
Institute of Architecture of Application Systems

Combining horizontal and vertical
composition of services

Institute of Architecture of Application Systems,
University of Stuttgart Germany

composition of services

Ralph Mietzner, Christoph Fehling, Dimka Karastoyanova, Frank Leymann

University of Stuttgart, Germany
{mietzner, fehling, karastoyanova, leymann}@iaas.uni-stuttgart.de

@inproceedings{MietznerFKL10,
title = {{Combining horizontal and vertical composition of services}},
author = {Ralph Mietzner and Christoph Fehling and Dimka Karastoyanova

and Frank Leymann},
booktitle = {Proceedings of the IEEE International Conference on Service‐

Oriented Computing and Applications, SOCA 2010},
{2010}

:

year = {2010},
doi = {10.1109/SOCA.2010.5707142 }
publisher = {IEEE Computer Society}

}

© 2010 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted, y py g
component of this work in other works must be obtained from the IEEE.

Combining Horizontal and Vertical Composition of Services

Ralph Mietzner, Christoph Fehling, Dimka Karastoyanova, Frank Leymann
Institute of Architecture of Application Systems

University of Stuttgart
Universitaetsstr. 38, 70569 Stuttgart, Germany

firstname.lastname@iaas.uni-stuttgart.de

Abstract—Service composition is a well-established field of
research in the service community. Services are commonly
regarded as black boxes with well-defined interfaces that can be
recursively aggregated into new services. The black-box nature
of services does not only include the service implementation but
also the middleware and hardware to run the services. Thus,
service composition techniques are typically limited to choosing
between a set of available services. In this paper we keep the
black-box nature and the principle of information hiding for
the service implementation, but break up services vertically. By
introducing vertical service composition, we allow services to be
provisioned on the right middleware when they are requested,
thus making service-binding more powerful as services with the
desired quality of service can be provisioned on demand. We in-
troduce the concept of vertical service composition and present
an extension to an enterprise service bus that implements the
concept of vertical service composition by combining concepts
from provisioning with those of (dynamic) service binding.

Keywords-SOA; composition; provisioning; enterprise service
bus; cloud

I. INTRODUCTION

One important field of research in the service community is
the field of service composition [14], [5]. An important aspect
of service composition is the finding and binding of services
in order to compose them into a composite application. In
the traditional SOA-triangle [14], service providers publish
their services in a service registry where they can be found
by service requestors based on their functional and non-
functional properties. Having found a suitable service, a
service requestor can bind against that concrete service and
can use it. Depending on the time in the development process
of an application when concrete services are bound the
binding strategy is either called static binding or dynamic
binding. Static binding of services to service requestors
occurs during the development of a service composition.
To improve the flexibility of a composition dynamic binding
is performed at deployment time or even at runtime and
thus services can be exchanged without re-compiling the
composition.

From the point of view of a service requestor, a service
is treated as a black box. In particular that means that the
principle of information hiding applies and that the requestor
is only aware of the interface of the service and not of its

implementation. Treating a service as a black box also means
that the middleware and hardware infrastructure needed to run
the service, is typically not known to the service requestor.

Another important property of a service from the point of
view of a requestor is its always on semantics, meaning that
the requestor can bind against the service at any time and
does not need to instantiate or release it prior or after its
usage. When binding against a service, a service requestor
sends a list of functional and non-functional properties to the
selection facility (also called repository, the bus, or enterprise
service bus [4]) which returns a list of candidate services that
match the requested functional and non-functional properties.
Then the requestor selects one of the candidate services and
thus binds against this service, which the requestor can then
use by sending messages to this service. In enterprise service
buses often a virtual service is used against which the service
requestor can bind [4] (cf. the composite service which acts
as requestor in Figure 1). In this case the requestor binds
against this virtual service and delegates the dynamic binding
to the enterprise service bus.

Enterprise
Service Bus

Concrete Service
B

Concrete Service
C

Concrete Service
A

static
binding

dynamic
binding

Composite Service

virtual servicebinding binding

Figure 1. Service Binding in the ESB

In case the selection facility or the bus does not return
any suitable candidate service, the requestor cannot bind
against any service, as none of the available services fullfils
the required functional and non-functional properties. One
solution to this problem would be to offer services in a
variety of configurations offering different non-functional
properties. The drawback of this is that providers must run
these services on probably different infrastructures in all
possible configurations without knowing beforehand if they
will ever be used by customers, thus creating bad utilization
rates of the underlying data centers.

