
Institute of Architecture of Application Systems

BPEL’n’Aspects: Adapting Service Orchestration Logic

Institute of Architecture of Application Systems, University of Stuttgart, Germany

Dimka Karastoyanova, Frank Leymann

{karastoyanova,leymann}@iaas.uni-stuttgart.de

@inproceedings{INPROC‐2009‐54,
author = {Dimka Karastoyanova and Frank Leymann},
title = {{BPEL’n’Aspects: Adapting Service Orchestration

Logic}},
booktitle = {Proceedings of 7th International Conference on Web

:

{ g
Services (ICWS 2009)},

year = {2009},
pages = {222 ‐ 229},
doi = {DOI 10.1109/ICWS.2009.75},
publisher = {IEEE Computer Society}

}

© 2007 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted

f hi k i h k b b i d f h IEEEcomponent of this work in other works must be obtained from the IEEE.

BPEL’n’Aspects: Adapting Service Orchestration Logic

Dimka Karastoyanova, Frank Leymann
IAAS, University of Stuttgart

Universitätsstr. 38, 70569 Stuttgart, Germany
{Karastoyanova | Leymann}@iaas.uni-stuttgart.de

Abstract

The need for flexibility in process-based applications, in
particular during their execution, places the demand for
enabling adaptability of processes. AOP is considered to
be one of the approaches to flexibly switch on and off
functionality on per-instance basis in applications during
their execution; analogously, this paradigm can be
applied in a BPEL environment to enable adaptation of
running orchestrations. In the presented approach we
strive towards reuse of as much concepts and technology
already available in a Web service (WS) environment as
possible. We combine standard BPEL, the
publish/subscribe paradigm and WS-Policy so that WS
operations play the role of aspects with respect to BPEL
processes. We present the syntax for such aspects as an
extension of the WS-Policy framework. We introduce the
architecture of the supporting infrastructure and a
prototypical implementation. The approach draws on the
combined benefits of service orientation and the AOP
paradigm to improve the state-of-the-art techniques for
flexibility of service orchestrations in a non-intrusive
manner.

1. Introduction

Business process modeling is based on the flexible
two-level programming approach [10], where business
logic is specified separately and independently from the
discrete functions implementing single process activities
(also called tasks). In a service-oriented environment,
functions are provided as services. Currently Web
services (WSs) are the technology widely used for
applications utilizing service-oriented architectures
(SOA) in a standardized manner [14]. The de facto
standard for specifying executable processes that use WSs
is BPEL [21]; since BPEL allows for recursive
composition, all BPEL processes (a.k.a. orchestrations)
are also exposed as WSs. This is, BPEL us used to
implement the orchestration logic, while WSs are the
component model for using applications implemented in
any programming language (including BPEL).
The main motivation for our work is the need to improve
flexibility of service compositions. In general, process
adaptability with respect to process logic, organizational

structure, services used, and infrastructure is needed.
Process logic adaptability has been dealt with by
academic research in terms of process model evolution
and process instance migration [1, 6]. Thus process logic
adaptability has been enabled for the design and run time
life cycle phases of processes, but the approaches used
are intrusive and require changes in the languages for
describing processes and/or the process execution
environments, i.e. the process engines. Organization
structure adaptation is covered by BPEL4People. Service
adaptability is addressed by the service middleware (a.k.a.
bus) and declarative deployment [9], but needs more to
handle failures of services referenced by the composition
and to adapt the service selection criteria, as [20] works
out. Infrastructure adaptation is enabled by the utility
model in general and dynamic provisioning in particular.
Still, to apply these approaches requires extensions to the
process languages, which precludes adapting legacy
(BPEL) process models and also hampers reuse. Reuse is
a paramount requirement, since apart from being able to
adapt to changes in the environment the processes, the
underpinning technologies and the supporting
infrastructures need to facilitate reuse of legacy
applications (including processes) and preserve
investment in technologies and skills. In other words, the
approaches enabling flexibility need to be non-intrusive
with respect to existing technologies and infrastructure in
order to gain acceptance. These requirements are not yet
met by the existing flexibility approaches, as related work
shows.

In this paper we argue that applying the AOP
paradigm to WS and BPEL environments boosts process
flexibility and is in the same time non-intrusive and
fosters reuse, high degree of modularity and
configurability of processes. Utilizing the capabilities of
existing technologies and their implementations as well as
computing paradigms successfully applied in industry
preserves the relevance of the approach to industrial
applications. Thus organizations can profit from both
their existing infrastructure and the agility in their
reactions to the dynamics of present-day markets.

