
Institute of Architecture of Application Systems

Composite Process View Transformation

1 Institute of Architecture of Application Systems,
University of Stuttgart Germany

David Schumm1, Jiayang Cai1, Christoph Fehling1,
Dimka Karastoyanova1, Frank Leymann1, and Monika Weidmann2

University of Stuttgart, Germany

2 Fraunhofer Institute for Industrial Engineering IAO
Stuttgart, Germany

@inproceedings{Schumm11,
author = {David Schumm and Jiayang Cai and Christoph Fehling

and Dimka Karastoyanova and Frank Leymann and Monika Weidmann},
title = {Composite Process View Transformation},
booktitle = {Proceedings of the 12th International Conference on

E‐Commerce and Web Technologies (EC‐Web 2011)},
 {2011}

:

year = {2011},
publisher = {Springer}

}

© 2011 Springer-Verlag.
www.springerlink.com

Composite Process View Transformation

David Schumm1, Jiayang Cai1, Christoph Fehling1,
Dimka Karastoyanova1, Frank Leymann1, and Monika Weidmann2

1 Institute of Architecture of Application Systems, University of Stuttgart,

Universitätsstraße 38, 70569 Stuttgart, Germany
{Schumm, Fehling, Karastoyanova, Leymann}@iaas.uni-stuttgart.de

2 Fraunhofer-Institut für Arbeitswirtschaft und Organisation (IAO),
Competence Center Electronic Business, 70569 Stuttgart, Germany

Monika.Weidmann@iao.fraunhofer.de

Abstract. The increasing complexity of processes used for design and
execution of critical business activities demands novel techniques and
technologies. Process viewing techniques have been proposed as means to
abstract from details, summarize and filter out information, and customize the
visual appearance of a process to the need of particular stakeholders. However,
composition of process view transformations and their provisioning to enable
their usage in various scenarios is currently not discussed in research. In this
paper, we present a lightweight, service-oriented approach to compose modular
process view transformation functions to form complex process view
transformations which can be offered as a service. We introduce a concept and
an architectural framework to generate process view service compositions
automatically with focus on usability. Furthermore, we discuss key aspects
regarding the realization of the approach as well as different scenarios where
process view services and their compositions are needed.

Keywords: Process View, Service Composition, BPM.

1 Introduction

Increasing adoption of Business Process Management (BPM) technologies in industry
over the last decade revealed that managing process complexity is a key issue, which
needs to be addressed. A large business process may contain hundreds of
activities [2], requiring advanced methods and techniques for managing such
complexity. Process view transformations have been proposed by various research
groups as a means to address this problem. In previous work [4], we have assembled
the existing concepts and approaches in the field of process view transformations and
distilled them into a unified generic representation in terms of commonly used
transformation patterns. As a consequence, we understand a process view as the
graphical presentation of the result obtained after specific process view
transformations have been applied to a process model. The purpose of these
transformations is manifold. It ranges from summarizing information in order to

reduce complexity, filtering information to abstract from details that are irrelevant for
a particular analytical task, translating information to provide a perspective for a
particular stakeholder, up to linking information to augment a process with related
data like runtime information about the execution status.

While algorithms and concepts for process view transformations have been well-
established in business process management research [5, 8, 10, 11], there is a lack of
investigation of their applicability in practice, their composability, and their integra-
tion into given toolsets. We identified approximately 20 different process views so
far [4, 6, 7], which provide advanced functions to support process design, process
deployment, process monitoring, and process analysis. Based on self-experience as
scientific methodology, we observed that these process views have two fundamental
aspects in common, which are essential for the work discussed in this paper. The first
aspect is that these process views can be composed to form complex view
transformations. For example, a process can be organized according to the distribution
of participants (both human beings and services). This process view can be used as
input to another transformation that includes the current status of a particular instance
of this process. The output of this transformation can be further transformed to show
only the activities which are incomplete. Figure 1 illustrates this composition of
process views. The second, fundamental aspect concerns the way in which process
view compositions are defined: There is little need for complex control constructs like
conditions, loops or parallelism. Instead, a sequence of process view transformations
typically is being performed, as exemplified in Figure 1. Therefore, we propose
defining process view compositions by specifying sequences of service invocations,
each representing a particular process view transformation.

