
source management and the service discovery. 

Since resources have different properties, the resource management component 
is used, for example, to identify servers or Grids that have enough storage capacity 
and calculation power to carry out a computationally intensive task. Furthermore, 
the resource management is responsible for data vs. code shipping decisions at run 
time. 

The service discovery queries service registries (such as UDDI) to find services 
by means of descriptive information (e.g. interfaces, and semantic annotations). 
The service discovery component delivers a list of candidate services. On the one 
hand, this capability is used by the service catalog component of the GUI. On the 
other hand, it is the basis for flexibility mechanisms regarding activity implemen-
tations, i.e. late binding [26] and rebinding of failing activities. The late binding 
strategy denotes the process of selecting a concrete service as late as possible, i.e. 
during workflow execution at the latest.  

The deployment component transforms workflow models into an engine-
internal representation, installs them on the engine, and publishes the workflows 
as services. A so-called deployment descriptor prescribes how to make the 
workflow runnable on a specific engine. The deployment descriptor may, for in-
stance, statically bind services, specify selection rules, or influence resource man-
agement decisions. Although the deployment is triggered by the GUI its complexi-
ty should be hidden especially to scientific users.  

The security component has two main functions, namely to ensure both local 
and remote security policies. The local security protects the GUI from unautho-
rized access. The remote security protects services provided by the sWfMS from 
remote access. Furthermore, it enables the service bus to access secured resources 
such as scientific databases that request a user login.  

Finally, there is a group of components that are rather passive with respect to 
workflow execution: the auditing, provenance and monitoring component. The 
auditing component is responsible for recording workflow or activity related 
events, e.g. the start time of a workflow or the duration of an activity execution. 
The monitoring component uses the events related to a single workflow run and 
indicates the status of this workflow run. The provenance component records data 
that goes beyond simple auditing information. All together these components ena-
ble the examination of workflow runs and their reproducibility.  
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2.5. Prototype 

In the context of the DFG Cluster of Excellence Simulation Technology (Sim-
Tech)5 we developed a first prototype that implements the conceptual architecture 
for sWfMSs mentioned above. SimTech concentrates on simulation technology, 
ranging from molecular dynamics and modern mechanics over numerical mathe-
matics and systems analysis to data management und interactive visualization as 
well as high performance computing. In our field we make efforts in creating a 
sWfMS especially tailored to requirements for simulation workflows. The under-
lying technical complexity ought to be hidden for scientists to enable them to con-
centrate on their core competencies. The prototype presented in this chapter focus-
es on the modeling of scientific and simulation workflows. We decided to rely on 
BPEL [5] as workflow language for various reasons. It is widely accepted in in-
dustry and research, supports integration of legacy applications by using WSs as 
activity implementations, and there are a number of open source BPEL tools that 
can be used as basis for a sWfMS. However, in order to satisfy requirements of 
scientists and simulation workflows, extensions to standard BPEL are needed.  

We use the Eclipse BPEL Designer6 as starting point for a tool to model simu-
lation workflows but the tool needs extensions in order to support newly intro-
duced modeling constructs. On the basis of Eclipse we implemented different 
perspectives corresponding to the different phases in the lifecycle of simulation 
process management. A “SimTech modeling perspective” (see Figure 3) provides 
for the design of workflows with the help of the modeler and the service catalog. 
The “SimTech runtime perspective” supports the user during workflow execution 
to follow the simulation progress. The result display shows intermediate results in 
this perspective. At last the “SimTech analysis perspective” allows analyzing the 
outcome of workflow runs and therefore contains the result display and the moni-
toring component. In contrast to the runtime perspective, the result display is hig-
hlighted here. 
The service catalog was recently implemented and allows the use of services as 
building blocks in DUNE7 (Distributed and Unified Numerics Environment) simu-
lations represented as BPEL workflows. Currently, efforts are being made to sup-
port other simulation frameworks and visualization services. With the visualiza-
tion services users are able to specify result visualization in a way similar to the 
actual simulation. The monitor is a proprietary implementation which is fitted for 
the special needs in simulations. This means that for example in DUNE simula-
tions, special DUNE events can be monitored instead of ordinary BPEL events. In 
our further work we will improve the monitor component with additional features. 
The implementation of the result display is currently in progress. It will enable a 