Our work is based on the analogy we identify between
publish/subscribe systems and the AOP paradigm. The
contributions of this work are based on the following
mapping between AOP concepts and BPEL
environments:

• The programs to be enhanced with additional
functionality are BPEL processes

• A BPEL engine is the interpreter of the BPEL
processes and notifies life cycle events of process
elements/activities

• The functions to be weaved into these processes,
i.e. the aspects, are Web service operations. Such services
may be executed before, after or instead of activities in
processes and may overwrite the values of transition
conditions and variables. These are the desired
adaptations on process models or instances.

• A component executing the actual weaving, i.e.
the weaver, enables the inclusion of additional
functions/activities (WS operations) into running
processes. The weaver thus executes the calls to weaved-
in WSs upon a notification of the engine of an event
pointed to by a pointcut in an aspect.

The mechanisms and infrastructure implementing this
mapping, presented later in the paper, are easy to deploy,
generic by design and can be used with any BPEL engine
implementation. The approach relies on a messaging
infrastructure implementing the publish/subscribe
communication mode since the approach maps pointcuts
to subscriptions to appropriate process life cycle events.
From the point of view of business users it provides the
necessary flexibility and agility with respect to reaction to
changes in the business and regulation policies, customer
satisfaction and faster response to the dynamic market,
while preserving existing investment.

The advantages of this approach over existing ones
sum up to: (1) dynamic adaptation of processes is enabled
as a result of the support for dynamic weaving of aspects
during process runtime and on a per-instance basis; (2)
the approach is much more generic than other existing
approaches for weaving functionality in BPEL since the
aspects in our approach are WS operations rather than
any other language-specific implementation; (3) since
extending the workflow language (e.g. BPEL) is not a
generic enough solution, this work provides a general
purpose mechanism to specify when which function must
be included in a process, based on the standard WS-
Policy framework; (4) the approach and the infrastructure
can be used with legacy BPEL processes and BPEL
execution environments.

The paper is organized as follows. We begin with
background information on technologies and paradigms
used in this work. Section 3 presents an overview of the
BPEL’n’Aspects approach, section 4 describes its
concrete realization in terms of WS-Policies and
attachments. The architecture of the BPEL’n’Aspects
infrastructure is introduced in section 5; the prototypical
implementation is presented in section 6. Section 7 gives
a summary of related work. We discuss directions for
future work and summarize the contributions in the last
section.

2. Background Information

2.1 AOP Paradigm

Aspect Oriented Programming (AOP) is an established

paradigm that enables describing and separating
crosscutting system concerns in a modular and highly
reusable manner [8]. AOP supports switching on and off
new behavior at a specific point of program execution,
while maintaining the system well modularized. AOP is
already supported by many software vendors, which is an
evidence of its success. Many AOP languages are already
available, for example AspectJ, AspectC++, JBoss AOP,
Aspect#, Jasco, Spring. AOP is being applied to support
flexibility and adaptability of applications/services by
allowing to switch on and off orthogonal functions
depending on the user requirements. The terms used in
this paper come from the AOP field and in particular from
AspectJ and are defined as follows [7]: A joinpoint is an
identifiable point within the execution of a program (e.g.
the invocation of a method) where new behavior may be
included. The set of possible joinpoints for a component
model is called joinpoint model [4]. A pointcut is a
language construct used to select specific joinpoints for
inclusion of new behavior (e.g. all invocations of the
“charge credit card” method) and thus allows specifying
the particular points in the execution of the original
program where the new code is to be inserted. An advice
is the new behavior to be included at a joinpoint and
contains the new code to be executed (e.g. a tracing
feature or “store debit” method). Additionally, an advice
specifies whether it is to be executed before, after or
around (i.e. instead of) the joinpoint. An aspect is a unit
encapsulating a pointcut and an advice. It specifies the
new functionality to be included and the place in the
execution of the original program where this functionality
is to be inserted. A weaver is the functionality that
combines the code encapsulated in aspects with the code
of the original program. There are different weaving
mechanisms [7] that can be classified in two groups –
static and dynamic. Dynamic weaving enables the
interchangeability or deactivation of aspects during
program execution, while static weaving disallows such
capability, i.e. once defined aspects cannot be deactivated
or exchanged.

