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Abstract—This paper introduces a method realizing dynamic 
provisioning of services in a distributed environment. 
Depending on a particular state of infrastructure the call of a 
service can lead to a new instance in the infrastructure or to 
using an existing instance. Hence, the dynamic deployment 
allows optimized distribution of service instances within a 
certain infrastructure. The paper introduces a context model 
for services that are registered in a distributed runtime 
environment. Furthermore, algorithms are introduced 
determining the need for instantiation as well as the best 
location for deployment. Hence, the best location is determined 
by correlating the context model, the certain state of 
infrastructure as well as data transfer costs. 

Web Service, Service Composition, Service Provisioning, 
Cloud Computing, Elasticity 

I.  INTRODUCTION 
Service-based applications are mostly composite and 

executed in a distributed runtime environment. Moving a 
composite application to a particular runtime environment 
requires a distribution of contained services before 
deployment. Hence, application owners want to optimize the 
distribution of services in order to save time and money. A 
dynamic service provisioning, i.e. dynamic resource 
allocation and dynamic deployment of services in a 
distributed environment enables high flexibility and 
optimized usage of the infrastructure. In particular, 
optimized distributions of service instances can be created by 
taking (communication) dependencies between services into 
account.  Correlating the service dependencies and a 
particular state of infrastructure at deployment time leads to 
a best qualified region in the infrastructure for the 
deployment.  

Assuming a service Y that is called by another service X 
the approach hand determines whether an existing instance 
of Y can be used or a new instance need to be created close 
to the calling instance of service X. Hence, the current state 
of the infrastructure, i.e. available service instances as well 
as service dependencies are taken into account in order to 
reduce costs for data transfer and to avoid long waits on data. 
The approach at hand focus on the costs for running 
instances and costs for data transfer as users of a particular 
infrastructure are mostly interested in these aspects. 
However, the approach is suitable to cover further aspects. 

The proposed method for dynamic provisioning of 
services has the following assumptions: (1) Instantiation 
needs to be automatic, especially on demand. A flexible 
number of instances run in parallel at a specific state of 
infrastructure but a maximum number of allowed instances is 
specified by the owner of the service. If an instance 
processes no request the instance is deleted immediately and 
the resource is reallocated. Note that a service can have its 
own instance management that is responsible for the creation 
of instances within the particular service instance. However, 
the approach at hand is based on service instances that are 
created within the infrastructure. (2) Dynamic addresses for 
services and a management component for dynamic 
addresses need to be supported by the infrastructure. 
Dynamic addresses are exclusively visible in the 
infrastructure as they cover deployed instances of services in 
a particular infrastructure. Conventional (static) addresses 
are visible everywhere and cover services ignoring concrete 
instances. A management component for dynamic addresses 
needs to provide the matching of static service addresses to a 
concrete dynamic service address covering a particular 
instance (cf. AWS Elastic IP-Addresses [1]). 

In general, the approach at hand introduces the closeness 
of two service instances that can be measured at runtime. In 
particular, the closeness of services has static as well as 
dynamic aspects. Static aspects can be specified in an 
introduced context model of a service, i.e. the context model 
of a service X specify how close a partner service Y need to 
be. Dynamic aspects of the closeness need to be evaluated by 
the particular runtime environment. For supporting dynamic 
aspects the approach at hand introduces the betweenness of 
services covering the data transfer between services, i.e. its 
dynamic properties and takes the certain (dynamic) state of 
infrastructure into account.  

A. Use Cases 
The approach at hand introduces a logical management 

level for provisioning on top of an infrastructure. The 
introduced management level allows automatic allocation 
and reallocation of infrastructure resources as well as 
automatic calculation of distribution strategies. That means 
the user of a distributed runtime environment does not have 
to manually distribute his service instances on the 
infrastructure any longer. Furthermore advanced strategies 



for deployment can be calculated as the current state of the 
dynamic infrastructure can be taken into account. 

The approach is also applicable for deciding about data 
vs. function shipping as it balances data transfer against 
instance creation. In case the costs for data transfer between 
existing instances exceeds the costs for data transfer with a 
new instance the particular service is newly deployed close 
to the data receiver (cf. function shipping). Otherwise an 
existing instance can be used and the data need to be 
transferred to the existing instance (cf. data shipping). In 
summary, the costs for data transfer as well as locations of 
existing instances are used to decide about the shipping of 
data or functions, respectively.  

