
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{schumm, leymann, streule}@iaas.uni-stuttgart.de

Process Views to Support Compliance Management
in Business Processes

David Schumm, Frank Leymann, Alexander Streule

© 2010 Springer-Verlag.
The original publication is available at www.springerlink.com

@inproceedings{SchummLS10,
author = {David Schumm and Frank Leymann and Alexander Streule},
title = {Process Views to Support Compliance Management

in Business Processes},
booktitle = {Proceedings of the 11th International Conference on

Electronic Commerce and Web Technologies (EC‐Web 2010),
30 August – 3 September 2010, Bilbao, Spain},

year = {2010},
pages = {131‐‐142},
doi = {DOI: 10.1007/978‐3‐642‐15208‐5_12},
series = {Lecture Notes in Business Information Processing (LNBIP)},
volume = {61},
publisher = {Springer‐Verlag}

}

:

Institute of Architecture of Application Systems

Process Views to Support Compliance Management
in Business Processes

David Schumm, Frank Leymann, Alexander Streule

Institute of Architecture of Application Systems, University of Stuttgart,

Universitätsstraße 38, 70569 Stuttgart, Germany.
{Schumm, Leymann, Streule}@iaas.uni-stuttgart.de

Abstract. Compliance has become an important driver in business process
management, as it requires profound and traceable changes of the processes.
Besides the increasing demand for security, privacy and trust, compliance also
needs consistent integration and management of process structures related to
compliance. We use the notion of compliance fragments to refer to such
structures. In this paper, we discuss the challenges of managing compliance
fragments in business processes. Extraction, integration, highlighting and
hiding of compliance fragments represent the challenges we refer to. For
extraction and hiding of compliance fragments we present an implementation
for the process execution language BPEL, based on process view
transformation concepts.

Keywords: Process View, Model Transformation, Compliance Fragment.

1 Introduction

From a high level perspective, business process management (BPM) basically
consists of three tasks. Process modeling is the first task in the life cycle of a process.
In this task a process is designed or changes to an existing process are made. The
result is a new or modified process. A process comprises a set of activities which have
to be executed in order to achieve a business goal. So-called control flow defines the
order in which the activities have to be executed. The second task is the execution of
the process. The execution is supervised in process monitoring, which may run
parallel to the execution. Process monitoring closes the loop and leads back to process
modeling and redesign respectively.

Although, seen from a more technical perspective, there are some more steps in
this life cycle. A business process is typically modeled on a high level of abstraction
in a language near to business, for instance by using the Business Process Modeling
Notation (BPMN) [6]. Technical refinement is a step in between process modeling
and execution, here a process is prepared for execution by technical personnel.
Possibly, the process also needs to be transformed into a different language for
execution, for instance to the Business Process Execution Language (BPEL) [7].
Further steps cover verification, validation, and technical monitoring.

We interpret the term compliance as conforming to particular requirements
originating from the interpretation of compliance sources [3]. We assume that a
compliance assessment is made by experts (e.g. lawyers) who interpret the
compliance sources and break them down to concrete requirements. Compliance
sources can be laws from the executive, regulations like Basel II [14], internal
policies, industrial standards and also business agreements. Non-compliance can
mean significant punishments to a company. Hence, companies are in urgent need to
prevent violations by detecting them and reacting accordingly. Besides the installation
of one or more compliance officers who take care that all compliance requirements
are met, the business processes that drive the business are affected as well. This also
has an impact on the tasks related to the process life cycle described above.

Amongst other things, compliance needs to be addressed in process modeling.
Some requirements occur frequently and their realization thus is feasible for reuse.
We proposed the notion of process fragments for compliance, abbreviated as
compliance fragments [11], to represent the realization of compliance requirements
concerning a process. A compliance fragment can be understood as a connected sub-
graph of a process graph which addresses requirements related to compliance. Such a
fragment has significantly relaxed completeness and consistency criteria compared to
an executable process graph. A process graph consists of nodes which represent the
activities of a process, and edges which represent control dependencies.

For the management of these fragments we need several techniques. In order to
create reusable compliance fragments we need a technique for extraction of process
structures which realize a compliance requirement in terms of activities and control
flow. Then, we need a technique for integrating such reusable compliance fragments
into other business processes that have to be augmented with compliance. In order to
proof compliance to an auditor, we also have to define a mechanism for highlighting
integrated compliance fragments. Despite integration and highlighting we also need a
method for fading those structures out. In other words we need a way to hide those
steps which do not represent the actual “work” in the business process. In [11] we
have denoted this as process pollution problem. In summary, compliance fragments
serve as reusable process structures which realize particular compliance requirements
related to a business process. Process views for compliance, on the other hand,
provide a means to work with such structures.