2.2 Publish/Subscribe Concepts

Publish/subscribe (or pub/sub) mechanisms are about

delivery of information to recipients that are not
necessarily known in advance. Often, this information
represents signals – so-called events – about the
occurrence of situations of interest to a third-party. The

format of the delivered information is called a notification
message. A source of a notification message is called a
producer, and a target of a notification message – a
consumer. The act of transporting a notification message
from a producer to a consumer is called notification. The
original source of a notification message is referred to as
publisher. The case in which the notification message is
sent directly from the publisher to a consumer is called
direct notification. Often, the publisher sends the message
to an intermediary called broker, and the broker
broadcasts the notification message to the consumers.
This case is referred to as brokered notification. A
subscription is an artifact that represents the interest of a
consumer for a certain kind of notification message, i.e.
an event of interest. Pub/sub paradigm enables
decoupling of publishers and subscribers in terms time
and space, which is a major advantage.

WS-Notification [22] specifies both direct and
brokered notification for WS environments. It is a set of
specifications and is based on WSDL, SOAP and WS-
Addressing. The WS-Notification specifications family
identifies several roles a WS may play, including:
publisher, notification producer, consumer, notification
broker that implements the consumer and producer roles
for brokered notification, subscriber and subscription
manager. For each role a port type is defined to enable the
communication according to the message exchange
protocol specifications for brokered (WS-Brokered
Notification) or non-brokered (WS-BaseNotification)
notification; the formats for topics and exchanged
messages are also defined. Implementations include
Pubscribe (http://ws.apache.org/pubscribe/), WS-
Messenger (www.extreme.indiana.edu/xgws/messenger/),
ServiceMix (http://incubator.apache.org/servicemix/
home.html), MUSE (http://ws.apache.org/muse/).

2.3 BPEL and BPEL Engines

BPEL provides a flexible model for service

composition using a process-based approach. The
constructs/activities in BPEL enable the definition of
control flow, data and data manipulation, exception and
event handling, compensation scopes etc. BPEL is
centered on WSs and is designed to be extensive;
available extensions cover: sub-process support (BPEL-
SPE [24]), human involvement (BPEL4People,
http://www.oasis-open.org/committees/bpel4people/
charter.php), use of semantic WS (BPEL4SWS [19]) and
of Java code (BPELj, http://www.ibm.com/developer
works/library/specification/ws-bpelj/), and support for
other service technologies using BPELlight [18].

The BPEL code is deployed on a BPEL engine and
then typically transformed into an engine-internal
optimized representation. BPEL engines comprise several
components. The so-called navigator uses the process

internal representation and navigates over the process
models to execute each process instance. It delegates the
execution of interaction activities to the underlying
middleware, the bus [9]. Each engine uses proprietary
implementation of activities, their states and the event
model that controls the state transitions. The navigator is
usually built so that while executing process instances it
changes the status of activities using a set of predefined
events, i.e. it performs navigation steps. In our previous
work the event models of several BPEL engines have
been utilized to propagate information about the status of
process instances to external components (audit trails,
monitoring tools) as well as to influence the behavior of
the process instances from the outside [15]. As a result we
have created a modular, pluggable infrastructure that
enables mapping of the internal engine event model to
messages sent to external components that plug additional
functionality into the engine without the necessity of
changing the BPEL models, extending the BPEL
language and/or the engine. For more details on the
infrastructure architecture consult section 5 and [15].

3. BPEL’n’Aspects – The Approach

In this section we provide an overview of the

BPEL’n’Aspects approach. It is based on the analogy
between event notifications and reaction to them and the
AOP paradigm. With this approach we strive towards
reuse of as much concepts and technology already
available in a WS environment as possible and thus
maintain reusability of concepts and technologies, and
compliance to legacy WS-based applications.

Processes are executed through interpreting of the
process model by an underlying process engine [10].
Especially, a BPEL engine interprets process models
specified in BPEL in terms of discrete navigation step.
Any functionality that needs to be weaved into a running
BPEL process can be interleaved with the original
process logic before or after discrete navigation steps.
Our approach supports dynamic adaptation of process
logic which corresponds to run-time weaving in AOP
terms.

The basic idea is to surface events occurring during
navigation through a BPEL process model. These events
signal that the BPEL engine (similar to a virtual machine)
has reached an event of interest (or a joinpoint).
Operations of services may be registered as subscribers to
such events. Whenever an event happens, the operation of
the registered service will be invoked - this is in fact the
weaving. We use concepts known from the
publish/subscribe paradigm [22] as the underpinnings of
our mapping of the concepts of aspect orientation onto a
BPEL environment (see also Figure 1):
• Joinpoints are mapped to specific language elements in

BPEL. For example, invoke activities, transition

conditions etc. are supported joinpoints. All events
notifying a state change of these elements during run
time are potential joinpoints.

