
Institute of Architecture of Application Systems

BPELlight

Jörg Nitzsche, Tammo van Lessen, Dimka Karastoyanova, and Frank

Leymann
Institute of Architecture of Application Systems

University of Stuttgart,
Universitätsstraße 38, 70569 Stuttgart, Germany
http://www.iaas.uni-stuttgart.de

in: 5th International Conference on Business Process Management (BPM 2007).
See also BibTEX entry below.

BibTEX:

@inproceedings{Nitzsche2007,
author = {Joerg Nitzsche and Tammo van Lessen and Dimka Karastoyanova and Frank Leymann},
title = {BPEL light},
booktitle = {5th International Conference on Business Process Management (BPM 2007)},
year = {2007},
month = sep,
publisher = {Springer},

}

© 2007 Springer-Verlag.
See also LNCS-Homepage: http://www.springeronline.com/lncs

document created on: 6th July 2007
created from file: bpellight.tex

http://www.iaas.uni-stuttgart.de
http://www.springeronline.com/lncs

BPELlight

Jörg Nitzsche, Tammo van Lessen, Dimka Karastoyanova, and Frank Leymann

Institute of Architecture of Application Systems
University of Stuttgart

Universitaetsstrasse 38, 70569 Stuttgart, Germany
{joerg.nitzsche,tammo.van.lessen,dimka.karastoyanova,

frank.leymann}@iaas.uni-stuttgart.de
http://www.iaas.uni-stuttgart.de

Abstract In this paper we present BPELlight which decouples process
logic from interface definitions. By extending BPEL 2.0 with a WSDL-less
interaction model, BPELlight allows to specify process models indepen-
dent of Web service technology. Since its interaction model is based on
plain message exchange, it is completely independent of any interface
description language. This fosters flexibility and reusability of process
models and enables modelling platform and component model indepen-
dent business processes. The presented approach takes a significant step
towards narrowing down the gap between business level and IT level by
facilitating a more business-oriented modelling of executable processes.

Key words: BPM, Workflow, BPEL, SOA, Web services, flexibility,
reusability

1 Introduction

Business Process Management (BPM) and the workflow technology [1,2] in
particular has become a very successful area with heavy impact on industry and
research. Process orientation has been discussed for many years but with the
emergence of Web Services [3,4] (WS) which is the most popular implementation
of a service oriented architecture [5,6] (SOA) workflow technology and BPM
got established to a great extent. The separation of business process logic and
separate implementation of business functions enables programming on a higher,
i.e. business process oriented level [7]. A workflow comprises 3 dimensions: process
logic (’what’ is to be done), organization (’who’ does it) and infrastructure (’which’
tools are used). There are two major standards for business processes. The
execution centric Business Process Execution Language [8] (BPEL) has currently
been approved as an OASIS1 standard and the modelling focussed Business
Process Modelling Notation (BPMN) [9] is standardized by OMG2. BPEL is
part of the WS standard stack and is therefore based on WSs in particular on

1 http://www.oasis-open.org/
2 http://www.omg.org/

http://www.iaas.uni-stuttgart.de
http://www.oasis-open.org/
http://www.omg.org/

2 Jörg Nitzsche, Tammo van Lessen, Dimka Karastoyanova, Frank Leymann

the Web Service Description Language [10] (WSDL). The ’who’ dimension is not
supported yet and the ’which’ dimension is simply based on WSs.

In BPEL the ’what’ and ’which’ dimensions are strongly coupled since activ-
ities which are an aspect of the process logic (’what’) directly refer to WSDL
operations (’which’). This is a major drawback because it inhibits the reuse of
processes or parts thereof in different contexts with different partners. Also this
ties BPEL to WSDL for referring to activity implementations.

With BPELlight we present an approach that gets over these deficiencies.
First, we use BPEL’s extensibility mechanisms to define a unified interaction
model by introducing a new, single type of interaction activity resuming all
interaction activities [3] currently defined by BPEL. Second, BPELlight enables
a strict decoupling of business logic and interface definitions (port types); as
a result, interfaces in BPELlight processes can be described via any interface
definition languages (IDL, including WSDL). Without the fixed dependency on
WSDL, BPELlight can be used even in non-WS environments (WSDL-less BPEL).
Especially, partner services even do not have to be described in terms of interface
definitions at all: It is sufficient to describe how the process wants to interact with
a partner in terms of a bilateral message exchange. Such a message exchange can
be mapped to appropriate interfaces during deployment or even during runtime
via proper tools and middleware. This results in a more business-like modelling
style supported by BPELlight and is a significant step towards narrowing down
the gap between business level (e.g. BPMN) and IT level (BPEL).