With the advent of Cloud infrastructures and “as a service”
models such as infrastructure as a service (IaaS), platform
as a service (PaaS) and software as a service (SaaS), elastic
infrastructures become widely available. When combining
these elastic infrastructures allowing the on demand provi-
sioning and deprovisioning of services, with the concept
of dynamic binding the limitation presented above can be
removed. Thus, selection facilities do not only return actually
running services but also services that can be provisioned
on demand. Only when a requestor requests one of these
services this service is then automatically provisioned with
the required qualities of service such as availability, location
or security.

To be able to realize this vision services must be decom-
posed vertically. Vertically decomposing a service means that
its implementation is still treated as a black box. However,
the underlying middleware and hardware is made explicit
in form of requirements on the required middleware and
hardware. The resulting effects of these requirements on
the overall functional and non-functional properties of the
service are also made explicit. In this paper we introduce a
model that allows to decompose services vertically.

In addition, we introduce dynamic vertical binding as a
concept allowing providers to offer virtual components that
are provisioned and configured on demand only when they
are needed, in the exact configuration that they are needed
by a requestor. Thus we show how automatic provisioning
and the elasticity of cloud platforms can be combined with
the dynamic binding concept of service-orientation. We
show, how traditional ESBs can be extended with a vertical
composition component, that performs dynamic vertical
binding in cases the traditional horizontal dynamic binding
of components in the bus is not powerful enough. Thus the
contribution of this paper is the following:

• The conceptual foundations for vertical composition
(Section II).

• The combination of vertical and horizontal composition
into dynamic vertical binding (Section III).

• An architecture, implementation and evaluation of a
middleware - the vertical composition enabled enterprise
bus (VC-Bus) that implements the concepts of vertical
service composition (Sections IV and V).

II. VERTICAL COMPOSITION - FOUNDATIONS

A. Components - Terminology

In this paper we will use the term component to describe
clearly separated pieces of functionality in an application. A
component can require other components to run by having
(a) a deployment relationship on another component, i.e.
the component must be deployed on another component to
be able to run, and/or (b) a dependency on one or more
other components, i.e. the component must use the other
components to be able to perform its functionality. See [16]

for a complete definition of our component model. In this
model a component can be realized either by a piece of code
supplied with an application or through a service provided
by an (external) provider. Thus a service is a special kind of
component.

Component Typeis of

depends on

Component

deployed on

* 1

*
*

*

1 Variability Pointspecifies
1 *

allowed deployments
*

*

Figure 2. Components, Types and Relations

As shown in Figure 2, a component is characterized by
its component type. Component types describe classes of
components. A component type specifies so-called variability
points that can be customized by a requester (such as
functional or non-functional properties) and that influence
which component of that type in the bus is selected or
how components are customized prior to deployment. Other
variability points of a component type, such as, for example,
an EPR, or its physical location, are customized during the
provisioning of the concrete component. A component type
also specifies allowed deployment relations that specify on
which other component types this particular component type
can be deployed and executed. In the following if we talk
about an “XY component” we implicitly mean a “component
of type XY”.

The so-called host components are components that allow
other components to be deployed on them. The component
type for a host component describes which other component
types can be deployed on components of that type.

Components can be in any level of the application stack.
Components will be symbolized by rounded rectangles in all
figures of this paper. For instance, all rounded rectangles in
the application stacks in Figure 3 are components of different
types that are deployed on other components, i.e. a BPEL
component is deployed on a BPEL engine component which
is deployed on an application server component which is
deployed on a virtual machine.

GUI (PHP)
Workflow
(BPEL)

Web Service
1 (Java)

Web Service
2 (Java)

Database
(SQL)

DBMS

Virtual
Machine

Application Server

Virtual Machine

BPEL Engine

Application
Server

Virtual
Machine

Web Server

Virtual
Machine

horizontal composition

ve
rt
ic
al
co
m
po

si
tio

n

Application
level

Platform/
Middleware
level

Infrastructure
level

Figure 3. Components in an example application

Given our definition of components above, services in a
service-based application can be seen as a special form of a

component. Thus service composition known from SOA can
be seen as a special form of component composition. From
a deployment perspective this composition is a horizontal
composition as all services are on the same level, the
application level in the application stack (cf. Figure 3).