• Advices are mapped to WS operations. For example, the
“discount calculation” operation of the “Discount
Calculation Web Service” is specified as an “after”
advice (see Figure 1). Thus, in contrast to other existing
approaches, any WS can stand for the
implementation/code of an aspect, which is very much
in synch with the fundamentals of the WS technology,
where services are a first class citizen; interoperability
is promoted, too.

• Pointcuts are mapped to subscriptions for navigation
events occurring when a workflow engine interprets
BPEL processes. For example, a pointcut may select the
“Invoke Calculation” invoke activity of the “Order
Placement” process model. This means that a service
(advice) will be executed once the BPEL engine fires
the event stating that the “Invoke Calculation” invoke
activity has been executed (if the “after” advice type is
used).

• Aspects are mapped to packages coupling subscriptions
for navigation events (pointcuts) and operations of WSs
(advices). For example, an aspect specifies that the
“discount calculation” operation of the “Discount
Calculation Web Service” is to be executed after the
“Invoke Calculation” activity of an instance of the
“Order Placement” process (see Figure 1).

• Weaving is mapped to signaling and observing
navigation events and invoking operations of Web
services upon occurrence of events of interest. For
example, when navigating through an instance of the
“Order Placement” process model the environment will
execute the “discount calculation” operation of the
“Discount Calculation Web Service” after having
performed the “Invoke Calculation” activity and thus
enhance the process instance with additional functions
not modeled in its process model.
Joinpoint models depend on the component models

used for the implementation of applications, e.g. in BPEL
all language elements are potential candidates for
joinpoints. Reaching a joinpoint in a BPEL process is
expressed in terms of events the BPEL engine needs to
generate and notify. The events in a process which are
relevant for process adaptability enablement are those that
make up the joinpoint model in this work and are tied to
appropriate BPEL constructs [17], e.g. ActivityReady,
ActivityExecuted, ActivityExecuting, Link_Evaluated
Scope_Compensated, etc.

We allow implementing advices through WS
operations at concrete ports, not port types. Allowing a
subscription to events on behalf of an operation, for
which the port is unknown at the time of weaving, would
require a service bus with the capability of discovering

appropriate ports dynamically. Work on dynamic service
discovery exists and is not in the focus of this work.

Service Bus
I nvoke
Calculation

Advice

Pointcut

AspectI nstance: PD-1

Discount
Calculat ion

Web Service
operat ion

For Process Discount
I nstance PD-1
After I nvoke Calculat ion
Execute advice

W
S

-P
ol

ic
y

(WS-Policy)
Attachment

Receive
Order

I nvoke
Billing
Service

Register
Shipment

Reply to
Customer

Joinpoint

Discount
Calculat ion

Web Service

invoke

Order Placement Process

Figure 1: Weaving Services into Processes

3.1 Attaching Aspects to BPEL Processes

We use an attachment mechanism to define where in

the process (model or instance) an advice (a WS) is to be
interleaved (see Figure 1). In this way we specify which
event, i.e. which construct and its state within a certain
process model, will trigger an interaction with which
WS/advice. This attachment may be specified (1) for all
instances of the subject process model, (2) only for a
specific instance, or (3) for a subset of instances (e.g. all
instances in which the value of a variable is under a value
relevant for the business logic, or all instances of a
process that have been created after a concrete date, etc.).

3.2. Advice Types

An advice defines whether the WS will be executed

instead of a construct, i.e. instead of an activity, instead of
a transition condition, or in addition to a construct –
before or after. The concrete syntax is presented in the
next section. Obviously, the advice types makes sense
only with certain process instance events, e.g. calling a
WS instead of an activity after the activity has completed
(event “Activity_Executed”) is not reasonable; these
restrictions are taken into account when identifying the
events for the event model [17, 16] and hence the
joinpoint model used.

3.3. Aspect Life Cycle

The life cycle of an aspect in our approach starts with
the creation of the aspect. This phase is followed by the
explicit deployment of the aspect on the infrastructure.
For this the aspect and the specification of the attachment

to process model or instance is used and results in a
subscription defined for a particular event. Attaching an
aspect to any process instance will be allowed only if the
process instance has not reached the state, whose
corresponding event notification has been identified as
relevant for weaving in this particular aspect. This is the
moment at which an aspect is weaved into the process
model or one or more of its instances. The aspect is
executed as often as the event for which the aspect
subscribes is intercepted. The life cycle of an aspect ends
with its undeployment, i.e. explicit detachment from the
target artifact. Typically, whenever an aspect is
undeployed, the processes that have already initiated the
execution of the aspect are allowed to finish this WS call.
Other modes of operation are also possible. The aspect
life cycle can be controlled by a validity time interval in
the aspect definition. This in turn will lead to a timed
subscription for the event signaling that the joinpoint has
been reached. Note that the processes being adapted are
in the execution phase of their life cycle whenever aspects
are executed.