This paper is structured as follows: Section 2 contains references to works related
to our approach. Section 3 describes the challenges of managing of compliance
fragments in business processes. In Section 4 the process view transformations for
extraction and hiding of compliance fragments are elaborated. In Section 5 we discuss
the limitations of our approach with respect to compliance management in general.
Section 6 gives a short summary of the paper and characterizes future work.

2 Related Work

Due to the relevance of compliance management in business processes, an increasing
number of works on this topic exists. Current approaches address all tasks related to
the process life cycle, ranging from modeling of process constraints to their

verification and checking for violations in monitoring. Most of the approaches are
based on annotations that constrain the behavior of a process, preferably using
domain-specific languages or formal rules as shown in [15]. Those approaches are
very important to formally constrain a process and to formally proof compliance of a
process and its execution respectively. However, these solutions do not address how
to ensure a consistent specification of requirements in terms of activities and control
flow in order to augment a process with compliance. We tackle this issue with the
concept of compliance fragments [11], and together with our research partners we
combined this concept with the formalization of requirements and process
verification [17].

In our former work [11] we proposed two different methods for integrating
compliance fragments into a process. The first method (which we called gluing) is to
physically copy the fragment into the process. The second method is to make use of
Aspect-Oriented Programming (AOP) techniques to augment a process with
compliance fragments in a loosely coupled manner. This method is feasible for many
compliance requirements, for instance related to auditing and logging. When aspect
weaving is applied there is in fact no need for compliance fragment hiding, as the
fragment is already separated from the process. However, the integration of some
compliance fragments requires a physical redesign of the process, that is why gluing
is not avoidable in any case. In particular, this is the case for compliance fragments
with multiple entries or multiple exits, such as a compliance fragment for an approval
which has one exit for acceptance, and another one for rejection.

Process views are a set of approaches addressing the increasing size of business
processes, i.e. concerning the increasing number of activities which are contained in a
process. Aside from the application for process abstraction, process views can also be
used in other scenarios. In [1] an application of view transformations for extraction of
reusable structures from Petri Nets is discussed. This mechanism is related to our
approach of fragment extraction, though specified with a different purpose and for a
different language. An approach for the generation of a public process for usage in
outsourcing scenarios is presented in [5]. The mechanism in [5] is similar to the
mechanism of hiding which we propose. However, it is also applied to a different
language and limited in extensibility of the supported transformation functions. In [8]
an overview on further application scenarios for process views is given. In general,
most approaches make use of omission and aggregation of structures, for instance the
above mentioned works. We argue that viewing concepts can be utilized as a means to
support the management of compliance structures in business processes. To the best
of our knowledge there is currently no comparable approach in this field.

3 Managing Compliance Fragments in Business Processes

In this section, we discuss the main challenges of managing compliance fragments in
business processes, guided by a running example. A frequent compliance requirement
is related to reviewing and assessing a particular situation. Let us assume for example
an internal business process for approval of vacations. This process needs to be
compliant with the requirements originating from internal policies. For this reason

this process contains, among other steps, activities related to checking up on conflicts.
To be more precise, it contains a fragment for checking up on conflicts concerning
fixed appointments in the requested vacation time.

Extracting Compliance Fragments. To make the implementation of this
compliance requirement reusable, the according structures need to be extracted. We
propose to add a special tag on the activities that belong to the structures which
should be extracted, see the illustration in Figure 1. This tag states that any kind of
view transformation has to preserve those structures and all the artifacts (e.g.
variables) which are related to them. With this method we need to define a view
transformation that triggers the omission of all other activities. The implementation of
the transformation needs to preserve the tagged structures and maintain control
dependency. The result of the view transformation is a fragment for checking up on
appointment conflicts. After a fragment has been extracted it can be stored in a
fragment repository [13], ready for reuse, highlighting and hiding. Another possibility
for the creation of a fragment is to design it from scratch as discussed in [11]. In
Section 4 we present an implementation of this view transformation.

