
Studienarbeit Nr. 2124

A Graphical Tool for
Modeling BPEL 2.0

processes

David Schumm

Studiengang:

Prüfer:

begonnen am:

beendet am:

CR-Klassifikation:

Betreuer:

Informatik

Prof. Dr. Frank Leymann

Dimka Karastoyanova

01.06.2007

11.10.2007

D.2.2, H.4.1, H.5.2

Institut für Architektur von Anwendungssystemen

Universität Stuttgart
Universitätsstraße 38
D - 70569 Stuttgart

 I

Table of Contents

Abstract .. 1

1. Introduction.. 2
1.1. Requirements ... 2
1.2. Notational Conventions... 2

2. Comparison of BPEL 1.1 and BPEL 2.0... 3
2.1. Static Analysis .. 3
2.2. Structure of a Business Process... 3

2.2.1. Process Attributes.. 3
2.2.2. Document Linking .. 4
2.2.3. Conditional Linking .. 5

2.3. Partner Link Types, Partner Links, Partners and Endpoint References 6
2.3.1. Partner Link Types... 6
2.3.2. Partner Links.. 6
2.3.3. Partners ... 7
2.3.4. Endpoint References ... 7

2.4. Data Handling ... 8
2.4.1. Variables.. 8
2.4.2. Assignment .. 11

2.5. Correlation .. 12
2.6. Basic Activities.. 13

2.6.1. Receive.. 13
2.6.2. Wait.. 14
2.6.3. Extension Activity... 14
2.6.4. Terminate / Exit Activity ... 15
2.6.5. Rethrow Activity ... 15

2.7. Structured Activities .. 16
2.7.1. If / Switch Activity ... 16
2.7.2. While Activity ... 17
2.7.3. repeatUntil Activity ... 18
2.7.4. forEach Activity .. 18

2.8. Scopes.. 19
2.8.1. Scope Initialization... 20
2.8.2. Message Exchange Handling .. 20
2.8.3. Process State Usage in Compensation Handlers.. 21
2.8.4. Invoking a Compensation Handler... 21
2.8.5. Fault Handlers ... 22
2.8.6. Event Handlers .. 23

2.9. Extensions .. 25
2.10. Abstract Processes... 26

2.10.1. Common Base ... 26
2.10.2. Opaque Language Extensions .. 26
2.10.3. Omission.. 26
2.10.4. Abstract Process Profiles... 26
2.10.5. Observable Behavior ... 27
2.10.6. Process Template.. 27

3. Structure of the Graphical Editor ... 28
3.1. Eclipse, EMF and GEF ... 28
3.2. General Structure of the Graphical Editor... 29
3.3. Structure of the Controller... 31
3.4. Basic Structure of the Data Model .. 32

 II

4. Analysis of the Extensibility of the Existing Tool... 33
4.1. BPEL 1.1 Data Model Generation .. 33
4.2. BPEL 2.0 Data Model Generation .. 33
4.3. BPEL 1.1 Data Model Integration ... 33
4.4. BPEL 2.0 Data Model Integration ... 34
4.5. BPMN Integration ... 34

4.5.1. Mapping BPMN to BPEL.. 34
4.5.2. Mapping BPEL to BPMN.. 35
4.5.3. Integration Approaches.. 35

5. BPEL 2.0 model integration .. 37
5.1. Integration overview.. 37
5.2. Integration of new attributes ... 38

5.2.1. BPEL output generator .. 38
5.2.2. Property View Provider .. 38
5.2.3. Abstract Activity Interface .. 39
5.2.4. Abstract Activity Implementation.. 40
5.2.5. Activity Implementation.. 40
5.2.6. Model Descriptor.. 41
5.2.7. Model Descriptor Implementation .. 42

5.3. Integration of new constructs.. 43
5.3.1. BPEL output generator .. 43
5.3.2. Validate Edit Part ... 44
5.3.3. Edit Parts factory ... 45
5.3.4. Editor palette.. 46
5.3.5. Insertion of icons for the activity into project .. 46
5.3.6. Commands on the Edit Part... 47
5.3.7. Display in the Property View.. 47
5.3.8. Registering at the Model Creation Factory .. 47
5.3.9. BPEL Model Factory .. 48
5.3.10. BPEL Model Factory implementation... 48
5.3.11. Model Descriptor.. 48
5.3.12. Model Descriptor Implementation .. 49
5.3.13. Adapting the process definition.. 51
5.3.14. Adapting the process implementation.. 51
5.3.15. Generating activity classes .. 53
5.3.16. Adapting the activity definition ... 53
5.3.17. Adaptation of the activity implementation .. 53

5.4. Removal of attributes and elements ... 56
5.4.1. BPEL output generator .. 56
5.4.2. Releated Construct Implementation... 56
5.4.3. Model Descriptor.. 57
5.4.4. Model Descriptor Implementation .. 57
5.4.5. Optional modifications.. 58