The deployment of services on demand allows an easy 
mechanism for the extension of existing applications. That 
means, only additional services need to be deployed whereas 
existing instances of services contained in the application can 
remain unchanged if no modifications on the service’s logic 
is needed. Finally, a context-aware deployment of services 
allows the bundling of related compute-intensive services. 
Different instances of such a service bundle can be 
distributed on different deployment regions in order to 
properly manage peak loads in the infrastructure.  

II. CONTEXT MODEL 
The approach at hand extends the specification of a 

service that is registered in a specific distributed runtime 
environment by a context model. Considering a service the 
context model specifies depending services as well as the 
context dependencies to these partner services including the 
particular degree of context. Specified context dependencies 
are directed, i.e. services S1, …, Sn that are utilized by a 
service X are in context of service X but service X does not 
have to be in context of the services  S1, …, Sn. Concrete 
types of context dependencies are user-defined and need to 
be related to the classes of context provided by a certain 
infrastructure. In particular, matching introduced types of 
dependencies with provided classes of context allows the 
classification of the strength of dependencies between 
services. 

A distributed environment is typically divided into 
regions, e.g. different server clusters. Based on such regions 
a distributed environment can provide classes of context. The 
approach at hand introduces the following conceptual classes 
of context:  

0. Context-free, i.e. in context of no other resource 
1. Very close a related resource Y, e.g. on the same 

server 
2. Close to a related resource Y, e.g. in the same cluster 
3. In the same closed world as a related resource Y, i.e. 

in the same infrastructure, e.g. cloud environment 
4. In context of a related resource Y but resource Y is 

part of the open world (includes the closed world of 
class 3) 

Example: Cloudy Composition Engine 
This section presents a sample application implementing 

a composition engine that is responsible for service 
composition. For distributed execution the engine is 

modularized and each module creates a service. Figure 1 
shows the modularization of the basic functionality of a 
composition engine. Furthermore, each module is related to a 
context level collecting modules of the same context class.  

The navigator of a composition engine including the 
related composition logic creates the first module. 
Considering the navigating functionality the module is also 
responsible for the monitoring. The navigator communicates 
with a service invocation module that is responsible for 
requesting other services and the resolution of request 
parameters. That means the composition engine in Figure 1 
exclusively manages data by reference but need to provide 
concrete data in service requests. However, a reference 
resolution system including data storage is responsible for 
the managing of data and data references [2]. The module 
expression evaluator, e.g. for XPath expressions [3] is 
essential for the composition engine. For example a 
navigator decides about control flow alternatives by 
evaluating an expression. That means the navigator needs to 
be informed about evaluation results. Hence, the evaluation 
result must be provided as concrete data and not by 
reference.  

 
Figure 1 Modularized composition engine 

 
As mentioned before, every module can have its own 

instance management. That means the instances of engine 
modules act independent from each other and independent 
from other modules. However, an instance of a module is 
probably used by multiple instances of another module. For 
example the same instance of the service invocation module 
can be used by multiple instances of the navigator. In 
summary, the approach at hand allows multiple instances of 
engine modules managing different instances of 
compositions. Conventional engines usually support one 
instance of the engine managing multiple instances of 
compositions.   

Based on identified context levels for modules a context 
model can be created for the modularized composition 
engine. Figure 2 shows the context model for the navigator 
service in the modularized composition engine specified with 
TOSCA [4]. A rectangle represents a TOSCA node template 
including provided operations, i.e. including a specific node 
type. An arrow between two nodes represents a TOSCA 
relationship template referring to a particular relationship 
type. The context model introduces the following context 



dependencies as relationship types: core dependency 
(correlates with context class 1), “in context of” (correlates 
with context class 2), composition dependency (correlates 
with context class 3 and 4). 

Based on the context model instances of the modules can 
be deployed as close to each other as required. In case a 
service composition needs to be instantiated the module 
“navigation” with the particular composition logic need to be 
considered at first. In case no existing instance of the 
navigator is available (e.g. because of work load) a new 
instance is deployed close to existing instances of depending 
service instances, e.g. close to existing instances of the 
modules “service invocation” and “expression evaluation”. 
Furthermore, the classes of context specify how close a 
service instance needs to be located in order to create a valid 
distribution.  

In summary the introduced modularized composition 
engine combined with dynamic provisioning allows to meet 
advanced requirements on composition engines in the cloud. 
In particular, cloud-aware engines must support multiple 
instances in the cloud infrastructure for providing elasticity. 
As described before the modularized composition engine 
introduced in this section easily allows additional instances 
of any required modules in case of scaling up.  