                                                           
5 http://www.simtech.uni-stuttgart.de/ 
6 http://www.eclipse.org/bpel/  

7 DUNE, a C++ template library for solving partial differential equations with 
grid-based methods: http://www.dune-project.org/ 
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user defined result display. Calculation steps needed to display data will be pro-
vided as services and workflows respectively. 

 

 
Figure 3: The SimTech Modeling Perspective in the prototype including a 

workflow modeler (1) and the service catalog (2). 
 

The runtime environment of our prototype uses open source software for all com-
ponents. The execution engine is based on the Apache Orchestration Director En-
gine8 (ODE). In order to provide the basic functionality of a service bus we use 
Apache Axis29. In our prototype Axis2 invokes services that implement workflow 
activities but extensions are needed for two main objectives: service discovery and 
resource management. Currently, we provide a service registry for data services 
based on Apache jUDDI10 that can be used to choose data sources at runtime.  

In order to support resource management functionalities in the service bus we 
developed a set of generic Web Service interfaces to deal with external data 
sources, scientific applications, or computing environments. The WS interface to 
invoke scientific applications consists of a generic adapter that provides funda-
mental functionality: The adapter manage all instances of the simulation applica-
tions and assists basic operations like generate directories, files access, execute 
supporting services like configuring, compile source code, or start a scientific ap-
plication without user interaction. To run applications with user interaction or in 

                                                           
8 http://ode.apache.org/ 
9 http://ws.apache.org/axis2/ 
10 http://ws.apache.org/juddi/ 
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an asynchronous manner a plug-in that fulfills the special needs of the application 
is necessary. 

The ingredients of the generic adapter are a basic WS, an instance pool, a pro-
gram manager, and a callback WS. The basic WS is the main interface for a client 
to communicate with the generic Web Service interface. It offers basic operations 
to interact with the instances of simulation applications synchronously or asyn-
chronously. The instance pool manages every instance of simulation applications 
individually. The program manager implements all operations needed to execute 
simulation applications like create directory structures, install compiler, compile 
source code, or start executable programs. It provides functionality for applica-
tions with or without user interaction. Beyond that, the program manager supports 
an interface that can handle the program output, e.g. for troubleshooting. The call-
back WS serves the notification by an asynchronously running simulation applica-
tion. For example, an application can notify its state (e.g. runnable, busy) to the 
generic WS interface. To do this, the simulation application must be enriched with 
a platform specific callback stub. 

The WS interface for data sources provides a framework for data access from a 
BPEL workflow to handle huge amounts of data stored in different sources. The 
database domain has inspired generic activities like Select, Update, Insert, and De-
lete. Our prototype currently supports comma separated value files (CSV) and re-
lational databases (SQL).  

For the auditing, monitoring, and provenance components we developed an in-
tegrated database environment. To store the audit information the environment can 
use different database systems. The ODE execution engine uses an Apache Der-
by11 database management system (DBMS) to store all audit information. As a re-
sult of an evaluation we have replaced Derby with the more suitable open source 
DBMS PostgreSQL12. It is also feasible to utilize the commercial IBM DB213 
DBMS. Using the audit information and based on the management tools of the 
DBMSs or an external tool like SQuirreL14 it is possible to extract monitoring in-
formation like the status of a workflow or the number of running instances.  