3.4. Advanced Functions

Aspects can be applied collectively as a group in an
“all or nothing” manner – composite aspects. This avoids
having some aspects already applied and executed, while
others are still being attached in the case that the aspects
really belong together. A composite aspect can only be
attached if none of its pointcuts has been passed.

Compensating for the dynamically introduced
activities is always crucial in flexible workflows. The
same is valid for compensation of the aspects introduced
here. Since the weaved-in functionality is not foreseeable
during process modeling, it is not reasonable to expect
that compensation handlers be defined in the process
models. The services/activities that are dynamically
incorporated into the main process logic should be
described so as to contain reference to their compensating
services; thus the compensation of the dynamically
introduced functionality would be enabled.

Data exchange and data dependencies among
processes and aspects requires novel mechanisms for
dealing with (i) data produced by an aspect that is not
needed by a process, (ii) data type and format mismatch
between process variables and input or output of a WS,
(iii) data unavailable in the process but needed by
included functions. Data dependencies are also an issue
during fault handling and compensation.

4. Realizing Aspects as Policies

We use WS-Policies [23] to represent aspects and WS-

Policy Attachments as the means for associating aspects
with BPEL processes. An attachment allows to associate

policies with an artifact (<AppliesTo> in Listing 1) that
already exists. Especially, a policy can be associated or
dissociated at any time during the lifetime of the artifact.
Using attachments, thus, enables highly dynamic
scenarios of defining aspects for (existing) BPEL
processes and attaching them to process models or
instances during their execution. An artifact is identified
by a so-called domain expression, i.e. a domain-specific
means of unique identification. The associated policy is
either directly included in the attachment (<Policy>) or
referenced (<PolicyReference>). Referencing policies
enables reuse; in our case reuse of aspect specifications.
Reuse is facilitated by the use of Policy Attachments in
the first place.

<wsp:PolicyAttachment>
 <wsp:AppliesTo> <DomainExpression/>+
 </wsp:AppliesTo>
 (<wsp:Policy>...</wsp:Policy>|
<wsp:PolicyReference>...
 </wsp:PolicyReference>)+
</wsp:PolicyAttachment>

Listing 1. Schema of Policy Attachment

In this work domain expressions are identifiers of
process instances. Process instances can be specified by
indicating unique process instance identifiers (PIIDs) or
by specifying the name of the process model, all of whose
instances are thus identified. The domain expression
together with the process artifact element defines the
language used as quantification mechanism in AOP
terms, i.e. the pointcuts. Note, that any other
identification mechanisms could be invented like: all
instances created in certain period of time, all instances of
a process model in a certain state etc. Concrete
identification mechanism is not the focus of our work we
only specify the basic ones (Listing 2):

<a4B:Processes> (<a4b:Model name=”…”/>? |
 <a4b:Instance ID=”…”/>*) </a4b:Processes>

Listing 2. Domain expression example

Aspects are defined as policies, to be precise as
assertions as defined by the WS-Policy framework. An
assertion is a domain-specific specification of certain
behavior; domain-specific assertion specifications are
identified by a separate namespace (in this work it is
xmlns:a4b=”http://www.iaas.uni-stutgart.de/iaas/a4b”). In
Listing 3, the <a4b:Advice> element is the container for
the specification of the WS to be weaved in. This service
is identified by an endpoint reference. The operation to be
used as provided by this service is specified in the
<a4b:Operation> element. The message sent to the
service may be materialized from the process context (all
the variables in a BPEL process comprise its context); for
this purpose an <a4b:InputTransform> element may be

specified. Thus it is possible to state that, for example, an
aspect executed before an activity needs to modify the
input variable for this activity. Similarly, the response
message may have to be folded into the process context,
which can be specified via the <a4b:OutputTransform>
element. The <a4b:When> element specifies whether the
service must be run before, instead or after executing the
specified process artifact, as identified by the
<a4b:ProcessArtifact> element and its attributes for type
and corresponding identifier. Note that the identification
mechanism depends on the type of artifact; e.g. an
activity may be identified uniquely by its name, while a
transition condition is identified by an expression or its
name. One could consider including WS-Policy operators
in order to narrow the specific pointcut with logical
operators that may use variable values as selection criteria
(e.g. a customer order is over a threshold that makes him
eligible for a discount).