Fig. 1. Compliance Fragment Extraction

Integrating Compliance Fragments. Sometime later the internal business process
for approval of business trips also needs to comply with the requirement for checking
up on appointment conflicts. For this, we need to integrate the fragment which
implements this requirement into the business trip approval process, see Figure 2. For
the integration at first the entries and exits of a fragment have to be wired. This can be
done by breaking existing control edges in the process and inserting the fragment in
between existing structures, otherwise new control edges have to be inserted. To
complete the integration, the context of the fragment (variables, etc.) has to be merged
with the process context. During integration conflicts have to be resolved. For
instance, parameter types used in the fragment possibly have to be adjusted to those
used in the process (e.g. Boolean vs. String). Process view transformations are not
applicable for this task. Therefore, we are currently working on a methodology for
integration of compliance fragments and their related context into a given process.

Fig. 2. Compliance Fragment Integration

Highlighting Compliance Fragments. During an audit a company has to provide all
relevant information to proof compliance with laws and regulations. As described in
[2], internal audits are an important measure, too. Applied to our running example, we
need to provide information to an internal auditor on how we addressed the
requirement for checking up on appointment conflicts. Process views also refer to the
visualization of a process. Therefore, we propose using sub-graph matching
algorithms [16] for the identification of known fragments related to compliance. The
result of this fragment recognition step provides an input for according highlighting in
graphical display of the process, as illustrated in Figure 3.

Fig. 3. Compliance Fragment Highlighting

We are currently extending our view transformation framework to support this
application. The transformation component is based on Java/DOM, the visualization
and modeling component is an extension of an open source process design tool [4]. In
order to enable flexible highlighting we modify the predefined paint methods of the
process constructs to adjust the visualization, in the same manner as shown in former
work [9]. We identified several display properties of activities which can be
customized to provide the highlighting (see Figure 4). For instance, using red border
color with increased thickness already provides a straightforward solution. More
advanced settings (e.g. involving shape size) are conceivable though.

shape (here: rounded rectangle) caption

font (size, color, type)

shape size (width, height)

border (style, color, thickness)various decorators
background

transparency

icon

invokeService

shadow

brightness

Fig. 4. Graphical Display Properties of Activities

Hiding Compliance Fragments. As mentioned in the introduction, process
structures related to compliance sometimes do not represent the actual work that
needs to be carried out in a process. If the number of compliance requirements that
have to be addressed increases, the process becomes “polluted” and harder to
understand. Therefore, we propose a view transformation for hiding those fragments
in order to provide a clear view on an unpolluted process, see Figure 5. In Section 4
we discuss a technical implementation for this method.

Fig. 5. Compliance Fragment Hiding

4 Extracting and Hiding of Compliance Fragments

In this section, we demonstrate how process viewing concepts can be used to extract
and hide compliance fragments. In the work of [10], we have implemented a human-
centric, model-driven framework for process view transformations based on the
process language BPEL [7]. The BPEL standard provides a brief introduction to the
notion of abstract processes. Abstract processes are either used to hide language
elements of an executable process or they are not yet fully specified and serve as a
process template. In our framework we currently use the metamodel of Abstract
BPEL processes to represent compliance fragments. Originally, our framework has
been designed to enable a semi-automatic generation of public processes to facilitate
efficient process outsourcing as we discuss in [12]. However, in the following we
show how to exploit and extend this framework to support also extraction and hiding
of compliance fragments.

4.1 Principles of the Process Views

The process view transformation for fragment extraction which we propose requires a
manual preparation step before the actual automated transformation can take place. In
this preparation step the structures of the process that should be extracted have to be
manually tagged for preservation. When we translate this to the example discussed in
Section 3 then all structures related to checking up on appointment conflicts have to
be tagged. In [10] we have shown how to extend a process design tool (Eclipse BPEL
Designer [4]) to provide end-user support for this task. Figure 6 shows how this
extension enables the user to add an annotation to selected activities via the context
menu. The result of this step is a tagged process.

In addition to tagging, transformation rules which steer the transformation
(described in detail in Section 4.2) have to be specified. These rules indicate which
process constructs (targets) should be transformed, and which particular
transformation operation should be performed (actions). The tagging step eases the
definition of such rules, as targets can then be easily defined based on the annotations
made. If no annotations are available, then construct attributes like activity name,
portType etc. have to be used to select the targets.

Fig. 6. Extension of the Eclipse BPEL Designer [4] for Annotation of Activities

Eventually, transformation actions are applied to the process, based on the
transformation rules and the tagged input process. This results in a process view, i.e.
in our extraction example in an abstract process containing only the preserved
compliance fragment for checking up on appointment conflicts. The proceeding of
extraction is depicted in Figure 7.

