
Institute of Architecture of Application Systems, University of Stuttgart, Germany
lastname@iaas.uni-stuttgart.de

Cross-organizational Process Monitoring
based on Service Choreographies

Branimir Wetzstein, Dimka Karastoyanova, Oliver Kopp,
Frank Leymann, and Daniel Zwink

© ACM 2010
See also ACM site: http://doi.acm.org/10.1145/1774088.1774601

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

@inproceedings{Mon4Chor,
author = {Branimir Wetzstein and others},
title = {Cross‐organizational Process Monitoring

Based on Service Choreographies},
booktitle = {2010 ACM Symposium on Applied Computing (SAC '10)},
year = {2010},
pages = {2485‐‐2490},
publisher = {ACM},
doi = {10.1145/1774088.1774601}

}

:

Institute of Architecture of Application Systems

Branimir Wetzstein, Dimka Karastoyanova, Oliver Kopp, Frank Leymann, and Daniel
Zwink. 2010. Cross-organizational process monitoring based on service
choreographies. In Proceedings of the 2010 ACM Symposium on Applied
Computing (SAC '10). ACM, New York, NY, USA, 2485-2490.
DOI=10.1145/1774088.1774601 http://doi.acm.org/10.1145/1774088.1774601

http://doi.acm.org/10.1145/1774088.1774601

Cross-Organizational Process Monitoring based on
Service Choreographies

Branimir Wetzstein, Dimka Karastoyanova, Oliver Kopp, Frank Leymann, Daniel Zwink
Institute of Architecture of Application Systems

Universitaetsstr. 38
Stuttgart, Germany

lastname@iaas.uni-stuttgart.de

ABSTRACT
Business process monitoring in the area of service oriented
computing is typically performed using business activity moni-
toring technology in an intra-organizational setting. Due to
outsourcing and the increasing need for companies to work
together to meet their joint customer demands, there is a
need for monitoring of business processes across organizational
boundaries. Thereby, partners in a choreography have to
exchange monitoring data, in order to enable process tracking
and evaluation of process metrics. In this paper, we describe an
event-based monitoring approach based on BPEL4Chor service
choreography descriptions. We show how to define monitoring
agreements specifying events each partner in the choreography
has to provide. We distinguish between resource events and
complex events for calculation of process metrics using complex
event processing technology. We present our implementation
and evaluate the concepts based on a scenario.

Keywords
Business Activity Monitoring, Cross-Organizational Monitoring,
Service Choreography

1. INTRODUCTION
Business Process Management (BPM) encompasses methods,

techniques, and tools that allow organizing, executing, and
measuring the processes of an organization [12]. When BPM is
layered over a Service Oriented Architecture (SOA) [9], services
are used for implementing activities of business processes.
In the context of SOA, business processes are modeled and
executed using the (WS-)BPEL language, which is a workflow
language for orchestration of Web services. While a service
orchestration implements an executable private process model
implemented by a single participant, a service choreography
models the publicly visible processes and message exchanges
between participants from a global viewpoint [10]. BPEL4Chor
is a BPEL extension for modeling service choreographies [3].

For controlling the achievement of business goals especially in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

business processes and measuring process performance, business
activity monitoring (BAM) technology enables continuous, near
real-time event-based monitoring of business processes based on
key business metrics, also known as key performance indicators
(KPI) [11]. Business process monitoring has been traditionally
focused on intra-enterprise processes. Today, companies are
forced to collaborate in a more open manner in order to meet
joint customers’ needs. There is also more and more outsourcing
of parts of business processes to external companies. Thereby,
an intra-enterprise business process is fragmented into a cross-
organizational process and the source company is often still
interested in monitoring of the outsourced process fragment. A
well-known example is shipment tracking whereby the shipper
opens its process to some extent to the customer. Thus, there
is a need for companies to interchange monitoring data of their
business processes with other companies.

In this paper we present a solution to this problem by
describing an event-based approach to cross-organizational
monitoring based on service choreography descriptions. We
use BPEL4Chor choreographies as basis for specification of
so called monitoring agreements. A monitoring agreement
specifies which events need to be provided by each partner in the
choreography for building a monitoring solution. In particular,
we distinguish between resource events which are defined based
on the abstract processes in the choreography description and
complex events needed for calculating higher-level process
metrics using a complex event processing (CEP) language [8].
In order to support event correlation across partners in a
choreography, we show the need for a choreography instance
identifier and describe how it can be used in SOAP-based
communication. We have implemented the approach in the
Web services setting by extending an existing BPEL engine and
using a CEP framework.

