
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{lastname}@iaas.uni-stuttgart.de

Formalizing the Cloud through
Enterprise Topology Graphs

Tobias Binz, Christoph Fehling, Frank Leymann,
Alexander Nowak, and David Schumm

© 2012 IEEE Computer Society. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of
this work in other works must be obtained from the IEEE.

@inproceedings {INPROC-2012-18,
 author = {Tobias Binz and Christoph Fehling and Frank Leymann and Alexander
 Nowak and David Schumm},
 title = {{Formalizing the Cloud through Enterprise Topology Graphs}},
 booktitle = {Proceedings of 2012 IEEE International Conference on
 Cloud Computing},
 publisher = {IEEE Computer Society Conference Publishing Services},
 month = {June},
 year = {2012}
 }

:

Institute of Architecture of Application Systems

Formalizing the Cloud through Enterprise Topology Graphs

Tobias Binz, Christoph Fehling, Frank Leymann, Alexander Nowak, David Schumm
Institute of Architecture of Application Systems

University of Stuttgart
Stuttgart, Germany

lastname@iaas.uni-stuttgart.de

Abstract—Enterprises often have no integrated and
comprehensive view of their enterprise topology describing
their entire IT infrastructure, software, on-premise and off-
premise services, processes, and their interrelations. Especially
due to acquisitions, mergers, reorganizations, and outsourcing
there is no clear ‘big picture’ of the enterprise topology.
Through this lack, management of applications becomes
harder and duplication of components and information
systems increases. Furthermore, the lack of insight makes
changes in the enterprise topology like consolidation,
migration, or outsourcing more complex and error prone
which leads to high operational cost. In this paper we propose
Enterprise Topology Graphs (ETG) as formal model to describe
an enterprise topology. Based on established graph theory
ETG bring formalization and provability to the cloud. They
enable the application of proven graph algorithms to solve
enterprise topology research problems in general and cloud
research problems in particular. For example, we present a
search algorithm which locates segments in large and possibly
distributed enterprise topologies using structural queries. To
illustrate the power of the ETG approach we show how it can
be applied for IT consolidation to reduce operational costs,
increase flexibility by simplifying changes in the enterprise
topology, and improve the environmental impact of the
enterprise IT.

Keywords-enterprise topology; enterprise topology graph;
cloud; formalization; search; IT consolidation.

I. INTRODUCTION
IT costs as well as the complexity of IT landscapes are

increasing rapidly [1] due to reorganizations, new
technologies, mergers, acquisitions, and outsourcing. The
constant change often causes a loss of insight into the
enterprise topology which hinders its continuous
improvement and makes an overall IT strategy and
governance hard to realize. The lack of a consistent and
machine-readable enterprise topology slows down adaptation
to new requirements and market demands, integration, and
IT consolidation. All of these are major challenges for IT
departments and management alike, crucial challenges to
stay competitive [2]. For example, research has shown that
especially for mergers and acquisitions integration of IT is
one of the key success factors [3][4]. IT consolidation, which
has a high potential for cost savings, is today widely realized
by introducing server virtualization in datacenters. The scope
of consolidation can even be broadened to include all on-
premise and off-premise infrastructure, middleware, and
application components. However, due to the high

complexity and number of dependencies new approaches are
required, not only to IT consolidation, but also to make
complex IT landscapes manageable and flexibly changeable.

In this paper we define the Enterprise Topology Graph
(ETG) which enables different stakeholders to capture and
manage all relevant IT components, spanning private,
community, public, and hybrid clouds, within an
organization. We propose the ETG as a graph-based model
comprised of nodes and edges of arbitrarily customizable
types, holding an extensible set of properties. IT components
of an enterprise are employed as nodes that are linked
together with their logical, functional, and physical
relationships represented by edges in the graph. In this paper
we show that exploiting graph theory through ETG has the
potential to solve a wide range of problems in cloud research
and enterprise computing. Approaches defined as formal
graph or set algorithms can be applied efficiently to the ETG,
which reflect a consistent representation of the realities in the
enterprise topologies. To illustrate the ETG approach, we
present a methodology for consolidation in enterprise
topologies to support IT departments mastering IT
consolidation in a generic, reusable, and efficient way.

We applied the following research design: We started
with a literature survey which is summarized in Section V.
The survey showed that existing topology models lack
formality and focus on modeling applications. Based on
summarization and abstraction of existing concepts we
defined a first formalization of an Enterprise Topology
Graph. We then used this formal model to define,
implement, and evaluate an exemplary application: ETG-
based IT consolidation. This practical application demanded
to also define a search algorithm on ETG and it guided us to
further refine the graph model. The resulting main
contributions of this paper are therefore (i) a formalized,
graph-based model for enterprise topologies which enables
the practical application of graph theory to cloud and
enterprise computing problems. (ii) An efficient search
algorithm, which is able to locate structures in the ETG. (iii)
Based on this foundation, we present a methodology for
ETG-based IT consolidation, which addresses consolidation
on infrastructure, platform, and software layer.

The remainder of this paper is structured as follows: We
present Enterprise Topology Graphs along their formal
definition and ETG example in Section II. In Section III, we
show an efficient search algorithm on the ETG. As
exemplary application of ETG we present the consolidation
methodology in Section IV. The literature survey we
conducted is reviewed in Section V. In the summary and

outlook in Section VI we describe future work to increase the
applicability of ETG, e.g., specifying reusable operations.

II. THE ENTERPRISE TOPOLOGY GRAPH
An Enterprise Topology Graph (ETG) is a graph-based

model for enterprise topologies capturing all entities of
enterprise IT and their logical, functional, and physical
relationships. The conceptual model in Figure 1 depicts
generic nodes and edges, which can be typed and refined to
precisely define their semantics. Nodes and edges are both
entities which can have an arbitrary number of properties. An
ETG is a set of entities and their mapping onto types. Node
types and edge types are structured in trees which are defined
globally, i.e., they are not part of a definition of a particular
ETG, but referenced in it and extensible. Segments are
subgraphs of an ETG, representing a certain connected part
of an ETG by holding only a subset of its entities.