Taking the whole hardware, middleware and software
stack of a service into account, as shown in Figure 3, such
a service can be seen as a composition of the required
hardware, middleware and software components needed to
provide the service. We call this type of composition a
vertical composition from now on, as this corresponds to
the “deployment” relationship that the individual components
(software, middleware, hardware) can have on each other
[12].

B. Vertical Component Composition

As shown in Figure 3, a typical component on the
application level is deployed on another component which
may in turn be deployed on yet another component thus
these components form a vertical composition as opposed to
a horizontal composition of the components at the application
level.

Vertical Composition
Component (VCC)

Concrete Host
Component A

static vertical
binding

vertical binding

Component

Concrete Host
Component B

Concrete Host
Component C

virtual host component

Component

vertical binding

dynamic vertical
binding

Figure 4. Vertical binding

To facilitate the understanding of the following sections
we introduce the following terminology related to vertical
compositions: Provisioning is the configuration and installa-
tion of one component on top of another component, such as
the installation of a Web service component on an application
server (which can also be clustered).

A virtual host component is an abstract component on
which other components can be deployed (cf. Figure 4). The
semantics behind this is that the concrete host component on
which a component is to be provisioned later does not need to
be known prior to the provisioning time. Software developers
can therefore provision their components on these virtual
host components, without knowing in advance their concrete
realizations, for example, at a provider. This is especially
important in settings where multiple concrete realizations of
a virtual host component with possibly different quality of
services might exist.

A virtual component is a component that is deployed on a
virtual host component (see Figure 4). A virtual component
cannot be used by an application unless it is bound to

a concrete host component. Once a component developer
deploys a component on a virtual host component it becomes
a virtual component.

A concrete host component is a host component that is
offered by a component provider and that is already running.
A concrete component is a component that is deployed on a
concrete host component.

Similar to the binding strategies in horizontal compositions
we now define binding strategies for the vertical binding of
components.

Static vertical binding is similar to static binding in
service compositions. A component of an application is
provisioned on a concrete host component. This is implicitly
done in a lot of cases today. Take the example of a BPEL
process component developer: He deploys his BPEL process
on a BPEL engine and thus statically binds his service
(implemented as a BPEL process) to a concrete instance
of a BPEL engine.

Dynamic vertical binding is similar to dynamic binding in
service compositions. Instead of provisioning a component
on a concrete host component, the component is provisioned
on a virtual host component. This means that it is not ready
to be used because the virtual host component does not
have an associated implementation and thus the component
to be provisioned is not available yet. The semantics are
again similar to a virtual service that cannot process a
request as it has no implementation behind it. Thus, in
case a requester requires an instance of a component that
is provisioned on a virtual host component, the virtual host
component must be substituted by a concrete component on
which the component is then provisioned. The selection of a
concrete component depends on additional criteria (such as
non-functional properties) that the requester must submit to
the binding middleware.

We call the component in the bus that allows the static and
dynamic vertical binding as well as the definition of virtual
host components the Vertical Composition Component (VCC
in short).

C. Motivating Example

Consider the following scenario: A component developer
develops a risk assessor BPEL process that orchestrates a set
of Web services into a risk assessor Web service. This Web
service can be used to evaluate the risk for lending a certain
amount of money. Once this developer has built the BPEL
process he packages it and deploys it on a concrete BPEL
engine which exposes it as Web Service. The Risk Assessor
process works as follows: It first detects whether the amount
to be lent is above a certain threshold, if yes it invokes
several Web services of credit rating companies to compute
the risk. If no, it returns a low risk value without invoking
the credit rating companies. Several customers have different
functional requirements on the risk assessor BPEL process,
one customer wants to have the threshold below 300 Euro

another one wants the threshold below 500 Euro. Additionally,
they can have different non-functional requirements such as
high-availability vs. no guaranteed availability and a lower
price. Thus the component developer does not know on
which middleware (high-available or not) and with which
customization the BPEL process must later be deployed. To
overcome this limitation the component developer models
the BPEL process as a virtual component that must be
deployed on a virtual host component (a BPEL engine) and
has variability points [10] that, depending on the requested
customization of the functional and non-functional properties
customizes the BPEL process and influences the binding of
the virtual host component to a concrete host component
(namely a high-available BPEL engine or a BPEL engine
with no guaranteed availability). In Section V we show how
the tools we built can be used to implement this example.