<a4b:Aspect Id=”...”?>
 <a4b:Advice name=”...”?>
 <a4b:When type=”before|instead|after”/>
 <wsa:EndpointReference>...
 </wsa:EndpointReference>
 <a4b:Operation name=”...”/>
 <a4b:InputTransform>...
 </a4b:InputTransform >?
 <a4b:OutputTransform>...
 </a4b: OutputTransform>?
 </a4b:Advice>
 <a4b:Pointcut>
 <a4b:ProcessArtifact type=”activity
 |transitionCondition |...”
 identifier=”...”/> </a4b:Pointcut>
<a4b:Aspect>

Listing 3 Schema of an Aspect

Specifying aspects as assertions allows combining aspects
into an overall policy based on the grammar defined in
[23] and collectively attaching them to BPEL process
models (composite aspects support). When aspects are
assigned to artifacts the supporting infrastructure must
verify if the joinpoints specified in the pointcuts of the
aspects have already been passed. If this is the case,
attaching an aspect to an artifact must be disallowed.

5. Infrastructure Architecture

The infrastructure we architected to enable the

BPEL’n’Aspects approach comprises four major
components (see Figure 2). The BPEL engine is the
component executing the BPEL processes. For each
process instance the engine tracks the status of all
elements of the corresponding process model. It also
delegates the invocation of services that implement
process activities to a piece of middleware, called the

Service Bus [9]. Weaving is mapped onto features of a
broker. The broker (i) manages the deployment and
undeployment of aspects, (ii) manages and publishes the
notifications of events of interest happening in the
process engine for which a corresponding aspect is
defined, (iii) interacts with the Bus in order to delegate
the invocation of services (aspects) and takes care of
returning the results of WS invocations (i.e. aspect
execution) to the concrete artifacts (process instance) and
thus (iv) performs the weaving of aspects into processes.
The aspect management tool is used to create, edit,
delete, deploy, and undeploy aspects and aspect groups.
The tool generates the WS-Policy attachments and the
domain expressions defined in this work whenever a user
specifies which service needs to be dynamically weaved-
in for a particular process model or instance.

Service Bus

Broker

Figure 2: Conceptual architecture and prototype

The engine is able to signal navigation events to the

broker, i.e. the engine is a publisher, and the broker is
able to receive the event notifications and hence plays the
subscriber role. Thus the weaving is realized in part by
subscribing the broker for events published by the engine.
Additionally, the broker manages the subscriptions of the
aspects/WSs, hence it plays the roles of subscription
manager and notification publisher with respect to the
WSs to be invoked, which are in turn the subscribers. The
broker has to pass back the responses of WSs to the
engine. The response message can be returned to the
particular artifact, for which the aspect/WS has been
executed using notifications again. In this case the broker
plays the role of a notification produces/publisher, while
the engine is the notification consumer. The engine then
dispatches the message to the appropriate artifacts [15].
This functionality is also part of the realization of the
weaving.

Attaching/detaching aspects (i.e. policies) to elements
in BPEL processes (and process instances) results in
interpreting the attachment and creating or deleting a
subscription to process instance events according to the
pointcut specified in the aspect. After attaching an aspect,
the created subscription at the side of the broker enables it
to receive a notification message signaling that the
joinpoint identified by the pointcut has been reached.

Then the aspect implementation (a WS) is invoked and
the result returned to the engine.

In the rest of the section we present more details on the
infrastructure architecture. To enable the communication
between the broker and the engine, we extended the
generic process engine architecture [15]. The engine has
been augmented with a component, called controller,
which is responsible for notifying life cycle events about
process instance constructs and reacting to external events
appropriately (according to predefined protocols); the
controller therefore implements the logic for the reaction
to these events, too. The controller is a pluggable
component allowing for plugging in domain/protocol-
specific controller implementations. The weaver is one
such domain-specific controller implementation; note that
the weaver is a part of the broker conceptual component.
The weaver is a consumer of the navigation events
produced by the engine and filters out the events
irrelevant for the domain it supports. In our case the
weaver subscribes only to events that are directly mapped
to the joinpoint model used, i.e. to joinpoints relevant for
process adaptation. For example, it registers only for the
messages signaling life cycle events pertaining to a single
activity after which an advice needs to be executed in a
single process instance and not for all other life cycle
events related to the same process instance; for this
purpose a pub/sub middleware (MOM) implementation is
utilized.

