
Institute of Architecture of Application Systems

Dynamic Service Provisioning for the Cloud

Institute of Architecture of Application Systems,
University of Stuttgart Germany

Katharina Görlach and Frank Leymann

University of Stuttgart, Germany
{goerlach, leymann}@iaas.uni-stuttgart.de

@inproceedings{Goerlach12,
author = {Katharina Görlach and Frank Leymann},
title = {Dynamic Service Provisioning for the Cloud},
booktitle = {Proceedings of the 9th IEEE International

Conference on Services Computing, SCC 2012
24‐29 June 2012, Honolulu, Hawaii, USA},

{2012}

:

year = {2012},
pages = {555‐‐561},
publisher = {IEEE Computer Society}

}

© 2009 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted, y py g
component of this work in other works must be obtained from the IEEE.

Dynamic Service Provisioning for the Cloud

Katharina Görlach
Institute of Architecture of Application Systems

University of Stuttgart
Germany

goerlach@iaas.uni-stuttgart.de

Frank Leymann
Institute of Architecture of Application Systems

University of Stuttgart
Germany

leymann@iaas.uni-stuttgart.de

Abstract—This paper introduces a method realizing dynamic
provisioning of services in a distributed environment.
Depending on a particular state of infrastructure the call of a
service can lead to a new instance in the infrastructure or to
using an existing instance. Hence, the dynamic deployment
allows optimized distribution of service instances within a
certain infrastructure. The paper introduces a context model
for services that are registered in a distributed runtime
environment. Furthermore, algorithms are introduced
determining the need for instantiation as well as the best
location for deployment. Hence, the best location is determined
by correlating the context model, the certain state of
infrastructure as well as data transfer costs.

Web Service, Service Composition, Service Provisioning,
Cloud Computing, Elasticity

I. INTRODUCTION
Service-based applications are mostly composite and

executed in a distributed runtime environment. Moving a
composite application to a particular runtime environment
requires a distribution of contained services before
deployment. Hence, application owners want to optimize the
distribution of services in order to save time and money. A
dynamic service provisioning, i.e. dynamic resource
allocation and dynamic deployment of services in a
distributed environment enables high flexibility and
optimized usage of the infrastructure. In particular,
optimized distributions of service instances can be created by
taking (communication) dependencies between services into
account. Correlating the service dependencies and a
particular state of infrastructure at deployment time leads to
a best qualified region in the infrastructure for the
deployment.

Assuming a service Y that is called by another service X
the approach hand determines whether an existing instance
of Y can be used or a new instance need to be created close
to the calling instance of service X. Hence, the current state
of the infrastructure, i.e. available service instances as well
as service dependencies are taken into account in order to
reduce costs for data transfer and to avoid long waits on data.
The approach at hand focus on the costs for running
instances and costs for data transfer as users of a particular
infrastructure are mostly interested in these aspects.
However, the approach is suitable to cover further aspects.

The proposed method for dynamic provisioning of
services has the following assumptions: (1) Instantiation
needs to be automatic, especially on demand. A flexible
number of instances run in parallel at a specific state of
infrastructure but a maximum number of allowed instances is
specified by the owner of the service. If an instance
processes no request the instance is deleted immediately and
the resource is reallocated. Note that a service can have its
own instance management that is responsible for the creation
of instances within the particular service instance. However,
the approach at hand is based on service instances that are
created within the infrastructure. (2) Dynamic addresses for
services and a management component for dynamic
addresses need to be supported by the infrastructure.
Dynamic addresses are exclusively visible in the
infrastructure as they cover deployed instances of services in
a particular infrastructure. Conventional (static) addresses
are visible everywhere and cover services ignoring concrete
instances. A management component for dynamic addresses
needs to provide the matching of static service addresses to a
concrete dynamic service address covering a particular
instance (cf. AWS Elastic IP-Addresses [1]).

In general, the approach at hand introduces the closeness
of two service instances that can be measured at runtime. In
particular, the closeness of services has static as well as
dynamic aspects. Static aspects can be specified in an
introduced context model of a service, i.e. the context model
of a service X specify how close a partner service Y need to
be. Dynamic aspects of the closeness need to be evaluated by
the particular runtime environment. For supporting dynamic
aspects the approach at hand introduces the betweenness of
services covering the data transfer between services, i.e. its
dynamic properties and takes the certain (dynamic) state of
infrastructure into account.

