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ABSTRACT 
In this paper, we investigate the suitability of the general-
purpose workflow language BPEL to create executable 
simulation workflows. We therefore compare BPEL to 
GriCoL, a graphical language with proven applicability 
for simulation workflows in Grid environments. We 
discover a number of incomparable concepts in the two 
languages. On the one hand, BPEL’s unique features in 
comparison to GriCoL reveal the rationale behind the 
approach of using BPEL as basis for a simulation 
workflow language. On the other hand, based on the 
features of GriCoL, we are able to discuss how to extend 
BPEL in order to increase its expressiveness for 
simulation workflows. 
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1.  Introduction 
 
Scientists conduct experiments, computations, and 
simulations with the help of computers. The term e-
Science was coined for such kinds of applications. A 
novel research area and an important step in e-Science is 
the introduction of workflows to support non-computer 
scientists in creating and executing scientific applications 
[1]. The application of the workflow technology in e-
Science promises to relieve scientists from the overhead 
of programming the scientific applications, which may be 
complex combinations of computations, and to automate 
work. The goal is to facilitate scientists in concentrating 
on their core research area without wasting time in 
struggling with IT-related matters. 
The term scientific workflow encompasses a broad set of 
applications. A scientific workflow could, for instance, 
deal with processing images, automating data 
transformation operations, or analyzing gene sequences. 
Scientific workflows that are used to perform the 

simulation of phenomena based on real world models are 
called simulation workflows. Workflows for simulations 
have specific requirements, e.g. on the coordination of 
several workflow instances in a shared simulation context. 
In the Stuttgart research center for simulation technology 
(SimTech1) there are two groups working in the area of 
simulation workflows. The High Performance Computer 
Center (HLRS) developed Grid Concurrent Language 
(GriCoL) [2], a graphical language to simplify the 
creation and execution of scientific simulations in a Grid 
environment. The Institute of Architecture of Application 
Systems (IAAS) examines traditional workflow concepts 
(as described in [3] and by the WfMC2

The application of GriCoL and its supporting 
infrastructure SEGL (Science Experimental Grid 
Laboratory) for scientific experiments was already 
investigated [5] and proven with the implementation of a 
simulation for molecular dynamics of proteins [2]. 
GriCoL is tailored to the scientists’ needs and contains 
concepts that address specific requirements of scientists 
on a workflow language for simulations. 

) and the Business 
Process Execution Language (BPEL) [4] towards their 
applicability to design and execute simulation workflows. 

In this paper, we examine the expressivity of BPEL in 
order to support simulation workflows. We thereby want 
to exploit the requirements collected during the 
development of GriCoL and the concepts that 
accommodate these requirements. We compare these two 
languages to identify where BPEL lacks functionality. We 
discuss which GriCoL concepts are reasonable to be 
adopted by BPEL when being used for simulation 
workflows and suggest solutions to close these gaps. 
Since we want to pursue an engineering solution, we 
advocate reusing as much as possible of existing BPEL 
extensions and available infrastructures. 
The contributions of the paper can be summarized as 
follows: 

                                                 
1 http://www.simtech.uni-stuttgart.de 
2 Workflow Management Coalition, http://www.wfmc.org 
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• Bilateral comparison of GriCoL and BPEL 
• Argumentation for the usage of BPEL to design 

and execute scientific workflows in general 
• Identification of gaps in BPEL for simulation 

