
1Institute of Architecture of Application Systems, University of Stuttgart, Germany
lastname@iaas.uni-stuttgart.de

2IPL Information Processing Ltd, United Kingdom
Stefan.pottinger@ipl.com

A Model-Driven Approach to
Implementing Coordination Protocols in BPEL

Oliver Kopp1, Branimir Wetzstein1, Ralph Mietzner1,
Stefan Pottinger2, Dimka Karastoyanova1, Frank Leymann1

© 2009 Springer-Verlag.
See also LNBIP-Homepage: http://www.springeronline.com/lnbip

@inproceedings{CPG,

author = {Oliver Kopp and others},

title = {A Model-Driven Approach to

Implementing Coordination Protocols in {BPEL}},

booktitle = {MDE4BPM},

year = {2008},

pages = {188-199},

doi = {10.1007/978-3-642-00328-8_19},

publisher = {Springer}

}

:

Institute of Architecture of Application Systems

http://dx.doi.org/10.1007/978-3-642-00328-8_19

A Model-Driven Approach to Implementing
Coordination Protocols in BPEL

Oliver Kopp1, Branimir Wetzstein1, Ralph Mietzner1, Stefan Pottinger2,
Dimka Karastoyanova1, and Frank Leymann1

1 Institute of Architecture of Application Systems, University of Stuttgart, Germany
2 IPL Information Processing Ltd, United Kingdom

Abstract. WS-Coordination defines a framework for establishing pro-
tocols for coordinating the outcome agreement within distributed appli-
cations. The framework is extensible and allows support for multiple
coordination protocols. To facilitate the realization of new coordina-
tion protocols we present a model-driven approach for the generation
of BPEL processes used as implementation of coordination protocols.
We show how coordination protocols can be modeled in domain-specific
graph-based diagrams and how to transform such graphs into abstract
BPEL process models representing the behavior of the coordinator and
the participants in the protocol.

1 Introduction

Web services are the most recent middleware technology for application integra-
tion within and across enterprises [1]. Through the use of standards like SOAP,
WSDL, UDDI, and the Web Services Business Process Execution Language
(BPEL, [2]) the Web service technology enables interoperable service interac-
tions in heterogeneous environments. Coordination is an important mechanism
used in distributed computations with multiple participants that must jointly
agree on the outcome of the computation. A well-known example for the use of
coordination are distributed transactions using atomic commitment protocols to
agree on the success or failure of a transaction [3]. The aspect of coordination in
the domain of Web services is addressed by WS-Coordination [4]: it defines an
extensible framework for coordinating the outcome of a set of Web services con-
tributing to a distributed computation using a generalized notion of a coordina-
tor and the so-called coordination protocols. In the context of WS-Coordination,
coordination protocols describe the messages exchanged between the coordinator
and the participants of a distributed computation and thus realize a one-to-many
coordination. Two types of protocols (aka coordination types) have already been
defined to cover “traditional” atomic transactions (WS-AtomicTransaction [5])
and long-running business transactions (WS-BusinessActivity [6]). However, the
use of WS-Coordination is not restricted to transaction processing systems only.
Other types of coordination protocols have also been defined for distributed
computations such as protocols describing auctions [7], protocols for split BPEL

loops and split BPEL scopes [8] and protocols for externalizing the coordination
of BPEL scopes as a whole [9].

Coordination protocols can be quite complex. The coordinator has to deal
with a variable number of participants. Each participant is in a well-defined
state that potentially differs from the state of another participant at the same
time. The implementation of a coordination protocol is difficult and error-prone.
To simplify and accelerate the implementation, and eliminate errors, in this
paper we propose a model-driven architecture (MDA) approach: The protocol
is first modeled as a state-based graph, which we call coordination protocol
graph (CPG). A CPG captures the different states and state changes based
on the messages exchanged between coordinator and participant. The graph
diagram is the domain specific language (DSL) we use for specifying coordination
protocols. It contains only those elements which are needed for coordination
protocol modeling and is therefore well suited for protocol designers. In MDA
terms a coordination protocol graph specifies a Platform Independent Model
(PIM) [10]. The CPG is independent of any hardware or programming platform.