Figure 1. Conceptual Model of Enterprise Topology Graph

Representing enterprise topologies as formal graph
enables the application of all knowledge in graph analysis
and processing to improve the enterprise architecture.
Without having done a detailed evaluation about this, we
expect ETG to have hundreds of thousands of nodes. The
ETG definition presented in our work is mainly influenced
by TOSCA, the OASIS Topology and Orchestration
Specification for Cloud Applications [5]. As of today,
TOSCA seems to be the most complete, non-proprietary
specification for describing applications and their
management. ETG generalize TOSCA concepts to extend
their purpose of describing application models towards the
representation of enterprise topology instances. TOSCA
represents a blueprint of a particular application, whereas on
instance level ETG reflect many different (TOSCA)
application instances present in the enterprise topology.

A. Node Types and Edge Types
Each entity is typed to bring domain-specific knowledge

to the generic ETG entities. To establish a taxonomy
between different levels of abstraction in types, we propose
to structure them in trees, as shown in Figure 2. In [6] we
successfully applied type trees to assigning functionalities
applicable to certain types of entities to the type tree. When

Figure 2. Exemplary extract of node type tree and edge type tree

applicable to a complete subtree the functionality is assigned
to the respective node, e.g., start and stop to the Application
Server node in Figure 2. Furthermore, type-specific aspects
are assigned to leaves in the tree, e.g., port configuration to
the Tomcat node in Figure 2. Based on our research we
identified three fundamental edge types: hosted-on, depends-
on, and communicates-with. For nodes, the types are much
more diverse.

The usage of types enforces certain properties of their
entities. This includes, for example, common functionality
(like being an application server, hosting applications of a
certain type, or a relational database, managing data in
tables), attributes (like id, name), or offered operations with a
predicable behavior to the outside (like start, stop, suspend).
These properties are not explicitly modeled in the ETG, but
tools using an ETG can rely on the fact that entities of a
certain type follow the requirements of this type.

Additionally, this typing system helps to generalize and
refine the graph. Generalization, for example, could replace
detailed types with more general ones (e.g., replace type
Linux with Operating System) or aggregate certain nodes and
edges to reduce the ETG’s complexity. For instance, an ETG
can be made more abstract by aggregating all nodes from
platform level and below. Refinement adds more details to
the ETG by retrieving more information about an entity or
assigning a more detailed type. In general, mechanisms to
adjust the level of information abstraction depending on the
application scenario are ongoing work.
Definition I (Node Types and Edge Types)

The sets 𝑁𝑜𝑑𝑒𝑇𝑦𝑝𝑒𝑠 and 𝐸𝑑𝑔𝑒𝑇𝑦𝑝𝑒𝑠 contain the
available types for nodes and edges respectively.
Definition II (Relation of Types)

Types are structured as trees, whereas each type may be
present in multiple branches. This structure of types is
denoted in the function 𝑝𝑎𝑟𝑒𝑛𝑡𝑇𝑦𝑝𝑒𝑠, whereas the inverse
function is 𝑐ℎ𝑖𝑙𝑑𝑇𝑦𝑝𝑒𝑠. The functions for 𝐸𝑑𝑔𝑒𝑇𝑦𝑝𝑒𝑠 are
defined analogical.

𝑝𝑎𝑟𝑒𝑛𝑡𝑇𝑦𝑝𝑒𝑠:𝑁𝑜𝑑𝑒𝑇𝑦𝑝𝑒𝑠 → 2𝑁𝑜𝑑𝑒𝑇𝑦𝑝𝑒𝑠

𝑐ℎ𝑖𝑙𝑑𝑇𝑦𝑝𝑒𝑠:𝑁𝑜𝑑𝑒𝑇𝑦𝑝𝑒𝑠 → {𝑥 | 𝑥 ∈ 𝑁𝑜𝑑𝑒𝑇𝑦𝑝𝑒𝑠},
𝑝 ⟼ {𝑐 | 𝑝𝑎𝑟𝑒𝑛𝑡𝑇𝑦𝑝𝑒𝑠(𝑐) = 𝑝}

Entity

Node

Edge Type

Edge

Node Type

Property
Enterprise
Topology

Graph

Segment

Defined globally (not part of the ETG)

from

*

1 1

*

subgraph-of subset-of

*

**

*

refinement-ofrefinement-of

has-type has-type* *

11

set-of properties

to

*
*

1

1

Operating System

Windows

…
Linux

Application Server

Tomcat

…
JBoss

RDBMS

MySQL

…
PostgreSQL

Nodes Types
Hosted-on

WAR-on-AS

…
BPEL-on-Engine

Depends-on

Network config.

…
Start-after

Communicates-with

Web service call

…
JDBC-connection

Edge Types

… …

B. Entities
The Enterprise Topology Graph is a directed, possibly

cyclic graph that is constructed out of two basic entities,
nodes and edges. The graph is directed to denote in which
direction the semantic meaning introduced through edge
types has to be interpreted. The ETG may be cyclic due to
the ability to capture a wide variety of semantic information.
Definition III (Nodes)

The set 𝑁 contains all the nodes of an ETG. A node
represents everything that is part of an enterprise topology.
Nodes represent the building blocks that applications need to
operate sufficiently, for instance a specific workflow, a Web
service, a user interface, a middleware component, or
infrastructure element. Like in other modeling approaches,
the granularity determining what is represented in the model
is up to the modeler or extraction algorithm analyzing the IT
landscape. We advocate that ETG should contain all
information available and thus should be as fine-grained and
detailed as possible. The more fine-grained an ETG is
modeled the better results may be achieved during search,
consolidation, and other tasks executed on ETG.