III. DYNAMIC VERTICAL BINDING

In this section we describe the characteristics of the Vertical
Composition Component that enable dynamic vertical bind-
ing. The architecture of the VCC must contain components
that support these characteristics and thus perform the needed
functions.

A. Standardized Component Interfaces

One assumption behind the concept of dynamic binding is
that the concrete services implementing a virtual service all
implement the same interface so that the service client does
not need to be changed when a different service is bound
dynamically.

To be able to dynamically bind virtual components to
different concrete host components these host components
must also offer a unified interface so that the Virtual
Composition Component knows which operation it must
call. These are the interfaces used by the bus to enable the
provisioning of and binding to the concrete component. In
[11] we introduce the concept of resource processes as a
concept to unify the interfaces of (host) components of the
same type that are provisioned using different provisioning
engines. This concept, EAI techniques or semantic mediation
can be used to unify the interfaces of different infrastructures
that can provision components on concrete components.

The following example illustrates the need for unified
interfaces: A provider offers a virtual host component of
type “BPEL Engine”. Concrete realizations of this virtual
host component are, for example, a clustered BPEL Engine
environment at the provider managed with an IBM Tivoli Pro-
visioning Manager provisioning engine and a normal BPEL
Engine installation on Amazon’s Elastic Compute Cloud
(EC2) managed by Amazon’s provisioning infrastructure.
The BPEL engine virtual host component offers an operation
which can be used by component developers to deploy a
BPEL process component on that virtual host component.
Deploying thus means to upload the BPEL process to the

bus and specify that it must be deployed on a concrete host
component of type “BPEL Engine” to be used.

Once a client application wants to use the BPEL pro-
cess and specifies his service-level requirements (e.g. high-
availability required or not) the BPEL process is provisioned
on one of the concrete components (if high-availability is
required, the clustered BPEL engine component is used).

In our implementation of the VCC, resource processes
(also called component flows) are implemented as WS-
BPEL processes that provide a uniform interface to the
outside and transform the uniform messages to specific
messages for the underlying provisioning engines. For
example, we implemented a component flow that transforms
the standardized messages into messages that call the Web
service interface of Amazon EC2 and thus allows to start an
Apache ODE BPEL engine machine image on EC2 via the
standardized “provision” operation which is mapped to the
“run-instance” operation of EC2. A BPEL process component
can be deployed on this engine by simply calling the “deploy”
operation of the component flow along with an EPR from
which it can retrieve the code of the BPEL process component.
The component flow then calls an ”‘upload”’ Web Service
that uploads the BPEL process component via SCP (Secure
Copy Protocol) to the Amazon EC2 machine instance. A
similar component flow has been implemented for an Apache
ODE BPEL engine in the local data center that maps the
standardized “provision” operation to a Web service that
can execute the start script for the Apache Tomcat Servlet
container that contains the BPEL engine and thus start the
engine. The “deploy” operation of this component flow then
downloads the BPEL process from a repository and copies
it to the deployment directory of Apache ODE. Thus the
same interface with the “provision” and “deploy” operations
is present for both Apache ODE BPEL engines, despite the
fact that one runs on EC 2 and one in the local data center.

B. Requirements for the Vertical Composition Component

To understand the requirements a vertical composition
component for a bus must support for the vertical composition
of components, we revisit the capabilities offered typically
by a normal enterprise service bus. Typically a service bus
offers the functionality to specify an interface and endpoint
for the virtual service against which service requesters can
then bind. This capability is needed to specify virtual services.
Discoverability of services is enabled by a registry offered by
the service bus. Service providers register their services with
the registry. Service requesters look services up and receive a
list of candidate services that match the requirements of the
requester. Subsequently a service selection step is performed
to identify the single concrete service realization for the
requester to interact with. To select a concrete service from
set of possible realizations of a virtual service a service
bus offers a selection facility that can match requirements
stated by the requester against capabilities provided by the

candidate services, which are typically non-functional or QoS
requirements. The discovery and selection of services may
be additionally constrained and refined by specifying the
so-called routes. Routes pre-define a set of concrete services
that can be mapped to a virtual services. The semantics of
the routes is to limit the amount of possible realizations for
a concrete service; typically this is done due to contractual
regulations.