III. DYNAMIC PROVISIONING STRATEGIES 
The method introduced in this section decides about the 

need for instantiation and determines the best location for 
deployment by balancing costs for data traffic against costs 
for running new instances. Assuming a service X that is 
called the method determines the best provisioning strategy 
for X based on the context model of X and the current state 
of the infrastructure. At first the method searches for an 
existing instance of X close to the caller. If such an instance 
does not exist a new instance is created close to the caller 
and close to other services that depend on service X.  

The costs for data transfers are estimated based on 
previous instance runs considering the amount of data that 
need to be transferred as well as the probability of the 
occurrence of concrete data transfers. The costs for instances 
are abstracted, i.e. the service owner specifies a maximum 
number of instances that are allowed to run in parallel. For 
autonomously deciding about the creation of instances the 
infrastructure need to be aware of the maximum number of 
instance that are allowed to run in parallel. That means the 
infrastructure is allowed to create a new instance in case 
there is a need for instantiation and further instances can be 
deployed. Otherwise existing instances need to be sufficient.  
However, pay-per-use is still applicable and the owner of a 
service only has to pay for running instances but not 
necessarily for the maximum number of instances. 

A. Betweenness 
For each service X that sends data to a service Y the 

infrastructure provides the betweenness(X,Y). Analogous to 
context dependencies the betweenness is directed, i.e. the 
infrastructure does not necessarily provide the 
betweenness(Y,X). The betweenness of two services X and 
Y contains a size value and a probability value: The size of 
the betweenness specifies the rate of the dependency, i.e. the 
amount of data that is transferred from service X to service Y 
at runtime. The probability value of the betweenness 
specifies how many instances of service X effectively 
depend on service Y, i.e. how many data transfers effectively 
occur.  

The infrastructure component that provides the 
betweenness needs to dynamically update the betweenness 
values. In particular the component needs to calculate the 
average of the amount of data over all numbers of instances. 
In case a new instance is running an infrastructure-internal 
monitoring component needs to pass relevant information 
about the new instance to the betweenness component. 

Figure 2 Context model for the modularized composition engine 
 



However, the dynamism of the introduced betweenness (i.e. 
dynamic metrics) enables dynamic provisioning strategies. 

Example: Distribution on Multiple Clouds 
Figure 3 shows two deployment alternatives for an 

instance of service X that was called by a service A. On top 
of Figure 3 the context model of service X as well as the 
interesting part of the context model of service A is 
represented. Service X requests three other services S1, S2, 
and S3 that are located in the open world (cf. context class 
4). Furthermore, service X is in context of service A but can 
also be located in the open world, i.e. no restrictions exist on 
the closeness of service A and X as well as on the closeness 
of service X and service S1 (or S2, S3). However, the 
betweenness decides about the location for the deployment 
of a new instance of service X.  

 

 
Figure 3 Deployment alternatives for service X that is 

called by service A 
 

Let’s assume a service X alternatively requesting service 
S1 or S2 and the following betweenness rates: 

betweenness(A,X) = (5GB, 100%) 
betweenness(X, S1) = (1MB, 48%) 
betweenness(X, S2) = (5GB, 52%) 

That means service A sends 5GB data to service X in 100% 
of the instances of A. Furthermore, service X sends 1MB 
data to service S1 in 48% of the instances of X, and service 
X sends 5GB data to service S2 in 52% of the instances of X. 
For determining the best location for X the particular amount 
of data transfer needs to be compared. At first absolute 
values for the betweenness rates are calculated by 
multiplying the size of the betweenness with its probability 
value. Afterwards the absolute values of services that are 
deployed in the same region are summed up. Finally, the 
maximum sum determines the region for deploying X. For 
the betweenness rates above the following comparison 
determines a location close to service A for the deployment 
of service X: 

5000 * 1 > 1 * 0.48 + 5000 * 0.52 
That means, the amount of data that need to be transferred 
from service A to service X is mostly probable higher than 
the amount of data that need to be transferred from service X 

to service S1 or S2. Therefore a location close to A is 
certainly the best location. 