The rest of the paper is organized as follows. In Section 2
we present the motivation for our work based on a scenario
which we use in the rest of the paper to present examples for
our concepts. In Section 3 we depict the overall approach.
Section 4 describes in detail how monitoring agreements are
modeled. Section 5 deals with the monitoring infrastructure
and event correlation in choreographies. In Section 6 we present
related work, and finally, in Section 7 we conclude the paper
and outline our future work.

2. SCENARIO AND MOTIVATION
For explaining the motivation and concepts of our work we

have chosen a purchase order scenario as illustrated in the
BPMN diagram shown in Figure 1. The diagram shows a
chorography between a customer, a reseller, and a shipper

Customer Reseller Shipper
<invoke>

Send PO
<receive>

Receive PO

<opaqueActivity>

Deliver Shipment

<receive>

Receive Shipment
Request

<opaqueActivity>

Process Order

<forEach>

<invoke>

Send Shipment
Request

<while>

<opaqueActivity>

Receive Shipment

<opaqueActivity>

Handle Shipment

<receive>

Receive Notification
<invoke>

Send Notification

<opaqueActivity>

Receive Shipment
Acknowledgement

Figure 1: Purchase Order Scenario

(other involved participants such as suppliers have been omitted
for space reasons). The customer sends an order request with
details about the required products and needed amounts to
the reseller. The reseller confirms the order by sending a
notification to the customer. The reseller processes the order
by ordering products from suppliers if needed, packages them
and notifies the shipper. The order can be split in several parts
if some of its parts take much longer to deliver. In that case
the order parts are shipped separately. The shipper delivers the
products to the customer.

Firstly, note that the diagram shows only public processes of
the participants and their interactions. Private parts of the pro-
cess are denoted by opaque activities and their implementation is
not exposed to other participants. Note also that for this paper
we assume that the partners have agreed on this choreography
using the BPEL4Chor language [3]. A BPEL4Chor choreog-
raphy description consists of a set of abstract BPEL process
models (in our scenario three of them), one for each participant
type (customer, reseller, and shipper), and a topology document
which specifies how these abstract processes are connected
together by message links. The choreography description also
specifies concrete participants for participant types (e.g., two
concrete shipping companies or concrete customers involved in
the choreography; BPEL4Chor also supports dynamic sets of
participants; however their monitoring is out of scope of this
paper and part of our future work). Each partner implements
its abstract business process as defined in the choreography
locally typically using WS-BPEL, but not necessarily so. A
partner could also use, for example, Java as long as it behaves
according to the specified abstract BPEL process [4].

In the following we will motivate the need for our approach
based on scenario examples. Considering the monitored objects,
i.e., what is to be monitored, we can distinguish between process
tracking and evaluation of process metrics. In process tracking,
partners want to track the state of the choreography beyond
their own process. In our scenario, for example, the customer is
interested in tracking how far the order processing is. Obviously,
this information can be provided by the reseller and shipper
when they publish events as their process is executed, such
as Order received, Order processed, Shipment request

received and so on. We assume in this paper, that partners
are willing to provide this information (or a subset of it) as
long as it is part of its “public” process as modeled in the
choreography. Note that we assume here that there is no special
Web service operation provided by the reseller and shipper for
inquiring this information; this would be a special case, and
we concentrate on event-based monitoring in this paper. For

process tracking, one has to agree for which process resource
and which state change of that resource the event is to be
published, what data (process data and IDs for correlation) is
transmitted in the event, and where the event can be retrieved
(on which messaging queue or pub/sub topic). Obviously, for
unambiguous specification of the which and what question,
an underlying choreography model is needed as basis. This
is in our case the BPEL4Chor description. Process tracking
relies only on state changes of process resources (in case of
event-based monitoring also known as resource events). Besides
process tracking it is often needed to evaluate metrics based
on complex events. These metrics are then used e.g. as basis
for definition of Service Level Agreements (SLAs) or Key
Performance Indicators (KPIs). Consider, for example, the
metric order fulfillment lead time which could be measured in
our scenario from the start of the activity Receive PO in the
reseller process until the While Loop completes in the customer
process. Therefore, corresponding events have to be gathered,
correlated and their timestamps subtracted. In general, thus
we have to be able to specify CEP-like complex events based
on events of different partners. The problem which arises here
is that of event correlation in the choreography. In particular in
this scenario we have to be able to correlate process instances
within a choreography instance execution. In Section 5 we
will explain in more detail, why in the general case, a special
technical choreography instance ID is needed which has to be
transported on protocol level, e.g., as part of SOAP headers.