We have decided to represent the Platform Specific Model (PSM) in terms
of BPEL since, in general, coordination protocols define a sequence of steps and
messages to be exchanged between participants in a coordinated interaction,
timing issues, and how exceptional situations must be tackled. In that respect,
modeling coordination protocols is similar to modeling business processes. In
this work we generate abstract BPEL processes for both the coordinator and
the participant roles in coordination protocols. These BPEL process models
capture the essential parts of the message exchange between the parties and
the resulting protocol state changes. The generated code reduces the need for
tedious and error-prone programming concerning the communication between
the coordinator and participants in the protocol. Additional protocol logic, which
cannot be captured in the CPG, has to be manually added by the programmer.

The rest of the paper is organized as follows: Section 2 gives an overview of
BPEL and WS-Coordination. In Section 3 we present the syntax and semantics
of the coordination protocol graph (CPG). After depicting our model-driven
approach in Section 4, we describe the generation of the BPEL process models
in Section 5. We finalize with the discussion of related work, conclusion and
future work.

2 Background

WS-Coordination [4] defines an extensible framework for coordinating interac-
tions between Web services. Coordinated interactions are called (coordinated)
activities in the context of WS-Coordination. The framework enables partici-
pants to reach agreement on the outcome of distributed activities using a coor-
dinator and an extensible set of coordination protocols. The framework defines
three services a coordinator has to provide: activation service, registration ser-
vice, and protocol services. When an application, in the role of an initiator,
wants to start a coordinated activity, it requests a coordination context from

an activation service. The coordination context contains an activity identifier,
the coordination type (e.g. atomic transaction) as requested by the initiator,
and the endpoint reference of the registration service. When the initiator dis-
tributes work, it sends the coordination context with the application message to
the participant. Before starting work, the participant registers at the registra-
tion service of the coordinator. At some later point the protocol service, which
coordinates the outcome according to the specific protocol of the coordination
type, is started.

While the logic of the activation and registration service are fixed, the frame-
work allows the definition of arbitrary coordination types as well as their imple-
menation by means of different protocol services. In the following when referring
to “coordinator” and “participant”, we mean the protocol service implementa-
tions at the coordinator and participant, respectively.

The Web Services Business Process Execution Language (BPEL) is an or-
chestration language for Web services. A BPEL process is a composition of Web
services, which are accessed through partner links referencing their WSDL port
types. The process is itself exposed as a Web service.

The BPEL process model comprises two types of activities: basic activities
cope with invoking other Web services (invoke), providing operations to other
Web services (e.g. receive and reply), timing issues and fault handling; struc-
tured activities nest other activities and deal with parallel (flow) and sequential
execution (sequence), conditional behavior and event processing. Process data is
stored in variables, while the assign activity is used for data manipulation. Ac-
tivities can be enclosed in scopes to denote sets of activities that are to be dealt
with as a unit of work. Scopes can be modeled to ensure all-or-nothing behav-
ior, support data scoping, exception handling, compensation, and sophisticated
event handling. Instance management is done using correlation sets. Correlation
sets define which fields in incoming messages are to be used as identifiers to route
the messages to one of possibly several running instances of the same process
model.

BPEL processes can be either abstract or executable. An executable BPEL
process provides a process model definition with enough information to be inter-
preted by a BPEL process engine. An abstract BPEL process hides some of the
information needed for execution and is associated with a process profile defin-
ing restrictions and the indented usage of the abstract process. The profile used
in our approach is the abstract process profile for templates. It allows marking
sections of the process model as “opaque” using opaque tokens. It is thus explic-
itly specified which sections of the process model have to be later replaced by
concrete activities, expressions etc. to make the process executable.

3 Modeling Coordination Protocols

There is no standard notation for modeling coordination protocols. The spec-
ifications in this area use either a proprietary or a generic diagram type (e.g.
UML sequence diagram), or a combination of these. For modeling coordination

protocols we have adopted the diagram type from the WS-AtomicTransaction
(WS-AT) and WS-BusinessActivity (WS-BA) specifications. This diagram type
can be seen as a domain specific language for modeling coordination protocols.
WS-BA contains two protocols: WS-BA with Participant Completion, where the
participant signals when it has completed its work and WS-BA with Coordinator
Completion, where the coordinator notifies the participant when it has to com-
plete his work. Figure 1 shows the WS-BA with Participant Completion protocol
as an example, which we will also use in the rest of the paper for illustration of
mapping concepts.