workflows 
• Discussion of these gaps and suggestions about 

how to close them 
• Identification of characteristics special to 

simulation workflows as compared to business 
workflows 

 
Our work is driven by the goal of developing a scientific 
workflow system to create and execute simulations based 
on existing workflow concepts and technologies. The 
system will be used in SimTech to model and run multi-
scale and multi-physics simulations such as the flow 
process in porous media or crack initiation and 
propagation in metals. 
In previous work, BPEL’s applicability in the field of 
scientific workflows was already investigated. Barga and 
Gannon [23] state that BPEL’s capabilities of fault 
tolerance, transaction support, application integration, and 
collaboration support are advantageous for scientific 
workflows. The need for tooling extensions is adverted, 
e.g. to improve the end-user robustness of BPEL 
modeling tools because they are used by scientists that 
have no experience with these technologies. Wassermann 
et al. [24] notice that BPEL is expressive enough to meet 
the requirements of scientific workflows. But they 
analyze that BPEL modeling tools lack abstractions 
tailored to scientists. Therefore, a BPEL modeling tool for 
scientists, Sedna, is proposed that implements a number 
of useful modeling features, e.g. workflow macros, plug-
ins, or indexed flows. Akram et al. [25] denote BPEL as 
“best candidate for orchestrating scientific and Grid 
services”. This conclusion is reached after investigating 
how BPEL meets concrete scientific requirements on 
workflows. Some missing features of BPEL for the 
utilization for scientific workflows are identified, e.g. the 
re-execution of activities (i.e., the modeling of cycles) or 
triggering event handlers from within BPEL workflows. 
Similar to our work, these approaches advocate the usage 
of BPEL for modeling and executing scientific 
workflows. However, the argumentations are based on 
scientific workflows in general. We investigate BPEL in 
the context of simulation workflows which have very 
particular requirements on a workflow language. These 
requirements cannot be met by BPEL modeling tool 
extensions only as proposed in the mentioned approaches. 
Crucial yet unaddressed concepts on the language level 
have to be developed and need support by the workflow 
modeling and runtime environment. In this work, we 
identify a subset of these concepts. 
The remainder of the paper is structured as follows. 
Section 2 gives background information about BPEL and 
GriCoL. Section 3 draws a conceptual comparison 
between these two languages, identifies gaps, and argues 
why it is reasonable to use BPEL as a starting point for a 
simulation workflow language. Section 4 addresses 

limitations of BPEL in comparison to GriCoL and 
discusses how these limitations can be resolved. Section 5 
presents work related towards BPEL’s applicability for 
scientific workflows. Section 6 concludes the paper and 
identifies issues that are open for future work. 
 
 
2.  Background 
 
In this section, we introduce the languages BPEL and 
GriCoL and provide the background information needed 
for the discussions in the subsequent sections. 
 
2.1 BPEL 
 
BPEL [4] is the de facto standard for the definition of 
machine-executable business processes (aka workflows) 
and is widely adopted in industry and research. It focuses 
on the specification of the syntax and operational 
semantics of the language constructs. The graphical 
representation of these constructs is out of the scope of 
the specification and therefore workflow modeling tools 
that implement the BPEL specification exhibit deviating 
representations and notations. Since BPEL relies on the 
Web services (WSs) technology, it is independent of the 
concrete implementation of invoked services. BPEL 
provides a recursive aggregation model, i.e. BPEL 
workflows orchestrate WSs and are again exposed as WS. 
This fosters modularization and reuse of workflows and 
the corresponding artefacts.  
BPEL supports two approaches for modeling control flow 
(and mixtures thereof): graph-based modeling is achieved 
with control flow links connecting activities; block-based 
modeling is enabled by structured activities that serve as 
containers for other activities and that implement certain 
control flow behaviour (e.g. executing child activities in a 
sequence or repeatedly). Data handling is implemented by 
assign activities that are able to copy variables, literal 
values, and endpoint references. Data flow is not 
explicitly modeled by BPEL constructs but variables as 
data containers and assign activities are implicit means 
to specify data dependencies and manipulation.  
Interaction activities (e.g. invoke, receive) are used to 
send and receive messages to partners (i.e., WSs). At 
design time, only the interface of a WS is specified in 
BPEL enabling the support of several binding strategies 
(e.g. static or dynamic binding) [6]. WSs can be invoked 
both synchronously (i.e. blocking) and asynchronously 
(i.e. non-blocking). 
With the help of a fault handling mechanism reaction on 
faults can be modeled at design time and executed at run 
time. The concept of compensation helps enabling 
transactional properties in BPEL, which is particularly 
useful for transactions spanning multiple activities in 
long-running scenarios. A key feature of BPEL is its 
extensibility that allows creating new activity types or 
customized data handling operations.  
The process models can be executed multiple times in 
terms of workflow instances, which allows for parallel 



execution of work.  
 