A. Use Cases
The approach at hand introduces a logical management

level for provisioning on top of an infrastructure. The
introduced management level allows automatic allocation
and reallocation of infrastructure resources as well as
automatic calculation of distribution strategies. That means
the user of a distributed runtime environment does not have
to manually distribute his service instances on the
infrastructure any longer. Furthermore advanced strategies

for deployment can be calculated as the current state of the
dynamic infrastructure can be taken into account.

The approach is also applicable for deciding about data
vs. function shipping as it balances data transfer against
instance creation. In case the costs for data transfer between
existing instances exceeds the costs for data transfer with a
new instance the particular service is newly deployed close
to the data receiver (cf. function shipping). Otherwise an
existing instance can be used and the data need to be
transferred to the existing instance (cf. data shipping). In
summary, the costs for data transfer as well as locations of
existing instances are used to decide about the shipping of
data or functions, respectively.

The deployment of services on demand allows an easy
mechanism for the extension of existing applications. That
means, only additional services need to be deployed whereas
existing instances of services contained in the application can
remain unchanged if no modifications on the service’s logic
is needed. Finally, a context-aware deployment of services
allows the bundling of related compute-intensive services.
Different instances of such a service bundle can be
distributed on different deployment regions in order to
properly manage peak loads in the infrastructure.

II. CONTEXT MODEL
The approach at hand extends the specification of a

service that is registered in a specific distributed runtime
environment by a context model. Considering a service the
context model specifies depending services as well as the
context dependencies to these partner services including the
particular degree of context. Specified context dependencies
are directed, i.e. services S1, …, Sn that are utilized by a
service X are in context of service X but service X does not
have to be in context of the services S1, …, Sn. Concrete
types of context dependencies are user-defined and need to
be related to the classes of context provided by a certain
infrastructure. In particular, matching introduced types of
dependencies with provided classes of context allows the
classification of the strength of dependencies between
services.

A distributed environment is typically divided into
regions, e.g. different server clusters. Based on such regions
a distributed environment can provide classes of context. The
approach at hand introduces the following conceptual classes
of context:

0. Context-free, i.e. in context of no other resource
1. Very close a related resource Y, e.g. on the same

server
2. Close to a related resource Y, e.g. in the same cluster
3. In the same closed world as a related resource Y, i.e.

in the same infrastructure, e.g. cloud environment
4. In context of a related resource Y but resource Y is

part of the open world (includes the closed world of
class 3)

Example: Cloudy Composition Engine
This section presents a sample application implementing

a composition engine that is responsible for service
composition. For distributed execution the engine is

modularized and each module creates a service. Figure 1
shows the modularization of the basic functionality of a
composition engine. Furthermore, each module is related to a
context level collecting modules of the same context class.

The navigator of a composition engine including the
related composition logic creates the first module.
Considering the navigating functionality the module is also
responsible for the monitoring. The navigator communicates
with a service invocation module that is responsible for
requesting other services and the resolution of request
parameters. That means the composition engine in Figure 1
exclusively manages data by reference but need to provide
concrete data in service requests. However, a reference
resolution system including data storage is responsible for
the managing of data and data references [2]. The module
expression evaluator, e.g. for XPath expressions [3] is
essential for the composition engine. For example a
navigator decides about control flow alternatives by
evaluating an expression. That means the navigator needs to
be informed about evaluation results. Hence, the evaluation
result must be provided as concrete data and not by
reference.

Figure 1 Modularized composition engine

As mentioned before, every module can have its own

instance management. That means the instances of engine
modules act independent from each other and independent
from other modules. However, an instance of a module is
probably used by multiple instances of another module. For
example the same instance of the service invocation module
can be used by multiple instances of the navigator. In
summary, the approach at hand allows multiple instances of
engine modules managing different instances of
compositions. Conventional engines usually support one
instance of the engine managing multiple instances of
compositions.