Fig. 1. The result of an exemplary composition of process views: Distribution of participants
involved in an input process (A), augmented with the current status of an instance (B), reduced
to incomplete activities (C).

The key contribution of this paper is a concept for high-level definition and
automatic enactment of service compositions used for composite process view
transformation. The concept is intended to empower non-expert users to create
pipeline-like service compositions as sequences of service invocations. The approach
is to limit the expressiveness of the Business Process Execution Language (BPEL) [1]
to a small subset, which allows automatically generating compositions of process
view services, out of user-defined composition specifications. Thereby composite
process view transformations can be defined that are tailored to the information needs
of the different process stakeholders. Moreover, these composites can be provisioned
automatically, which is of great advantage. We advance the state of the art regarding
the applicability of process view transformation in practice by means of
corresponding methods, concepts, and tool support.

The paper’s further structure is the following: In Section 2 we introduce a general
architecture for service-based composition of process view transformations on a high
level. Based on this architecture, Section 3 describes a detailed walk through the
different development stages of process view service compositions. These stages
embrace building elementary process view services, defining how to compose them,
and generating an executable service composition. We discuss advanced aspects and
challenges in Section 4. In Section 5 we point out related work in this field. Section 6
concludes the paper.

2 Architecture for a Process View Management Framework

In this section, we present an architecture for a process view management framework,
the platform for composition of process view services. We list contained components,
describe their interrelation, and give a brief overview of their functionality and
purpose. A walk through the key realization aspects of this architecture can be found
in Section 3.

We assume three basic roles we target our framework at. The Process View Service
Developer is responsible for designing and implementing the core functions of the
approach, i.e. the process view services. The Information Designer is the user and
operator of the process view management framework. He/she registers available
process view services and creates meaningful view definitions which describe
composite process view transformations on a high level of abstraction. Out of these
view definitions, executable service compositions are generated automatically by the
framework. The Process View Consumer finally uses the (composed) services for the
creation of views on concrete processes for his/her particular information needs.

Workflow Engine

Web Client (Browser)

Transformation
Management

Application Server

Data Abstraction Layer

View
Management

View
Designer

Rule
Designer

Transformation
Registry

Service
Composition

Rule
Designer
Rule

Designer

Web Service
Engine

View
Composer

Service
Composition

Process View
Service

Composition

Process View
Service

Management
Functions

Design Time Runtime

Transformation
Interfaces

View
Definitions

Service
Compositions En

te
rp
ri
se
 S
er
vi
ce
 B
us
 (E

SB
)

Process View
Service

Fig. 2. Architecture for a process view management framework.

As shown in Figure 2, we use a three-tier setting for the design time of process
view service compositions. Design time is shown on the left part and runtime is
shown on the right part of the figure. The upper tier in the design time part of the

architecture provides Web-based functions for managing composite process view
transformations. In this tier, the Transformation Management provides functions for
registering and deregistering Process View Services (see the runtime part in Figure 2).
The View Management provides selection menus for creating, deleting, opening and
deploying existing view definitions. It may also provide an interface for invocation of
process view service compositions which have been deployed to the workflow engine.
A view definition represents a composition of process view services on a high level.
This definition is abstract and not executable. A view definition is basically a
sequential ordering of selected operations of registered process view services. The
View Designer is the component which is actually used to design and modify view
definitions. As process view services need to be parameterized, a set of Rule
Designers is required. To support the information designer in coping with a diversity
of formats, we propose to use the concept of domain-specific languages (DSL) here.