2.2 Infrastructure for BPEL workflows 
 
There are several competing tools that implement the 
BPEL specification [7, 8, 9, 10]. All implementations 
comply with the following conceptual infrastructure 
showing the components of a BPEL workflow 
environment (Figure 1).  
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Figure 1: Conceptual infrastructure supporting BPEL 

 
The user typically first gets in touch with the BPEL 
modeling tool. It is used to specify process models either 
programmatically by editing the BPEL code or 
graphically using a graphical modeling tool. After 
modeling, a process model and its WS interface 
descriptions are deployed on a BPEL workflow engine. 
The deployment requires information that is specified in a 
format imposed by the engine in terms of a deployment 
descriptor (e.g. details about the installation of the process 
model as WS). At run time, the engine creates process 
model instances, navigates through the workflow graph 
for each instance, and evaluates expressions and 
conditions. Usually, the progress of the instances is held 
persistently to enable a recovery after a server or system 
failure without the necessity to redo all the tasks already 
performed by a workflow instance. A service bus is 
employed as the middleware for discovery, selection, 
binding and invocation of services on behalf of the 
process instances, and exposes the processes as WSs. 
Therefore it belongs to the overall supporting 
infrastructure.  
 
2.3 GriCoL 
 
GriCoL [2] is a graphical language for modeling scientific 
simulations. Special attention is paid for allowing the user 
to concentrate primarily on modeling the logic of the 
experiment without having the executing infrastructure in 
mind. GriCoL is based on components with predefined 
internal structure that interact with each other through a 
defined set of interfaces. The language is of an entirely 
parallel nature and provides parallel processing of many 
data sets at all levels: inside simple language components; 
at the level of more complex language structures; and for 
the entire experiment. The possibility of parallel 
execution of operations in all nodes of the experiment 
program is only limited by the logic of the simulation 
(e.g. data dependencies that prevent from parallel 
execution). GriCoL’s extensibility allows adding new 
functional components to the language constructs library. 
The language is based on the principle of wrapping 
functionality in components in order to utilize the 
capacities of supercomputer applications and to enable 
interaction with other language elements and structures. 

That way, program codes written in any language can be 
wrapped in the standard language component if 
appropriate adapters for the programs are created. 
A main property of GriCoL is the multi-layer principle, 
i.e. the sub-division of simulations into control flow and 
data flow. The top level layer (i.e., the control flow layer) 
is intended for the description of the logical stages of the 
experiment (see Figure 2a). The main elements of this 
level are solver and control blocks. Solver blocks 
represent programs that use numerical methods to solve a 
part of the overall problem, e.g. a linear equation. Control 
blocks steer the execution of the simulation, e.g. by 
evaluating results, choosing paths, or repeating blocks. 
The sequence of blocks can be specified by two types of 
lines with different semantics. Serial connection lines 
(solid in Figure 2a) pass control to the next block only 
after all runs in the previous block have been finished. 
Pipeline connections (dashed) transfer control to the next 
block each time the computation of an individual data set 
has been completed. That way, control can be transferred 
many times if many data sets are processed.  
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Figure 2: GriCoL – Main Concepts 

 
The bottom level layer (i.e., the data flow layer) is used to 
specify the behaviour of single blocks and the data 
dependencies between blocks. Figure 2b shows the 
specification of a solver block which cyclically computes 
a large number of input data sets. The main elements of 
the data flow level are solver and condition modules. 
Solver modules select data, initialize parameters, start a 
computation, and update data afterwards. Condition 
modules select and filter data, evaluate expressions, 
decide on the continuing execution path, and update data. 
Access to data is wrapped by a data repository that 
abstracts from concrete data sources. That way, data can 
be used within a workflow independent of its concrete 
representation on the participating machines (e.g. stored 
in databases, files). 
 



2.4 SEGL 
 
SEGL [5] is a system for the automated execution of Grid 
experiments and for the efficient use of Grid resources. 
SEGL consists of two main components: the application 
designer is used for designing and debugging of 
simulation experiments; the application engine controls 
the execution of simulations on Grid resources. Complex 
experiment scenarios are realized by the user in the 
application designer with GriCoL. The technical mapping 
from this user perspective to the underlying infrastructure 
is done according to the control flow, the data flow and 
the repository layers. After the design of the experiment is 
completed, it is compiled into an executable code and 
transferred to the application server. The runtime system 
of SEGL chooses the necessary computer resources. The 
engine organizes and controls the execution sequence of 
blocks according to the workflow logic and the contained 
condition. SEGL steers the experiment while the 
experiment monitor continuously informs the user about 
the current status. 
 