The function 𝑛𝑜𝑑𝑒𝑇𝑦𝑝𝑒 associates one node with a
specific type from the set of 𝑁𝑜𝑑𝑒𝑇𝑦𝑝𝑒𝑠.

𝑛𝑜𝑑𝑒𝑇𝑦𝑝𝑒:𝑁 → 𝑁𝑜𝑑𝑒𝑇𝑦𝑝𝑒𝑠,𝑛 ⟼ 𝑡

Definition IV (Edges)
The set 𝐸 ⊆ 𝑁 × 𝑁 contains directed relationships

between two nodes. The type of an edge defines its
semantics, for example, denoting that one node is ‘hosted-
on’ another node. We do not constrain the use of edges
between nodes, thus, some ETG may have cycles as
described above. For usability reasons we define the function
E which returns the set of incoming and outgoing edges of a
Node. Additionally we define 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝐸𝑑𝑔𝑒𝑠 and
𝑜𝑢𝑡𝑜𝑔𝑖𝑛𝑔𝐸𝑑𝑔𝑒𝑠 analogous if only edges with this specific
direction are of interest.

𝐸:𝑁 → 𝑁 × 𝑁,𝑛 ⟼ {(𝑓, 𝑡)|(𝑓, 𝑡) ∈ 𝐸 ∧ (𝑓 = 𝑛 ∨ 𝑡 = 𝑛)}

𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝐸𝑑𝑔𝑒𝑠:𝑁 → 𝑁 × 𝑁,
𝑛 ⟼ {(𝑓, 𝑡)|(𝑓, 𝑡) ∈ 𝐸(𝑛) ∧ 𝑡 = 𝑛}

The function 𝑒𝑑𝑔𝑒𝑇𝑦𝑝𝑒 associates one node with a specific
type from the set of 𝐸𝑑𝑔𝑒𝑇𝑦𝑝𝑒𝑠.

𝑒𝑑𝑔𝑒𝑇𝑦𝑝𝑒:𝐸 → 𝐸𝑑𝑔𝑒𝑇𝑦𝑝𝑒𝑠, 𝑒 ⟼ 𝑡

Definition V (Entities)
The set 𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 = 𝑁 ∪ 𝐸 holds all the nodes and edges

of an ETG. This set is used by the following definitions.

C. Properties
Properties capture the domain-specific knowledge of

ETG entities as key-value-pairs. They are used to represent
properties of the entity, information augmented by tools or
algorithms, implementation artifacts, or non-functional
requirements. For instance, an ETG can be augmented with
runtime information indicating workload gathered from
monitoring. The different types of properties are uniquely

identified and distinguished by URIs, which specify the
structure and data type of the value.
Definition VI (Property Keys)

As property keys we use URIs [7] which enable both,
hierarchical structuring and extensibility. Properties can be
grouped using the structure of the URI.

𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝐾𝑒𝑦𝑠 = {𝑢𝑟𝑖 | 𝑢𝑟𝑖 ∈ 𝑅𝐹𝐶3986}

Definition VII (Property Values)
Valid attribute values are represented by the set

𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑉𝑎𝑙𝑢𝑒 which explicitly includes structured strings,
for example, XML documents or URIs, and binary data like
a Java Web Archive (WAR). Multiple values can be
condensed into one value by using a type-specific list format.
Definition VIII (Properties)

The generic properties function returns the attributes of
an entity. The different kind of data stored in properties is
not distinguished by using different functions. Property keys
define the semantic of the value and what data type can be
expect from the value.

𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠:𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 → 𝐸𝑛𝑡𝑖𝑡𝑦𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠
⊆ 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝐾𝑒𝑦𝑠 × 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑉𝑎𝑙𝑢𝑒𝑠

D. Final Definitions
Based on the preceding definitions the Enterprise

Topology Graph and its Segments are defined as follows:
Definition IX (Enterprise Topology Graph)

The Enterprise Topology Graph consists of the set of
nodes, edges, and their type mappings. The ETG only
includes the assignment function of node types and edge
types (𝑛𝑜𝑑𝑒𝑇𝑦𝑝𝑒 and 𝑒𝑑𝑔𝑒𝑇𝑦𝑝𝑒), but not the set of types
(𝑁𝑜𝑑𝑒𝑇𝑦𝑝𝑒𝑠 and 𝐸𝑑𝑔𝑒𝑇𝑦𝑝𝑒𝑠) because they represent a
global set which is not bound to a specific ETG.

𝐸𝑇𝐺 = {𝑁,𝐸,𝑛𝑜𝑑𝑒𝑇𝑦𝑝𝑒, 𝑒𝑑𝑔𝑒𝑇𝑦𝑝𝑒}

This definition not only allows the application of algorithms
based on graph theory, but also algorithms with low
complexity operating on the sets of nodes and edges.
Definition X (Segment)

A segment is a part of an ETG, which is called subgraph
in graph theory. The number of entry and exit nodes is not
limited, i.e., it may be greater than one. A segment’s nodes
must be connected.

𝑆𝑒𝑔𝑚𝑒𝑛𝑡 = {𝑆𝑁 ⊆ 𝑁, 𝑆𝐸 ⊆ 𝐸,𝑛𝑜𝑑𝑒𝑇𝑦𝑝𝑒, 𝑒𝑑𝑔𝑒𝑇𝑦𝑝𝑒}

Segments are the concept to refer to parts of an ETG and the
corresponding edges. Segments can be used to reduce
complexity of algorithms, whose runtime typically decreases
with the number of processed entities. Also for human
readers, interested only in a particular aspect included in the
ETG, work is made easier through segmentation.