Based on identified context levels for modules a context
model can be created for the modularized composition
engine. Figure 2 shows the context model for the navigator
service in the modularized composition engine specified with
TOSCA [4]. A rectangle represents a TOSCA node template
including provided operations, i.e. including a specific node
type. An arrow between two nodes represents a TOSCA
relationship template referring to a particular relationship
type. The context model introduces the following context

dependencies as relationship types: core dependency
(correlates with context class 1), “in context of” (correlates
with context class 2), composition dependency (correlates
with context class 3 and 4).

Based on the context model instances of the modules can
be deployed as close to each other as required. In case a
service composition needs to be instantiated the module
“navigation” with the particular composition logic need to be
considered at first. In case no existing instance of the
navigator is available (e.g. because of work load) a new
instance is deployed close to existing instances of depending
service instances, e.g. close to existing instances of the
modules “service invocation” and “expression evaluation”.
Furthermore, the classes of context specify how close a
service instance needs to be located in order to create a valid
distribution.

In summary the introduced modularized composition
engine combined with dynamic provisioning allows to meet
advanced requirements on composition engines in the cloud.
In particular, cloud-aware engines must support multiple
instances in the cloud infrastructure for providing elasticity.
As described before the modularized composition engine
introduced in this section easily allows additional instances
of any required modules in case of scaling up.

III. DYNAMIC PROVISIONING STRATEGIES
The method introduced in this section decides about the

need for instantiation and determines the best location for
deployment by balancing costs for data traffic against costs
for running new instances. Assuming a service X that is
called the method determines the best provisioning strategy
for X based on the context model of X and the current state
of the infrastructure. At first the method searches for an
existing instance of X close to the caller. If such an instance
does not exist a new instance is created close to the caller
and close to other services that depend on service X.

The costs for data transfers are estimated based on
previous instance runs considering the amount of data that
need to be transferred as well as the probability of the
occurrence of concrete data transfers. The costs for instances
are abstracted, i.e. the service owner specifies a maximum
number of instances that are allowed to run in parallel. For
autonomously deciding about the creation of instances the
infrastructure need to be aware of the maximum number of
instance that are allowed to run in parallel. That means the
infrastructure is allowed to create a new instance in case
there is a need for instantiation and further instances can be
deployed. Otherwise existing instances need to be sufficient.
However, pay-per-use is still applicable and the owner of a
service only has to pay for running instances but not
necessarily for the maximum number of instances.

A. Betweenness
For each service X that sends data to a service Y the

infrastructure provides the betweenness(X,Y). Analogous to
context dependencies the betweenness is directed, i.e. the
infrastructure does not necessarily provide the
betweenness(Y,X). The betweenness of two services X and
Y contains a size value and a probability value: The size of
the betweenness specifies the rate of the dependency, i.e. the
amount of data that is transferred from service X to service Y
at runtime. The probability value of the betweenness
specifies how many instances of service X effectively
depend on service Y, i.e. how many data transfers effectively
occur.

The infrastructure component that provides the
betweenness needs to dynamically update the betweenness
values. In particular the component needs to calculate the
average of the amount of data over all numbers of instances.
In case a new instance is running an infrastructure-internal
monitoring component needs to pass relevant information
about the new instance to the betweenness component.

Figure 2 Context model for the modularized composition engine

However, the dynamism of the introduced betweenness (i.e.
dynamic metrics) enables dynamic provisioning strategies.

Example: Distribution on Multiple Clouds
Figure 3 shows two deployment alternatives for an

instance of service X that was called by a service A. On top
of Figure 3 the context model of service X as well as the
interesting part of the context model of service A is
represented. Service X requests three other services S1, S2,
and S3 that are located in the open world (cf. context class
4). Furthermore, service X is in context of service A but can
also be located in the open world, i.e. no restrictions exist on
the closeness of service A and X as well as on the closeness
of service X and service S1 (or S2, S3). However, the
betweenness decides about the location for the deployment
of a new instance of service X.