In cross-organizational monitoring, obviously there are privacy
issues. Firstly, the assumption of our approach is that partners
are willing to provide only monitoring information on their
public processes, but not private processes. This is why we
have chosen to take a choreography description as basis for
monitoring specification. It should also be possible to specify
events selectively even for the public process. One could think
of different monitoring levels dependent on how much the
customer wants to pay for that information (if we assume that
monitorability is part of service levels and is sold as a feature).
Another issue is to be able to selectively restrict which partners
can see which events.

3. OVERVIEW OF THE APPROACH
Figure 2 sketches the main concepts of our approach. The

service choreography description can be seen as an agreement
between partners on their public processes and message ex-
changes. We base our approach on a BPEL4Chor service
description in which each partner exposes an abstract BPEL
process [3]. We introduce a monitoring agreement which is an
XML-based document specifying monitoring aspects between
partners based on the choreography description. A monitoring
agreement consists of a set of resource event definitions and
complex event definitions. Resource events are defined based on
abstract BPEL processes in the choreography by specifying at
which BPEL resource and for which state of that resource an
event is to published, which data it should contain, and where
it should be published (at which message queue or pub/sub
topic). Complex events are defined based on resource events and
other complex events using a Complex Event Processing (CEP)
language. They are needed for calculating process metrics.
Both resource events and complex events are exchanged between
partners over message queues or alternatively pub/sub topics.

Considering the methodology in creating corresponding
monitoring agreements, there are two possible approaches. In a
top-down approach the parties agree on what is to be monitored

and create together a monitoring agreement document, possibly
during creation of the choreography document itself. The
document is then deployed to each party’s infrastructure. The
infrastructure is configured considering which events it has to
publish to other partners and which events it retrieves from
others. A more dynamic, bottom-up approach would imply that
each partner creates the corresponding XML document (which
is not yet an “agreement”) independently of other partners and
specifies which events it provides (and optionally also which
events it requests) to partners in the choreography, possibly
exposing different monitoring levels based on e.g. service levels
and price the requester wants to pay. This monitoring document
could then be published to a service registry together with
the WSDL and choreography document. Obviously, in such a
scenario a matchmaking phase is needed which checks whether
requested and provided monitoring events match finally creating
a monitoring agreement as a result. In this paper we focus
on the top-down approach and leave the bottom-up one for
future work.

3

Event

CEP

Event

CEP

Event

Queues /
Topics

Event
Event

Partner 1 Partner 2 Partner 3

Msg Msg

Event

CEP

Monitoring
Agreement

Service
Choreography

Figure 2: Overview of the Approach

Considering the lifecycle in creation of corresponding cross-
organizational monitoring solutions we can distinguish between
three phases: creation of monitoring agreements, deployment,
and the concrete monitoring. After creation of the monitoring
agreement document, it is used by each partner to configure
its middleware for monitoring in the deployment phase. That
involves configuring its own process middleware eventing infras-
tructure for publishing events to the specified destinations and
subscribing to event queues or topics for getting events from
other partners. Note that partners have to support managing
the choreography instance identification in SOAP based message
communication (Section 5).

4. MODELING OF MONITORING AGREE-
MENTS

The monitoring agreement is an XML document consisting of
two types of definitions: resource event definitions and complex
event definitions. Resource event definitions are specified

based on the choreography descriptions and complex events are
defined based on other events. Complex events can serve as
basis for specification of SLAs and BAM solutions. One could
for example specify service level parameters and service level
objectives based on complex events which contain corresponding
metric values. That is however out of scope of this paper.

4.1 Definition of Resource Events
Resource events are defined based on the abstract BPEL

process models in the BPEL4Chor choreography. A resource
event definition specifies the following three elements:

• Monitored Resource: Firstly, we have to specify which pro-
cess resource should be monitored and for which state of
the resource the event should be published. The resource
is identified by pointing to the corresponding BPEL4Chor
elements. Monitored resources we are interested in are
the instances of the BPEL process, activity, scope, and
variable. The state models (e.g., started, completed, ter-
minated, compensated, and corresponding transitions)
for these resources are not standardized. We use the
state models defined in [5]. The resource identification
will result at process runtime in corresponding resource
identifiers which are transported in the event and are
needed for event correlation, as discussed in Section 5.