 
3.  Conceptual comparison of BPEL and 
GriCoL 
 
As mentioned earlier, the design of GriCoL was 
influenced by concrete requirements of scientists. Its 
applicability for modeling simulations was proven in a 
field test. Mapping BPEL mechanisms on GriCoL 
features will reveal concepts important for scientists but 
currently unaddressed in BPEL. 
 
3.1 Unique features of GriCoL 
 
At first, we have a look at general capabilities of GriCoL 
and BPEL. Table 1 summarizes our findings. The two 
languages are designed for different purposes. While 
BPEL’s intention is to express all kinds of business 
processes in an executable form, GriCoL was devised to 
create scientific experiments in Grid environments with 
special attention on dynamical parameter sweeps. GriCoL 
is strongly connected to its graphical representation. In 
contrast to this, BPEL does not specifiy a visualization of 
its constructs. With its selection, update, and filtering 
functions GriCoL enables handling data directly from 
within workflows. BPEL externalizes data handling 
mechanisms to WSs that provide appropriate operations. 
As described in Section 2.3, GriCoL workflows are 
described on two layers, namely control and data flow 
layers, and contain a data repository that abstracts from 
concrete data locations. In BPEL, data flow is only 
implicitly modeled via variables. These variables are 
filled by messages or assign operations. Thus, they are not 
connected to data items in a repository. The control flow 
layer is very similar to process models specified in BPEL. 
The control blocks of GriCoL have very similar 
counterparts in BPEL. Nevertheless, due to GriCoL’s 
pipeline processing the Merge/Synchro block can 

realize complex join behaviour beyond the scope of BPEL 
(e.g. combining the data of three pipelines in a 1-1-1, 1-1-
2, etc. manner and passing it along another pipeline). 
The solver blocks of GriCoL are like placeholders the 
concrete behaviour of which is specified on the data flow 
layer. BPEL’s scope can be seen as similar concept that 
acts as container for other activities and that stands for an 
atomic unit of work. GriCoL’s user solver blocks act as 
extension point for additional solver block types and 
hence can be compared to BPEL’s extension activity. 
 
Table 1: Comparison of GriCoL and standard BPEL. Shaded cells 

denote concepts that are beyond the scope of BPEL. 
 GriCoL BPEL 

G
en

er
al

 

Purpose: model simulation 
workflows independent of the 
underlying Grid infrastructure 

Purpose: creation of 
machine-executable business 
processes 

Graphical language 
 

Specification of syntax and 
semantics, no visualization 

Experiment data handling on 
language level 

Experiment data handling is 
encapsulated by WSs 

La
ye

rs
 Control flow layer Process model 

Data flow layer 
 

Implicit data flow through 
variables 

Data repository – 

C
on

tro
l B

lo
ck

s 
Start  Receive, pick 
End  Reply, invoke 
Branching Outgoing links 
Merge/Synchro Incoming links (& empty) 
Condition see Section 4.3 
Message Reply, invoke 
User extension Extension activity 

So
lv

er
 

Bl
oc

ks
 Basic 

 
Scope 
 

User solver block 
 

Extension activity 
 

Li
nk

s Pipeline connection ForEach (if data items in the 
branches are independent) 

Serial connection (batch) Flow & links, sequence 

 
As mentioned in Section 2.3 GriCoL allows serial and 
pipeline connections between blocks. Serial connections 
can be mapped to BPEL’s sequence activity or to a 
flow where activities are connected by links. In general, 
GriCoL’s pipelining is beyond the capabilities of BPEL 
and is therefore further discussed in Section 4.2.  
In summary, GriCoL contains four major concepts that 
are unaddressed in BPEL: the data handling mechanism 
on a workflow level; the pipeline processing capabilities; 
the different layers of abstraction/explicit data flow; and 
the data repository. 
 