E. ETG Example
Figure 3 illustrates the ETG approach by depicting one

segment of a larger ETG. The ETG segment contains two
virtual machines hosting nodes of the type Tomcat

Figure 3. Exemplary ETG

application server and relational database management
systems (RDBMS). On the application server two Web
services are hosted with one of them connecting to the
RDBMS. Some nodes have properties, for example, the
virtual machines are located in the European Union (EU) and
are augmented with utilization. A graphical notation for ETG
is not explicitly defined yet. Therefore we use an intuitive
notation explained in the legend of Figure 3.

III. SEARCH IN ENTERPRISE TOPOLOGY GRAPHS
An essential algorithm required frequently for the

management of large ETG is search. The approach for
search in ETG we present in the following does not only
locate certain nodes or properties by comparing strings, but it
allows using ETG segments as queries. Consequently, the
algorithm enables finding complex structures in the ETG.
For example, we can locate all nodes hosted on outdated
Tomcat application servers. As shown in Figure 4 the query
contains a node of the type Tomcat with the property
version=5.5. This query could be implemented in code, but a
generic search algorithm specifying this query as segment,
i.e., in the same model the ETG is already defined, provides
a comprehensible, reusable, and generally applicable
solution. To increase flexibility, we offer wildcards for the
types and properties of entities, indicating to the search
algorithm that any value is valid. Figure 4 depicts the
aforementioned query visually, including one wildcard as
type of the node hosted-on the Tomcat node. When applying
this query to the ETG example in Figure 3, the two results
would be the two Web services in the upper left of the figure.

A. Search Algorithm
The input of the algorithm is an ETG (cf. definition IX) to

search on and a query in form of an ETG segment (cf.
definition X). The output is a set of zero or more segments
representing the nodes and edges in the graph that match the
search query.

Figure 4. Search query defined as ETG segment locating arbritrary typed

nodes which are hosted on Tomcat servers with version 5.5

The described ETG problem can be reduced to the
problem of graph isomorphism evaluating the equality of
two graphs. Subgraph isomorphism decides if a graph S (the
search query) is isomorph to a subgraph of G (the ETG).
This is the case if any node in S can be mapped to one node
in G and each edge existing between two nodes in S also
exists between these nodes in G [8]. Graph isomorphism is
well-researched and we list corresponding algorithms in
Section V. We apply subgraph isomorphism to searching on
ETG through identifying all subgraphs, i.e., search results, of
G matching S. Our implementation is built upon the VF2
algorithm presented by Cordella et al. in [9] with some
extensions discussed in the following. VF2 solves the
problem of (sub) graph isomorphism for directed graphs and
was proven to be efficient for large graphs [9] which
qualifies it for usage in ETG. Core of the algorithm is a
recursive function deciding if an isomorphism was found or
if the current state can be extended towards an isomorphism.
Special care is given to the recursive function regarding
spatial complexity. The search tree is pruned by a set of
syntactical feasibility rules which are the main contribution
of VF2 compared to its predecessor.

In the following we describe how we implemented and
optimized VF2 to suit ETG requirements:

(i) In ETG edges are typed and may have properties
which must be inspected during search. VF2 does not regard
edges and evaluates them always together with the two
connected nodes. To overcome this we represent ETG edges
as nodes and introduce plain directed edges between nodes
representing ETG nodes and nodes representing ETG edges.
With this, we gain the ability to formulate complex searches
towards edges without changing the core graph algorithm.

(ii) VF2 checks the validity of states with a set of 5
syntactical feasibility rules. To verify the semantics of the
respective domain the function Fsem is defined. For our use
case we implement Fsem to check if the type and properties
on entities match the search query. For a specific type a node
being a semantic match must be of this type or any subtype
of the given type, i.e., ⋃ 𝑐ℎ𝑖𝑙𝑑𝑇𝑦𝑝𝑒𝑖�𝑛𝑜𝑑𝑒𝑇𝑦𝑝𝑒(𝑠)�∞

𝑖=1 . If
no restriction on the type of the entity should be applied a
wildcard type matching all other types is used. If properties
are provided in the search query their values must exactly
match to be valid. Additionally, a wildcard can be used as
value which is used to enforce the existence of a property.
Otherwise, if a property is not defined on a node of S, it may
or may not exist on the respective node of G. Formally Fsem
is defined as follows:

𝐹𝑠𝑒𝑚:𝑁𝑆 × 𝑁𝐺 → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}, (𝑠,𝑔) ⟼
𝑛𝑜𝑑𝑒𝑇𝑦𝑝𝑒(𝑔) ∈ �𝑊𝐼𝐿𝐷𝐶𝐴𝑅𝐷 ∪ 𝑛𝑜𝑑𝑒𝑇𝑦𝑝𝑒(𝑠) ∪
⋃ 𝑐ℎ𝑖𝑙𝑑𝑇𝑦𝑝𝑒𝑖�𝑛𝑜𝑑𝑒𝑇𝑦𝑝𝑒(𝑠)�∞
𝑖=1 � ∧ ∀(𝑘, 𝑣) ∈

𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠(𝑠): 𝑣 = 𝑊𝐼𝐿𝐷𝐶𝐴𝑅𝐷 ∨ (𝑘, 𝑣) ∈ 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠(𝑔)

In future work we would like to extend Fsem to support
more complex conditions on property values than wildcard
and equality, for example, to state that a value starts with a
certain string or matches a certain regular expression.

Tomcat

Virtual
Machine

RDBMS

Utilization=0.5
Location=EU
…

Virtual
Machine

Utilization=0.1
Legislation=EU
…

Version=5.5
…

User=u1
Passwd=pwd2
…

Web
service

Web
service

hosted-on

hosted-onhosted-on

JDBC-
connection

Edge

Node

Properties

* hosted-on Tomcat

Version=5.5

(iii) Instead of returning the first result found and
stopping the algorithm we implemented our search algorithm
to store the result to a list and continue search for further hits.