Fig. 7. Viewing Application Principle

For the implementation of the functionality for fragment hiding we have to extend
this framework by another component, which we call rule generator, see the right part
in Figure 7. The rule generator takes the fragment that should be hidden as input.
Translated to our example, the compliance fragment for checking up on appointment
conflicts would be such an input. For each activity and control structure in the
fragment a rule for its omission is being generated. The generated rules are passed to
the transformation component, which applies them to the input process. This
transformation results in a process view that does not contain the input fragment
anymore. Applied to our example, each activity of the checking up on appointment
conflicts fragment would be omitted while preserving control dependencies.

4.2 Specification of the Process View Transformation

We have designed a rule language with a simple grammar which is on the one hand
easy to handle, but on the other hand also capable of describing complex
transformation statements. With this language a view transformation can be specified
as a list of transformation rules. Each rule can target multiple constructs and trigger
multiple transformation actions to be applied to these constructs. The language can be
easily extended by new actions, parameterization options or new targeting
possibilities. Instead of designing a new language from scratch, we could have also
used (or extended) existing transformation languages like QVT (Query / View /
Transformation) or ATL (ATLAS Transformation Language). However, these well-
established languages are already very powerful and finding the minimal
requirements a language for process view transformations has to meet was one of our
research interests.

A transformation specification has the following structure:
<rules> <!-- an ordered list -->
 <rule>* <!-- multiple rules may be contained -->
 <actions/> <!-- which actions have to be applied -->
 <targets/> <!-- to which constructs -->
 </rule>
</rules>

The <actions> element denotes which actions have to be applied. It contains at

least one <action> element. All nested child actions are executed in the order in
which they are specified. If an action cannot be performed, e.g. if no construct is
being addressed, the action will be skipped. Our framework currently supports three
actions that can be used:

i. actionOmit: Omitting an arbitrary construct, i.e. the construct is removed
from the process. If an activity is omitted, then existing control
dependencies are being preserved.

ii. actionOpaque: Transforming an activity into an opaque activity [7], i.e. the
activity is not removed completely but all implementation details are
hidden.

iii. actionSetAttributeTo: Changing the value of an attribute of an arbitrary
construct. If the value is set to NULL, the attribute is being removed.

The <targets> element is used to indicate the target constructs that should be

affected by an action. Child elements can either be logical connectors (<or>, <and>, or
<not>), or target elements. Logical connectors can be used to combine the different
target elements. Our framework currently supports the following targeting
possibilities:

i. tag: Targeting based on annotations, e.g. activities annotated with the tag
“preserve”.

ii. attribute: Targeting based on name-value pairs of XML attributes.
iii. type: Targeting based on the XML element type.

We can use the rule language to specify a general transformation rule for the extraction of
compliance fragments, assuming that the parts of the compliance fragment are annotated with
the tag “preserve”. The rule for extraction instructs the transformation to omit all structures
which do not belong to the compliance fragment:

<rules>
 <rule name="extractFragment" apply="true">
 <actions>
 <actionOmit preserveChildren="true"/>
 </actions>
 <targets>
 <not>
 <tag tagName="preserve" />
 </not>
 </targets>
 </rule>
</rules>

For the hiding of a compliance fragment we use a rule generator to automatically create the
required rules. For each construct contained in the input fragment, we generate a rule for its
omission. The implementation of the omit action preserves consistency of the resulting view.
The generated rules are based on the following scheme:

<rule name="omit%CONSTRUCT-NAME%" apply="true">
 <actions>
 <actionOmit preserveChildren="true"
 preserveTransitionConditions="false"/>
 </actions>
 <targets>
 <attribute attributeName="name" value="%CONSTRUCT-NAME%" />
 </targets>
</rule>

We currently use a name-based matching for the hiding of fragments. Our
framework also allows a matching based on unique identifiers though. Parameters in
the elements allow refining the transformation, e.g. preserveChildren preserves
nested structures from being removed while its parent construct is omitted. This is
especially related to structured activities in BPEL like a <forEach> loop.
PreserveTransitionConditions maintains all transition conditions on links in a flow
(the graph-based component in BPEL) while only hiding the targeted activity itself.