3.2 Why using BPEL instead of GriCoL? 
 
GriCoL is specifically designed for scientists to model 
and execute experiments independent of a programming 
language and the underlying Grid infrastructure. It 
provides concepts to maximize the parallelization of the 
execution of scientific computations. From this point of 
view it would be reasonable to follow the GriCoL 
approach. 
Despite these facts we advocate the usage of BPEL for 



scientific workflows, and enhance it with missing 
concepts as compared to GriCoL or other languages. This 
is due to the rich set of advantages BPEL and its 
supporting infrastructure entail. First, BPEL is an 
accepted standard in research and industry for expressing 
executable service compositions. Thus, there already 
exists an extensive and mature tool support that can be 
used as basis for further enhancements. Second, BPEL 
provides concepts not addressed by GriCoL and many 
other languages for scientific workflows (see Table 2) as 
we will see in the following. 
 
Table 2: Mapping of BPEL concepts on GriCoL constructs. Shaded 

cells denote concepts that are beyond the scope of GriCoL. 
 GriCoL BPEL 

BP
EL

 C
on

ce
pt

s 

– Asynchronous messaging 
Late binding of resources (but 
list of resources is fix at 
simulation start) 

Late binding of services 

Computation module (non-
standard adapters needed) 

Application integration 
through WSs 

– Recursive aggregation model 
– Sub-processes (BPEL-SPE) 
Undefined exit of decision 
module 

Fault handling and 
compensation 

– Event handling 
No difference between 
workflow model and instance 

Distinction between 
workflow models and 
instances 

– Human involvement / 
BPEL4People 

 
BPEL and its software infrastructure exploit the full 
capabilities of the Web services technology, such as an 
asynchronous communication between partners. Late 
binding of services allows BPEL workflows to react on a 
changing software and hardware environment. SEGL also 
enables late binding of computing resources, but the list 
of resources that can be utilized for computation has to be 
provided by the user when starting the simulation [11]. 
The usage of Web services allows an integration of 
different tools independent of the programming languages 
they are written in or the platform they are running on, 
including Grid resources. Scientists can offer their 
services to each other and hence enable an 
interdisciplinary research. With GriCoL different 
applications can also be integrated into a workflow. 
Specific non-standard adapters are needed for each type 
of application, thus impeding collaboration between 
scientists. 
Workflows in BPEL make use of Web services and at the 
same time are provided as Web service. This recursive 
programming model enables reusing existing workflows 
and the collaboration between different scientific 
institutes seamlessly. The same holds for sub-processes in 
BPEL [12] with the additional advantage of integrating 
invoked sub-processes into the parent process’s life cycle. 
Similar concepts cannot be found in GriCoL. 
Another advantage is BPEL’s powerful fault handling 
mechanism. It allows catching and handling faults on 
different language levels (invoke, scope, process level) in 
a straightforward, user-defined manner. A special fault 

handling concept is undoing, i.e. compensating, already 
finished work which introduces the notion of transactions 
(i.e. units of work) even in long-running workflows. 
GriCoL also offers an error handling mechanism, but only 
as an undefined exit of the decision module. 
A characteristic of scientific computations is the 
application of sensors to gather real life data (e.g. air 
humidity for a weather forecast). Integrating sensor data 
into BPEL processes is facilitated with an event handling 
mechanism. This way, sensors that supply pieces of data 
(as opposed to data stream sensors) can be used in 
scientific workflows on basis of BPEL. GriCoL is not 
able to react on external events. 
In contrast to GriCoL (and many other scientific 
workflow languages), BPEL distinguishes between 
workflow models and workflow instances. This feature 
eases modeling and execution of simulations: the 
behaviour of a simulation object (e.g. a molecule) can be 
modeled once, but is instantiated several times to 
represent a huge number of these objects. These instances 
can then be executed in parallel without parallel 
programming approaches. The results of the instances can 
be collected and combined by a workflow that represents 
the simulation context. 
There are situations where simulations cannot be executed 
fully-automated. An active steering on behalf of a 
scientist is needed (e.g. to decide a refinement of a mesh 
in a simulation based on the finite element method). 
BPEL event handlers or the BPEL extension for the 
integration of human tasks into workflows 
(BPEL4People) [13] enable dealing with such scenarios 
natively. In GriCoL, an active participation of humans is 
not foreseen. 
The advantages of BPEL and its supporting infrastructure 
are numerous. Thus, it is natural to design a simulation 
workflow language upon BPEL. 
 