The middle tier represents the backend. The Transformation Registry handles
requests related to transformation management, extracts interface information and
passes them to the Data Abstraction Layer; the Management Functions provide
analogous functionality for requests related to view definitions; the View Composer is
one of the core components of the framework, responsible for generating an
executable Process View Service Composition out of a view definition. This
composition orchestrates the core of the approach, the Process View Services. We
propose the use of BPEL [1] as format for executable service compositions.

The generated service compositions can be stored locally, can be registered as
process view services for recursive compositions, and can be deployed using the Web
Service Engine component. This engine integrates with the Web service interfaces
provided by the Workflow Engine, shown in the right-hand side in Figure 2. The
runtime performs the execution of the generated Process View Service Compositions.

3 Key Realization Aspects

In this section, we examine the key aspects of our approach from a realization point of
view. These aspects concern the development of process view services (Section 3.1),
the creation of view definitions (Section 3.2), and the generation of process view
service compositions (Section 3.3).

3.1 Development of Process View Services

Process view services are the components which implement process view
transformation functionality. They are exposed to the outside using an interface
description language like the Web Services Description Language (WSDL). In the
following we abstract from the inner implementation of these services and focus on
their exposure to the outside and how to control the transformations they perform.

As proposed in our previous work [4] and depicted in Figure 3, the following terms
are essential in process view transformations: The Original Process is the process
model that is subject to a View Transformation which results in a Process View. We
use the term Target Set to indicate the process structures in the input process model

which should be affected by an elementary transformation Action. The action
represents the transformation function to be applied. Examples for such functions as
described in [4] are structural transformations (aggregation, omission, alteration,
abstraction, insertion), data augmentation transformations (runtime, human-assisted,
calculated), presentation transformations (appearance, scheme, layout, theme), and
transformations with multiple input processes.

Fig. 3. Process view transformation terminology.

Together, a target set and an action make up a Transformation Rule. Multiple rules
can be applied after one another as in batch processing. For example, a first rule may
state to omit all activities for variable assignment. A second rule may state to make
service invocation activities “opaque” to state that something is happening at that
place, while hiding detailed information. A global Configuration is useful to set
general parameters valid for all rules. For instance, a parameter in the configuration
can switch “executability” on or off. This parameter refers to the preservation of
process structures and artifacts that are mandatory for executability, like an instance-
creating <receive> in BPEL. To support the exposure of process view transformation
functionality as a service, as well as to ease their composition, we propose a common
structure of transformation instructions as depicted in Figure 4.

Transformation Instructions

Configuration

Transformation Rules
Transformation Rule

Targets selection statement
Transformation to be applie

Parameter /
Value

Transformation Rule

Targets selection statement
Transformation to be appli

Transformation Rule
Targets selection statement
Actions to be applied

Parameter /
Value

Parameter
and Value

Fig. 4. Common structure of instructions for a process view service.

However, our main finding with respect to realization of process view
transformations, their exposure as a service, their consumption, and their composition,
is that there is no ultimate format or language for describing concrete transformation
rules and configuration parameters. Instead, each process view service will likely
have a different set of parameters, and will likely use different languages to control
the transformation. For example, the target selection statement for a service which
removes a process fragment from a given input process will likely be a process

fragment itself, while a process view service that provides general filtering
functionality will more likely use regular expressions or SQL-like statements. Also, if
the same functionality is offered by different vendors, the parameter formats of
services may differ. Furthermore, the vocabulary of transformation actions that can be
performed will probably differ. As a conclusion, we argue that the concept of DSLs
applies here, so each service may use different formats and types of parameters. The
architecture presented in Section 2 considers this conclusion with multiple Rule
Designer components, generated automatically from the service interface description,
or directly provided by the process view service vendor.

3.2 Creation of View Definitions

For the presented approach, the main interest lies in the mere use of service offerings
as well as in the ability to create own, custom compositions of available services
which are possibly provided by different vendors. Besides the functionality that the
service needs to offer, the selection of services can be based on process view
transformation quality constraints like guarantee of the executability of the process
view, or by cost, processing speed, etc. as described in the vision of Web service
ecosystems [15] which makes the notion of service procurement explicit. According
to [15], a Web service ecosystem is envisioned as a “logical collection of Web
services whose exposure and access are subject to constraints characteristic of
business service delivery.”