4.3 Execution of the Process View Transformation

The specification and implementation of transformation actions on BPEL constructs
is quite complex as the overall result of the transformation has to be consistent. The
omission of activities with multiple control dependencies or the preservation of nested
activities is one of the main challenges. For example, when omitting a <sequence> the
<sequence> itself and all child activities are removed, except for the ones tagged with
the preserve-tag. However, the result of such a transformation can be ambiguous
without further information provided by the user. In this case, we decided to use a
<flow> as a container because this construct can contain activities without any control
dependencies. For this reason this construct is ideal to put the preserved activities

“loosely” inside. An enhanced version could show different possible results to the
user from which he may choose the one he actually intended. Furthermore, a new
<scope> that encloses the <flow>-container is required. This is necessary because
variables defined locally may need to be preserved as well, e.g. if the <sequence>
contains a structure that defines variables locally.

Another example for ambiguity of the transformation is an activity which should
be removed from a <flow> as depicted in Figure 8: Figure 8a depicts the original
process, where activity X should be omitted. Figure 8b is a consistent solution to this
as it maintains control dependency, though it increases complexity. Figure 8c and 8d
suggest alternatives, however original semantics are changed compared to 8a.
Figure 8e illustrates a solution which inhibits X from being completely removed, but
provides simplicity.

Fig. 8. Omission of Activities in a Flow

Transition conditions have to be handled in order to preserve the semantics of the
process. To be consistent, omission can be realized by removing activity X and all
adjoining links. Afterwards new links with appropriate transition conditions are
inserted. To preserve full coherence of activities, new links containing properly
concatenated transition conditions must be inserted to connect every activity to all
subsequent activities (see Figure 8b). The dropping of non-needed links is performed
similarly to accomplish more adequate visualization (see Figure 8c and 8d), even if
semantics are changed and transition condition handling becomes quite complex. In
our current implementation we have solved this problem as shown in Figure 8e. It
states that X will not be removed completely when executing omission on this
activity. X is transformed into an <opaqueActivity> automatically.

To speed up post-editing of the resulting process views, cleaning functions are
implemented. It is likely that unnecessary constructs are still left in the process which
should be removed automatically after the transformation rules have been applied. For
instance, unused <variables> or <partnerLinks> may not longer be needed, because
corresponding activities have been omitted or transformed into opaque activities. In
addition, structured activities without any nested activities can be removed, e.g.
removing an empty <sequence> is reasonable. The implementation offers a set of
predefined functions to clean up the process.

5 Limitations of the Approach to Manage Compliance

The framework we presented can be extended by further transformation actions, e.g.
an aggregation of multiple activities can be used for process abstraction which might
ease the work of an auditor. Furthermore, many of the concepts we presented are not
limited to the BPEL language and can thus be applied to other process languages as
well. The process views which we proposed support the management of compliance
fragments. Compliance fragments are capable of addressing compliance requirements
which are related to control flow and activities within a process, but it has to be said
that compliance management in general comprises many more aspects.

A fragment of a process can neither ensure compliance of the humans which are
involved in that process, nor can it control the applications and services which it
orchestrates. For instance, a requirement that demands storage of travel expense
reports for at least ten years is related to a database which is external to the process.
Besides, executing a process for over ten years would not be efficient. Even when
focusing only on business process automation, compliance already has an impact on
all involved components and related tasks: design, verification, technical refinement,
execution, and monitoring. However, many compliance requirements (e.g. related to
security, privacy or trust) have an impact on all of the components in the IT
infrastructure of a company, which also includes ERP or CRM systems. In addition,
compliance also has an impact on the business processes which run outside of the IT
systems. This necessitates further methods to manage compliance. For instance,
employees have to internalize the code of business conduct of a company - interviews
can be used to check if the employees adhere to this code. Thus, compliance
fragments are just one aspect of control in an overall solution to compliance
management.

6 Conclusion and Future Work

In this paper we discussed the major challenges of managing compliance fragments in
business processes. The main contributions of this work comprise a technique for
extracting and hiding of compliance fragments based on process view
transformations. Moreover, we have discussed a practical implementation of this
technique for a language that is commonly used in industry for Web service
orchestration. Currently we are extending our framework in order to enable automatic
recognition of compliance fragments. Therefore, we utilize algorithms for sub-graph
matching in order to recognize compliance fragments that are integrated in a process.
With this technique we support an auditor with a tool to check if a particular
compliance requirement is addressed and how it is integrated into a process.
Furthermore, we are implementing support for compliance fragment integration in
order to cover the whole life cycle of compliance fragment management: Extraction,
integration, highlighting and hiding. As supporting infrastructure we are developing a
view designer component that eases the specification of transformation rules, and a
repository for storage and retrieval of processes and compliance fragments [13].