 

3. A DUNE-based Simulation – An Example  

We implemented several workflows that perform simulations with different com-
plexity to prove the viability of the architecture and prototype of the SimTech 
WfMS. For complexity reason we demonstrate a simple example: a fluid dynam-
ics problem that simulates the diffusion of an ink drop into a box of water with the 
help of the finite elements method (FEM). In the scientific experiment, the ink dif-

                                                           
11 http://db.apache.org/derby/ 
12 http://www.postgresql.org/ 
13 http://www-01.ibm.com/software/data/db2/ 
14 http://squirrel-sql.sourceforge.net/ 
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fusion in water can be expressed as partial differential equation (PDE) in three 
spaces and one time dimension with particular conditions: 

 

 
To solve this PDE we used the FEM framework of DUNE (Distributed and Uni-
fied Numerics Environment). DUNE fits a wide range of simulation problems and 
is therefore frequently used SimTech. For example it contains software libraries 
that provide modules for solving PDEs. These C++ source code libraries include 
for example implementations of grid-based techniques such as finite elements. 
Furthermore, DUNE contains different solver libraries, e.g. for linear equations, 
for vector and matrix calculations, or iterative solvers. Other libraries support data 
import and export for various file formats.  

In order for the scientists to execute a DUNE-based simulation first the source 
code for the simulation program must be created for the target runtime platform 
(e.g., operating system, multi-core support). After compilation the source code of 
the executable simulation application must be copied into a specific directory 
structure. In detail, the creation of a typical DUNE-based simulation consists of 
the following twelve steps: 

 
1. Create a new DUNE module. 
2. Define dependencies to other existing DUNE modules. 
3. Implement custom modules if needed. 
4. Construct the main routine which uses the modules. (Simulation parame-

ters like space dimension must be defined in the main routine or in the 
modules.) 

5. Integrate file importers and exporters for the data. 
6. Generate a configuration file specifying the build sequence. 
7. Compile required modules and the main routine using the GNU build 

system15. 
8. Create files with input data for the simulation, e.g. initial grid description. 

                                                           
15 http://www.gnu.org/software/libtool/manual/automake/ 
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9. Copy the executable code and all needed files in a suitable directory 
structure. 

10. Run the simulation. 
11. Store the results. 
12. Delete out-dated data, e.g. compiler output. 

 
A DUNE-based application created this way is monolithic and cannot be executed 
stepwise or with user interaction. To achieve this we enrich the DUNE library at 
step 4. Hence, step 10 can be divided in subtasks: 
 

a. Initialize MPIHelper16 if multi-core support is needed 
b. Create a basic FEM grid 
c. Calculate the FEM grid refinement steps with respect to the boundary 

values 
d. Refine the FEM grid 
e. Set initial values and the FEM grid 
f. Solve the simulation for one time step 
g. Write the (intermediate) result data 
h. Repeat subtask f. and g. for all required time steps 

 
Until now a C++ program is created in order to execute this simulation. Since we 
want to use workflow technology for the execution of this simulation, we modeled 
two different BPEL processes for two use cases. The first use case executes the 
DUNE-based application without user interaction. The second use case supports 
user interaction and therefore requires the integration of a gSOAP17 server. 

In Figure 4 a workflow model for the second use case is represented. It uses a 
so called WS DUNE plug-in that is an extension of the generic WS interface pre-
sented in Section 2.5. At the beginning of the workflow the activity CreateIns-
tance invokes the WS DUNE plug-in to initialize a unique Instance-ID and some 
metadata like timestamps managed by the instance pool.  

The activity Unpack_dune-common creates all required directories and copy 
software artifacts like the GNU build system into these directories. Afterwards, 
Unpack_dune-grid inserts the source code of the DUNE C++ framework into the 
created directories. Unpack_dune-grid-howto provides the source code for the 
concrete simulation to a specified directory. After these preparatory operations 
Dunecontrol_All builds the executable simulation application. This activity com-
bines the generation of modules, code fragments, and files concerning steps 1 – 9. 
Execute_finitevolume invokes starts the interactive simulation application. Thus, 
we can control the substeps 10a to 10g with BPEL activities to calculate the ink 
diffusion simulation.  

 

                                                           
16 http://www.mpi-forum.org/ 
17 http://www.cs.fsu.edu/~engelen/soap.html 



20  

 
Figure 4: Workflow to simulate the ink concentration in water. 