Also, our approach fosters both, reusability and flexibility of processes. Since
BPELlight describes interactions in terms of message exchanges only, i.e. indepen-
dent of interface definitions, processes or process fragments can be reused and
bound to specific interfaces in any IDL. Binding may even happen during runtime,
e.g. proper middleware can dynamically decide on an appropriate interface and
corresponding implementation.

Our paper is structured as follows. Section 2 provides an overview of BPEL’s
interaction model. The subsequent section (3) introduces and discusses two
different approaches of WSDL-less BPEL. In section 4 BPELlight is presented.
Section 5 shows how to realize BPEL’s interaction semantics using BPELlight in
conjunction with WSDL. Section 6 discusses and summarizes the advantages of
BPELlight compared to conventional BPEL.

2 BPEL

BPEL is the de facto standard for specifying business processes in a WS world
and has gained broad acceptance in industry and research. It enables both, the
composition of WSs [3] and rendering the composition itself as WSs. Thus, BPEL
provides a recursive aggregation model for WSs. Currently, extensions to BPEL
are developed to support human interactions (BPEL4People [11]) and use of sub-
processes (BPEL-SPE [12]). The composition of WSs can be specified as a flow
between operations of WS. Therefore BPEL provides several so called structured
activities that facilitate prescribing the control flow between the interaction

BPELlight 3

activities. BPEL does not support explicit data flow; instead, data is stored
in shared variables that are referenced and accessed by interaction activities
and manipulation activities (e.g. <assign> activity). The control flow between
activities can be structured either block-based by nesting structured activities like
<sequence> (for sequential control flow), <flow> (for parallel control flow) and
<if> (for conditional branches in the control flow) activities, or graph-based by
defining <links> (i.e. directed edges) between activities in a <flow> activity;
both styles can be used intermixed.

Since BPEL processes are intended to support robust applications, transac-
tionality and fault handling are an integral part of BPEL and are defined by
means of scopes, compensation handlers and fault handlers. Scopes represent
units of works with compensation-based recovery semantics. Fault and compensa-
tion handlers are attached to a scope: fault handlers define how to proceed when
faults occur, compensation handlers define how to compensate already completed
activities in a custom manner.

WSs rendering process instances typically have state. Therefore it is important
that messages can be sent to a particular process instance. This can be either
achieved by using a standard BPEL mechanism called correlation sets, or by
using WS-Addressing [13]. Correlation sets are based on pointing to key fields
embedded in messages exchanged between the process instance and its partners.

In order to enable communication with other services or processes BPEL
introduces the concept of a partner link type which is defined as an extension to
WSDL. A partner link type binds two port types, namely a port type the process
offers to a partner and a port type the process requires from the corresponding
partner.

<wsdl:definitions
targetNamespace=...
xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype">
...
<plnk:partnerLinkType name="salesPLT">

<plnk:role name="buyer"
portType="buyerPT" />

<plnk:role name="seller"
portType="sellerPT" />

</plnk:partnerLinkType>
...

</wsdl:definitions>

(a) code snippet

buyerPT sellerPT

salesPLT
buyer seller

(b) scenario

Figure 1. The WSDL extension <partnerLinkType>

Figure 1 shows an example of such a partner link type. It defines a channel
(salesPLT) between two abstract business partners (roles) called buyer and
seller through which the partners exchange messages; these roles are defined
as port types, in the example buyerPT and sellerPT. In cases of a process
synchronously interacting with a partner, such a channel is just unidirectional, i.e.
the corresponding partner link type contains a single role. In order to establish
a contract (i.e. an agreement between two partners which message channel to
use), BPEL’s partner links reference a partner link type and specify which role
is taken by the process itself (myRole) and which role is taken by the partner
(partnerRole).

4 Jörg Nitzsche, Tammo van Lessen, Dimka Karastoyanova, Frank Leymann

The interaction activities [3] (<receive>, <reply>, <invoke>, <pick>)
and the event handlers are used to define the actual message exchange corre-
sponding to a partner link, i.e. data transmitted and style of communication
(synchronous vs. asynchronous). For that purpose, interaction activities reference
a partner link and a WSDL operation. Receiving activities (i.e. <receive> and
<pick>) and the <reply> activity as well as the event handler reference an
operation of the process’s port type, whereas the <invoke> activity references
an operation of the partner’s port type. Note, that a synchronous invocation of a
process is specified via a receiving activity and a matching reply activity.

<flow>
<links>

<link name="send-to-receive" />...
</links>...
<invoke name="orderItem"

partnerLink="salesPL"
operation="getOrder"
inputVariable="item">

<sources>
<source linkName="send-to-receive" />...

</sources>...
</invoke>...
<receive name="receiveConfirmation"

partnerLink="salesPL"
operation="getConfirmation"
variable="confirmation">

<targets>
<target linkName="send-to-receive" />...