 
4.  Closing the identified gaps 
 
So far, we have revealed concepts that are unique to 
GriCoL when being compared to BPEL. Furthermore, we 
argued for a simulation workflow language based on 
BPEL instead of pursuing the GriCoL approach. We now 
need to discuss, which of GriCoL’s unique features 
should also be addressed by the foreseen simulation 
workflow language and how to close identified gaps. 
 
4.1 Data handling 
 
On the data flow layer GriCoL offers solver and condition 
modules that directly operate on external data sources. 
There are also other approaches that provide access to 
external data from within the workflow definition, e.g. 
Kepler with its MoML [14]. Obviously, scientists want to 
have the possibility for fine-grained data access on the 
workflow level to select, insert, update, delete and filter 
data, and to iterate over items of a data set. 
Natively, BPEL provides access to external data only via 



the communication with WSs. That means a WS needs to 
be created that is able to access a database or any other 
data source with appropriate operations (e.g. select, 
update) in order to load external data into a BPEL 
workflow. These data sets could then be further processed 
with the help of assign activities that are capable of 
performing even specialized data transformations. Since 
BPEL’s assignment mechanism with its standard query 
language XPath [15] is tailored to simple copy operations, 
it is complex to implement the mentioned data operations.  
 

Table 3: Common data handling operations as implemented by 
GriCoL and BPEL. Because the BPEL solutions do not directly 

work on external data they are not semantically equivalent to the 
GriCoL concepts. Shaded cells denote concepts that are more 

expressive than in the opposed language. 
Data 
operation 

GriCoL BPEL 

Iterate Parameterization module, 
replacement module 

ForEach & assign, 
invoke & forEach & 
assign 

Insert Link to data repository Assign & invoke 
Select Selecting module Invoke & assign 
Update Updating module Assign & invoke 
Filter Filtering module Assign 
Delete – Assign & Invoke 

 
Table 3 summarizes how these operations can be realized 
in GriCoL and BPEL. Besides the deletion of data, 
GriCoL supports all of the operations with native modules 
or concepts. Iteration can even be accomplished on 
internal data by a parameterization module or on external 
data with the help of a replacement module. In BPEL, the 
operations are not supported natively. Workarounds with 
combinations of forEach, invoke, and assign 
activities are needed. Moreover, since assign activities 
are tailored to copy operations, XPath expressions and 
XSLT [16] scripts have to be employed to achieve similar 
results to the GriCoL solution. It needs to be emphasized 
that the BPEL workarounds are not semantically 
equivalent to GriCoL’s native implementation because the 
concrete data operations are wrapped by Web service 
interfaces and do not directly work on external data. 
In order to support scientists in setting up their 
experiments a BPEL modeling tool extension could 
provide workflow fragments [17] that represent these (and 
other) data operations in a generic way. It is then up to the 
scientist to configure the fragments according to the 
specific experiment. In this approach only a modeling tool 
is extended and hence the portability of the workflows 
across workflow engines is preserved. The main 
drawback of the approach is that selected data is always 
accessed by value (which can be very huge in scientific 
computations) and hence is processed by the engine. 
Moreover, scientists could end up in scripting complex 
XPath and XSLT expressions when configuring workflow 
fragments to their needs. 
Another option for accessing and processing external data 
is by extending BPEL with particular activities. A 
prominent implementation of such a concept is ii4BPEL 
or BPEL/SQL [18], respectively. SQL activities execute 