Active

Canceling

Exiting

Completed

Compensating Ended

Closing

Failing
Cancel

Canceled

Exit

Completed Close

ClosedCompensate

Fail

Compensated

Exited

Failed

Coordinator generated Participant generated

Fail

NotCompleting

Fail

NotCompletedCannot Complete

Fig. 1. WS-BA with Participant Completion Protocol [6]

The diagram defines a state-based graph, which we name coordination pro-
tocol graph (CPG). A CPG is a directed graph with labeled edges and labeled
nodes. The nodes denote the states of the coordination protocol between a coor-
dinator and a participant. The node labels describe the semantics of the states.
The edges depict the messages exchanged by the protocol parties; the edge la-
bels describe the semantics of the message. Since messages can be sent by a
participant and by a coordinator, the set of all edges is divided into two dis-
joint sets: edges denoting coordinator messages (solid lines) and edges denoting
participant messages (dashed lines). Each CPG has exactly one node with no
incoming edges (source) and at least one node without outgoing edges (sink).
No two coordinator edges or participant edges with the same label may leave
the same node, because this would lead to non-determinism. A CPG does not
contain cycles. The conclusion section includes a discussion about cycles in a
CPG and the possibilities to support cyclic CPGs. At a certain point in time
each participant can be in a different state. For example, one participant can be
in the state “Failing” while another is in the state “Closing”. Since coordinator
usually interacts with more than one participant, the coordinator has to hold
the state of each state machine.

Outgoing edges of a CPG denote messages which may be sent and each state
denotes the possible state of a participant. The sender of the message (partici-
pant or coordinator) transitions to the next state when sending a message. The
recipient of the message transitions to the next state when receiving the mes-
sage. For the period of time when the message is transported, the coordinator
and participant thus are in different states. In addition to the obvious behavior
of state changes there are three special cases: (i) ignoring same messages which
are sent more than once, (ii) precedence of participant messages over coordinator
messages, (iii) invalid messages.

If the message leading to a new state is received more than once, it is sim-
ply ignored. For example, if the coordinator being in state “Exiting” receives
the message “Exit” again, that message is ignored. This case can arise, when
messages are resent because it is suspected that the first message hasn’t been
transmitted successfully.

If a state has both outgoing participant and coordinator messages, then it
can happen that the coordinator sends a protocol message and enters the corre-
sponding new state, but later receives a protocol message from the participant
which is consistent with the former state. This can happen when both the coor-
dinator and the participant send their messages at about the same time, which
leads to different views on the protocol state on coordinator and participant
side. In that case the participant messages have precedence over coordinator
messages. In Figure 1 the state is “Active” at the beginning of the protocol.
Let us assume the coordinator sends “Cancel” to the participant and sets the
state to “Canceling”. At the same time, however, the participant sends the mes-
sage ”Completed” and changes his state to “Completed”. When the coordinator
receives the message “Completed” while being in state “Canceling” for the par-
ticipant, he has to revert to the former state “Active”, accept the notification
“Completed” and change the state to “Completed”. The participant on the other
side just discards the coordinator message “Cancel”.

Finally, if in a state other messages than the allowed ones are received, a
fault message should be generated and sent to the sender of the invalid message.
The protocol execution is aborted.

It is important to note, that a CPG captures only the possible interactions
and state changes between the coordinator and participant. A CPG does not
capture the reason of these state changes. For example, if a participant is in the
state “Completed” it can receive either a “Close” or a “Compensate” message
from the coordinator. Which of the two messages is sent, is part of the protocol
logic. For example, if another participant has failed and all-or-noting semantics
is needed a “Compensate” message would be sent. Because not all of the protocol
logic is captured by the graph, it has to be additionally implemented after the
generation of the BPEL process.

The CPG and its semantics are derived from WS-BA and WS-AT protocols.
In summary, the CPG graph captures the exchanged messages between a coordi-
nator and a participant, and the resulting state changes, however not the cause
of the state changes.