The Virtual Composition Component must provide similar
and additional functions to enable vertical composition, and
in particular dynamic vertical binding and provisioning:

Discovery of concrete components. The VCC must sup-
port discovery functionality for host components, components,
virtual host components and virtual components. This implies
that the VCC must offer a logical registry for each of the
component types. In each of the registries the providers
should be able to register their components along with their
capabilities so that the bus can later match these capabilities
against the requirements of a component requester. The
capabilities are expressed as customizations of variability
points for the variability points the component type offers.
For example, a high-available host component of type BPEL
engine has the “high-availability” variability point customized
to “yes” whereas a BPEL engine host component that does
not offer any guaranteed availability is registered with that
variability point set to “no”.

Virtual to concrete host component mapping. The VCC
must offer routing and mapping functionality that allows to
specify (i) which concrete components are realizations of
which virtual host component and (ii) how a component
that is provisioned on a virtual host component is then
provisioned on a concrete host component based on the
provisioning interfaces for the concrete host component. In
our implementation of the VCC, providers can register their
concrete host components through an EPR which specifies
under which endpoint the unified interface for the concrete
host component as specified in Section III-A is available
and which component type is realized by the concrete host
component.

Selection of concrete components. The VCC must offer
a selection facility that can select concrete host components
based on their capabilities for a set of requirements that are
submitted to the virtual host component. These requirements
are expressed as customizations of the variability points of
the requested component type. For example, the variability
point “high-availability” is customized with “yes” for one
customer which triggers the selection or provisioning of a
concrete host component with “high-availability” set to yes.

Provisioning. Provisioning of components on virtual host
components is a two step process. First, a concrete host
component must be selected and then the code for the virtual
component must be configured and then deployed on that
concrete host component. In our implementation we use WS-
BPEL provisioning flows [11] that provision a component

VC‐Bus

Concrete Host
Component B

Concrete Host
Component C

Virtual Host Component

Concrete
Service B

Concrete
Service A

static
binding

dynamic
binding

Composite Service

virtual servicebinding binding

Virtual Component

dynamic
vertical binding

Figure 5. VC-Bus functionality

on a virtual host component by calling its standardized
component interface, which is exposed as a Web service
interface as described in Section III-A.

IV. THE VC-BUS

In this section we describe how dynamic horizontal and
dynamic vertical binding can be combined to extend a service
bus with provisioning capabilities. These capabilities are used
if a suitable component cannot be found during the dynamic
binding and need to be provisioned first. The corresponding
middleware is an extension of an enterprise service bus with
the vertical composition component presented above. We
call this middleware the Vertical composition enabled bus
(VC-Bus) in short.

To specify how the two concepts of vertical and horizontal
binding can be combined we need to recall what happens
when a component is provisioned on a virtual host component.
Once a component is deployed on a virtual host component
it is not really available but a requester must issue a request
so that the component is provisioned and becomes available.
The result of the deployment is the following: The bus offers
a virtual service that service clients can use to bind against.
This virtual service is implemented by the component that is
deployed on the virtual host component. Once a service client
sends out a binding request to the virtual service stating the
concrete requirements it has on the service (for example, in
the form of a policy), the virtual service must be bound to a
concrete service implementation. The bus thus searches for
the available services first and in case no suitable service is
found, calculates the requirements for a suitable concrete host
component, that together with the component that implements
the service would satisfy the requirements for the service.
After the bus has found such a concrete host component
the component is provisioned on that concrete host resource
and the service implemented by that component is ready
to answer the requests from the original service requester
(see Figure 5). Thus in cases where an ESB would have
rejected a request for a service because it does not have a
suitable concrete service available, the vertical composition

VC‐Bus

Virtual Service
Registry

Selection Facility Provisioning
Component

Provisioning and
Customization Flows

Component Interface
Abstraction

Virtual Host Component
Registry

Concrete Host
Component

Registry

Environment 1 Environment 2

Component &
Service Mappings

Virtual Component
Registry

Message
Transformation

Transformation
Rules

Concrete
Service
Registry

Service
Provider

ESB
Components

VCC
Components

Figure 6. VC-Bus architecture

component can provision a service with suitable capabilities.
Additionally the VCC can serve as a load balancer between
different instances of the same service that detects when
new services must be dynamically provisioned, for example,
using the heuristics given in [17].