SQL statements on databases. Thus, select, update, insert, 
delete, and filter data operations can be used on workflow 
level very similar to GriCoL. As before, the iteration 
would be realized by a forEach activity. In contrast to 
GriCoL, query results stay in the database’s address space 
and are referenced by so-called Set Reference 
variables. This is helpful to keep data traffic low if data 
sets are not needed for steering the workflow logic. 
However, a Retrieve Set activity can be used in order 
to explicitly load results into the workflow engine’s 
address space. In this case, the results are stored in 
specific Set variables. We advocate pursuing BPEL/SQL 
instead of the standard BPEL approach due to the 
multitude of benefits. The major advantage of BPEL/SQL 
is the possibility to automatically optimize the database 
accesses in BPEL workflows [19] and hence speed up 
workflow processing. Speedup of workflow execution can 
also be achieved by handling database data by reference. 
Furthermore, SQL activities enable a straightforward 
database access without complex assign activities and 
XPath/XSLT expressions. The main drawback of the 
approach is that BPEL/SQL requires an extension of the 
run time environment and hence impedes portability of 
workflows across different workflow engines. Moreover, 
only data of relational databases can be handled. Files or 
sensor data, for instance, are not accessible. Furthermore, 
scientists need SQL knowledge in order to specify data 
operations, unless there are pre-modelled queries 
provided to users by an advanced experiments modeling 
tool. To overcome these deficiencies, we are currently 
working on a BPEL modeling tool that contains a 
graphical editor to assist scientists in creating SQL 
statements. Another aspect of the work is a concept that 
allows accessing several types of external data sources 
besides databases (e.g. files in different formats, sensor 
databases). 
 
4.2 Pipeline processing 
 
For GriCoL pipeline connections control is transferred to 
the next block each time the computation of an individual 
data set has been completed. So, control can be 
transferred many times if many data sets are processed. In 
some cases, BPEL’s forEach can achieve the same 
semantics, namely if several independent data items can 
be processed in parallel. However, in order to allow 
general pipeline semantics in BPEL an extension is 
needed. In [20] detailed description is given how to 
extend traditional state-based workflow management 
techniques with the necessary features to integrate 
streaming data services and combine them with 
conventional request-response services. Additionally, 
safety problems in the execution of the process and their 
solutions are addressed as state-based workflow execution 
models are not designed for such parallel processing. 
Similarly to the presented implementation for the JOpera 
workflow system in [20], BPEL can be extended for the 
support of pipelining.  
For the mapping of GriCoL to BPEL it is important to 



note that a BPEL scope activity corresponding to a 
GriCoL control block that can be instantiated multiple 
times in a pipeline must include a solver module 
representation that uses a standard Web service instead of 
a stream data-aware Web service. 
 
4.3 Layers of abstraction / explicit data flow 
 
As mentioned, GriCoL makes use of two layers for the 
specification of workflows. Solver and condition blocks 
are single units on the control flow layer. The data flow 
layer satisfies two functions. First, it is used to specify the 
concrete behaviour of solver and condition blocks by 
modules that are hidden on the control flow layer. That 
means the control flow layer works as abstraction from 
the data flow layer. Second, the data flow layer can be 
used to model data dependencies between blocks and 
modules. 
 

Table 4: Conceptual mapping of GriCoL and BPEL concepts in 
order to represent two different layers of abstraction. 
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Basic Solver Block Scope 
Condition control block 
& serial connection 

Acyclic: if, flow & links 
Cyclic: while, repeatUntil, 
forEach 

Serial Connection Sequence, flow & links 
Pipeline Connection BPEL Extension for pipeline 

D
at

a 
Fl

ow
 

Le
ve

l Simple data selection BPEL-D data link 
Simple data transfer BPEL-D data link 
Data transfer BPEL-D data link 

 
Conceptually, a standard BPEL process model qualifies to 
represent a GriCoL workflow on the control flow layer 
(except for the pipeline mechanism that requires a BPEL 
extension, see Section 4.2). In order to realize the 
different abstraction layers for a solver block, a BPEL 
scope activity can be used as container representing a 
solver block on the control flow layer of GriCoL. To 
specify the scope’s behaviour particular activities have to 
be inserted similar to GriCoL’s data flow layer. In 
contrast to this, different abstraction layers for a condition 
block cannot be implemented by BPEL concepts. 
However, similar behaviour can be achieved in BPEL (1) 
by an if activity or a flow activity with two links with 
mutual excluding expressions in case of an acyclic 
GriCoL condition block; (2) by a repeatUntil, 
forEach, or while loop in case of a cyclic GriCoL 
condition block (see Table 4). The data dependencies, 
data preparation and post-processing functionality of a 
condition block on the data flow layer can be mapped on 
appropriate BPEL behaviour in each path of the utilized 
BPEL concept. However, we do not advocate a BPEL 
extension that would realize an abstraction layer for 
condition block representations. We rather recommend a 
modeling tool extension that provides different views on 
workflow models highlighting different aspects. 
In standard BPEL, there is no counterpart for GriCoL’s 
capability to model data dependencies on the data flow 
layer. This requires explicit information about the data 