 
To simplify the execution of the use case we use a single core machine without the 
need for the MPIHelper (substep 10a). Therefore, CreateGrid and GlobalRefine 
initialize the simulation at substep 10b or 10c and 10d, respectively. Afterwards, 
InitConcentration (substep 10e) reads initial values from a database and integrates 
these values in the FEM grid. TimeloopCycle represents substep 10f and together 
with the enclosing repeatUntil activity it iteratively calculates single time steps in 
the simulation. For each time step WriteIntermediateResults writes intermediate 
result data in a database (substep 10g). Activity WriteFinalResults that is also part 
of substep 10g stores the final result data in a database and StopApplication finally 
cleans the workspace of all data fragments that are no longer needed, e.g. interme-
diate results or compiler output.  

 

4. Scientific Domain Intended Extensions for 
Conventional Workflow Technology 

In this section we present extensions of conventional workflow technology in-
tended for the use of workflows in the scientific domain. Especially these adapta-
tions meet unfulfilled requirements established by scientific simulation 
workflows. 

4.1. Modeling Language 

As starting point for the modeling of scientific workflows we use BPEL [5] since 
it is the de facto standard for modeling business workflows. In [13] the ability of 
BPEL to be used as modeling language for scientific workflows is already docu-
mented. It should be especially noted that BPEL and its support of transaction 
models upgrades the robustness of scientific workflows which is one of the goals 
in our work.  

Applying conventional workflow technology for scientific simulations imposes 
the need for the introduction of new language constructs in order to achieve the 
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required expressiveness of workflow modeling languages. Existing simulation 
modeling languages are various since simulations are applied in various fields. Of-
ten the languages are close to mathematical representations, e.g. in MatLab. High-
er modeling languages are mainly given by simulation libraries written in C++, 
e.g. DUNE, ODEMx18. As mentioned before usability is an important issue in the 
scientific domain. Therefore, some efforts were made in graphical modeling of 
simulations, e.g. Simulink19. 

In this section we present some modeling concepts specifically designed for 
scientific simulation workflows in general and for an increased expressiveness of 
BPEL for simulations in particular. In [34] the gentle reader can get further infor-
mation about modeling language constructs for simulation workflows based on 
BPEL. In comparison to GriCoL, a graphical language for simulation workflows 
in Grids, we identified data handling and pipelining mechanisms on workflow 
level as well as different layers of abstraction, explicit data flow, and shared data 
as core concepts for simulation workflows that are currently not supported by 
BPEL.  

Data-centric Workflow Models 

The data-centric character of scientific workflows demands adaptation of the lan-
guage. Since BPEL is a control-driven language, control structures that scientists 
want to use in their workflows are already supported by BPEL. The specification 
of data-driven workflows is not completely addressed by BPEL until now. An ex-
tension, namely BPEL-D [17], exists that allows the modeling of data dependen-
cies between activities in the BPEL process. In a pre-deployment step BPEL-D 
processes are translated into standard BPEL and hence the data dependencies are 
not used during execution. Since data dependencies in data-driven workflows re-
quire a delivery of control as well, BPEL-D is not adequate for the use in scientific 
workflows. However, it can be used as a starting point. Enabling the modeling of 
“real” data-driven workflows with BPEL is one future work issue. 

The handling of huge amounts of data has impact on the performance during 
scientific workflow execution. For the most part this challenge must be met by the 
workflow runtime environment. However, there are possibilities in the modeling 
language to improve the handling of huge amounts of data. In [18] we presented 
an improvement of data handling by the introduction of data references that is re-
cently implemented in the SimTech prototype (cf. Section 2.5). Dealing with huge 
amounts of data in BPEL processes results in lots of transmissions of large data 
sets which make the usage of BPEL very costly for scientific workflows. The ma-
jority of scientific data is of no importance for the process logic itself and thus can 
be ignored by the WfMS. By using data references the transfer of huge amounts of 

                                                           
18 http://odemx.sourceforge.net/ 
19 http://www.mathworks.com/products/simulink/?BB=1 
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data through the engine can be minimized or even avoided without losing relevant 
information. Figure 5 illustrates the idea to use data references. 