A. VC-Bus Architecture

The VC-Bus is a combination of the concepts of the
enterprise service bus [4] and the concepts of the vertical
composition component introduced above. Figure 6 shows
the combined architecture. The VC-Bus architecture adds
the VCC to the ESB. The VCC itself contains a registry for
virtual host components and a registry for virtual components,
as well as the provisioning component which contains
the provisioning and customization flows. The component
interface abstraction contains the resource processes that
unify the interfaces of the underlying provisioning engines.
In addition to that, a concrete host component registry is
added that complements the message transformation, concrete
service registry and virtual service registry commonly found
in an ESB. ESBs might contain other components that are not
relevant to the following chapter and thus are not included
in the architecture figure.

B. VC-Bus Scenarios

The VC-Bus is not only a discovery facility as the
enterprise service bus but also allows the provisioning of
new components or services in case no suitable services are
available to serve a request. Thus the VC-Bus can be used
in scenarios where a normal ESB is not enough. The first
scenario are applications with varying unpredictable user
loads. This scenario is the case in software as a service or
cloud scenarios where elasticity of the computing capacity
is needed because the amount of tenants of an application
cannot be foreseen or is changing rapidly. In this case, upon
subscription of a new tenant, the capabilities of the existing
service implementations for a concrete service are examined.

If the capabilities are insufficient, new components that imple-
ment the services can be dynamically bound to concrete host
components and added as service implementations. Once the
system load for the implementations of an individual service
falls under a certain threshold, a monitoring component
can then use the VC-Bus functionality to remove concrete
components from the environment. Another use-case where
the VC-Bus has advantages over a traditional ESB is when
the functionality of a component needs to be supplied for
different customers with varying qualities of service and the
quality of service of the components heavily depends on
the underlying infrastructure. Examples are BPEL processes
or Web applications where the availability and performance
heavily depends on the underlying middleware. In case a
service requester requests a service that is high-available but
none is available, the VC-Bus can provision such a service on
a high available concrete host component for the time when
it is needed whereas an ESB would rely on a pre-provisioned
high available service that would have been idle before the
request. Thus the VC-Bus helps to reduce over-provisioning
of data centers by enabling the elastic provisioning and de-
provisioning of resources. This is especially useful in a cloud
based environment.

C. VC-Bus Chaining

Similar to enterprise service buses, VC-buses can be
chained. An example for VC-Bus chaining is when one
virtual host component provided at one bus is bound to a
virtual component at another or the same bus. Once a virtual
component deployed on the virtual host component of VC-
Bus 1 is requested its virtual host component is bound to
the concrete host component that is realized by a virtual
component in VC-Bus 2. VC-Bus 2 then treats this as a
request to provision this virtual component on a concrete
component. Once this is done the original virtual component
can be deployed on the now available concrete component
managed by VC-Bus 2.

V. EVALUATION

To evaluate the presented architecture of the vertical
composition enabled ESB we implemented several prototypes
as part of the Cafe project1. Figure 7 shows our Eclipse-
based tool support to model components and their virtual host
components in the left pane as well as variability points in the
right pane. The component shown in the left pane is a BPEL
process that must be deployed on a virtual host component
of type Apache Ode (an open source BPEL engine). On
the right some of the variability points from the example in
Section II-C are shown. Serializations of the shown models
and the code of the risk assessor BPEL process are then
packaged into a Cafe archive file (.car) which is a special
kind of .zip file and uploaded via a Web interface to the

1http://www.cloudy-apps.com

virtual composition component in the bus. In our prototype
we realized the VCC as a separate component that is called
by an ESB such as the extended Apache Service Mix ESB as
presented in [13]. In general VCC can be either located on
the same machine as the ESB or can be distributed over other
machines, or can even be used as a standalone component. It
simply must expose a set of Web service interfaces that the
ESB can call. The VCC uses WS-BPEL provisioning flows
and customization flows as presented in [10] and [11] to
trigger the provisioning of concrete host components (in this
case the Apache ODE engine) and deploy the application
component (in this case the BPEL processes) on top of them.
These provisioning and customization flows are automatically
generated from the models contained in the uploaded .car
file, details on the generation algorithms are out of the scope
of this paper but can be found in [11], [12].