4 Model-Driven Implementation Approach

For the implementation of coordination protocols we adopt a model-driven ap-
proach. Our goal is to model the coordination protocol using a domain-specific
language suitable for coordination protocol designers, and then generate BPEL
code which implements the coordination protocol.

The DSL, in our case the CPG, is used for creating a platform-independent
model (PIM) of the coordination protocol. The PIM can be transformed to
platform-specific models (PSM) for different kind of platforms. In this paper we
use BPEL and the Web service platform, in particular WS-Coordination as the
coordination framework.

As the CPG does not contain enough information to be executed, the ad-
ditional information has to be added to the PSM after generation. We thus do
not achieve 100% BPEL code generation, but still avoid much of tedious and
error-prone programming. The use of a model-driven approach ensures higher
productivity in development and better quality of the implemented code.

Using BPEL for implementation of coordination protocols has several benefits
when compared to a 3GL programming language such as Java. BPEL enables
programming on a higher abstraction level which makes the code generation
easier. BPEL has native WSDL support needed for interoperability and native
support for concurrency, backward and forward recovery. As BPEL supports
graph-based models, coordination protocol graphs can be more easily and nat-
urally transformed into BPEL. A BPEL engine persistently stores all events
related to process execution in an audit log and thus automatically supports
reliable recording of coordination protocol execution out of the box. The audit
log enables checking the execution of coordination for compliance with the pro-
tocol. A BPEL engine typically also provides a monitoring tool, which enables
observing the execution of coordination protocols in real-time. Finally, as the
state of a BPEL process instance is persistently saved after each state transi-
tion, the coordination protocol can be stopped and resumed at any time using
a monitoring tool.

The approach is shown in Figure 2. In the first step, the CPG is created using
a corresponding graphical CPG modeling tool. The CPG models the interaction
between the coordinator and the participant in a platform-independent way.

In the next step, the CPG is transformed into two abstract BPEL pro-
cesses, one for the coordinator and one for the participants. Therefore, the
abstract BPEL processes and corresponding WSDL definitions are generated.
If the WSDL definitions already exist, as for example in the case of the WS-
AT and WS-BA specification, then the CPG has to be correspondingly marked.
One has to specify the names of the WSDL port types for both the partici-
pant and coordinator process, the WSDL message and operation names, which
correspond to the labels of the state transitions in the CPG, etc. That ensures
that the generated BPEL processes and WSDL descriptions are compliant to
the already existing probably standardized ones. The two corresponding WSDL
interface descriptions of the processes can be completely generated. Using stan-
dardized WSDL interfaces ensures that the coordinator process can be used to

1

CPG
• Domain-specific Language
• Platform-Independent Model
• Marking: WSDL names

Abstract
Coordinator

Process Model

Abstract
Participant

Process Model

WSDL
Definitions

Executable
Coordinator

Process Model

Executable
Participant

Process Model

• Automatic generation from CPG
• Abstract BPEL processes
• WSDL interfaces for coordinator and

participant process

• Manual refinement from abstract BPEL
processes

• Replacing opaque tokens with concrete
BPEL code

Fig. 2. Model-Driven Implementation Approach

coordinate arbitrary protocol participants apart from the generated BPEL-based
participants. This is also the case for the generated participants, which can be
used with another protocol-compliant coordinator. Thus, our approach supports
heterogeneous environments.

As discussed in the previous section, the generated process models cannot
be executable, because the CPG does not capture the whole protocol logic. The
locations in the process model where missing logic has to be added are “marked”
in the generated BPEL code using opaque tokens, as defined in the abstract
process profile for templates [2]. These opaque tokens show to the developer
where additional logic has to be added to make the process executable. The
abstract BPEL process profile for observable behavior [2] cannot be used, since
it does not allow the addition of interaction activities with existing partner links
when replacing opaque activities. However, that is needed in certain cases: For
example, in the coordinator process after the interaction activity receiving a
“Fail” from one participant, one might want to add interaction activities (BPEL
invoke) which send “Cancel” notifications to other participants.

As already described in Section 2, WS-Coordination defines three services a
coordinator has to provide: activation, registration, and protocol services. While
protocol services can be additionally defined in separate specifications such as
WS-BA, the implementation of the activation and registration services stays the
same. The activation and registration service of the coordinator can thus be fully
generated. Both services in addition to the protocol service are implemented by
the coordinator process model (see Section 5).