 

 
Figure 5: A visualization workflow using data references. 

 
The scientific workflow in Figure 5 represents a general visualization process. It 
successively invokes a filtering service, a mapping service and a rendering ser-
vice. A workflow engine in the WfMS is responsible for the execution of the visu-
alization workflow and for the invocation of services. A visualization workflow 
receives a lot of data during the simulation. Consequently the execution of the vi-
sualization workflow in Figure 5 demands multiple exchanges of huge data sets 
through the engine. Usage of pointers in the visualization workflow shifts the re-
sponsibility for data transport to participating services and therefore scales down 
the amount of data that has to be transferred through the workflow engine. 
 

Simulation Workflow Container 

Typically, simulations have complex character and often more than one workflow 
model is assembled in a so called choreography. Hence, the simulation represents 
a context for assembled workflows. Since in workflows there are variables that 
represent the state of the simulated system we need to support shared context data 
in simulation workflows. Therefore, we propose the introduction of simulation 
workflow containers that hold assembled workflows in choreographies together 
with shared data structures. Data structures are held in variables typed with XML 
schema. Different types of values result in different types of variables that hold 
data structures. State variables and simulation parameters represent shared context 
data and therefore embodied by reference variables that allow the storage of data 
values outside of the simulation model. Reference variables are visible for all 
workflows that are enclosed in the simulation workflow container. For an en-
hanced context it should generally be possible to use data references in simulation 
workflows.  

When the simulation model is executed by a centralized workflow engine, the 
data value is held in the local storage of the engine. For distributed engines there is 
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the need for an optimized distribution of such shared data. At first the data value 
can be held on any node X and the other nodes send requests for the data whenev-
er it is required. When choosing the node that stores the value the number of data 
transfers for reference resolution should be considered for an optimized perfor-
mance in simulation execution. In general, the node with the minimal number of 
data transfers between all nodes should store the data value. 

Some kinds of simulations additionally require synchronization of workflows 
assembled in a simulation workflow container. This means especially synchroni-
zation regarding a model property. A possible use case is the intention to model a 
time scale whose value and variation is equal in each workflow. Another possible 
use case is the parallel processing of one data item by multiple workflows or 
workflow instances.  

Simulation workflow containers as stated above can be used as well for multi-
scale and multi-physics simulations. In multi-scale simulations one model of one 
system is simulated on different scales. The simulation on different scales means 
different modifications of one system property, e.g. the variation of time or a 
length quantity. The execution of multi-scale simulations depends on the use case. 
Scientists want to run multi-scale simulations sequentially as well as in parallel. In 
contrast to multi-scale simulations, multi-physics simulations demand multiple 
models of one system. Each model represents another point of view on the system 
with another physical theory as basis. These different models are possibly coupled 
and executed sequentially or in parallel. 

Multi-scale simulations can be realized by one simulation workflow container 
that holds the system model. The container is parameterized with the scale, i.e. the 
modification of the particular system property. With that it is possible to simulate 
multiple scales by running multiple instances of the container. These instances can 
be executed sequentially or in parallel.  

Multi-physics simulation can be realized with workflows by nesting simulation 
workflow containers. The overall container involves one simulation workflow 
container for each simulation model. In that case the overall container assembles 
no simulation workflows while the child containers hold workflow choreogra-
phies. The support of coupling mechanisms between simulation models can be 
realized by message exchanges between simulation workflow containers. 

4.2. Runtime Environment 

The runtime environment offers means to execute workflows. This section dis-
cusses workflow execution on distributed and centralized workflow engines and 
shows how convenient data handling in workflows can be achieved. 