Process view services need to be registered in the process view management
framework before they can be used in the definition of process view service
compositions. As service registration is a common feature in service-oriented
application design, we do not discuss this aspect in detail here. The registration of
available process view services and hence the information about their input parameter
types allows specifying a composition of these services. Parameter and type
information is essential for parameterization and configuration of the process view
services on a high level. With the term “View Definition” we denote a quite simple
form of such composition, with ease-of-use as focal point. We fundamentally
constrain the expressiveness of Web service compositions by only allowing the
definition of a linear sequence of process view service invocations. The flexibility we
provide is focused on the interconnection of output and input parameters of
consecutive service invocations. However, process view service compositions which
require complex control structures, cycles, and conditional branches cannot be
defined in this high-level manner. For such cases the direct usage of process
languages like BPEL without an abstraction level on top as we propose here is one
possibility (see also Section 4.1). Nevertheless, a lightweight, pipeline-like
composition approach may be beneficial for all those cases in which a linear sequence
of service invocations is sufficient. Process code can be generated automatically out
of the high-level view definition, which is much easier to create than executable
process models.

A view definition can be created by iteratively searching and selecting a registered
process view service to be used. From this selection one of the operations offered by
that service can be chosen. Thereby, a list of process view service invocations comes

into being, see Figure 5 (left). The outputs produced by these process view services
can be used as input in subsequent service invocations. Thus, the services can be
connected by defining data flow between them.

In the creation of view definitions, we can distinguish dynamic and static
parameters. Dynamic parameters are used to make a view definition (and the resulting
process view service composition) configurable. This allows adjusting the behavior of
the composite view transformation in each invocation without changing and re-
deploying its original definition. In contrast, static parameters are used to define
constant settings which are valid for all invocations of the resulting process view
service composition. For example (see also Figure 5), the first service invocation may
augment a process (provided as dynamic parameter “Original Process”) with
information related to the recognition of a process fragment that is critical for security
(customized through the dynamic “Parameter A”). The second service invocation
shall extract this fragment, using static transformation instructions specified in the
static “Parameter B”. The subsequent service invocation takes the original process
and the extracted fragment as input, and produces a process view in which this
fragment is omitted. The final service invocation in this exemplary view definition
produces an SVG rendering of this process, configured statically with “Parameter C”.
The output “Process View” is finally returned.

Fig. 5. Definition of a composition of process view services on a high level.

Service invocations can be reordered to obtain a view definition that is free of
forward dependencies which would make the view definition invalid. When this
dependency criterion is met and all service invocation parameters are either connected
to dynamic parameters, static parameters, or previous outputs, then this view
definition can be used to generate an executable process view service composition.

3.3 Generation of Executable Process View Service Compositions

For the generation of an executable process view service composition several artifacts
are necessary. The view definition describes the sequencing of service invocations
and the connection of inputs, outputs, and parameters. The WSDL documents of

involved process view services contain type definitions and addresses of the services
required for execution. Furthermore, as the generated service compositions all have
the same basic structure, a template for the service composition is useful. This
template consists of a BPEL process skeleton and a WSDL skeleton. The template is
instantiated during the generation of executable code from the view definition. The
deployment descriptor, which is also required for execution, is rather dependent on
the selected services and therefore needs to be generated dynamically.

Pr
oc

es
s

Vi
ew

Se
rv

ic
e

C
om

po
si

tio
n

Tr
an

sf
or

m
at

io
n

S
er

vi
ce

 A

Tr
an

sf
or

m
at

io
n

S
er

vi
ce

 B

Fig. 6. Generated composition of process view services.