(iv) VF2 generates a large (i.e., |𝑁𝑆| ∗ |𝑁𝐺|) set of node
pairs (the candidate pair set) to which the feasibility rules
are applied. Many unnecessary computations are done with
mappings which cannot be extended to a result. This can be
improved by choosing a start node out of S. The key
property of the search query is that each node contained in
the graph S must exist in each of the results. Based on this
we select one node in S as start node and apply the semantic
feasibility rules only to the node pairs created by combining
the start node with each node in the ETG. This results in a
much smaller number of initial mappings to process (|𝑁𝐺|).

We argue that the probability that extending the mapping
fails is higher for nodes in S with many restrictions. This is
the case when a type is defined instead of using a wildcard
type, restrictions on properties are imposed, and the node has
lots of edges. To let unnecessary search branches fail fast,
instead of processing them, we propose using a heuristic to
choose a start node with many restrictions. We define the
function which evaluates the nodes in the search segment
based on the number of restrictions they impose. The node
with the highest rating is selected and used as start node.

𝑟𝑎𝑡𝑖𝑛𝑔: 𝑁𝑜𝑑𝑒𝑠 → 𝑖𝑛𝑡,𝑛 ⟼ 5 ∗ (𝑛𝑜𝑑𝑒𝑇𝑦𝑝𝑒(𝑛) ≠
𝑊𝐼𝐿𝐷𝐶𝐴𝑅𝐷) + |𝑝𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠(𝑛)| + 2 ∗

(|𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝐸𝑑𝑔𝑒𝑠(𝑛)| + |𝑜𝑢𝑡𝑔𝑜𝑔𝑖𝑛𝑔𝐸𝑑𝑔𝑒𝑠(𝑛)|)

The last optimization (iv) highlights the advantage that
algorithms on ETG can switch between using the sets of
entities and the graph structure of the entities.

The complexity of our search algorithm based on VF2 is
𝒪(𝑒! ∗ 𝑒), 𝑒 = |𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠𝐺| in the worst case [9] and 𝒪(𝑒) in
the best case. We improved the best case which is finding a
single node in the ETG by introducing the selection of the
start node (iv). In this case the start node or nodes in G are
already the search results and only one pass over all ETG
nodes is required.

B. Evaluation Results
We evaluated our search algorithm with a set of ETG

samples to analyze its performance characteristics for
different types of search queries. Both, the formal ETG
definition and search algorithm, have been implemented
using Java. Table 1 shows the runtime in seconds we
achieved on a standard notebook.

TABLE I. RUNTIME IN SECONDS OF ETG SEARCH QUERIES

Search Query ETG samples
#nodes 100 1,000 10,000 100,000
edges 250 2,500 25,000 250,000

(i) Node of arbritrary type with
a certain property 0.003 0.003 0.007 0.019

(ii) Arbritrary typed node
hosted on typed node (Figure 4) 0.005 0.005 0.015 0.020

(iii) Complex structure of typed
nodes and edges (11 entities) 1.625 1.692 1.710 1.760

(iv) Same as query (iii) but
nodes are not typed 0.130 0.499 4.257 40.423

These measurements show that even for complex
structured queries the runtime of the search algorithm only
increases slowly with the size of the sample ETG, as long as
there are not that many wildcards contained in the query.
Query (iv), with wildcards used for all node types, shows a
different characteristic. Due to the low number of restrictions
it is closer to subgraph isomorphism than the other queries.

IV. ETG APPLICATION EXAMPLE:
CONSOLIDATION OF IT INFRASTRUCTURES

Consolidation in general is the process of aggregating or
merging multiple similar entities into one. Consolidation in
the context of cloud computing is currently mainly focused
on virtualization, i.e., the consolidation of multiple physical
servers as virtual machines on one physical server [10].
However, performing consolidation on the enterprise
topology enables to broaden the scope of consolidation to
consider infrastructure, platform, and software layer.

The methodology we propose identifies consolidation
possibilities and provides pluggable extension points to
automate the actual consolidation through type-specific
implementations. A generic automated consolidation is not
possible due to type-specific configurations or requirements.
For example, one cannot generally assume that the migration
of an application running on application server A onto
application server B, which hosts similar applications, is
generally possible. The information needed to decide this
may be contained in the ETG, but the evaluation must be
done by a domain expert or a domain-specific algorithm.

All domain-specific consolidation knowledge is captured
in a so-called consolidation strategy, in reference to the
strategy pattern in programming [11]. As depicted in
Figure 5, a consolidation strategy consists of an extraction
query, a target query, and a strategy implementation, which
may be performed by a human expert or automation code.
The extraction query identifies candidate segments in the
ETG that a consolidation strategy is able to consolidate.
Beyond the identification of candidate segments in this
example, further properties like low utilization, outdated or
not supported software or hardware, insufficient quality of
service are applicable. The target query locates candidate
segments in the ETG where the consolidation candidates
might be migrated to. Based on type-specific knowledge and
evaluation the strategy implementation migrates the

Figure 5. Exemplary consolidation strategy consisting of two queries and

an implementation.

Segment to
Consolidate

Target ETG

Extraction QueryTarget Query Consolidation Strategy

Strategy Implementation

Tomcat
Version=7

* hosted-on Tomcat

Version=5.5

consolidation candidates to the identified target and adapts
the environment accordingly, for example, by reconfiguring
or removing nodes not used anymore.

A. Consolidation Methodology
Our consolidation methodology supports two scenarios:

First, consolidate a segment, segment to consolidate in
Figure 5, into the target ETG, as shown in Figure 5. This
may be applied during IT consolidation in reorganizations,
mergers, and acquisitions to integrate IT without creating a
high degree of duplication. Second, both queries can be
applied to one ETG to optimize the enterprise topology. The
exemplary consolidation strategy to illustrate our
methodology aims to consolidate outdated Tomcat
application servers from an acquired partner company whose
IT should be integrated into the existing enterprise IT.