Figure 3 Deployment alternatives for service X that is

called by service A

Let’s assume a service X alternatively requesting service
S1 or S2 and the following betweenness rates:

betweenness(A,X) = (5GB, 100%)
betweenness(X, S1) = (1MB, 48%)
betweenness(X, S2) = (5GB, 52%)

That means service A sends 5GB data to service X in 100%
of the instances of A. Furthermore, service X sends 1MB
data to service S1 in 48% of the instances of X, and service
X sends 5GB data to service S2 in 52% of the instances of X.
For determining the best location for X the particular amount
of data transfer needs to be compared. At first absolute
values for the betweenness rates are calculated by
multiplying the size of the betweenness with its probability
value. Afterwards the absolute values of services that are
deployed in the same region are summed up. Finally, the
maximum sum determines the region for deploying X. For
the betweenness rates above the following comparison
determines a location close to service A for the deployment
of service X:

5000 * 1 > 1 * 0.48 + 5000 * 0.52
That means, the amount of data that need to be transferred
from service A to service X is mostly probable higher than
the amount of data that need to be transferred from service X

to service S1 or S2. Therefore a location close to A is
certainly the best location.

If service X additionally invokes a service S3
immediately after the execution of S2 (but not after the
execution of S1) the following betweenness rates would
determine another location for the deployment of service X:

betweenness(X, S1) = (1MB, 34%)
betweenness(X, S2) = (5GB, 66%)
betweenness(X, S3) = (5GB, 66%)

In particular more data need to be transferred from
service X to the service S1, S2, and S3. Therefore the
deployment close to the services S1, S2, and S3 is better than
a deployment close to service A:

5000 * 1 < 1 * 0.34 + 5000 * 0.66 + 5000 * 0.66
Note that a context dependency related to class 3 between

the services X and S1, X and S2 or X and S3 would lead to a
deployment of X close to S1, S2, or S3 independent from
betweenness rates. That means at first the context
dependencies and its related context classes determine valid
alternatives for the deployment. Afterwards, the comparison
of betweenness rates determines the best alternative.

B. Automatic Scaling
Usually a load balancer distributes incoming calls of a

service to available instances. Furthermore, a component
supporting automatic scaling is possibly responsible for the
creation of new service instances. The approach at hand
combines the functionality of a load balancer with the
functionality of an automatic scaling component in order to
allow dynamic provisioning strategies. Note that the
combined load balancing functionality does not equally
distributes incoming calls to the existing instances but
maximizes the closeness of the calling instance and the
called instance. Hence, minimal costs for data transfer are
ensured.

Figure 4 shows a pseudo code algorithm for the
combined functionality of a load balancer and an automatic
scaling component. Assuming a call of service X by a
service A the algorithm searches for existing instances of X
close to the calling instance of service A at first. That means
the algorithm checks the location of the caller A. If the
calling instance of service A is not part of the particular
closed world the algorithm searches for an existing instance
of X that can be located everywhere in the particular closed
world, i.e. context class 4 is used for searching existing
instances of X. If the caller is part of the particular closed
world the algorithm searches for existing instances of X as
close as possible to the calling instance of A, i.e. in the
lowest possible context class. For each existing instance xi
that is found a user-defined condition for scaling up is
checked, e.g. cpu(xi) < 70%. The condition is specified by
the owner of service X. In case the condition evaluates to
true the call is passed to the existing instance xi. Otherwise
the search for a suitable instance of X continues in the next
context class as long as the highest context class, which is
allowed by the context model of service A, is reached.

In case no suitable instance was found within the given
context class a new instance is created if the actual number
of instances of X does not exceeds the maximum number of
allowed instances. In Figure 4 the flag scaleup indicates
whether further instances are allowed. In case no further
instances are allowed the existing instances need to be used
even though the condition for scaling up evaluates to true.

C. Dynamic Distribution
If a new instance may to be created the best location for

the new instance should be identified. Figure 5 shows a
pseudo code algorithm determining the best location for
deploying a new instance of service X that was called by a
service A. At first a set of orientation points is collected. In
case the caller A is part of the particular closed world the
calling instance of A is part of the set of orientation points in
order to allow the new instance of X to be as close as
possible to the caller. However, if the caller is part of the
open world and not part of the closed world the location of
the caller cannot be taken into account. Instead, the set of
orientation points exclusively contains existing instances of
services Si that are in context of the service X. That means
the algorithm searches for existing instances of Si at the
certain state of infrastructure and selects the instances with
the lowest possible context class to be an orientation point.
Note that for each region only one existing instance is part of
the set of orientation points.