The structure of a generated process view service composition is illustrated in
Figure 6. In this figure, the Business Process Model and Notation (BPMN) standard
[16] is used to visualize the BPEL process, though considering implicit data flow as
used in BPEL. The illustration in BPMN is intended to explain the concept, only
BPEL code needs to be generated (or: executable BPMN). The process view service
composition can be invoked with a request that contains all dynamic parameters,
represented by a <receive createInstance=”yes”>. Static parameters are set at
process instantiation. For each service invocation specified in the view definition, an
<assign> activity prepares the input parameters and a subsequent <invoke> activity
invokes the operation of a service. Finally, the output - the process view - is returned
to the service composition consumer by a <reply>. Such a generated service
composition can be packaged by the View Composer component (see Section 2) and
be stored in a database, or deployed to a workflow engine to enable execution. A
service composition that has been deployed to a workflow engine can also be
registered as a new process view service and thus enable recursive compositions.

We developed a prototype of a framework for the management of composite
process view transformations on BPEL processes. In comparison to the concept of
view definitions presented in Section 3.2, our prototype does not support arbitrary
connection of inputs and outputs of services yet. Thus, data mediation is not
considered. Currently, one can only configure that a service should use the output
produced by the directly prior service invocation as an input for one of its particular
parameters. Experiments with our process view services and evaluation of the
framework for generating executable service compositions based on BPEL showed
that arbitrary connection of output parameters is not necessary in many cases. For
instance, the view definition described in Section 3.2 can be implemented that way.
Such lightweight compositions can be used to refine a process view step-wise,
forming pipeline-like service compositions.

4 Advanced Aspects and Challenges

There are advanced aspects and challenges that need to be addressed before a
productive use of (composite) process view services is possible. One aspect is related
to the expressiveness of languages involved in the approach (Section 4.1). These
languages have significant impact on the flexibility, ease-of-use, and configurability
of composite process view transformations. The other aspect we discuss is related to
security and privacy (Section 4.2).

4.1 Expressiveness of Involved Languages

Process view services may offer domain-specific languages (DSLs) that allow their
parameterization and configuration. To ease usability and to make the approach
accessible to a large user group, we also proposed to have a view definition language
on top of the execution language which can be used to easily describe sequences of
process view service invocations and wire outputs and inputs of these invocations.
The question is: How much expressiveness of the involved languages can be provided
while still considering ease of use?

Domain-specific languages – The concept of DSLs for parameterizing process
view services we presented in Section 3.1 could be extended to provide more
flexibility. For example, a rule could conditionally be executed based on the number
of activities, control links, or variables contained in an input process. Furthermore, a
process view service provider could offer a Web-based rule designer tool to ease the
specification of transformation parameters and configuration. Such tools could also be
an aid to avoid the definition of inconsistent transformation instructions. A challenge
in this lies in the usage of dynamic parameters in a view definition (see Section 3.2).
If dynamic parameters have been specified for the view definition, then a new DSL
needs to be created to ease invocation of the newly created service composition. This
DSL may be composed out of components of the DSLs of the services that are
involved in the composition, defining a composition of language profiles.

View definition language – We proposed a view definition to be a sequence of
service invocations, where only data flow can be specified in a flexible manner. A
major issue in the specification of the data flow is the data mediation that is needed
when parts of complex outputs produced by services are used later on as input
parameters in invocation of other process view services. To be able to deal with this
issue without in-depth technical expertise, a graphical editor is needed to support
assigning input and output values. Furthermore, to make the approach more powerful,
invocations of process view services could be made conditional, e.g., based on the
properties of the process to be transformed. Another feature would be to allow a
service invocation to be performed multiple times, for instance invoking an
abstraction service until a process contains less than 50 activities. However, if such
features are provided there also need to be mechanisms that assure that (i) parameters
are properly initialized before any service invocation and (ii) the process is properly
routed through the composition, also considering “dead paths” which may arise from
conditional service invocations. Standardized process view service parameters which

form some kind of basic format for inputs and outputs would make the realization of
such features easier.