The following methodology shows which steps a
consolidation strategy follows:

(i) Similarity – The extraction query, bottom right of
Figure 5, is used to find possible consolidation candidates in
the segment which should be consolidated. In our exemplary
consolidation strategy we would like to locate Tomcat nodes
of version 5.5. The target query, bottom left of Figure 5,
identifies possible consolidation targets in the ETG. In the
example we aim at improving the enterprise topology and
therefore restrict the Tomcats located by the target query to
version 7. Both queries are executed on the respective ETG
using the search algorithm presented in Section III.

(ii) Compatibility – The strategy implementation uses
domain-specific knowledge regarding functional and non-
functional aspects to determine which of the resulting
segments are compatible with respect to consolidation. In the
example the configuration and non-functional requirements,
e.g., the legislative area the infrastructure is located in, of the
Tomcat nodes must be compared to decide if an application
can be moved. In addition, the utilization of the
infrastructure, e.g., memory or CPU, and software, e.g.,
number of connections allowed per license, should be
considered to evaluate if the nodes in the target segment are
capable to host the nodes to be consolidated. For this, future
utilization must be estimated to ensure that none of the nodes
is over-utilized after the consolidation.

(iii) Environment – Components cannot be handled
independent of their environment and relations to other
components. In the ETG example in Figure 3, the
environment of the right Web Service would be the RDBMS.
In general, the environment includes aspects like networking
or physical locations, which determines accessibility,
security, and legislative implications of the component.
Additionally, there are a number of relations to other
components which must be analyzed, for example, databases
or Web services. These relations must be reestablished after
the consolidation, which might for instance require a
network reconfiguration, or that corresponding nodes are
also migrated by recursively invoking another consolidation
strategy. In any case, the references to the nodes must be
changed, i.e., the connection string to the database or Web
service must be adapted. This is processed by the

consolidation strategy, because the place this information is
stored depends on the node type.

(iv) Execution – After the consolidation is planned and
evaluated it must be translated into technical actions to
perform the actual consolidation. In our example the
respective applications and their data are migrated to the
target environment, dependencies to and from the
environment are updated, the application is started in the
target segment, and shut down and deprovisioned in the old
one. The details of this process depend on the used cloud
management system. The generation of automated
workflows out of the high level decision how to consolidate
certain components is an interesting field of future research.

(v) Progress – The consolidated parts are now marked
and the process is repeated using the available consolidation
strategies until everything has been consolidated or no
further consolidation is possible anymore.

B. Discussion
The methodology proposed in this section describes the

consolidation of components from a conceptual viewpoint in
order to illustrate how ETG can be used as a basis to tackle
challenges in cloud and enterprise computing.

Due to availability requirements some nodes must not be
hosted on the same physical infrastructure or must even be
located in different geographic regions. These and similar
optimization criteria are captured through edges with a
dedicated edge type. To document this non-functional
requirement the ETG is augmented with additional edges, to
make this information available to consolidation strategies.

One reason for the increased efficiency in the cloud is
multi-tenancy, which is realized through sharing resources
between multiple tenants. When sharing a physical machine
by running multiple virtual machines on it, the operating
system and middleware are duplicated for each tenant. If the
tenants are sharing the middleware, the overhead is reduced.
On the other side the isolation decreases accordingly, which
must then be enforced using appropriate mechanisms.
Consolidation strategies introduce resource sharing on the
highest possible layer, according to the cloud layers
software, platform, and infrastructure [12], to maximize the
savings of the consolidation. Another way to improve
consolidation is the use of so-called adapter which allows
hosting nodes on other nodes to which they have not been
compatible before, as described in [6].

V. RELATED WORK
The results of our literature survey are structured into two

sections: Section V.A observes how topologies and
enterprise architectures are currently modeled. Section V.B
presents the related work regarding search algorithms and
discusses current research in IT consolidation.

A. Models for Enterprise Topology
Enterprise Architecture Management (EAM) defines the

layers business, process, integration, software, and
infrastructure [13]. Two of the most important aspects are (i)
a holistic view with respect to all enterprise architecture
layers and (ii) the alignment of business and IT [14]. ETG

support this by representing nodes in the integration,
software, and infrastructure layer, and their dependencies.
Despite capturing technical details the presented search
algorithm and consolidation methodology show how ETG
can be used to achieve business goals. Fran et al. [15]
describe a domain-specific language based on the Meta
Modeling Language [16]: The IT domain-specific Modeling
Language (ITML) contains a fixed set of entities like
hardware, software, services, and processes, which can be
refined if needed, and a fixed set of relations. ETG are more
generic and enable modeling on multiple levels of
granularity while still providing strong typing through
structured node types and edge types, as presented in Section
II. Schweda [17] presents how to create tailored languages
capturing enterprise-specific aspects of enterprise
architectures by defining best practice building blocks. These
building blocks are on a high level of abstraction and may be
technically realized by a number of ETG entities in the
enterprise topology.

There are data models expressing dependencies of IT
infrastructure elements [20], these are unsuitable and
incomplete to express the whole enterprise topology. The
generality of the ETG, however, enables the mapping of
these data to ETG entities. Therefore, existing management
tools supporting CIM [20], SNMP [21], and so on may be
used to extract an ETG from a company’s infrastructure.