• Process Data: Optionally, one can specify which process
data (defined as BPEL variable) is to be part of the event.
The data is read at the moment of event publishing.

• Target message queue or pub/sub topic: Finally, one
has to specify a message queue or a pub/sub topic to
which the event is to be published. If the resource event
is to be published to a partner only under a certain
filtering condition, e.g., some attribute value contained in
the event or some other events, an additional complex
event has to be created which is created based on this
condition (discussed further below). The access to the
queue or topic can be restricted to certain participants by
specifying their names; the concrete realization mechanism
for access control, needed credentials etc. have to be
specified separately.

<monitoringAgreement
xmlns:chor="http:// purchaseOrder/choreography"
xmlns:reseller="http:// purchaseOrder/reseller">

<resorceEventDefinitions >
<resourceEventDefinition name="OrderReceivedEvent">
<monitoredResource

choreography="chor:orderChoreography"
process="reseller:ResellerProcess"
scope="process"
activity="reseller:ReceivePO"
state="completed"/>

<data>
<processVariable name="order"

variable="purchaseOrder"/>
</data>
<publish >
<queue name="purchaseOrder.reseller"

access="reseller"/>
</publish >

</resourceEventDefinition >
...

<resorceEventDefinitions >
...

<monitoringAgreement >

Listing 1: Resource Event Definition

Listing 1 shows a resource event definition for the Order-

Received resource event. It is specified by pointing to the
Receive PO activity in the reseller process model. The event is
to be published when the corresponding activity is completed.
In addition, the event should contain the data from the pur-

chaseOrder variable. It is published to the queue which can
only be accessed by the reseller. As there are several customers
and shippers as potential participants in this choreography,
we cannot simply give access to this queue to all participants.
Further below, in Section 4.2, we will define a complex event
which sends this event to the customer who actually requested
this order.

4.2 Definition of Complex Events
Complex events are specified by correlating and aggregating

existing events. Event correlation and aggregation is a well-
known topic in the area of complex event processing (CEP)
and there are different languages available for the specification
of complex events [8]. In our case, we have decided to use the
language of ESPER1, which is the CEP implementation we
have used in our prototype (Section 5.2). But alternatively
any other language could be used instead, the choice being
dependent on aspects such as language expressivity needed.
Note that we use the term complex event for an event which
results from using a CEP statement over one or more events; we
do not further distinguish between more fine-grained meanings
of complex, composite, and derived events as in some other
works.

<monitoringAgreement
xmlns:chor="http:// purchaseOrder/choreography"
xmlns:reseller="http:// purchaseOrder/reseller">

...
<complexEventDefinitions >
<complexEventDefinition providedBy="reseller"

name="CustomerAOrderReceivedEvent"
choreography="chor:orderChoreography">

<consume >
<queue name="purchaseOrder.reseller"/>

</consume >
<eventAggregation resultType="FILTER">
<statement ><![CDATA[
SELECT a
FROM PATTERN [
EVERY a=ResourceEvent(name=" OrderReceivedEvent"
AND variables(’order ’).customer =" customerA ")]

]]></statement >
</eventAggregation >
<publish >
<queue name="orderChoreography.customerA"

access="customerA"/>
</publish >

</complexEventDefinition >
...

</complexEventDefinitions >
<monitoringAgreement >

Listing 2: Complex Event for Event Filtering

The complex event definition consists of an event aggregation
statement and the target topic definition. In addition, we
have to specify by whom the aggregation is performed and
published on the target queue or topic (providedBy attribute).
The reason is that we have to avoid that several partners
perform this aggregation, as this would lead to a duplication
of events. The event aggregation statement uses the CEP
language to construct a new complex event out of already
defined resource events and complex events. Therefore, we
first specify from which queues or topics these existing events

1http://esper.codehaus.org

are consumed. Later, when referencing those events (correctly
speaking: event streams) in the eventAggregation statement,
we use the names from the corresponding event definitions.
Considering monitored resource identifiers needed for correlation
of events (see Section 5.1 for more details) we use the following
naming scheme: cid stands for choreography ID and ciid for
choreography instance ID, pid for process ID and piid for
process instance ID, sid for scope ID and siid for scope instance
ID, aid for activity ID and aiid for activity instance ID.