The filtering of the (process instance and activities)
life-cycle messages is done at the broker, because only
the messages that are subscribed to by aspects need to be
notified (by the weaver). Some of the events published by
the engine block the execution of process instances to
ensure that the advice/WS is executed before the next
activity is performed. The classification of events
(incoming, outgoing, blocking) is presented in [17].
Details about the custom controller, i.e. the weaver, are
also presented in [15].

The weaver facilitates maintainability, and can be
easily applied with the internal event model of any BPEL
engine. Any additional events/joinpoints can be included
since it is inherently extensible.

The communication between the weaver and the WSs
is enabled in terms of a pub/sub infrastructure; the actual
service calls are done by the so-called wrappers. For each
of the pointcuts of the deployed aspects a topic is created
(by the Aspect Management Tool). Any time an event, for
which a topic is defined, is notified by the engine, the
weaver publishes the message on the corresponding topic;
then the wrapper being the subscriber to that topic
executes the service invocation [16, 15]. For each of the
pointcuts (i.e. topics) there is only one wrapper that
consumes the messages. The wrapper serves as a gateway
to the weaver for service calls and thus enables its
decoupling from the service invocation functionality.

Upon response from a WS the wrapper publishes the
message on a single topic where the responses of all WS
calls are published; the weaver is a subscriber.

6. Prototype

In previous projects we have extended the open-source
ActiveBPEL engine (www.activebpel.org) with an event
publishing framework, so that life cycle events can be
propagated to external components like audit trails,
monitoring tools, and others [15, 20]. Additional
extensions were needed to support the presented approach
through handling of incoming events notified by the
weaver to the engine; for this aspect-oriented
programming using AspectJ has been utilized (to ensure
modularity and non-intrusiveness of changes). The MOM
implementation used is the ActiveMQ
(http://activemq.apache.org/) JMS implementation. The
filtering of events is done using selectors as enabled by
JMS. In addition, the weaver and the aspect management
tool have been built from scratch. We have chosen to use
WS-Notification for the communication between the
weaver and the wrappers, for the benefits of a
standardized solution. We leverage the WS-Notification
implementation provided by WS-Messenger, which also
provides the piece of bus infrastructure responsible for
the service calls. The weaver is a J2EE Web application.
The aspect management tool is a standalone Java
application. It provides a Swing-based GUI to facilitate
management, deployment and undeployment of aspects
on the infrastructure in a user-friendly manner. It utilizes
the Apache Neethi
(http://ws.apache.org/commons/neethi) implementation of
the WS-Policy framework for editing and storing policies.

7. Related Work

Substantial amount of research has been done in

applying aspect-oriented techniques in BPEL
environment. For example, the AO4BPPEL language is
an aspect-oriented extension for BPEL which permits
aspects to be included in BPEL processes at runtime [3].
Each BPEL activity is considered a potential joinpoint,
pointcuts are specified by XPath expression, while
advices are implemented as BPEL activities or Java
methods calls. In comparison, the BPEL’n’Aspects
approach presented is not restricted to only BPEL code
for the advice implementations, but rather allows for the
use of any WS. Additionally, we avoid extending BPEL
and thus enable reuse of legacy BPEL processes. The
authors of [5] apply AOP to adapt and extend a BPEL
engine with new features like tracing, debugging and new
language constructs using the so-called engine aspects. In
addition, process aspects are used to enable dynamic

weaving of BPEL code into BPEL processes or instances.
Furthermore, the focus of this approach is the enactment
of monitoring of processes, and not merely process
adaptation. Since this work also focuses on weaving
aspects implemented in BPEL only, we argue that
weaving in any kind of implementation using WSs is the
more generic and realistic approach. In [2] BPEL
processes are annotated with rules for monitoring in order
to control functional and non-functional properties. Static
weaving is carried out by a BPEL pre-processor.

The DySOA project [13] aims at enabling self-
adaptive service systems by monitoring their QoS
requirements dynamically. The work presented in [12]
proposes the use of a rule driven approach for Business
Collaborations Development. WS-Policies and AOP have
been combined to enable flexible re-configuration of
services in the absence of a service bus in [11], too. These
approaches have different objectives than the ones we
target in the present work.