If service X additionally invokes a service S3 
immediately after the execution of S2 (but not after the 
execution of S1) the following betweenness rates would 
determine another location for the deployment of service X: 

betweenness(X, S1) = (1MB, 34%) 
betweenness(X, S2) = (5GB, 66%)  
betweenness(X, S3) = (5GB, 66%)  

In particular more data need to be transferred from 
service X to the service S1, S2, and S3. Therefore the 
deployment close to the services S1, S2, and S3 is better than 
a deployment close to service A: 

5000 * 1 < 1 * 0.34 + 5000 * 0.66 + 5000 * 0.66 
Note that a context dependency related to class 3 between 

the services X and S1, X and S2 or X and S3 would lead to a 
deployment of X close to S1, S2, or S3 independent from 
betweenness rates. That means at first the context 
dependencies and its related context classes determine valid 
alternatives for the deployment. Afterwards, the comparison 
of betweenness rates determines the best alternative. 

B. Automatic Scaling 
Usually a load balancer distributes incoming calls of a 

service to available instances. Furthermore, a component 
supporting automatic scaling is possibly responsible for the 
creation of new service instances. The approach at hand 
combines the functionality of a load balancer with the 
functionality of an automatic scaling component in order to 
allow dynamic provisioning strategies. Note that the 
combined load balancing functionality does not equally 
distributes incoming calls to the existing instances but 
maximizes the closeness of the calling instance and the 
called instance. Hence, minimal costs for data transfer are 
ensured.  

Figure 4 shows a pseudo code algorithm for the 
combined functionality of a load balancer and an automatic 
scaling component. Assuming a call of service X by a 
service A the algorithm searches for existing instances of X 
close to the calling instance of service A at first. That means 
the algorithm checks the location of the caller A. If the 
calling instance of service A is not part of the particular 
closed world the algorithm searches for an existing instance 
of X that can be located everywhere in the particular closed 
world, i.e. context class 4 is used for searching existing 
instances of X. If the caller is part of the particular closed 
world the algorithm searches for existing instances of X as 
close as possible to the calling instance of A, i.e. in the 
lowest possible context class.  For each existing instance xi 
that is found a user-defined condition for scaling up is 
checked, e.g. cpu(xi) < 70%. The condition is specified by 
the owner of service X. In case the condition evaluates to 
true the call is passed to the existing instance xi. Otherwise 
the search for a suitable instance of X continues in the next 
context class as long as the highest context class, which is 
allowed by the context model of service A, is reached. 



In case no suitable instance was found within the given 
context class a new instance is created if the actual number 
of instances of X does not exceeds the maximum number of 
allowed instances. In Figure 4 the flag scaleup indicates 
whether further instances are allowed. In case no further 
instances are allowed the existing instances need to be used 
even though the condition for scaling up evaluates to true.  

C. Dynamic Distribution  
If a new instance may to be created the best location for 

the new instance should be identified. Figure 5 shows a 
pseudo code algorithm determining the best location for 
deploying a new instance of service X that was called by a 
service A. At first a set of orientation points is collected. In 
case the caller A is part of the particular closed world the 
calling instance of A is part of the set of orientation points in 
order to allow the new instance of X to be as close as 
possible to the caller. However, if the caller is part of the 
open world and not part of the closed world the location of 
the caller cannot be taken into account. Instead, the set of 
orientation points exclusively contains existing instances of 
services Si that are in context of the service X. That means 
the algorithm searches for existing instances of Si at the 
certain state of infrastructure and selects the instances with 
the lowest possible context class to be an orientation point. 
Note that for each region only one existing instance is part of 
the set of orientation points. 

Afterwards, the algorithm searches for services Sk that 
are in context of service X. In particular, for each orientation 
point the algorithm searches for instances sk that are located 
as close as specified in the context model of X to the 
particular orientation point. Considering one orientation 
point and different classes of context leads a deployment 
alternative stored in a set Alt. Such a deployment alternative 
contains an orientation point as well as available instances of 
services Sk that are in the particular context of service X. 
Finally, all deployment alternatives are stored in a set Distr. 

call( A, X) 
1. Determine the location locA of the caller A 

1.1 If locA is part of the closed world then context=1 and maxContext=4 
1.2 Else context=4 and maxContext=4 

2. Start with context, repeat until maxContext 
2.1 Search for instances xi of service X with context(xi,(A, context))=true 

2.1.1 For each instance xi that is found 
2.1.1.1 If cpu(xi) < 70%  

Send request to the current instance xi and terminate 
2.1.2 If context= maxContext 