</targets>...
</receive>

</flow>

(a) code snippet

…

<flow>
<links>

<link name="send-to-receive" />
...

</links>
...
<invoke partnerLink="salesPL"

operation="getOrder"
inputVariable="item">

<sources>
<source linkName="send-to-receive" />
...

</sources>
...

</invoke>
...
<receive partnerLink="salesPL"

operation="getConfirmation"
variable="confirmation">

<targets>
<target linkName="send-to-receive" />
...

</targets>
...

</receive>
</flow>

BPEL process any WSDL service

(b) scenario

Figure 2. Asynchronous invocation of a WSDL service

Figure 2 illustrates the use of an <invoke> and a <receive> activity to
model an asynchronous invocation of a partner via two one-way operations. The
partner link used within this example references the partner link type given in
Figure 1 and defines myRole="buyer" and partnerRole="seller".

<flow>
<links>

<link name="receive-to-send" />...
</links>...
<receive name="receiveOrder"

partnerLink="salesPL"
operation="order"
variable="confirmation">

<targets>
<target linkName="receive-to-send" />...

</targets>...
</receive>...
<invoke name="sendConfirmation"

partnerLink="salesPL"
operation="getOrder"
inputVariable="item">

<sources>
<source linkName="receive-to-send" />...

</sources>...
</invoke>

</flow>

(a) code snippet

<flow>
<links>

<link name="send-to-receive" />
...

</links>
...
<receive partnerLink="salesPL"

operation="getConfirmation"
variable="confirmation">

<targets>
<target linkName="send-to-receive" />
...

</targets>
...

</receive>
...
<invoke partnerLink="salesPL"

operation="getOrder"
inputVariable="item">

<sources>
<source linkName="send-to-receive" />
...

</sources>
...

</invoke>
</flow>

…

BPEL process any WSDL service

(b) scenario

Figure 3. Asynchronous invocation of a BPEL process

BPELlight 5

An example of an asynchronous invocation of the process is shown in Figure 3.
In this example the partner link type presented in Figure 1 is also used but the
partner link defines myRole="seller" and partnerRole="buyer".

<invoke name="orderItem"
partnerLink="salesPL"
operation="order"
inputVariable="item"
outputVariable="confirmation">

...
</invoke>

(a) code snippet

<invoke partnerLink="salesPL"
operation="order"
inputVariable="item"
outputVariable="confirmation">

...
</invoke>

…

…

BPEL process any WSDL service

(b) scenario

Figure 4. Synchronous invocation of a WSDL service

The simple synchronous use cases are illustrated in Figure 4 and Figure 5.
The former shows how a synchronous invocation of a service can be modelled:
The <invoke> activity of the process uses a request-response operation (order)
provided by the partner service. In this case only the partner role of the salesPL
is specified. The latter depicts a synchronous invocation of the process. It is
realized by a <receive>-<reply> pair referencing the order operation the
process offers. The partner link only specifies the myRole part of the partner
link definition.

<flow>
<links>

<link name="receive-to-reply" />...
</links>...
<receive name="receiveOrder"

partnerLink="salesPL"
operation="order"
variable="item">

<sources>
<source linkName="receive-to-reply" />...

</sources>...
</receive>
<reply name="sendConfirmation"

partnerLink="salesPL"
operation="order"
variable="confirmation">

<targets>
<target linkName="receive-to-reply" />...

</targets>...
</reply>...

</flow>

(a) code snippet

<flow>
<links>

<link name="receive-to-reply" />
...

</links>
...

<receive partnerLink="salesPL"
operation="order"
variable="item">

<sources>
<source linkName="receive-to-reply" />
...

</sources>
...

</receive>
<reply partnerLink="salesPL"

operation="order"
variable="confirmation">

<targets>
<target linkName="receive-to-reply" />
...

</targets>

...
</reply>
...

</flow>

…

BPEL process any WSDL service

(b) scenario

Figure 5. Synchronous invocation of a BPEL process

The <pick> activity and the <eventHandler> play a special role with
respect to the WSDL dependency since they do not depend on WSDL itself but

6 Jörg Nitzsche, Tammo van Lessen, Dimka Karastoyanova, Frank Leymann

encapsulate elements which references a WSDL operation, the <onMessage>
element and <onEvent> element respectively.

Both the interaction activities and the grouping mechanism that allows mod-
elling complex message exchanges depend on WSDL. For this reason, reusability
and flexibility of BPEL processes or parts of processes (process fragments) are
very limited. In the next section we present two approaches that decouple process
logic from the WSDL interfaces (or any other interface descriptions) and thus
increase reusability and flexibility of the processes and process fragments.

3 The notion of WSDL-less BPEL

There are two major shortcomings of BPEL: limited reusability of (parts of)
processes and lack of flexibility in terms of interfaces.