Complex events definitions are specified recursively based on
resource events to achieve two purposes: (i) event filtering and
(ii) event aggregation in order to evaluate complex process
metrics. In some cases, event filters have to be defined for
resource events in order to ensure that the events are delivered
to the right participants. Consider in our example the Order-

ReceivedEvent (Listing 1). For privacy reasons, it should only
be visible to the customer which placed the order and not to
other potential customers which are also defined as participants
in the choreography (but that do not participate in this particu-
lar choreography instance). If we assume that the customerID

is part of the purchaseOrder variable then we can define an
event filter as shown in Listing 2. Only those OrderReceivedE-

vents which contain the correct customerID are placed into
the queue orderChoreography.customerA accessible only by
customerA.

<complexEventDefinition providedBy="reseller"
name="CustomerAOrderFulfillmentTime"
choreography="chor:orderChoreography">

<consume >...</consume >
<eventAggregation resultType="COMPLEX">
<statement ><![CDATA[
SELECT
abs(b.timestamp - a.timestamp) AS metricValue ,
"ms" AS unit ,
a.resource.ciid AS ciid

FROM PATTERN [EVERY
a = ResourceEvent(

name=" CustomerAOrderReceivedEvent ")
-> b = ResourceEvent(

name=" CustomerAShipmentReceivedEvent"
AND resource.ciid = a.resource.ciid)]

]]><statement >
</eventAggregation >
<publish >
<queue name="orderChoreography.customerA"

access="customerA"/>
</publish >

</complexEventDefinition >

Listing 3: Complex Event for Metric Computation

Besides event filtering, another important use case for com-
plex events is evaluation of process metrics. In Listing 3
we define a complex event CustomerAOrderFulfillmentTime

which contains the corresponding metric value in the attribute
metricValue. In addition it contains the attribute unit and
the choreography instance identifier. The metric value is
calculated by correlating two events already defined, namely
CustomerAOrderReceivedEvent and CustomerAShipmentRe-

ceivedEvent. These events are correlated based on choreogra-
phy instance IDs and then their timestamps are subtracted.
The result event is published to the corresponding queue by
the reseller who also performs this event aggregation. Note
that obviously such a definition results in one result event per
choreography instance, i.e. an event stream.

5. MONITORING OF CHOREOGRAPHIES
After the monitoring agreement is created, it is deployed to

each partner’s infrastructure. The partner thereby extracts
from the agreement the events it has to provide and configures
its middleware, e.g., the BPEL engine using a deployment
descriptor to provide resource events, and the CEP engine
to provide complex events. It also subscribes to topics or
queues where he receives events from other partners. A possible
realization is described in Section 5.2.

5.1 Event Correlation in Choreographies
In order to be able to perform event correlation for monitored

resources, corresponding resource identifiers have to be included
in events. Consider, for example, the calculation of the order
processing duration between the activity Receive PO and
Receive Shipment Acknowledgment in our scenario. For each
of those activities an event stream is created. Obviously, we
need to correlate events belonging to the same purchase order,
i.e. the same choreography instance. Thus, events have to
contain identifiers of the corresponding monitored resource.
In this case, each event belongs to a certain activity instance
(note that in general there can be several activity instances per
activity if that activity is contained in a loop). An activity
instance belongs again to a process instance. However, in this
case those two identifiers (piid and aiid) are not enough as
those two activities are part of different process models. In our
case, in order to be able to correlate the corresponding two
events, we have to correlate on the choreography instance level.
Thus, the events have to contain an identifier which identifies
the choreography instance.

For identifying monitored resources, either technical or
business IDs are needed. In the case of process models which
are realized as executable BPEL processes, for example, the
BPEL engine assigns technical process instance IDs to process
instances, scopes and activities (however not to choreographies).
For a choreography instance, in the general case also an
identifier is needed. In some special cases, correlation could
be done based on business identifiers transported in BPEL
messages. For example, if the orderID is known to the shipper,
then it can be sent in the Order Shipped event and thus
correlated with the Order Received event. However, in the
general case this cannot be ensured. In synchronous invocations
(BPEL invoke with input and output) the correlation between
the sent and replied message is done on protocol level, e.g.,
SOAP/HTTP and not based on message payload (which does
not necessarily contain needed identifiers). Assume for example,
the synchronous invocation of the reseller process to a warehouse
process to check whether all products are in stock. In that case
the orderId is not necessarily part of that message. If now the
reseller subscribes to the events of the warehouse those events
have to contain a technical identifier.