4.2 Security and Privacy

Well-designed and efficient business processes are an important competitive
advantage. Therefore, the corresponding process models are critical intellectual
property. If a company uses process view services of third-party providers, business
secrets have to be protected. In the following, we discuss three methods to secure the
invocation of third-party process view services by (i) hosting them in secure
environments, (ii) obfuscation of business process models, and (iii) establishment of a
trust relationship between process view service providers and the company
using them.

Hosting in secure environments – providing a process view service as an installable
package, for example on a CD, allows hosting the service in a private, secure
environment. However, service users have to invest in licenses upfront and have to
manage updates and patches. Especially, if the service is used seldom, on-demand
access and pay-per-use is more desirable.

 Obfuscation of business process models – prior to sending process models to
insecure process view services, other, internal process view services could be used for
process model obfuscation. For example, activity names can be replaced with random
identifiers, additional activities and control flow can be added etc. After
transformation, an internal deobfuscation service needs to be invoked. This approach
can be employed to securely use untrustworthy services. A shortcoming is that it is
limited to view transformations that do not require information about process model
semantics. Examples for transformations applicable for this approach are aggregation
of sequential activities or filtering of particular activity types.

Establishing trust relationships – trust relationships can be established through
contracts making providers liable to ensure a certain degree of privacy and
security [14]. This method is most likely to be used in practice.

5 Related Work

From academia, significant progress has been made in the field of process views.
Process views are applied to various different languages like Event-driven Process
Chains (EPC), Petri Nets, BPMN [16], and also to the BPEL [1]. Typically, scientific
works on process views concentrate on one particular application scenario. For
instance, in [5] process views are used to support service outsourcing by generating
“public views”. The work presented in [12] focuses on aggregation of activities by
making use of part-of relations between activities. A work by Reichert et al. [13]
discusses the application of process views to provide access control for process
models. In Web service environments, process views can be applied to simplify Web
service orchestrations specified in BPEL by omission of activities and aggregation of
structures of a BPEL process, as discussed for example in [8]. Our own process view
implementations also operate on BPEL processes – in [7] we proposed a process view

to remove or extract process structures. However, composition of process views and
their provisioning as a service is currently not discussed in research. We argue that all
these mentioned process view approaches are well applicable for usage as a software
service in the manner we proposed. For instance, a generated public view on a process
can subsequently be transformed with advanced aggregation techniques.

Most of the approaches proposed in the field of process views so far have their
focus on structural changes of a process model. Recently, graphical aspects and
process appearance are taken more and more into account in order to create
perspectives which are tailored to the needs of particular stakeholders and scenarios.
In this manner, the authors of [17] distinguish between the concrete syntax
(appearance) and the abstract syntax (structure) of a process. They argue that changes
of the concrete syntax are well-suited to cope with the increasing complexity of
process models. Their findings build on literature study, tool and language evaluation,
and remarkably, on works related to human perception such as [18]. However, further
research is required to cover all aspects of a service-based composition of functions
that especially provide transformations of the concrete syntax.

Regarding service composition, the term Composite as a Service (Caas) [9] or
Composition as a Service [3] denotes the concept of having a layer on top of Software
as a Service (SaaS), which applies process-based application design principles.
Defining or executing a composition can be provided as a service which can be
offered by a vendor or by a third party. By specifying own compositions, vendor
offerings can be combined with services developed in-house. For example, the
augmentation of a process with information related to the distribution of activities to
the sites of a company may be performed by an in-house service, while an advanced
graphical rendering may be provided by a third party.

6 Conclusion

In this paper, we presented an approach for defining and enacting lightweight,
service-based applications that form complex process view transformation
functionality which can be offered as a service. We introduced an architectural
framework and discussed key aspects regarding the realization of such an architecture
as well as different scenarios where process view services and their compositions
apply. We see our approach as an aid to find a balance between simplicity-of-use on
the one hand, and providing flexibility and expressiveness on the other hand, when
defining composition of process view services in particular and also when defining
service compositions per se. While BPEL provides full flexibility which may be
required for specific service compositions, the lightweight approach we presented in
this paper is limited, but easy to apply even with little technical skills.