After generation, the abstract process models are refined manually by a de-
veloper who replaces the opaque tokens by the missing coordination protocol
logic. The resulting executable BPEL process models can finally be deployed on
a BPEL engine.

5 Generating BPEL Process Models

In the following we describe in detail how CPG graphs are transformed to ab-
stract BPEL process models. We generate two abstract BPEL process models,
one for the coordinator and one for the participants.

We have chosen different approaches for the generation of the two process
models. For the participant process model, we keep the graphical structure of the
CPG in the BPEL process model by mapping the CPG graph directly to a BPEL
flow. The BPEL flow activity together with BPEL links enables graph-based
workflow modeling. The generated BPEL process structure closely resembles the
CPG structure and thus increases the readability of the process. The generated
BPEL constructs are described in detail in [11].

For the coordinator process model the participant approach is not feasible,
since the coordinator holds a different state for each participant. The coordina-
tor cannot leave the scope “Active” until all registered participants have been
handled for that scope. In the meantime, however, several participants could
have declared that they want to exit the protocol by sending the message “Exit”
to the coordinator. In that case the coordinator should immediately send the
notification “Exited” to the participant. However, this is not possible, since the
coordinator is in the scope “Active” and waits for other participants to com-
plete their work. When the coordinator finally leaves the scope “Active”, a new
participant could register for the protocol. Since the scope “Active” has already
finished, the new participant cannot be handled. Therefore, we define global
event handlers for each message that can be received by the coordinator. That
means, we implement a state-machine by specifying rules of the form: if received
message x, then perform some logic which handles that message x.

Figure 3 illustrates the pattern for the implementation of the coordinator
scope. An instance of the coordinator process model is started when a new WS-
Coordination activity is created. This is done by an application by sending a
“CreateCoordinationContext” message to the coordinator endpoint which replies
with a “CreatedCoordinationContext” message to indicate successful creation of
the context.

Having received such a message the coordinator process is now ready to
accept registration messages from participants that wish to participate in the
coordination, and to react on messages sent by participants that have already
registered. The coordinator leaves this state if the application determines that
the coordination should end and sends a corresponding message.

The abstract BPEL process template for the coordinator is generated as fol-
lows: In order to manage the participants for the activity an array is generated
that holds the status of all participants of the activity as well as the endpoint
references of the participants. The endpoint references are obtained during reg-
istration and are needed to send coordination messages to the right endpoints.

Regarding the control flow, at first a process instance creating receive activity
is added that is triggered by WS-Coordination “CreateCoordinationContext”
messages. The user can then replace the following opaque activity by inserting
arbitrary BPEL activities that handle the message. Afterwards the confirmation

isolated scope
flow

Coordination
handling Scope

Receive
CreateCoordination
Context Message

opaque activity

opaque activity

Receive
endCoordination

message

opaque activity

Variables:
participantArray
- participantId
- participantState
- participantEPR
- previousState

Event Handlers

isolated scope
opaque activity

assign new
participant to

participantArray

On Message register

opaque activity

reply with registered
message

opaque activity

reply with fault
"Invalid State"

Message valid in
participant state

Message not valid
in participant
state

opaque activity opaque activity

assign new state to
participant

send next message
in protocol

##opaque condition

opaque activity

On Coordination Message i

Reply with
CreatedCoordination

Context Message

opaque activity

Fig. 3. Pattern for the generation of coordinator scopes

for the successful creation of the coordination context is sent. The control-flow
now enters the scope that handles the coordination protocol specific messages as
well as the registration of participants for the activity. Both types of messages
are received and handled via event handlers.

We place opaque activities throughout the process template during genera-
tion to allow the actual coordination logic to be inserted as needed. We do not
explicitly mention those in the following discussion, but Figure 3 shows where
the opaque activities are placed in detail. In the following description we con-
centrate on the control flow and leave out details such as correlation of messages
to the right process instance. For now, we assume that upon reception of each
message the coordinator knows which participant has sent the message and that
messages only are received by coordinator process instances that handle the
participant that has sent the message. Means to ensure these assumptions are
presented in [11].