Figure 7. Service modeling tool

Table I shows the average execution time for provisioning
of the Apache Ode virtual host component and the RiskAsses-
sor BPEL process on top of it. Scenario 1 shows the time
for the setup (provisioning and configuration) of the virtual
host component and the component in case the virtual host
component is part of an Amazon EC2 machine image and
an instance of that image must first be started. Scenario 2
shows only the time of the deployment of the BPEL process
component on an already started virtual host component
at Amazon EC2. Scenario 3 shows the deployment of the
BPEL process component on an already started BPEL engine
on the local network. In general, the figures below depend
heavily on the time needed to start the host component and
the time to deploy a component, which are properties of the
respective provisioning middleware and network and not of
our approach. The figures are thus stated below only to give
a general feeling on how long it takes to setup an example
concrete host component and other components on top of it.

The performance figures given in Table I show that the
general approach is feasible in environments where the

Setup Time Host
Component

Setup Time Compo-
nent

Scenario 1 124 s 25 s
Scenario 2 n/a 24 s
Scenario 3 n/a 18 s

Table I
SETUP TIMES FOR APACHE ODE HOST COMPONENT AND RISK ASSESSOR

BPEL COMPONENT

setup time of a component may take several minutes to
complete. These are cases, for example, when a new customer
subscribes to an application and thus some or all services
of this application must be newly provisioned. Another case
is elastic scaling when a monitoring component detects
that a possible bottleneck arises and thus can provision a
new instance of a service that is then used to serve future
requests. However, given the setup time of several seconds
it is not feasible to bind a new component to a concrete
host component based on an incoming request that must be
immediately handled by the newly provisioned component.
Thus our approach works fine for the scenarios outlined in
Section IV-B.

VI. RELATED WORK

Existing work related to the VC-Bus approach presented
in this paper, can be categorized in two main categories:
service composition and provisioning approaches. There exist
numerous approaches in the service composition community
on how to select a concrete service [5] from a set of
available services. Some approaches use qualities of services
as selection criteria for the selection of concrete services
for a virtual service [18], [15], [13]. Other approaches use
semantic technology to find suitable concrete services for a
virtual service, often these approaches also allow to (semi-)
automatically derive mediators that mediate between different
service interfaces [3], [8]. These approaches can be reused
in the VC-Bus to do the actual selection of concrete host
components for a virtual host component and to do the
selection of already provisioned services. However, all these
approaches cannot provision new services in case they do
not find a suitable one.

A pattern-based approach for the modeling of infrastructure
for service oriented applications has been described in [6],
[1]. This approach allows application vendors to model
complex infrastructure requirements as so-called virtual units.
These virtual units are similar to our virtual components
and can be used to describe the virtual components in our
vertical composition component. Virtual units in [1] can
be realized by so-called concrete units which correspond
to our concrete components. The main difference to our
approach is that the approach presented in [1] focuses on
the modeling and provisioning, while our approach focuses
on a combination of provisioning and dynamic binding thus

combining the approaches from the systems management
and service composition domain.

Similar to the VC-Bus, the Grid community also deals
with the virtualization of resources, e.g. through resource
brokers [7]. However, these approaches allow only for the
provisioning of new components on already existing grid
resources and not on virtual resources. Approaches from
autonomic and cloud computing [9], [2] allow the automatic
provisioning and elastic scaling of computing resources.
Thus these commercial and open source cloud environments
as well as available provisioning engines implement the
provisioning component of the VC-Bus. However, the VC-
Bus goes one step further by integrating different environ-
ments (that may come from different cloud providers) and
combining the vertical composition of components offered
by provisioning engines with the horizontal composition
of components offered by the ESB. Additionally the VC-
Bus abstracts from the concrete provisioning engines used
and thus allows application developers to abstract from the
concrete environment when building, deploying and reusing
components for their applications.