Distributed vs. Central Execution 

The architecture in Figure 2 and our current prototype rely on a centralized 
workflow engine while the used WSs can be distributed among different machines 
hosted by different organizations. This is the common approach in both conven-
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tional and scientific workflow management. It is a known fact that scientific 
workflows are often long-running and that they usually process large data sets that 
have to be transmitted between services and workflow engine [12][14]. When a 
centralized workflow engine runs many workflow instances in parallel that deal 
with huge amounts of data (e.g. in a parameter sweep), it can become a bottleneck 
for the whole system even if the used services are distributed. Additionally, a mal-
function of the workflow server means a breakdown of all running simulations un-
til the server restarts. The employment of a decentralized workflow engine can 
address these and other problems. In our former work we investigated whether a 
workflow engine that is distributed with the help of a process space-based mid-
dleware is beneficial to the scientific domain [22]. The “engine” is a set of activity 
clients that can be installed on several machines (even at process runtime). They 
communicate via tokens that are written to and read from process spaces. That 
way control and data is exchanged. The process spaces themselves can also be in-
stalled on several machines. In such an infrastructure the processes can be ex-
ecuted even in the presence of server failures if redundant functionality (i.e. ser-
vices) and data replication mechanisms are employed. The engine is no single 
bottleneck anymore. Intelligent distribution of activity clients on machines that 
host the used services can minimize the network load and hence speedup 
workflow execution. Of course a distributed workflow enactment has also down-
sides. Previously unconnected components have to be wired which results in an 
increased coordination and configuration effort. Furthermore new sources of fail-
ures are introduced such as the unavailability of process spaces or tokens that are 
written but never read because of faulted activity clients. In summary, decentra-
lized workflow systems have many properties that can be advantageous for scien-
tific applications. But it needs to be decided on a case basis if these advantages 
outbalance the described effort.  

Interaction with Data Stores and Huge Data Sets in Workflows 

In the context of scientific and especially simulation workflows the management 
of data sets is a fundamental issue [23]. Typical challenges are to integrate hetero-
geneous data sources and to cope with huge amounts of data [21]. As mentioned 
earlier, we propose to rely on BPEL as starting point for a simulation workflow 
language. In BPEL, data is loaded into processes with WS invocations. The access 
to data therefore must be wrapped by WSs. While this functionality is desired in 
business scenarios, it provides a serious drawback for a practical use in the scien-
tific domain. Scientists want to access data directly from within their workflows 
[34]. We therefore extended BPEL by special data management activities that can 
be used to directly access several kinds of external data sources, e.g. data stored in 
databases or CSV files. No WS wrappers are needed anymore. These activities are 
geared towards established data management patterns such as query, insert, up-
date, or delete. It is possible to reference queried data with special Set Reference 
variables and hence leave this data in a data source (i.e. outside of the workflow 
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engine). Parts of that data can be loaded explicitly into processes if needed for 
process execution by a retrieve data activity. This avoids stuffing huge amounts of 
data not needed by a workflow into the BPEL engine. Another aspect of our ap-
proach is late binding of data sources. Data sources can be registered with non-
functional properties in an extended UDDI registry. Data management activities 
can then be bound to concrete data sources at process runtime by matching speci-
fied requirements on data sources and provided features of registered data sources. 
This enables an increased robustness of the overall workflow execution in case da-
ta sources fail and alternative data sources with similar properties are available.  