Hard-coding (partner) interfaces in the process logic limits reusability. As-
sume a process sends a message to a partner service, receives a response and
dependent on this response different branches are taken in the subsequent flow.
This combination of an interaction activity and a decision taken occurs very often
in processes [14] and thus is a good candidate for reuse (“process fragment”).
However, since such a fragment is bound to specific WSDL operations it cannot
be reused in other scenarios where the same logic is required but the interaction
is specified in terms of different WSDL operations and different WSDL port
types.

The other downside of hard-coding interfaces in process logic is lack of flexi-
bility. Only services that implement the predefined WSDL interface can be used
during process execution, whereas services that provide the same functionality but
implement a different interface are excluded from the service discovery procedure.

In addition, explicitly specifying partner interfaces in a process definition
results in tight-coupling of the two dimensions of WS composition, namely process
logic (’what’) and activity implementations (’which’). For instance, modelling a
two-way invoke enforces the use of exactly a WSDL request-response operation
at the partner side. However, such a two-way message exchange pattern [15]
could be realized by two one-way operations, increasing flexibility by weakening
the assumption on the concrete type of WSDL operation to be used. Thus, it
should be sufficient to model an activity with one outgoing message and one
incoming message, and leaving the selection of the proper WSDL operation(s) and
interaction style to the supporting middleware. In this case, the BPEL navigator
must understand that the activity is only completed after a response message has
been received. We argue that this drawback is eliminated by decoupling the ’what’
and ’which’ dimensions, and thus separate process logic and communication.

We identify two possible approaches for discarding the static specification of
port types and operations in processes and thus improving process reusability
and flexibility. These alternative approaches will be presented in the following
sections.

BPELlight 7

3.1 Profile for abstract BPEL

BPEL enables the definition of profiles for abstract processes. These profiles
enable omitting information that is necessary for describing an executable BPEL
process. The BPEL 2.0 specification identifies two use cases for abstract processes:
(i) definition of the observable behaviour of a process, (ii) definition of process
templates.

However, it is envisioned that there are other use cases for profiles of abstract
processes. Thus, the BPEL specification defines a starting point for abstract
profiles, the Common Base that defines the syntactic form to which all abstract
processes have to conform. The Common Base defines that activities, expressions,
attributes and from-specifications may be hidden by replacing them with opaque
tokens. However, it does not define the semantics of an abstract process. The
semantics have to be defined in a profile. Additionally, the profile defines more
precisely which information may be omitted. The profile for observable behaviour
for instance defines, that the interaction activities themselves and the attributes
partnerLink and operation must not be opaque.

Following the generic approach of abstract profiles enables specifying a profile
that allows omitting WSDL specific details and thereby increases reusability of
process models. This approach is for instance used in [16] to define a language
for choreographies using BPEL.

3.2 Extensions to executable BPEL

BPEL is designed to be extensible. BPEL 1.1 [17] can be extended by defining
new attributes and standard elements. However, in BPEL 1.1 the extensibility is
limited since there is no way to introduce new activity types without violating
the BPEL Schema and specification and losing BPEL compliance. In order to
eliminate this drawback BPEL 2.0 [8] introduces the <extensionActivity>
that is the designated extension point for new activity types. Additionally,
BPEL 2.0 facilitates defining custom assign operations. In both specifications
the extensions must not change the semantics of the BPEL language. The
extensibility features of BPEL can be used to define new interaction activity
types that do not reference WSDL interfaces. In particular this can be done using
the <extensionActivity> mechanism. This implies that a new partner link
definition (WSDL-less partner link) is necessary, which also does not refer to
a WSDL definition. This way BPEL enables defining a WSDL-less interaction
model by introducing new WSDL-less activity types and partner links.

3.3 Discussion

The approach of creating a profile for abstract BPEL allows omitting WSDL
specific details during design time and thereby increasing reusability of abstract
processes. However, when completing such an abstract process into an executable
process the ’what’ dimension and the ’which’ dimension are coupled, and the
BPEL process depends on WSDL again. For this reason, the approach using

8 Jörg Nitzsche, Tammo van Lessen, Dimka Karastoyanova, Frank Leymann

profiles for abstract BPEL results in design time flexibility only, improving the
reusability of process definitions only during the modelling phase.

The WSDL-less interaction model defined using BPEL’s extensibility mecha-
nism provides for flexibility of process models at modelling time and at execution
time. This results in reusable executable processes and process fragments. The
flexibility of executable processes is further increased because WSDL interfaces
of partners are no longer part of process models: Activities are bound during
deployment or even as late as runtime to proper implementations. Obviously, this
requires proper tooling and runtime support [18]. Moreover, interface definitions
are not restricted to be specified in WSDL, but rather any other IDLs can be
used.