8. Conclusions

In this paper we presented how the AOP paradigm can

be applied to the WS technology in general and business
process technology in particular to improve greatly their
applicability in real world scenarios where flexibility is of
utmost importance. The BPEL’n’Aspects approach
utilizes the AOP paradigm and existing WSs and BPEL
infrastructures for the purpose of improving the flexibility
of BPEL processes, and in particular the adaptation of
process logic. The non-intrusiveness, modularity, and
maintainability features of AOP are preserved while
discarding the necessity to change the BPEL language or
the BPEL engine.

Unlike related research results, our approach is much
more generic since the aspects we define are implemented
by WSs only. We also rely on standards from the WS
technology stack like WS-Notification for publishing
events and WS-Policy for attaching aspects to process
models or instances. The original process descriptions do
not need to be modified to adapt, which is an enormous
practical advantage over the existing approaches for
flexibility of processes described in BPEL or using any
other language. Additionally, this makes our approach
applicable in any WS compliant industrial infrastructures
due to its inherent support for interoperability.

In our future work we will mainly focus on refining
the approach itself and its architecture and
implementation with respect to composability of aspects,
auditing and compensation of weaved-in functionality.

References
1. W.M.P. van der Aalst, et al. Adaptive Workflow: On the

interplay between flexibility and support. In Proceedings of
ICEIS’98, Setubal, Portugal, 1998. pp. 353-360

2. L. Baresi, S. Guinea. Towards Dynamic Monitoring of WS-
BPEL Processes. In Proc. of ICSOC’2005, LNCS 3826.

3. A. Charfi, M. Mezini. Aspect-Oriented Web Service
Composition. In Proceedings of ECOWS 2004.

4. C. v. F. G. Chavez, C. J. P. Lucena. A Theory of Aspects
for Aspect-oriented Software Development. In Proceedings
of Brazilian Symposium on Software Engineering, 2003.

5. C. Courbis, A. Finkelstein. Towards Aspect Weaving
Applications. In Proceedings of ICSE 2005.

6. M. Reichert, P. Dadam. ADEPTflex – Supporting
Dynamic Changes of Workflows Without Losing Control.
Journal of Intelligent Information Systems 10(2), 1998.

7. J. Gradecki, N. Lesiecki. Mastering AspectJ. Wiley
Publishing, 2003.

8. G. Kiczales. Aspect-Oriented Programming. In Proceedings
of ECOOP’97, Finland, 1997.

9. F. Leymann. The (Service) Bus: Services Penetrate
Everyday Life. In Proceedings of ICSOC’2005.

10. F. Leymann, D. Roller. Production Workflow - Concepts
and Techniques. PTR, 2000.

11. G. Ortiz, F. Leymann. Combining WS-Policy and Aspect-
Oriented Programming. In Proceedings of ICIW'06, French
Caribbean, February, 2006.

12. B. Orriens, J. Yang, M. Papazoglou. A rule driven
Approach for Developing Adaptive Service Oriented
Business Collaborations. In Proceedings of ICSOC’2005.

13. J. Siljee et al. DySOA: Making Service Systems Self-
Adaptive. In Proc. of ICSOC’2005, LNCS 3826 Springer

14. S. Weerawarana et al. Web Services Platform Architecture,
Prentice Hall, 2005.

15. R. Khalaf, et al. Pluggable Framework for Enabling the
Execution of Extended BPEL Behavior. Proceedings of
WESOA 2007 at ICSOC’07, 2007, Springer LNCS.

16. R. Schroth Konzeption und Entwicklung einer AOP-
fähigen BPEL Engine und eines Aspect-Weavers für BPEL
Prozesse. Thesis No. 2523, University of Stuttgart, 2006.

17. D. Karastoyanova, R. Khalaf, R. Schroth, M. Paluszek, F.
Leymann. BPEL Event Model, Technical Report Nr.
2006/10, University of Stuttgart, 2006.

18. J. Nitzsche et al. BPELlight. In Proceedings of BPM 2007,
Australia, 2007.

19. J. Nitzsche et al. BPEL4SWS. In Proceedings of
AWESOME’07 at OTM 2007, 2007.

20. D. Karastoyanova, F. Leymann, J. Nitzsche, B. Wetzstein,
D. Wutke. Parameterized BPEL Processes: Concepts and
Implementation. In Proceedings of BPM 2006.

21. BPEL 2,0, http://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=wsbpel

22. Web Services Notification, 2004.
23. WS Policy, ftp://www6.software.ibm.com/software/

developer/library/ws-policy.pdf
24. M. Kloppmann et al. WS-BPEL Extension for Sub-

processes – BPEL-SPE. 2005.