Afterwards, the algorithm searches for services Sk that
are in context of service X. In particular, for each orientation
point the algorithm searches for instances sk that are located
as close as specified in the context model of X to the
particular orientation point. Considering one orientation
point and different classes of context leads a deployment
alternative stored in a set Alt. Such a deployment alternative
contains an orientation point as well as available instances of
services Sk that are in the particular context of service X.
Finally, all deployment alternatives are stored in a set Distr.

call(A, X)
1. Determine the location locA of the caller A

1.1 If locA is part of the closed world then context=1 and maxContext=4
1.2 Else context=4 and maxContext=4

2. Start with context, repeat until maxContext
2.1 Search for instances xi of service X with context(xi,(A, context))=true

2.1.1 For each instance xi that is found
2.1.1.1 If cpu(xi) < 70%

Send request to the current instance xi and terminate
2.1.2 If context= maxContext

2.1.2.1 If scaleup
Inst=createInstance(X, A, locA) and send request to Inst

2.1.2.2 Else
Send request to xi with cpu>=70% as close as possible to the calling instance of A

2.1.3 Else
context++

Figure 4 Load balancing and automatic scaling

createInstance(X, A, locA)
1. OP = {}, C = 1, repeat until C = 4 or OP ≠ {}

1.1 For each service Si with context(X, Si)=C
1.1.1 Search for an existing instance si
1.1.2 if OP contains no sj in the same (sub-)region

like si then OP = OP ∪ { si }
1.2 C++

2 If locA is part of the closed world then OP = OP∪{A}
3 Distr = {}, For each op in OP

3.1 Alt = { op }
3.2 C = 1, repeat until C = 4

3.2.1 For each service Sk with context(X, Sk)=C
specified in ContextX

3.2.1.1 Search for an instance sk with
(sk , (op, C))=true

3.2.1.2 Alt = Alt ∪ { sk },
3.2.2 C++

3.3 Distr = Distr ∪ Alt
4 Max= 0, For each Alt ∈ Distr

4.3 For each element { s1j , … , snj } in Alt and its
related Services S1, …, Sn

4.3.1 B = ∑n
i=1 betweenness(X, Si).probability *

 betweenness(X, Si).size
4.3.2 If Max < B

4.3.2.1 Max = B
4.3.2.2 MaxLocation = location(sk) with sk ∈

Alt ∪ OP
5 Res=getResource(X, Maxlocation)
6 Deploy X on Res creating a new instance xi
7 Return the new instance xi

Figure 5 Creating an instance in the most qualified
region

Afterwards the algorithm calculates the sum of the
betweenness rates for each alternative and its contained
services. The maximum sum indicates the alternative that is
most qualified for inserting a new instance of X based on the
current infrastructure state. Therefore, the location of the
orientation point of the most qualified alternative indicates
the best location for the new instance of X.

Example: Cloudy Composition Engine
Let’s assume the state of an infrastructure as shown in

Figure 6 providing two regions including sub-regions. In
detail the infrastructure contains instances of services
realizing a composition engine as well as composed services.
Region 1 holds two instances of the navigator (including the
composition logic) as well as other related engine services.
The context model for the composition engine (cf. section II)
specifies the need for deploying an instance of the service
invocation component very closed to the navigator instances,
i.e. in the same sub-region (cf. context class 1). Instances of
the expression evaluator and the reference resolution system
must be close to the navigator instance, i.e. in the same
region (cf. context class 2). Composed services S1, S2, and
S3 do not have to be located in the same region, i.e.
composed services are part of the open world (cf. context
class 4). However, Figure 6 shows composed services that
are part of the current infrastructure, precisely part of region
2. These instances of S1, S2, and S3 are be used by navigator
instances located in region 2 as well as by navigator
instances located in region 1 as the context model allows
such a distance.