<soap:header >
<chor:choreography

xmlns:chor="http://iaas/monitoring/choreography">
<chor:cid >

{http: //.../ choreography}orderChoreography
</chor:cid >
<chor:ciid >

{...} orderChoreography /2009 -11 -02 -12 :05:21:005
</chor:ciid >

</chor:choreography >
...

</soap:header >

Listing 4: Choreography-ID in SOAP Header

This is why we need in the general case a technical identifier
of the choreography instance which is transported on protocol

level. For SOAP-based communication this identifier can be
transported in the SOAP header. Obviously, the corresponding
middleware, e.g., BPEL engine and service bus, has to be
adapted to include and read the identifier during message
exchanges. It also has to be transported in events. Listing 4
shows an example SOAP header with the choreography instance
identifier. It is created when the first process instance of the
choreography instance is created, in our case when Send PO in
the customer process has started. It contains the choreography
ID + timestamp of creation. Note that this approach also works
in case of multiple alternative start activities; it does however
not support multiple start activities triggered in parallel at
different participants for the same choreography instance. The
semantics of the latter case is not described in the BPEL4Chor
specification and we have not found any use case for it.

5.2 Implementation
We have implemented the approach as shown in Figure 3.

It shows the implementation from the point of view of one
partner in the choreography. The prototype implementation
is based on the Apache ODE BPEL engine2 and the ESPER
event processing framework.

4

JMS
Queue /
Topic

JMS
Queue /
Topic

Implementation

BAMMonitoring
Agreement

ESPER

Apache ODE

Listener
Event

Event

Filter
List Aggregation

Statements

JMS
Queue /
Topic

Event Event

Event

Event

Figure 3: Tool Support

The monitoring agreement XML document which we create
by hand is deployed to both an event listener in the ODE
engine and the ESPER engine which is part of a BAM tool with
a GUI for displaying metrics. The resource event generation is
performed by an event listener which we have implemented
as part of the ODE engine. It is configured by reading the
monitoring agreement document and extracting the resource
event definitions relevant for this participant. As the process
instances are executed, it receives all internal ODE events
resulting from the process execution and filters them according
to the resource event definitions from the monitoring agreement.
Information from internal ODE process events is taken and
augmented with needed process data and choreography instance
identifier read from the process instance context and the
corresponding (external) resource event is created. It is sent to
a JMS queue or topic as defined in the monitoring agreement.
We have used Apache ActiveMQ as our JMS implementation3.
The complex event generation and receipt of events from
other participants is implemented by the BAM tool in our
architecture. It uses ESPER as the underlying CEP framework
and contains a GUI for displaying received events and has some
dashboards for showing calculated metrics. Event aggregation
statements from the monitoring agreements are registered as

2http://ode.apache.org
3http://activemq.apache.org

ESPER statements and produce complex events which are
published on specified queues or topics. Finally, the last part
we had to implement is dealing with the choreography instance
ID (ciid). Therefore, the ciid is read from and written into
SOAP headers in message interactions with other choreography
participants. It is saved in the process instance context and is
also propagated to the event listener which then writes the
ciid into events. A new ciid is created if there is no ciid in the
received message which is the case during instantiation of the
first process instance of the choreography.

6. RELATED WORK
As already explained in the introduction, state of the art

event-based process monitoring solutions are based on BAM
technology and focus on intra-organizational processes. There
exist several research approaches [1,2] and products [11] which
deal with evaluation of process metrics in near real time and
their presentation in dashboards. They all have in common that
events are emitted as the process is executed, collected by a
process monitor and evaluated in near real time. Some solutions
focus on monitoring of BPEL processes [1,2], while others are
more general and support an extensible architecture via event
adapters [11]. These approaches are similar to ours in that they
also use an event-based approach based on BPEL processes.
However, they focus on single BPEL orchestrations and do not
deal with monitoring of choreographies in a cross-organizational
setting. The only approach we are aware of which deals with
monitoring of BPEL processes in a cross-organizational setting
is presented in [7]. Thereby, a common audit format is presented
which allows processing and correlating events across different
BPEL engines. In our approach, we also assume that the
participants have agreed on state models of BPEL resources
and resulting resource event definitions. In addition, we deal
with complex events specification and event correlation in
choreographies using a choreography instance identifier which is
not supported in [7].