Since our second approach is more powerful the rest of the paper is focussed
on that. The extended BPEL language we introduce in the next section is a
light-weight version of BPEL that can be applied for specifying business processes
not only in WS-* environments. We call this language BPELlight.

4 BPELlight

BPELlight is an extension of BPEL 2.0 [8], i.e. the existing semantics of the
language remains unchanged, including variable handling and typing. It defines
a new mechanism to describe the interaction between two partners without
dependency on WSDL and therefore it decouples the two dimensions of BPEL
processes, namely ’what’ and ’which’. BPELlight introduces new elements in a
separate namespace3 which represent a WSDL-less conversation between partners
using WSDL-less interaction activities. We describe the BPELlight interaction
model and enhance and adapt the concept of uniquely identifiable partners to
support stateful WSDL-less conversations.

4.1 The BPELlight interaction model

We define the BPELlight interaction model in terms of two elements, namely
<conversation> and <interactionActivity>.

The <conversation> element plays the role of a WSDL-less partner link not
referencing a partner link type. Thus it defines a contract between two partners
independent of their WSDL port types, i.e. interfaces. The <conversation>
element allows grouping of interaction activities and thus enables defining a
complex message exchange between two partners. Hence the requirements to the
partner service is not expressed using WSDL port types, but rather by the ability
to send messages to and receive messages from a process during a conversation.

Similarly to the <partnerLink> which is defined in the <partnerLinks>
section, every <conversation> is defined within a <conversations> ele-
ment. The syntax is shown in Listing 1.

In order to decouple the interaction activities from the activity implementation
dimension (’which’) we define interaction activities that do not refer to WSDL
3 xmlns:bl=http://iaas.uni-stuttgart.de/BPELlight/

xmlns:bl=http://iaas.uni-stuttgart.de/BPELlight/

BPELlight 9

<bl:conversations>
<bl:conversation name="NCName"/>+

</bl:conversations>

Listing 1. The <conversation> element

interfaces. The interaction activities defined in BPEL (<receive>, <reply>,
<invoke> and <onMessage> within a <pick>) cannot be used since the
WSDL specific attributes partnerLink and operation are mandatory. These
new interaction activities can model simple and complex message exchanges with
a partner by referencing a <conversation> element.

In BPELlight we utilize the <extensionActivity> mechanism to introduce
a new activity type – the <interactionActivity> (see Listing 2). This
activity type is capable of modelling all interaction activities defined in BPEL.
Additionally, it can be configured to represent an activity that receives a message
and is not completed before sending a response message.

<extensionActivity>
<bl:interactionActivity name="NCName"

inputVariable="NCName"?
outputVariable="NCName"?
mode="in-out|out-in"?
conversation="NCName"
createInstance="yes|no"?
standard-attributes>

standard-elements
</bl:interactionActivity>

</extensionActivity>

Listing 2. BPELlight’s <interactionActivity>

The activity types that are covered by the <interactionActivity> are
summarised in the following:

1. activities that only receive a message (like a BPEL <receive>)
2. activities that only send a message (like a BPEL <invoke> or <reply>)
3. activities that first send a message and then receive a message (like a BPEL

synchronous/two-way <invoke>)
4. activities that first receive a message and then send a message

The BPELlight <interactionActivity> is comparable to a BPMN task.
Similarly to BPELlight, BPMN [9] does not define different task types but rather
specifies one task and this task may have incoming and outgoing messages.
However, BPMN is only a modelling notation, whereas BPELlight is executable.

Table 1 shows how the interaction activity has to be configured to model
the different activity types listed above. Activities that receive a message must
specify the output variable whereas activities that send a message must specify

10 Jörg Nitzsche, Tammo van Lessen, Dimka Karastoyanova, Frank Leymann

the input variable. Activities that send a message only must not define the
output variable, and activities that only receive a message must not define the
input variable. For these activities the value for the attribute “mode” is not
evaluated. Activities that do both, receive and send a message, must specify the
attribute mode. The value has to be set to in-out for activities that first receive
a message and out-in for activities that first send a message. The default value
for the attribute createInstance is no. Activities that start with a receiving
message may specify this attribute, for the other activity types this attribute is
not evaluated.

input output mode create

variable variable instance

Activity that only receives a
message

MUST
NOT

MUST MAY

Activity that only sends a
message

MUST MUST
NOT

Activity that first receives
and then sends a message

MUST MUST in-out MAY

Activity that first sends and
then receives a message

MUST MUST out-in

Table 1. Modelling different interaction activity types

In order to be aligned with BPEL we introduce a new <pick> activitiy with
semantics similar to the pick activity in BPEL. This is required since the BPEL
specification enforces to have at least one conventional <onMessage> element
specified, whose dependency on WSDL breaks the idea of BPELlight. Instead the
new activity allows to specify WSDL-less <onMessage> elements that reference
a conversation just as the interaction activity. Additionally and a new WSDL-less
<onEvent> element for the <eventHandler> is defined.