Figure 6 Distributed composition engine and composed

services S1, S2, and S3

In case all existing instances of the navigator are busy at
the current infrastructure state a new instance needs to be
created. Assuming the location of the caller A outside of the
closed world the algorithm in Figure 5 would detect two
alternatives for the deployment of the new instance:

Alt1 = {Service Invocation 1, Expression Evaluation 1,
 Reference Resolution System 1}

Alt2 = {Service Invocation 2, Expression Evaluation 2,
 Reference Resolution System 2, S1, S2, S3}
The first alternative would locate the instance in the sub-
region of region 1 whereas the second alternative would
locate the instance in the sub-region of region 2. However,
the second alternative would be selected for deployment as
the services S1, S2, and S3 are part of the region 2 and
therefore part of the sum of betweenness rates. That means a
new instance of X would be deployed in region 2 as the

related sum of the betweenness rates is expected to be higher
than the sum of betweenness rates related to the deployment
alternative in region 1. Obviously the deployment of service
X in region 2 maximizes the expected internal data transfer
and minimizes expected external data transfer to other
regions.

IV. CONCLUSION
The approach at hand introduces a context model for

services specifying the particular service, its partner services
and the context dependencies between them. Furthermore,
context dependencies are classified by relating the
dependencies to context classes, i.e. regions provided by the
infrastructure. The context model of a service is used to
realize a dynamic provisioning of services based on the
current state of infrastructure. In particular, the need for an
instantiation as well as the best deployment region is
identified by introduced algorithms.

For specifying the context model we propose TOSCA
[4]. Considering an application covering multiple
components TOSCA allows the specification of the
application’s structure and additional plans specifying how
to build the application. The approach at hand uses the
TOSCA structure model for the context model whereas
TOSCA plans can be generated by interpreting the context
model. For example, the classification of context
dependencies can be related to an essential or probable
deployment: That means depending services in context class
1 and 2 must be deployed together with a certain service.
Depending services in context class 3 and 4 can have
decrements of probable deployments as they must be close
enough or provided by other applications for example. In the
generated TOSCA plan the particular service is deployed at
first, i.e. all services of the context model without a
dependency to another service are deployed at first.
Afterwards the depending services are deployed successively
in context class 1 and 2. Other depending services can be
deployed under certain conditions.

At the other hand generic plans can be used to realize an
exposed context dependency in the context model. For
example a BPMN process [5] implementing the dependency
“hosted by” is shown in Figure 7. The plan is valid for any
module Y contained in the context model of the modularized
composition engine that is called at a specific time, i.e. a
specific infrastructure state. At first existing instances of Y
close to the caller are identified. If such an instance exists
and scaling up is not necessary (i.e. the instance is not busy)
the existing instance of Y is used to process the request.
Otherwise, the best qualified infrastructure region for a new
instance of Y is determined and a new instance is created in
that region. Note that the plan in Figure 7 is generic, i.e.
usable for determining the hosts of any service or module
(cf. Figure 4). However, the task “Search best qualified
region R” need to be aware about context dependencies in
order to determine the best qualification (cf. Figure 5).

The introduced betweenness allows further information
that can be related to instances of partner services. The
betweenness reflects how much data in which probability
need to be transferred between two instances. The
probability value is dynamic information and provided by a
monitoring component in the infrastructure. However, the
betweenness can be extended to reflect other dynamic
relevant information next to data transfer. The approach at
hand uses the betweenness in order to choose the best
qualified region among a set of alternative regions. In detail,
the region with the highest sum of betweenness rates of
contained instances is qualified as the best alternative.

A. Related Work
The optimization of the distribution of jobs across

different resources was already an important problem in the
grid [6], [7]. For example, [8] proposes a basic scheduling
mechanism but assumes that jobs act independent from each
other. [9] introduces an optimized resource allocation in
distributed environments but is restricted on the consumed
power. Furthermore, [10] introduces an algorithm for
resource allocation that finds an optimal resource minimizing
the execution time of the job and a corresponding schedule.
That means, the resource allocation is optimized considering
a specific schedule and its overall execution time. In
contrast, the approach at hand does not use an underlying
schedule but optimizes the resource allocation with focus on
the closeness and expected costs for data transfer, i.e. the
cost model does not exclusively focus on the overall
execution time.