2.1.2.1 If scaleup  
Inst=createInstance(X, A, locA) and send request to Inst 

2.1.2.2 Else  
Send request to xi with cpu>=70% as close as possible to the calling instance of A 

2.1.3 Else  
context++ 

Figure 4 Load balancing and automatic scaling  
 

createInstance(X, A, locA) 
1. OP = {}, C = 1, repeat until C = 4 or OP ≠ {} 

1.1 For each service Si with context(X, Si)=C 
1.1.1 Search for an existing instance si 
1.1.2 if OP contains no sj in the same (sub-)region 

like si then OP = OP ∪ { si } 
1.2 C++ 

2 If locA is part of the closed world then OP = OP∪{A}  
3 Distr = {}, For each op in OP 

3.1 Alt = { op }  
3.2 C = 1, repeat until C = 4 

3.2.1 For each service Sk with context(X, Sk)=C 
specified in ContextX 

3.2.1.1 Search for an instance sk with  
(sk , (op, C))=true 

3.2.1.2 Alt = Alt ∪ { sk }, 
3.2.2 C++ 

3.3 Distr = Distr ∪ Alt 
4 Max= 0, For each Alt ∈ Distr 

4.3 For each element { s1j , … , snj } in Alt and its 
related Services S1, …, Sn 

4.3.1 B = ∑n
i=1 betweenness(X, Si).probability *  

   betweenness(X, Si).size  
4.3.2 If Max < B  

4.3.2.1 Max = B 
4.3.2.2 MaxLocation = location(sk) with sk ∈ 

Alt ∪ OP 
5 Res=getResource(X, Maxlocation) 
6 Deploy X on Res creating a new instance xi 
7 Return the new instance xi 

Figure 5 Creating an instance in the most qualified 
region 



Afterwards the algorithm calculates the sum of the 
betweenness rates for each alternative and its contained 
services. The maximum sum indicates the alternative that is 
most qualified for inserting a new instance of X based on the 
current infrastructure state. Therefore, the location of the 
orientation point of the most qualified alternative indicates 
the best location for the new instance of X.   

Example: Cloudy Composition Engine 
Let’s assume the state of an infrastructure as shown in 

Figure 6 providing two regions including sub-regions. In 
detail the infrastructure contains instances of services 
realizing a composition engine as well as composed services. 
Region 1 holds two instances of the navigator (including the 
composition logic) as well as other related engine services. 
The context model for the composition engine (cf. section II) 
specifies the need for deploying an instance of the service 
invocation component very closed to the navigator instances, 
i.e. in the same sub-region (cf. context class 1). Instances of 
the expression evaluator and the reference resolution system 
must be close to the navigator instance, i.e. in the same 
region (cf. context class 2). Composed services S1, S2, and 
S3 do not have to be located in the same region, i.e. 
composed services are part of the open world (cf. context 
class 4). However, Figure 6 shows composed services that 
are part of the current infrastructure, precisely part of region 
2. These instances of S1, S2, and S3 are be used by navigator 
instances located in region 2 as well as by navigator 
instances located in region 1 as the context model allows 
such a distance.   

 

 
Figure 6 Distributed composition engine and composed 

services S1, S2, and S3 
 

In case all existing instances of the navigator are busy at 
the current infrastructure state a new instance needs to be 
created. Assuming the location of the caller A outside of the 
closed world the algorithm in Figure 5 would detect two 
alternatives for the deployment of the new instance: 

Alt1 = {Service Invocation 1, Expression Evaluation 1,  
      Reference Resolution System 1} 

Alt2 = {Service Invocation 2, Expression Evaluation 2,  
      Reference Resolution System 2, S1, S2, S3} 
The first alternative would locate the instance in the sub-
region of region 1 whereas the second alternative would 
locate the instance in the sub-region of region 2. However, 
the second alternative would be selected for deployment as 
the services S1, S2, and S3 are part of the region 2 and 
therefore part of the sum of betweenness rates. That means a 
new instance of X would be deployed in region 2 as the 

related sum of the betweenness rates is expected to be higher 
than the sum of betweenness rates related to the deployment 
alternative in region 1. Obviously the deployment of service 
X in region 2 maximizes the expected internal data transfer 
and minimizes expected external data transfer to other 
regions. 

IV. CONCLUSION 
The approach at hand introduces a context model for 

services specifying the particular service, its partner services 
and the context dependencies between them. Furthermore, 
context dependencies are classified by relating the 
dependencies to context classes, i.e. regions provided by the 
infrastructure. The context model of a service is used to 
realize a dynamic provisioning of services based on the 
current state of infrastructure. In particular, the need for an 
instantiation as well as the best deployment region is 
identified by introduced algorithms.  