To close the description of the BPELlight interaction model Listing 3 illustrates
how the sample BPEL process showed in Figure 2a is modelled using BPELlight.

4.2 The notion of partners

BPEL 1.1 includes a <partner> element that groups a subset of partner links to
identify a partner within a process. This way the <partner> element postulates
that several partner links have to be established with one and the same business
partner. Thus it specifies what capabilities (in terms of port types) a specific
partner has to provide. In BPEL 2.0 the partner element has been removed.

In BPELlight we introduces a new <partner> element that enables grouping
the WSDL independent <conversation>s. Thus it can be defined that several

BPELlight 11

<bl:conversations>
<bl:conversation name="salesConv"/>...

</bl:conversations>...
<flow>

<links>
<link name="send-to-receive" />...

</links>...
<extensionActivity>

<bl:interactionActivity name="orderItem"
conversation="salesConv"
inputVariable="item">

<sources>
<source linkName="send-to-receive"/>...

</sources>...
</bl:interactionActivity>

</extensionActivity>
<extensionActivity>

<bl:interactionActivity name="receiveConfirmation"
conversation="salesConv"
outputVariable="confirmation">

<targets>
<target linkName="send-to-receive"/>...

</targets>...
</bl:interactionActivity>

</extensionActivity>...
</flow>

Listing 3. Asynchronous invocation of a service using BPELlight

conversations have to take place with one business partner. The new <partner>
element, which is referring to a <conversation> instead of a partner link is
illustrated in Listing 4. This is a way to impose constraints on a partner to support
multiple conversations, i.e. message exchanges, and thereby multiple business
goals. Assume a flight should be booked after the price for this particular flight
has been checked. In this case it is required that both activity implementations
are using the same partner to avoid checking the price at Lufthansa and then
booking a British Airways flight. Since the granularity of these business goals
and thereby the granularity of the conversations cannot be standardised the
<partner> element is needed to support the explicit specification of different
granules in a user-friendly manner.

<bl:partners>?
<bl:partner name="NCName"

businessEntity="QName"?>+
<bl:conversation name="NCName">+

</bl:partner>
</bl:partners>

Listing 4. The <partner> element in BPELlight

In addition, the <partner> element may define the concrete partner in-
stance that has to be used for a set of conversations. This is realized using the
businessEntity attribute, which specifies the name of an organisation.

12 Jörg Nitzsche, Tammo van Lessen, Dimka Karastoyanova, Frank Leymann

Consequently BPELlight comes with an extension to the <assign> activ-
ity that enables copying a partner identification into the <partner> element.
Therefore the empty <to> specification is extended with a <partner> attribute
that defines to which partner definition the partner instance information is copied.
Note, that a partner can only be set if its corresponding conversations have not
been established yet. This is similar to copying an endpoint reference to a partner
link.

5 Using BPELlight in WS-* environment

As already discussed, BPELlight decouples from WSDL. Since WS-* is the most
popular service-based integration technology we show how BPELlight can be used
to support WSs based compositions. Therefore when using BPELlight in a WS-*
environment it emulates the interaction model of BPEL. This way BPELlight

also provides a recursive aggregation model for WSs analogously to conventional
BPEL, i.e. a BPELlight process can expose its functionality as a WS and it can
invoke conventional WSs.

Note that even though the communication semantics of BPEL can be emulated,
the two dimensions are still decoupled since the mapping of the technology neutral
interaction model of BPELlight to WSDL is external, i.e. not within the process
logic.

To enable interaction among WSDL-based services, a conversation serves the
role of a partner link and is associated with a partner link type. The role of a
partner service and the role the process itself takes are also specified. In addition
to the association of the conversation to the partner link type, all interaction
activities have to be mapped to WSDL operations.

The semantics of the BPEL interaction activities can be achieved using the
following mappings: an interaction activity with both variables specified and
mode="out-in" is mapped to a request-response type operation the partner pro-
vides, which is similar to a synchronous BPEL <invoke>. An interaction activity
with the output variable specified, which corresponds to a BPEL <receive>,
can be assigned to a one-way operation the process provides. However, it can also
be assigned to a request-response operation the process provides. In this case
there must be a successive interaction activity with the input variable specified
that is also assigned to that particular operation. Together, these two activities
provide the semantics of a synchronous <receive>-<reply> pair in BPEL. The
interaction activity with only the input variable specified may also be assigned
to a one-way operation the partner service provides, which corresponds to an
asynchronous <invoke> in BPEL.

Additionally, an interaction activity with both variables specified and the
attribute mode set to "in-out" can be assigned to a request-response operation
provided by the the process. This scenario has no direct counterpart in BPEL
(instead, a receive-reply pair is used).