[11] introduces an approach optimizing resource
allocation for distributed applications in a single cloud. In
particular, the approach allows applications to adapt the
resource allocation to the given workload and resource
availability with respect to performance objectives. Hence,
the approach investigates the properties adaptability and
stability whereas the approach at hand investigates the
property closeness. Furthermore, the approach at hand is not
restricted to a single cloud but can be used considering
multiple cloud environments. [12] generates possible
distributions of a composite application deployment on
different clouds and selects the best for deployment. The
information of multiple models is correlated for calculating
possible distributions and existing algorithms for
optimization are reused. In particular, they focus on
calculating distribution whereas the approach at hand focuses
on the optimization. That means, possible distributions are

generated based on information about the certain state of
infrastructure and with respect to the required closeness.
Finally, the best alternative is indicated by the highest
betweenness.

The Amazon Cloud [1] provides many Web Services
related to the approach at hand. For example the services
auto scaling and load balancing support the automatic
management of EC2 instances. The AWS CloudFoundation
allows the specification and execution of deployment plans,
i.e. a set of components that need to be deployed together.
The automatic execution of deployment plans enables an
automatic deployment. Finally, the Amazon Cloud provides
regions and availability zones in the infrastructure suitable
for defining classes of context.

REFERENCES
[1] Amazon Web Services: http://aws.amazon.com/de/
[2] M. Wieland, K. Görlach, D. Schumm, and F. Leymann: Towards

Reference Passing in Web Service and Workflow-Based
Applications. EDOC 2009: 109-118

[3] J. Clark (Edt.), and S. DeRose (Edt.): XML Path Language (XPath)
1.0., W3C Standard, November 1999,
http://www.w3.org/TR/1999/REC-xpath-19991116

[4] P. Lipton (Edt.), and S. Moser (Edt.): Topology and Orchestration
Specification for Cloud Applications (TOSCA), Oasis Specification,
October 2011, http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=tosca

[5] Business Process Model and Notation (BPMN) Version 2.0, OMG
Standard, January 2011, http://www.omg.org/spec/BPMN/2.0/

[6] I. Foster, and C. Kesselman: The grid: bluepront for a new computing
infrastructure. Morgan Kaufmann, 2004, ISBN 1558604758

[7] M. Caramia, and S. Giordani: Resource allocation in grid computing:
an economic model. Transactions on Computer Research, 3(1), 2008

[8] R. P. Doyle: Model-based resource provisioning in a web service
utility. In Proc. of USENIX Symposium on Internet Technologies and
Systems, March 2003.

[9] S. U. Khan, and C. Ardil. Energy efficient resource allocation in
distributed computing systems. In Proc. of WASET Int'l Conference
on Distributed, High-Performance and Grid Computing, August 2009.

[10] K. Li: Job scheduling and processor allocation for grid computing on
metacomputers. Journal of Parallel and Distributed Computing
65(11), 2005, pp. 1406-1418

[11] C. Lee, J. Suzuki, A. Vasilakos, Y. Yamamoto, and K. Oba: An
evolutionary game theoretic approach to adaptive and stable
application deployment in clouds. In Proc. Of the 2nd Workshop on
Bio-inspired Algorithms for Distributed Systems, 2012, pp. 29-38

[12] F. Leymann, C. Fehling, R. Mietzner, A. Nowak, and S. Dustdar:
Moving Applications to the Cloud: An Approach based on
Application Model Enrichment. In: International Journal of
Cooperative Information Systems (IJCIS). Vol. 20(3), World
Scientific, 2011

Figure 7 BPMN build plan for any module Y of the modularized composition engine

	Introduction
	Use Cases

	Context Model
	Example: Cloudy Composition Engine

	Dynamic provisioning strategies
	Betweenness
	Example: Distribution on Multiple Clouds
	Automatic Scaling
	Dynamic Distribution
	Example: Cloudy Composition Engine

	Conclusion
	Related Work
	References

	cover-IEEE.pdf
	Foliennummer 1