There are different approaches describing a (composite)
application: An application model which includes
dependency and deployment relations between components
is formalized in [22]. Mietzner [23] describes cafe which
supports modeling and deployment of composite
applications, formalized by a formal definition of an
application model. Leymann et al. [24] broadens this typing
model and adds labels (properties in the ETG definition) to
optimize the distribution of applications between clouds.
However, types are not structured, i.e., in contrast to our
work there is no relation between different types. The
Topology and Orchestration Specification for Cloud
Applications [5] (TOSCA) is a recently initiated
standardization initiative at OASIS to define the topology
and management aspects of applications. The presented ETG
definition is based on concepts of TOSCA, as detailed in
Section II, and able to include instances of application
models described in TOSCA. In essence, all these
approaches describe application models. ETG however
represent the enterprise topology including a number of
instance of these models. [25] presents an UML-based
approach to model application structures used in the scope of
topology discovery. The Service Component Architecture
(SCA) [26] composes applications out of services by
defining functional relations. Other relations, e.g., where a
service is deployed, are not captured. In software
architecture, design, and development languages like the
Acme architectural description language [18] and UML [19]
are used. However, they target mostly application
architectures and do not offer the formality we are looking
for. To be able to build the code fragments of the described
applications build tools like Apache Maven capture
dependencies between code artifacts, but are not able to

depict other relations, functional or logical. The presented
approaches either do not have a broad enough typing system,
which is crucial to bring different semantics found in
enterprise topologies to generic entities, or they do not
provide a formal model appropriate for enterprise topologies.
However, information included in the application models
may be used to augment the ETG.

B. Search and IT Consolidation
To solve the problem of (sub)graph isomorphism

different algorithms exist: Messmer [27] compares different
graph matching algorithms. The algorithm of Ullmann [28]
was already published in 1976 and improved, for example, in
[8]. McKay [29] solves the graph isomorphism problem by
transforming the graphs into a canonical data format. In
some cases though, its runtime is exponential. For search,
i.e., subgraph isomorphism, we used the VF2 algorithm in
[9], which argues to provide better performance in terms of
time and spatial complexity than Ullmann. The concise
listing of all these works shows how well-elaborated the
concepts in graph theory are. We take significant advantage
from that as these results are of enormous help for defining
ETG-based applications.

In EAM, consolidation efforts are mostly in the focus of
the business perspective. Buckl et al. [30], for instance,
describes patterns to merge and harmonize business
functionalities after mergers. Business IT alignment after
mergers and acquisitions is also addressed in [31]. This
approach states facts about the systems to be consolidated
and rules as relations between facts. Based on this,
predictions regarding the impact of business decisions to IT
can be made. On enterprise topology level, Speitkamp and
Bichler [32] describe an algorithm for server consolidation,
as well as heuristics which can be used if the number of
server is too high for the exact algorithm. [33] describes
server consolidation through virtualization. Consolidation on
platform or application level [12] is not investigated in detail
so far. [34] is a case study of a software consolidation in the
banking sector, merging three systems after multiple mergers
into one. Therefore, our approach broadens the consolidation
scope and additionally exploits the cloud characteristic of
decreasing costs if resources are shared on higher layers, i.e.,
if an application server is shared the efficiency is higher than
sharing only the physical server.

VI. SUMMARY AND FUTURE WORK
In this paper we presented Enterprise Topology Graphs

that allow us to comprehensively capture enterprise IT
landscapes. Based on the formal definition of ETG a generic
search algorithm has been introduced that enables identifying
structures in ETG. The presented consolidation methodology
identifies possible consolidation candidates and targets using
this search algorithm. Consolidation strategies are defined as
part of the methodology to capture domain-specific
knowledge required to evaluate consolidation possibilities
and to identify concrete actions for realizing them.

Formalizing enterprise topologies enables the application
of proven graph algorithms to problems in cloud and EAM
research, for example, VF2 [9] was used for the search

algorithm in Section III. Furthermore, the consolidation
methodology shows how a generic operation on the ETG
(search) can be easily combined into higher level
functionality (consolidation). Our vision is to have a broad
set of basic operations for the ETG as reusable building
blocks to simplify future research.

The areas to apply ETG are manifold: Future research
will address further cloud challenges like analyzing the
relation of business processes to the services represented in
enterprise topologies, outsourcing, migration, ensuring
compliance, modeling of new applications, and approaches
to gather relevant information to augment the ETG. Due to
the large number of entities in an ETG mechanisms have to
be researched to adjust the granularity and level of
abstraction of the graph. Depending on the problem domain
the ETG needs to be structured accordingly to only include
the required information.

ACKNOWLEDGMENT
This work was partially funded by the BMWi project

CloudCycle (01MD11023) and the BMWi project Migrate!
(01ME11055). D. Schumm would like to thank the German
Research Foundation (DFG) for financial support of the
project within the Cluster of Excellence in Simulation
Technology (EXC 310/1) at the University of Stuttgart.

REFERENCES
[1] J. Garbani, T. Mendel, and E. Radcliffe, “The Writing on IT’s

Complexity Wall,” Forrester Research, June 2010.
[2] A. Reichman, “Measuring The Cost Of IT Consolidation - Identifying

the Elements that Contribute to Economic Analysis,” Forrester
Research, Nov. 2007.

[3] D. Aponovich, “IT Integration seen as Key to Merger Success,” CIO
Update, Mar. 2002.

[4] M. Mehta and R. Hirschheim, “A Framework for Assessing IT
Integration Decision-making in Mergers and Acquisitions,”
Proceedings of the 37th Hawaii International Conference on System
Sciences, pp. 5–8, 2004.

[5] “Topology and Orchestration Specification for Cloud Applications
(TOSCA),” OASIS, Oct. 2011.

[6] T. Binz, F. Leymann, and D. Schumm, “CMotion: A Framework for
Migration of Applications into and between Clouds,” Proceedings of
the 2011 IEEE International Conference on Service-Oriented
Computing and Applications (SOCA), Dec. 2011.

[7] T. Berners-Lee, R. Fielding, and L. Masinter, “RFC 3986, Uniform
Resource Identifier (URI): Generic Syntax,” 2005.