Acknowledgements
The work published in this article was partially funded by the COMPAS project
(http://www.compas-ict.eu) under the EU 7th Framework Programme ICT Objective,
contract no. FP7-215175.

References

1. D. Avrilionis, P.Y. Cunin, C. Fernström. OPSIS: a View Mechanism for Software Processes
which Supports their Evolution and Reuse. Proc. of the 18th International Conference on
Software Engineering (ICSE), IEEE Computer Society, 1996.

2. D. Caprasse, J. Laurent, W. Reed. Three Lines of Defence: How to take the Burden out of
Compliance. In: European Insurance Digest, April 2008.

3. F. Daniel, F. Casati, V. D'Andrea, S. Strauch, D. Schumm, F. Leymann, E. Mulo, U. Zdun,
S. Dustdar, S. Sebahi, F. de Marchi, M.S. Hacid. Business Compliance Governance in
Service-Oriented Architectures. Proc. of the 23rd IEEE International Conference on
Advanced Information Networking and Applications (AINA), IEEE Press, 2009.

4. Eclipse BPEL Project. Eclipse BPEL Designer, 2010. http://www.eclipse.org/bpel/
5. R. Eshuis, P. Grefen. Constructing Customized Process Views. In: Data & Knowledge

Engineering, 64(2):419– 438, Elsevier, 2008.
6. Object Management Group (OMG). Business Process Modeling Notation Version 1.2.

OMG Standard, 2009.
7. Organization for the Advancement of Structured Information Standards (OASIS). Web

Services Business Process Execution Language Version 2.0. OASIS Standard, 2007.
8. S. Rinderle, R. Bobrik, M. Reichert, T. Bauer. Business Process Visualization – Use Cases,

Challenges, Solutions. Proc. of the International Conference on Enterprise Information
Systems (ICEIS), pages 204–211, INSTICC Press, 2006.

9. D. Schumm, D. Karastoyanova, F. Leymann, J. Nitzsche. On Visualizing and Modelling
BPEL with BPMN. Grid and Pervasive Computing Workshops: 4th International Workshop
on Workflow Management (ICWM), IEEE Press, 2009.

10. A. Streule. Abstract Views on BPEL Processes. Diploma thesis no. 2889, Universität
Stuttgart, Fakultät Informatik, Elektrotechnik und Informationstechnik, 2009. .
ftp://ftp.informatik.uni-stuttgart.de/pub/library/medoc.ustuttgart_fi/DIP-2889/DIP-2889.pdf

11. D. Schumm, F. Leymann, Z. Ma, T. Scheibler, S. Strauch. Integrating Compliance into
Business Processes: Process Fragments as Reusable Compliance Controls. Proc. of the
Multikonferenz Wirtschaftsinformatik (MKWI’10), 2010.

12. D. Schumm, F. Leymann, A. Streule. Process Viewing Patterns. Accepted for publication at
the 14th IEEE International EDOC Conference (EDOC 2010), IEEE Computer Society
Press, 2010.

13. Fragmento - Fragment-oriented Repository. Online Documentation, 2010. .
http://www.iaas.uni-stuttgart.de/forschung/projects/fragmento/start.htm

14. Basel Committee on Banking Supervision. International Convergence of Capital
Measurement and Capital Standards: A Revised Framework, 2006.

15. S. Sackmann, M. Kähmer. ExPDT: A Policy-based Approach for Automating Compliance.
In: Wirtschaftsinformatik (WI), 50(5), pp. 366-374, Gabler, 2008.

16. Z. Ma, W. Lu, F. Leymann. Query Structural Information of BPEL Processes. Proc. of the
4th International Conference on Internet and Web Applications and Services (ICIW), 2009.

17. D. Schumm, O. Turetken, N. Kokash, A. Elgammal, F. Leymann, W.v.d. Heuvel. Business
Process Compliance through Reusable Units of Compliant Processes. Accepted for
publication at the 1st Workshop on Engineering SOA and the Web (ESW’10), Springer,
2010.

	cover-Springer.pdf
	Foliennummer 1

	cover-Springer.pdf
	Foliennummer 1