The assignment of the activities to a communication infrastructure can be
done (i) using an assignment file that is interpreted during deployment (ii) using

BPELlight 13

WS-PolicyAttachment [19] or (iii) by delegating all communication issues to the
underlying middleware, e.g. the ESB [20]. In this paper we focus only on the first
approach.

The assignment of the process logic to WSDL operations via an assignment
file is depicted in Listing 5. The <conversation> is associated with a partner
link type and it is specified which role is taken by the partner service and which is
taken by the process itself using the myRole and partnerRole attribute. This
is similar to the association of a partner link to a partner link type. Additionally,
the activities have to be mapped to corresponding WSDL operations using the
operation attribute like in BPEL.

<assignmentFor process="QName">
<conversation name="NCName"

partnerLinkType="QName"
myRole="NCName"
partnerRole="NCName" />*

<activity name="NCName"
operation="NCName" />*

</assignmentFor>

Listing 5. Assignment file

So far we have shown that BPELlight can be used to express the communication
semantics of BPEL. However, a consequence of this approach is again a tight
coupling of the ’what’ and ’which’ dimensions since there is a direct dependency
of the behaviour of the navigator and the kind of communication used: a blocking
activity implies a synchronous request-response operation. However, there is
an alternative and maybe even more promising approach of applying WSDL
to BPELlight. The idea is not to map the activities directly to operations but
rather map the input- and output variable to an operation. This way a blocking
interaction activity that first sends and then receives a message can for instance
be mapped to two one-way operations, one provided by the partner service and
one by the process.

Since the consequences of this approach have to be investigated in depth we
consider it future work.

6 Discussion and Assessment

BPELlight decouples process logic and interface definitions. Interfaces are defined
separately and bound to activities in processes separate from BPELlight. Moreover
interfaces can be specified in any IDL.

BPELlight eases modelling of business processes. By separating interfaces and
process logic the amount of IT artefacts a process modeller must understand
is reduced. It is sufficient to describe how the process wants to interact with
a partner. This behaviour can be mapped separately during deployment or at
runtime by proper middleware to an interface of a partner. Figure 6 illustrates

14 Jörg Nitzsche, Tammo van Lessen, Dimka Karastoyanova, Frank Leymann

how BPELlight improves the business process modelling lifecycle: The grey parts
indicate the artefacts a process modeller needs to know. On the top of the figure
the situation with traditional BPEL is shown whereas in the bottom it is depicted
that BPELlight frees the modeller from IT specific details.

BPELlight decouples activity definitions from component models. Different
IDLs can be mixed and matched within one and the same process model. Based
on the concept of assignment files, proper middleware can be configured that
allows to bridge to the hosting environment of the corresponding components.

BPELlight increases reusability and flexibility of process models. One and
the same piece of process logic can be bound to completely different interfaces
dependent on the set of interfaces available in a target environment.

BPELlight eases mapping of BPMN to an execution environment. By support-
ing the specification of message exchange patterns directly, BPELlight removes
the impedance mismatch of message orientation and interface orientation which
causes problems in mapping BPMN to conventional BPEL.

BPELlight eases the construction of matching partner processes, e.g. in chore-
ographies. It is straightforward to construct to a given activity the matching
dual activity in a partner process: the requested activity can be found by simply
mirroring the conversation.

WSDLBPEL

Process logic

Interface Description
Activity Definition

Interface Description

BPEL light

Process Logic

Interface Description

Endpoint

Interface Description

Endpoint

Activity Definition

Interface Description

Deployment / Runtime

Deployment / Runtime

Any Interface Description
Language

Interface Description

Design Time

Design Time

Figure 6. Modelling with BPELlight and BPEL: Improvements

BPELlight 15

7 Conclusion

The work in this paper strives improving the flexibility and reusability of process-
based compositions especially in service-oriented environments. We presented
a language for composition, called BPELlight, that facilitates decoupling of the
two dimensions of process compositions - business logic (’what’) and the activity
implementations (’which’). The advantage of BPELlight over conventional BPEL
is that it allows to specify process models independent of WS technology; in fact
it is independent of any other interface technology used to implement activities.
As a result, BPELlight improves both, reusability and flexibility of process models.

Reusability of process definitions is improved since the process definitions
can be used with different service technologies while the business logic remains
unchanged. In addition, a mixture of service technologies may be utilized when a
process model is executed. Moreover, any BPELlight process definition can be
used to generate partner interfaces automatically based on information about
message exchange patterns defined in BPELlight. This is enabled by the inherent
symmetry of the message exchange patterns of interacting partners. BPELlight

improves the flexibility of process definitions because both deployment time
configuration and run time discovery and binding to appropriate interfaces is
enabled. In our view, the process language introduced in this paper is an adequate
answer to the needs businesses have with respect to reusability and flexibility
of processes. It is an extension of the de facto standard for service composition
(BPEL) and therefore the industry relevance and application of these language
extensions is not hampered.