For specifying the context model we propose TOSCA 
[4]. Considering an application covering multiple 
components TOSCA allows the specification of the 
application’s structure and additional plans specifying how 
to build the application. The approach at hand uses the 
TOSCA structure model for the context model whereas 
TOSCA plans can be generated by interpreting the context 
model. For example, the classification of context 
dependencies can be related to an essential or probable 
deployment: That means depending services in context class 
1 and 2 must be deployed together with a certain service. 
Depending services in context class 3 and 4 can have 
decrements of probable deployments as they must be close 
enough or provided by other applications for example. In the 
generated TOSCA plan the particular service is deployed at 
first, i.e. all services of the context model without a 
dependency to another service are deployed at first. 
Afterwards the depending services are deployed successively 
in context class 1 and 2. Other depending services can be 
deployed under certain conditions.   

At the other hand generic plans can be used to realize an 
exposed context dependency in the context model. For 
example a BPMN process [5] implementing the dependency 
“hosted by” is shown in Figure 7. The plan is valid for any 
module Y contained in the context model of the modularized 
composition engine that is called at a specific time, i.e. a 
specific infrastructure state. At first existing instances of Y 
close to the caller are identified. If such an instance exists 
and scaling up is not necessary (i.e. the instance is not busy) 
the existing instance of Y is used to process the request. 
Otherwise, the best qualified infrastructure region for a new 
instance of Y is determined and a new instance is created in 
that region. Note that the plan in Figure 7 is generic, i.e. 
usable for determining the hosts of any service or module 
(cf. Figure 4). However, the task “Search best qualified 
region R” need to be aware about context dependencies in 
order to determine the best qualification (cf. Figure 5).  



The introduced betweenness allows further information 
that can be related to instances of partner services. The 
betweenness reflects how much data in which probability 
need to be transferred between two instances. The 
probability value is dynamic information and provided by a 
monitoring component in the infrastructure. However, the 
betweenness can be extended to reflect other dynamic 
relevant information next to data transfer. The approach at 
hand uses the betweenness in order to choose the best 
qualified region among a set of alternative regions. In detail, 
the region with the highest sum of betweenness rates of 
contained instances is qualified as the best alternative.  

A. Related Work 
The optimization of the distribution of jobs across 

different resources was already an important problem in the 
grid [6], [7]. For example, [8] proposes a basic scheduling 
mechanism but assumes that jobs act independent from each 
other. [9] introduces an optimized resource allocation in 
distributed environments but is restricted on the consumed 
power. Furthermore, [10] introduces an algorithm for 
resource allocation that finds an optimal resource minimizing 
the execution time of the job and a corresponding schedule. 
That means, the resource allocation is optimized considering 
a specific schedule and its overall execution time. In 
contrast, the approach at hand does not use an underlying 
schedule but optimizes the resource allocation with focus on 
the closeness and expected costs for data transfer, i.e. the 
cost model does not exclusively focus on the overall 
execution time.  

[11] introduces an approach optimizing resource 
allocation for distributed applications in a single cloud. In 
particular, the approach allows applications to adapt the 
resource allocation to the given workload and resource 
availability with respect to performance objectives. Hence, 
the approach investigates the properties adaptability and 
stability whereas the approach at hand investigates the 
property closeness. Furthermore, the approach at hand is not 
restricted to a single cloud but can be used considering 
multiple cloud environments. [12] generates possible 
distributions of a composite application deployment on 
different clouds and selects the best for deployment. The 
information of multiple models is correlated for calculating 
possible distributions and existing algorithms for 
optimization are reused. In particular, they focus on 
calculating distribution whereas the approach at hand focuses 
on the optimization. That means, possible distributions are 

generated based on information about the certain state of 
infrastructure and with respect to the required closeness. 
Finally, the best alternative is indicated by the highest 
betweenness. 

The Amazon Cloud [1] provides many Web Services 
related to the approach at hand. For example the services 
auto scaling and load balancing support the automatic 
management of EC2 instances. The AWS CloudFoundation 
allows the specification and execution of deployment plans, 
i.e. a set of components that need to be deployed together. 
The automatic execution of deployment plans enables an 
automatic deployment. Finally, the Amazon Cloud provides 
regions and availability zones in the infrastructure suitable 
for defining classes of context.  
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Figure 7 BPMN build plan for any module Y of the modularized composition engine 
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