4.3. Flexibility Mechanisms 

Quite a lot of research is already done to flexibility of business workflows and 
conventional workflow technology. Following approaches are especially interest-
ing for scientific workflows. Note that we do not claim the list to be complete. (1) 
Late binding of services increases flexibility of workflows because concrete ser-
vices are selected at execution time [26]. (2) The approach of parameterized 
processes [27], [28] is a BPEL extension to release interacting activities from the 
specification of service interfaces (port type and operation pairs). That way, ser-
vices can be late-bound independent of their interfaces. (3) BPEL’n’Aspects [29] 
is a non-intrusive mechanism to adapt the logic dimension of BPEL process mod-
els or instances with the help of the AOP (aspect-oriented programming) tech-
niques [30]. It is possible to extend workflows with additional behavior, to replace 
or delete elements (activities, transition conditions). Cumbersome instance migra-
tion operations [31] are not be needed. (4) The process space-based workflow 
enactment [32] (see Section 4.2) opens new possibilities for workflow logic adap-
tations during execution. Workflows can be modified by installing/uninstalling as 
well as and configuring/re-configuring activity clients.  
Scientific workflows in general and simulation workflows in particular impose 
novel requirements on the workflow meta-model and execution environment. 
Such requirements are not yet accounted for in the discussed flexibility mechan-
isms. In the following we sketch considerations about needed extensions in the 
meta-model and execution environment for simulation workflows. 

Modeling Language Extensions 

The integration of sensors and hence streaming data into workflow imposes the 
need for a new connector, namely a data pipeline. In contrast to data or control 
connectors, pipeline edges can be evaluated several times and hence activity in-
stances that are the source or target of a pipeline connection may be executed sev-
eral times. This imposes new use cases for adaptation of workflows. For example, 
a concept is needed to exchange sensors or insert/delete sensor activities at run-
time. Such a concept will differ very much from exchanging, inserting or deleting 
activities that invoke services because sensors continuously deliver streams of data 
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whereas the communication with services is based on sending and receiving mes-
sages. 

Execution Environment Extensions 

Due to the need of enormous computing and storage capacities simulations are of-
ten conducted in Grids. With the introduction of the Web Services Resource 
Framework (WSRF) [7] Grid resources can be provided as stateful Web Services 
and can thus be orchestrated in service compositions (e.g. in a BPEL process). 
Such a stateful environment imposes new requirements on flexibility mechanisms. 
For example, when changing a running workflow by choosing another service that 
is to be invoked, it may happen that the service resides on another resource than 
the data it relies on. This implies that the data needs to be shipped between the re-
sources. This data shipment can be implemented by the ESB transparently for the 
scientist. Currently, ESBs do not provide data shipping functionality because ser-
vices used in business scenarios are self-containing logic. However, the specifica-
tion of a data dependency between resources/services/tools would simplify the so-
lution of this problem. Late binding and function shipping mechanisms could 
render the situation even more complex. 

An important requirement of scientists on an execution environment for simu-
lations is the reproducibility of results. A sWfMS with advanced flexibility capa-
bilities therefore needs a mechanism to track (automatic or manual) changes that 
were made during execution of workflows. Tracking changes is currently not im-
plemented by the presented approaches to flexibility. Another reason for the need 
of advanced flexibility features in scientific workflow management is the way 
scientists create and execute their experiments and simulations. They usually do 
not distinguish between models and instances of workflows. That means the focus 
of their work is on single workflow instances. Scientists often unconsciously 
switch between phases of modeling, execution and monitoring of workflows. They 
are unaware of the technical realization of their actions and in fact do not want to 
cope with such details. However, from a software engineering point of view it is 
desirable to consider these technical aspects. We therefore extended and modified 
the business workflow life cycle  to reflect the needs of scientists (see Figure 6) 
[33]. This enhanced life cycle reveals that scientists transparently make use of two 
categories of adaptation operations when manually modifying their simulation 
workflows. First, adapting the structure of workflows (i.e. the logic dimension) 
entails a redeployment of the workflow or parts of it. Of course, deployment 
should be transparent for the scientists. It is nevertheless mentioned here because 
of its importance from a technical point of view [15]. Second, modifications on 
the functions dimension (e.g. changing criteria for selection of a service) can be 
conducted without a need for redeployment. In order to support scientists in de-
veloping simulations and experiments in the described trial-and-error manner, a 
tool is needed that combines the capabilities of a workflow modeling tool and a 
progress monitor. That means it allows modeling a workflow, executing it, and 
modifying it at runtime. Such a tool implements the proposed blending of model-
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ing, execution, adaptation, and monitoring phases of the life cycle of scientific 
workflows. A major part of the solution is to execute incomplete workflows (or 
workflow fragments) in a straight forward manner. A finished workflow fragment 
execution must not be considered completed. It must be possible to continue mod-
eling of the workflow and to resume its execution. In conventional workflow 
technology, deploying and executing workflow fragments is currently an unsolved 
issue. 
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Figure 6: Life cycle of scientific workflows geared towards the technical 
realization with the help of conventional workflow technology. 