Currently we are developing a process modelling tool with native BPELlight

extension support. Building an engine for executing BPELlight processes is part
of our future work.

8 Acknowledments

The work published in this article was partially funded by the SUPER project4

under the EU 6th Framework Programme Information Society Technologies
Objective (contract no. FP6-026850).

References

1. Leymann, F., Roller, D.: Production workflow. Prentice Hall (2000)
2. van der Aalst, W., van Hee, K.: Workflow management. MIT Press (2002)
3. Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.: Web Services

Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL,
WS-Reliable Messaging and More. Prentice Hall PTR Upper Saddle River, NJ,
USA (2005)

4. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Architec-
tures and Applications. Springer (2004)

4 http://www.ip-super.org/

16 Jörg Nitzsche, Tammo van Lessen, Dimka Karastoyanova, Frank Leymann

5. Burbeck, S.: The Tao of e-business services. IBM Corporation (2000)
6. Krafzig, D., Banke, K., Slama, D.: Enterprise SOA: Service-Oriented Architecture

Best Practices (The Coad Series). Prentice Hall PTR Upper Saddle River, NJ,
USA (2004)

7. Leymann, F., Roller, D.: Workflow-based applications. IBM Systems Journal 36(1)
(1997) 102–123

8. Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera, F., Ford, M.,
Goland, Y., Gúızar, A., Kartha, N., Liu, C.K., Khalaf, R., König, D., Marin, M.,
Mehta, V., Thatte, S., van der Rijn, D., Yendluri, P., Yiu, A.: Web Services Business
Process Execution Language Version 2.0. Committee specification, OASIS Web
Services Business Process Execution Language (WSBPEL) TC (January 2007)

9. White, S.: Business Process Modeling Notation (BPMN) Version 1.0. Object
Management Group/Business Process Management Initiative, BPMN.org (2004)

10. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services De-
scription Language (WSDL) 1.1 (2001)

11. Kloppmann, M., Koenig, D., Leymann, F., Pfau, G., Rickayzen, A., von Riegen, C.,
Schmidt, P., Trickovic, I.: WS-BPEL Extension for People – BPEL4People. Joint
white paper, IBM and SAP, July (2005)

12. Kloppmann, M., Konig, D., Leymann, F., Pfau, G., Rickayzen, A., von Riegen, C.,
Schmidt, P., Trickovic, I.: WS-BPEL Extension for Sub-processes – BPEL-SPE.
Joint white paper, IBM and SAP (2005)

13. Box, D., Curbera, F., et al.: Web Services Addressing (WS-Addressing). W3C
Member Submission (August 2004)

14. van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow
Patterns. Distributed and Parallel Databases 14(1) (2003) 5–51

15. Barros, A., Dumas, M., ter Hofstede, A.: Service interaction patterns: Towards a
reference framework for service-based business process interconnection. Technical
Report FIT-TR-2005-02, Faculty of Information Technology, Queensland University
of Technology, Brisbane, Australia (March 2005)

16. Decker, G., Kopp, O., Leymann, F., Weske, M.: BPEL4Chor: Extending BPEL for
modeling choreographies. In: ICWS 2007, IEEE Computer Society (July 2007)

17. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann,
F., Liu, K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana,
S.: Business Process Execution Language for Web Services (BPEL) 1.1.
http://www.ibm.com/developerworks/library/specification/ws-bpel/ (2003)

18. Karastoyanova, D., van Lessen, T., Nitzsche, J., Wetzstein, B., Wutke, D., Leymann,
F.: Semantic Service Bus: Architecture and Implementation of a Next Generation
Middleware. In: 2nd International Workshop on Services Engineering (SEIW).
(April 2007) Istanbul, Turkey.

19. Bajaj, S., Box, D., Chappell, D., Curbera, F., Daniels, G., Hallam-Baker, P., Hondo,
M., Kaler, C., Malhotra, A., Maruyama, H., et al.: Web Services Policy Attachment
(WS-PolicyAttachment). W3C Member Submission (April 2006)

20. Chappell, D.A.: Enterprise Service Bus. O’Reilly (2004)

	Lecture Notes in Computer Science
	Authors' Instructions
	1 Introduction
	2 BPEL
	3 The notion of WSDL-less BPEL
	3.1 Profile for abstract BPEL
	3.2 Extensions to executable BPEL
	3.3 Discussion

	4 BPELlight
	4.1 The BPELlight interaction model
	4.2 The notion of partners

	5 Using BPELlight in WS-* environment
	6 Discussion and Assessment
	7 Conclusion
	8 Acknowledments