source and target for module representations. In BPEL, 
data flow is only implicitly specified with the help of 
variables to propagate data between activities. In theory, 
this concept is sufficient to express data dependencies. In 
practice, scientists want to model data flow explicitly. 
Therefore, we need a BPEL extension that accommodates 
a concept for explicit data links. We propose to adopt the 
BPEL-D extension [21] which replaces variables by 
explicit data links in BPEL 1.1. Since BPEL-D is a design 
time extension, workflow models can be transformed into 
a standard BPEL representation to be executed on a 
standard BPEL engine. 
 
4.4 Data repository 
 
The data repository sub-layer in GriCoL is an abstraction 
from concrete data sources. BPEL’s variables seem to be 
a similar concept. Variables have a data type and are 
filled during workflow execution either by literal assign 
operations or WS invocations. In the latter case, the 
source of variable values is transparent for the workflow 
because the implementation of WSs is unknown to the 
workflow. The main difference to GriCoL’s data 
repository is that BPEL variables cannot be used among 
different workflows. 
In [22] a BPEL design time extension is proposed that 
allows accessing data by reference. A new type of 
variables is introduced that holds pointers to external data. 
A reference resolution system (RRS) can be used to load 
the value of a reference into the workflow. Loading of 
values can be configured to periodically, on usage, on 
workflow instantiation, and on external events. The RRS 
implements mechanisms to access data in its concrete 
storage location (e.g. in a database or file). Naturally, the 
concept of references to external data allows different 
workflow instances to access the same data items. The 
RRSs can thus be seen as a decentralized data repository.  
The advantage of the approach is that only the modeling 
tool needs to be extended while the BPEL engine is not 
affected. A transformation component can translate the 
extended BPEL code into standard BPEL that is 
eventually executed. Additionally, references in BPEL are 
useful to keep huge amounts of data out of the engine if 
they are not needed for the workflow logic. This is a 
common situation in simulation workflows where 
(intermediary) results are passed between different 
computing resources (e.g. solvers, visualization tools) 
without influencing the workflow path. The downside of 
the solution is the need for additional components in the 
software infrastructure, namely the RRS and the 
transformation component. We are currently working on a 
first prototype of the reference passing mechanism. 
 
5.  Conclusion 
 
In this paper, we argue that it is reasonable to rely on the 
general-purpose language BPEL to design executable 
simulation workflows. We therefore investigated BPEL’s 
capabilities to express simulation workflows by 



comparison to the field-tested simulation workflow 
language GriCoL. The comparison revealed a number of 
unaddressed concepts in the core BPEL specification that 
are critical for enabling scientific experiments and 
simulations. In particular, we identified that the concepts 
of data handling on workflow level, pipelining, different 
layers of abstraction/explicit data flow, and shared data 
would increase BPEL’s expressiveness for simulation 
workflows. We therefore discussed approaches to extend 
BPEL in order to meet these specific requirements on a 
simulation workflow language. Since we want to pursue 
an engineering approach, we relied on existing extensions 
as far as possible. Anyhow, these existing approaches will 
need thorough extensions to fit into a holistic solution. 
For example, BPEL/SQL needs a modification to be 
applicable for arbitrary data sources; BPEL-D must be 
migrated to BPEL 2.0. 
The research is one of the steps to make the conventional 
workflow technology more interesting, expressive and 
applicable for scientists to specify their simulations with 
workflows. In future, we want to develop a prototype that 
implements the findings of this work and that will be used 
to realize selected simulations in SimTech with workflow 
technology and BPEL, e.g. simulations of solidness of 
metals, growth of bones, or risk assessment of C02 
ground storage. 
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