 

5. Conclusion 

In this chapter we discussed the qualification of established workflow technology 
for the evolving application domain of e-Science as well as the state of the art of 
scientific workflow management systems. We discussed in detail the qualification 
of conventional workflow technology for e-Science based on the most important 
requirements of scientific workflows and simulations workflows in particular. We 
outlined benefits as well as arising technical problems and gave recommendations 
as of how to solve these problems. Furthermore, by means of the life cycles for 
business and scientific workflows we explained that conventional workflow tech-
nology needs thorough extensions in order to be suitable for application in scien-
tific experiments, computations and simulations. We presented a workflow system 
architecture that is based on conventional workflow technology and tailored to the 
needs of scientists and explained how the foreseen system meets general require-
ments of scientists and scientific workflows. Further, a prototype that implements 
the architecture and is especially designed to support the modeling and execution 
of simulation workflows was introduces. An example scenario of “ink diffusion in 
water” that runs on the prototype demonstrate the feasibility of the approach. 

Because of the data-centric character of scientific workflows conventional 
workflow modeling languages (e.g. BPEL) need adaptations when being applied 
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in the scientific domain. In order to efficiently handle huge amounts of data in 
scientific workflows we introduced data references in BPEL and conventional 
workflow technology in general. Furthermore, we draw on an existing approach to 
integrate explicit data flow in BPEL since modeling languages for scientific 
workflows have to support explicit data flow modeling constructs. Prospectively, 
conventional workflow languages need to be adapted in order to handle data 
streams. Scientists want to divide large data sets in components and process a 
stream of these components in a scientific workflow. Furthermore, scientists want 
to integrate sensor data in scientific workflows which also establishes the need for 
stream data in the modeling language for scientific workflows. Especially for si-
mulations we introduced the modeling concept of simulation workflow containers 
holding an assembly of simulation workflows and shared context data. In future 
this concept will be implemented and integrated in the presented prototype. Never-
theless, for simulation conventional workflow languages need further extensions, 
e.g. in order to efficiently handle parameter searches. In addition we will pay spe-
cial attention on further development of choreographies for simulation since they 
represent eligible matches (cf. for example [20]). 

In the runtime environment we primarily intend to extend our approach to inte-
grate data and process provenance for scientific workflows. The starting point is 
the presented integrated database environment for workflow and simulation data 
based on a special Web Services interface. Furthermore, we plan to develop me-
thods for performance optimization especially by optimizing the global resource 
utilization in scientific workflows.  

Furthermore, special attention will be paid on flexibility aspects. This promises 
both an improved robustness of the system as well as an explorative workflow 
modeling for scientists (i.e. trial-and-error modeling). Mechanisms to flexibility 
have impact on modeling and execution of workflows. Since we want to pursue an 
engineering solution, we want to make use of existing flexibility approaches. We 
therefore sketched existing candidates and argued that these need extensions in 
order to satisfy requirements of scientific and simulation workflows. Currently, we 
are working on the blending of modeling, execution, and monitoring phases of 
workflows to support the trial-and-error approach of workflow development of 
scientists. The first prototype will allow changing of parameters at runtime. As 
next step, we want to integrate the BPEL’n’Aspects approach into the prototype in 
order to provide more complex change operations. A challenge will be the devel-
opment of a generic format for tracking changes, obtaining information about au-
tomatic and manual modifications in order to allow reproducibility and confidence 
in simulation results, and a method to visualize changes in a practical way. 
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