Registration of Participants As shown in Figure 3 registration of participants
is handled via a dedicated event handler. The event handler includes an assign
activity that adds the new participant into the participant array and sets its cur-
rent state to the first state that follows registration in the coordination protocol

the coordinator has been created for. Afterwards the event handler responds with
a “Registered” message. Both “Register” and “Registered” messages are defined
in WS-Coordination. Opaque activities allow the handling of special cases by
special coordination logic. Such a case may be the reception of registration mes-
sages after other participants have already faulted or completed. For example,
WS-BA demands that such cases are allowed.

Handling of Protocol Specific Messages For each participant generated message
a separate event handler is created that handles that type of message. Upon
receipt of a participant message, one out of two paths can be followed: The first
path is followed if the message is not allowed in the state of the participant. In
that case the “Invalid State” message is sent back. In case the message is allowed
in the current state, the state of the participant is updated via an assign activity.
The generated model contains opaque activities that can be replaced by arbitrary
BPEL activities that perform the actual coordinator logic. For example, one or
more invoke activities can be inserted that send the corresponding messages that
follow the received message in the coordination protocol. The decision whether
a and which message is sent depends on the actual coordinator logic. Thus the
transition condition is marked as opaque and needs to be completed during the
customization of the template.

The second path also handles two special cases: (i) ignoring messages which
were resent by the participant, (ii) reverting to a previous state. Both the WS-
AtomicTransaction and the WS-BusinessActivity specification demand that not
only messages that are allowed in the current state of the participant are allowed
but also messages corresponding to the previous state of the participant. In order
to comply with this demand an additional field in the array is introduced that
stores the previous state. On reception of a message a new assign activity is
introduced that reverts the state of a participant if a message corresponding to
that state is received. Then the control flow can proceed as if it had originally
received the message in the correct state.

Concurrent Reception of Messages All messages that can be received concur-
rently by the coordinator are handled by event handlers. Thus, we ensure that
the BPEL engine can deal with the concurrent message reception. However in
order to ensure that concurrent access to shared variables, such as the partici-
pant arrays, and resulting problems are avoided the logic of the event handlers
is placed in isolated scopes. An isolated scope is a BPEL means to synchronize
parallel access to variables.

6 Related Work

There are several approaches to map business processes modeled graphically to
BPEL (e.g. [12, 13]). The approaches are similar to our work, since they are also
generating BPEL processes, but the authors deal with generating a single BPEL
process: they focus on orchestrations only. Hence, these approaches do not tackle

the communication between processes as it is the case between the coordinator
and the participant process.

In contrast to orchestrations, choreographies provide a global view on the
interactions of all participants involved. In a coordination, the set of partici-
pants is unknown in advance. All choreography languages targeted to Web ser-
vice technology either do not support modeling of a-priori unknown number of
participants (WS-CDL [14, 15]) or do not support modeling the assignment of a
participant to a different set (BPMN [16] and BPEL4Chor [17], Let’s Dance [18]).

Another approach to model transactions is the UN/CEFACT’s Modeling
Methodology (UMM, [19]). While UMM can be mapped to BPEL [20], UMM
does not support modeling of sets of a-priori unknown participants.

7 Conclusions and Future Work

The main contributions of this paper are: (i) the introduction of a model-driven
approach for implementing coordination protocols, (ii) the concrete transforma-
tion of the CPG graph to abstract BPEL process models.

We have shown how a WS-Coordination-based coordination protocol can be
modeled as a CPG graph. A CPG graph captures the essence of a coordination
protocol: the states of the protocol and messages produced by both the coor-
dinator and the participant. The generated BPEL processes are abstract and
comply with the abstract process profile for templates. Opaque activities and
expressions mark the locations where the programmer can include additional
protocol logic not captured by the CPG to make the processes executable.