Acknowledgments. The authors D.S. and D.K. would like to thank the German
Research Foundation (DFG) for financial support of the project within the Cluster of
Excellence in Simulation Technology (EXC 310/1) at the University of Stuttgart.
Many thanks go to the EC-Web reviewers for their valuable feedback.

References

1. OASIS: Web Services Business Process Execution Language Version 2.0, 2007.
2. J. Vanhatalo, H. Völzer, F. Leymann. Faster and more focused Control-flow Analysis for

Business Process Models though SESE Decomposition. Proceedings of the 5th International
Conference on Service-Oriented Computing (ICSOC), Springer, 2007.

3. M. Blake, W. Tan, F. Rosenberg. Composition as a Service, IEEE Internet Computing,
14(1):78–82, IEEE, 2010.

4. D. Schumm, F. Leymann, A. Streule. Process Viewing Patterns. Proceedings of the 14th
IEEE International EDOC Conference (EDOC 2010), IEEE Computer Society Press, 2010.

5. R. Eshuis and P. Grefen. Constructing Customized Process Views. In: Data & Knowledge
Engineering, 64(2):419–438, Elsevier, 2008.

6. D. Schumm, T. Anstett, F. Leymann, D. Schleicher. Applicability of Process Viewing
Patterns in Business Process Management. Proceedings of the International Workshop on
Models and Model-driven Methods for Service Engineering (3M4SE 2010), IEEE Computer
Society Press, 2010.

7. D. Schumm, F. Leymann, A. Streule. Process Views to Support Compliance Management in
Business Processes. Proceedings of the 11th International Conference on Electronic
Commerce and Web Technologies (EC-Web), Springer, 2010.

8. X. Zhao, C. Liu, W. Sadiq, M. Kowalkiewicz, S. Yongchareon. Implementing Process
Views in the Web Service Environment, WWW Journal. 14(1), pp.27-52. Springer, 2011.

9. F. Leymann. Cloud Computing: The Next Revolution in IT. Proceedings of the 52th
Photogrammetric Week, 2009.

10. A. Polyvyanyy, S. Smirnov, M. Weske. Business Process Model Abstraction. In:
International Handbook on Business Process Management, Springer, 2009.

11. R. Bobrik, M. Reichert, T. Bauer. View-Based Process Visualization. Proceedings of the 5th
International Conference on Business Process Management (BPM'07), Springer, 2007.

12. S. Smirnov, R. Dijkman, J. Mendling, M. Weske. Meronymy-based Aggregation of
Activities in Business Process Models. Proceedings of the 29th International Conference on
Conceptual Modeling, Springer, 2010.

13. M. Reichert, S. Bassil, R. Bobrik, T. Bauer. The Proviado Access Control Model for
Business Process Monitoring Components. Enterprise Modelling and Information Systems
Architectures - An International Journal. German Informatics Society (GI), 2010.

14. J. Spiller: Privacy-enhanced Service Execution. In: Proceedings of the International
Conference for Modern Information and Telecommunication Technologies, 2008.

15. A. P. Barros, M. Dumas: The Rise of Web Service Ecosystems, IT Professional, 8(5):31–37,
IEEE Computer Society, 2006.

16. Object Management Group (OMG): Business Process Model and Notation (BPMN),
Version 2.0, OMG Document Number formal/2011-01-03, January 2011.

17. M. La Rosa, A. ter Hofstede, P. Wohed, H. Reijers, J. Mendling, W. van der Aalst.
Managing Process Model Complexity via Concrete Syntax Modifications. In: IEEE
Transactions on Industrial Informatics, 7(2):255–265, IEEE, 2011.

18. D.L. Moody. The “Physics” of Notations: Toward a Scientific Basis for Constructing Visual
Notations in Software Engineering. IEEE Transactions on Software Engineering, 35:756–
779, IEEE, 2009.