VII. CONCLUSIONS

In this work we identify the different types of component
compositions that are applied in application development.
We introduce a classification that distinguishes between
horizontal and vertical decomposition of applications into
components. Traditional ESBs support the horizontal com-
position of components, however they do not support the
vertical component aggregation. Therefore, a novel type of
infrastructure is needed in order to support vertical component
composition. In this work we specify the architecture of this
infrastructure called vertical composition component VCC
as well as its sub-components and the interactions among
them. The ability of the vertical composition component
to support vertical composition of components makes it a
suitable infrastructure for the extension of a traditional ESB
as it enables the reuse of components on all layers (software,
middleware, hardware) of an application. We call the resulting
middleware the vertical composition enabled bus, aka VC-
Bus. The architecture and functioning of the VC-Bus also
belong to the contributions of this paper. We presented a
modeling tool, runtime and some performance figures that
show the viability of the approach.

REFERENCES

[1] W. Arnold, T. Eilam, M. Kalantar, A. Konstantinou, and
A. Totok. Pattern Based SOA Deployment. In Proc. ICSOC
2007, 2007.

[2] R. Buyya, C. Yeo, S. Venugopal, J. Broberg, and I. Brandic.
Cloud computing and emerging IT platforms: Vision, hype,
and reality for delivering computing as the 5th utility. Future
Generation Computer Systems, 25(6):599–616, 2009.

[3] L. Cabral, J. Domingue, S. Galizia, A. Gugliotta, V. Tanasescu,
C. Pedrinaci, and B. Norton. IRS-III: A broker for semantic
web services based applications. Lecture Notes in Computer
Science, 4273:201, 2006.

[4] D. Chappell. Enterprise service bus. O’Reilly Media, Inc.,
2004.

[5] S. Dustdar and W. Schreiner. A survey on web services
composition. International Journal of Web and Grid Services,
1(1):1–30, 2005.

[6] K. El Maghraoui, A. Meghranjani, T. Eilam, M. Kalantar,
and A. Konstantinou. Model driven provisioning: Bridging
the gap between declarative object models and procedural
provisioning tools. In Proce. ACM/IFIP/USENIX 2006, 2006.

[7] I. Foster and C. Kesselman. The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann, 2004.

[8] D. Karastoyanova, B. Wetzstein, T. van Lessen, D. Wutke,
J. Nitzsche, and F. Leymann. Semantic Service Bus: Archi-
tecture and Implementation of a Next Generation Middleware.
In Proc. of the 2007 ICDE Workshop, 2007.

[9] J. Kephart and D. Chess. The vision of autonomic computing.
Computer, pages 41–50, 2003.

[10] R. Mietzner and F. Leymann. Generation of BPEL cus-
tomization processes for SaaS applications from variability
descriptors. In IEEE International Conference on Services
Computing, 2008. SCC’08, 2008.

[11] R. Mietzner and F. Leymann. Towards provisioning the cloud:
On the usage of multi-granularity flows and services to realize
a unified provisioning infrastructure for saas applications. In
Proc. SERVICES’08, 2008.

[12] R. Mietzner, T. Unger, and F. Leymann. Cafe: A Generic
Configurable Customizable Composite Cloud Application
Framework. In Proc. CoopIS 2009 (OTM 2009), 2009.

[13] R. Mietzner, T. van Lessen, A. Wiese, M. Wieland, D. Karas-
toyanova, and F. Leymann. Virtualizing Services and Re-
sources with ProBus: The WS-Policy-Aware Service and
Resource Bus. In Proc. ICWS 2009, 2009.

[14] M. Papazoglou and D. Georgakopoulos. Service-oriented
computing. Communications of the ACM, 46(10):25–28, 2003.

[15] F. Rosenberg, P. Celikovic, A. Michlmayr, P. Leitner, and
S. Dustdar. An end-to-end approach for qos-aware service
composition. Proc. EDOC, 2009.

[16] T. Unger, R. Mietzner, and F. Leymann. Customer-defined Ser-
vice Level Agreements for Composite Applications. Enterprise
Information Systems, 3(3), 2009.

[17] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood.
Agile dynamic provisioning of multi-tier internet applications.
ACM Trans. Auton. Adapt. Syst., 3(1):1–39, 2008.

[18] L. Zeng, B. Benatallah, A. Ngu, M. Dumas, J. Kalagnanam,
and H. Chang. QoS-aware middleware for web services
composition. IEEE Trans. Softw. Eng., 30(5):311–327, 2004.

	cover-IEEE - SOCA 2010
	INPROC-2010-95_Combining_Horizontal_and_Vertical_Composition_of_Services