We demanded CPGs to be acyclic, since BPEL supports structured loops
only. While this works for the protocols described in WS-AtomicTransaction
and WS-BusinessActivity, there are coordination protocols such as the protocol
for split loops [8]. We used an event handler approach for the coordinator to deal
with the different states of each participant, which enables support for loops, too.
For the participant model, we generated a BPEL process where the structure
of the process directly reflects the structure of the CPG. Basically, when map-
ping CPGs with structured loops to BPEL, these loops can be captured using
BPEL loop constructs. The current mapping style to participant processes does
not support loops, since the BPEL flow activity only supports acyclic graphs.
When mapping unstructured loops to a BPEL process there are two general
approaches: (i) mirror the semantics using event handlers and (ii) untangle the
loop by duplication of the activities [21]. The event handler approach is simi-
lar to the presented realization of the coordinator. However, the approach has
the drawback that the control-flow is captured using event-action rules and not
the “usual” BPEL constructs to model the main path of execution. The second
approach uses the BPEL flow activity but duplicates the activities. This dupli-
cation can be avoided if sub-processes (as defined in BPEL-SPE [22]) are used:
instead of mapping each activity directly, each original activity is mapped to a
sub-process call. In addition, for each original activity, a separate sub-process is
generated. The details of the transition conditions, data passing to and from the

sub-process are open issues. Our future work is to evaluate the two possibilities
in depth and to realize the more suitable one.

Acknowledgments. The research leading to these results has received par-
tial funding from the European Community’s 7th Framework Programme under
the Network of Excellence S-Cube (Grant Agreement no. 215483) and the Ger-
man Federal Ministry of Education and Research (Tools4BPEL, project number
01ISE08B).

References

1. Curbera, F., et al.: Web Services Platform Architecture: SOAP, WSDL, WS-Policy,
WS-Addressing, WS-BPEL, WS-Reliable Messaging and More. Prentice Hall PTR

2. OASIS: Web Services Business Process Execution Language Version 2.0
3. Gray, J., Reuter, A.: Transaction Processing: concepts and techniques. Morgan

Kaufman
4. OASIS: Web Services Coordination. Version 1.1
5. OASIS: Web Services Atomic Transaction. Version 1.1
6. OASIS: Web Services Business Activity Framework. Version 1.1
7. Leymann, F., Pottinger, S.: Rethinking the Coordination Models of WS-

Coordination and WS-CF. In: ECOWS 2005
8. Khalaf, R., Leymann, F.: Coordination Protocols for Split BPEL Loops and

Scopes. Technical Report Computer Science 2007/01, University of Stuttgart
9. Pottinger, S., et al.: Coordinate BPEL Scopes and Processes by Extending the

WS-Business Activity Framework. In: CoopIS 2007
10. Frankel, D.S.: Model Driven Architecture: Applying MDA to Enterprise Comput-

ing. Wiley (2003)
11. Kopp, O., et al.: A Model-Driven Approach to Implementing Coordination Proto-

cols in BPEL. Technical Report 2008/02, University of Stuttgart
12. Mendling, J., Lassen, K.B., Zdun, U.: On the Transformation of Control Flow be-

tween Block-Oriented and Graph-Oriented Process Modeling Languages. IJBPIM
3(2) (2008)

13. Ouyang, C., et al.: Translating Standard Process Models to BPEL. In: Advanced
Information Systems Engineering. (2006)

14. Kavantzas, N., et al.: Web Services Choreography Description Language Version
1.0, W3C Candidate Recommendation

15. Decker, G., et al.: On the Suitability of WS-CDL for Choreography Modeling. In:
EMISA 2006

16. Object Management Group: Business Process Modeling Notation, V1.1
17. Decker, G., et al.: BPEL4Chor: Extending BPEL for Modeling Choreographies.

In: ICWS 2007
18. Zaha, J.M., et al.: A Language for Service Behavior Modeling. In: CoopIS 2006
19. UN/CEFACT: UN/CEFACT’s Modeling Methodology (UMM), UMM

Meta Model - Foundation Module. http://www.unece.org/cefact/umm/UMM_

Foundation_Module.pdf.
20. Hofreiter, B., et al.: Deriving executable BPEL from UMM Business Transactions.

In: SCC 2007
21. Zhao, W., et al.: Compiling business processes: untangling unstructured loops in

irreducible flow graphs. International Journal of Web and Grid Services 2 (2006)
22. IBM, SAP: WS-BPEL Extension for Sub-processes – BPEL-SPE. (2005)

	cover-Springer.pdf
	Slide Number 1