Service Level Agreements (SLA) are similar to our problem
in that they involve monitoring in a cross-organizational setting.
Thereby mostly two partners, the service consumer and the
service provider, agree on certain service QoS, typically technical
characteristics such as availability and response time [6]. The
commonalities with monitoring in our context are that in
an SLA partners also agree on metrics and how they are to
be monitored. However, in our case the focus is on event-
based monitoring of process metrics across participants in a
choreography which is not being dealt with in frameworks
such as WSLA focusing on QoS measurements. Our approach,
however, could be extended towards specification of SLAs based
on the monitoring agreement.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have presented an approach to event-based

process monitoring based on service choreographies. A monitor-
ing agreement is created which defines events each partner in the
choreography has to provide. We have distinguished between
resource events which are defined based on a BPEL4Chor
choreography description and complex events using a CEP
language. We have also shown the need for a choreography
instance identifier for event correlation and how it can be
included in a SOAP based communication.

Throughout the paper we have already discussed several
possible extensions for our future work. In this paper we

focused on an event-based monitoring approach (a.k.a. push
model). We will extend this approach by enabling also partners
requesting monitoring information on demand (a.k.a. pull
model). Furthermore, we will explore dealing with a dynamic set
of unknown participants at design time. At the moment, in order
to ensure privacy, static queues and topics with corresponding
access rights are defined in the agreement; we plan to extend
this towards creating dynamic queues and topics for participants
which are not known before runtime. Finally, we will deal with
a bottom-up approach to specification of monitoring agreements
as discussed in Section 3 and we will explore the usage of Web
service Distributed Management (WSDM) set of specifications
as underlying monitoring infrastructure.

Acknowledgments The research leading to these results
has received funding from the European Community’s 7th
Framework Programme under the Network of Excellence S-Cube
- Grant Agreement no. 215483.

8. REFERENCES
[1] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti.

Run-Time Monitoring of Instances and Classes of
Web Service Compositions. In Proceedings of the
IEEE International Conference on Web
Services(ICWS’06), pages 63–71, 2006.

[2] L. Baresi and S. Guinea. Towards Dynamic
Monitoring of WS-BPEL Processes. In Proceedings of
the 3rd International Conference of Service-Oriented
Computing (ICSOC’05), pages 269–282. Springer, 2005.

[3] G. Decker, O. Kopp, F. Leymann, and M. Weske.
BPEL4Chor: Extending BPEL for Modeling
Choreographies. In ICWS, Salt Lake City, USA, July
2007.

[4] G. Decker, O. Kopp, F. Leymann, and M. Weske.
Interacting Services: From Specification to Execution.
Data & Knowledge Engineering, 68(10):946 – 972, 2009.

[5] D. Karastoyanova, R. Khalaf, R. Schroth,
M. Paluszek, and F. Leymann. BPEL Event Model.
Technical Report 2006/10, University of Stuttgart,
Germany, November 2006.

[6] A. Keller and H. Ludwig. The WSLA Framework:
Specifying and Monitoring Service Level Agreements for
Web Services. J. Netw. Syst. Manage., 11(1):57–81, 2003.

[7] S. Kikuchi, H. Shimamura, and Y. Kanna. Monitoring
Method of Cross-Sites’ Processes Executed by Multiple
WS-BPEL Processors. In CEC/EEE, pages 55–64, 2007.

[8] D. Luckham. The Power of Events: An Introduction
to Complex Event Processing in Distributed Enterprise
Systems. Addison-Wesley Professional, May 2002.

[9] M. P. Papazoglou, P. Traverso, S. Dustdar, and
F. Leymann. Service-Oriented Computing: State of the
Art and Research Challenges. IEEE Computer, 11, 2007.

[10] C. Peltz. Web Services Orchestration and
Choreography. IEEE Computer, 36(10):46–52, 2003.

[11] U. Wahli, V. Avula, H. Macleod, M. Saeed, and
A. Vinther. Business Process Management: Modeling
Through Monitoring Using WebSphere V6.0.2
Products. IBM, International Technical Support
Organization, 2007.

[12] M. Weske. Business Process Management: Concepts,
Languages, Architectures. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2007.

	cover-ACM.pdf
	Foliennummer 1