[8] G. Valiente, “Algorithms on Trees and Graphs,” Springer, 2002.
[9] L. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (Sub)Graph

Isomorphism Algorithm for matching large Graphs,” Pattern Analysis
and Machine Intelligence, IEEE Transactions, vol.26, no.10,
pp. 1367–1372, Oct. 2004.

[10] M. Mishra and A. Sahoo, “On Theory of VM Placement: Anomalies
in Existing Methodologies and Their Mitigation Using a Novel
Vector Based Approach,” 2011 IEEE International Conference on
Cloud Computing (CLOUD), pp. 275-282, July 2011.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design Patterns:
Elements of Reusable Object-Oriented Software,” AddisonWesley
Professional, Nov. 1994.

[12] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,”
Information Technology Laboratory, Jul. 2009.

[13] R. Winter and R. Fischer, “Essential Layers, Artifacts, and
Dependencies of Enterprise Architecture,” Journal of Enterprise
Architecture, pp. 7–18, 2007.

[14] S. Buckl, A. Ernst, J. Lankes, F. Matthes, and C. Schweda, “State of
the Art in Enterprise Architecture Management,” Technische
Universität München, Chair for Informatics 19 (sebis), 2009.

[15] U. Frank, D. Heise, H. Kattenstroth, D. Fergusona, E. Hadarb, and M.
Waschkec, “ITML: A Domain-Specific Modeling Language for
Supporting Business Driven IT Management,” Proceedings of the 9th
OOPSLA workshop on domainspecific modeling, 2009.

[16] U. Frank, “The MEMO Meta Modelling Language (MML) and
Language Architecture,” ICB Research Report, University of
Duisburg-Essen, 2008.

[17] C. Schweda, “Development of Organization-Specific Enterprise
Architecture Modeling Languages Using Building Blocks,”
Dissertation, Technische Universität München, 2011.

[18] D. Garlan, R. Monroe, and D. Wile, “Acme: An Architecture
Description Interchange Language,” CASCON First Decade High
Impact Papers, ACM, pp. 159–173, 2010.

[19] “OMG Unified Modeling Language (UML),” Specification, Object
Management Group, 2007.

[20] “Common Information Model (CIM) Infrastructure,” Specification,
Distributed Management Task Force, 2010.

[21] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “RFC 1157: Simple
Network Management Protocol (SNMP),” Internet Engineering Task
Force, May 1990.

[22] T. Unger, R. Mietzner, and F. Leymann, “Customer-defined Service
Level Agreements for Composite Applications,” Enterprise
Information Systems, 2008 International IEEE Enterprise Computing
Conference (EDOC), 2009.

[23] R. Mietzner, “A Method and Implementation to define and provision
variable Composite Applications, and its usage in Cloud Computing,”
Dissertation, University of Stuttgart, Aug. 2010.

[24] F. Leymann, C. Fehling, R. Mietzner, A. Nowak, and S. Dustdar,
“Moving Applications to the Cloud: An Approach based on
Application Model Enrichment,” Intl Journal of Cooperative
Information Systems, World Scientific, 2011.

[25] V. Machiraju, M. Dekhil, K. Wurster, J. Holland, M. Griss, and P.
Garg, “Towards Generic Application Auto-discovery,” HP
Laboratories Palo Alto, Jul. 1999.

[26] “Service Component Architecture (SCA),” Specification, OASIS,
Mar. 2007.

[27] B.T. Messmer, “Efficient Graph Matching Algorithms for
Preprocessed Model Graphs,” PhD Thesis, Instute of Computer
Science and Applied Mathematics, University of Bern, 1996.

[28] J.R. Ullmann, “An Algorithm for Subgraph Isomorphism,” J. Assoc.
for Computing Machinery, vol. 23, pp. 31–42, 1976.

[29] B. D. McKay, “Practical Graph Isomorphism,” Congressus
Numerantium, vol. 30, pp. 45–87, 1981.

[30] S. Buckl, A. Ernst, H. Kopper, R. Marliani, F. Matthes, P.
Petschownik, and C. Schweda, “EAM Pattern for Consolidations after
Mergers,” Workshop on Patterns in Enterprise Architecture
Management (PEAM 2009), Kaiserslautern, pp. 67–78, 2009.

[31] B. Srivastava and P. Mazzoleni, “Business Driven Consolidation of
SOA Implementations”, 2010 IEEE International Conference on
Services Computing (SCC), pp. 49-56, 2010.

[32] C. Speitkamp and M. Bichler, “A Mathematical Programming
Approach for Server Consolidation Problems in Virtualized Data
Centers," Services Computing, IEEE Transactions, vol.3, no.4, pp.
266–278, Dec. 2010.

[33] B. Braswell, M. Newman, and C. Wiberg, “Server Consolidation with
VMware ESX Server,” IBM Redpaper, January 2005.

[34] P. Meinen and J. Overhoff, “Banking IT Consolidation in Time and
on Budget,” European Conference on Software Maintenance and
Reengineering, pp. 319–320, Mar. 2009.

	I. Introduction
	II. The Enterprise Topology Graph
	A. Node Types and Edge Types
	Definition I (Node Types and Edge Types)
	Definition II (Relation of Types)

	B. Entities
	Definition III (Nodes)
	Definition IV (Edges)
	Definition V (Entities)

	C. Properties
	Definition VI (Property Keys)
	Definition VII (Property Values)
	Definition VIII (Properties)

	D. Final Definitions
	Definition IX (Enterprise Topology Graph)
	Definition X (Segment)

	E. ETG Example

	III. Search in Enterprise Topology Graphs
	A. Search Algorithm
	B. Evaluation Results

	IV. ETG Application Example: Consolidation of IT Infrastructures
	A. Consolidation Methodology
	B. Discussion

	V. Related Work
	A. Models for Enterprise Topology
	B. Search and IT Consolidation

	VI. Summary and Future Work
	Acknowledgment
	References