5.5. Attributes and nested XML elements.. 59
5.5.1. BPEL output generator .. 59

5.6. Activity renaming .. 60
5.6.1. BPEL output generator .. 60
5.6.2. Editor palette.. 60

6. Accomplished BPEL 2.0 Extensions ... 61
6.1. New constructs ... 61
6.2. New attributes... 62
6.3. Removed constructs ... 62
6.4. Removed attributes... 63
6.5. Attributes and nested XML elements.. 63

 III

6.6. Activity renaming .. 63
6.7. Bug-fixing and Additional Features... 63

6.7.1. Attribute values .. 63
6.7.2. Dynamic link naming.. 64
6.7.3. Activity traversing at BPEL output generation.. 64
6.7.4. Activity type display in the Property View .. 65

7. Remaining BPEL 2.0 Extensions.. 66
7.1. New constructs ... 66
7.2. New attributes... 66
7.3. Removal of attributes.. 66
7.4. Attributes and nested XML elements.. 67
7.5. Construct renaming .. 67

8. Discussion and Outlook.. 68
8.1. Discussion .. 68
8.2. Outlook ... 68

Appendices .. 70
References .. 70
Used Resources .. 73
Erklärung ... 74

 IV

Table of Listings

Listing 1: BPEL Process Attributes Schema..4
Listing 2: BPEL Process Attributes Example ...4
Listing 3: Import Statement Schema..4
Listing 4: Import Statement Example...5
Listing 5: Conditional Linking Schema...5
Listing 6: Conditional Linking Example ..5
Listing 7: Partner Link Type Schema...6
Listing 8: Partner Link Type Example ..6
Listing 9: Partner Definition Schema in BPEL1.1 ..7
Listing 10: Partner Definition Example in BPEL 1.1...7
Listing 11: Endpoint References in Service Reference Containers Schema.......................8
Listing 12: Endpoint References in Service Reference Containers Example8
Listing 13: Endpoint Reference Schema in WS-Addressing..8
Listing 14: New activity validate...9
Listing 15: Variable Access Example...9
Listing 16: PropertyAlias Schema..9
Listing 17: PropertyAlias Example ...10
Listing 18: Variable In-line Initialization Example...10
Listing 19: fromParts Schema..10
Listing 20: toParts Schema..10
Listing 21: fromParts / toParts Example ..10
Listing 22: Variable Assignment Schema ..11
Listing 23: Variable Assignment Example ...12
Listing 24: Correlation Schema..12
Listing 25: Correlation Example...12
Listing 26: Receive Schema ..13
Listing 27: Receive Example ...13
Listing 28: Wait Activity Schema..14
Listing 29: Wait Activity Example...14
Listing 30: Extension Activity Schema...15
Listing 31: Extension Activity Example ..15
Listing 32: Terminate / Exit Schema..15
Listing 33: Terminate / Exit Example ...15
Listing 34: Rethrow Activity Schema ...16
Listing 35: Rethrow Activity Example...16
Listing 36: If / Switch Activity Schema ...16
Listing 37: If / Switch Activity Example ..17
Listing 38: While Activity Schema..17
Listing 39: While Activity Example ...18
Listing 40: repeatUntil Activity Schema ...18
Listing 41: repeatUntil Activity Example...18
Listing 42: forEach Activity Schema ..19
Listing 43: forEach Activity Example..19
Listing 44: Scope Schema...20
Listing 45: Scope Example ..20
Listing 46: Compensation Invocation Schema...21
Listing 47: Compensation Invocation Example..22
Listing 48: Default Fault Handler ...23
Listing 49: Fault Handler Example...23
Listing 50: Default Compensation Handler ..23
Listing 51: Compensation Handler Example..23
Listing 52: Default Termination Handler ..23
Listing 53: Termination Handler Example..23

 V

Listing 54: Event Handler Schema ..24
Listing 55: Event Handler Example..24
Listing 56: Process Extension Schema ...25
Listing 57: Process Extension Example...25
Listing 58: Observable Behavior Reference ..27
Listing 59: Process Template Reference...27
Listing 60: Adaptation of BPEL output generator for attribute integration..........................38
Listing 61: Initialization of allowed attribute values array...38
Listing 62: Initialization of allowed attribute values ..39
Listing 63: Getter function for the Property Descriptor...39
Listing 64: Getter function for the Property Values ..39
Listing 65: Setter function for the Property Values ..39
Listing 66: Abstract Activity Definition for getter and setter function of the attribute..........39
Listing 67: Definition of default values for the attribute in the activity implementation.......40
Listing 68: Implementation of the getter and setter function of the attribute40
Listing 69: Implementation of the interface for the controller: eGet40
Listing 70: Implementation of the interface for the controller: eSet....................................41
Listing 71: Implementation of the interface for the controller: eUnset................................41
Listing 72: Implementation of the interface for the controller: eIsSet.................................41
Listing 73: Definition of a feature number ..41
Listing 74: Adding the static feature number to the implementation42
Listing 75: Initial creation of the attribute in the model implementation42
Listing 76: Modeling the attribute...42
Listing 77: Adding the function call for the validate subtree...43
Listing 78: Building the validate subtree ..43
Listing 79: Edit Part for the validate activity ...44
Listing 80: Edit Parts factory including the Edit Part for validate45
Listing 81: Adding the activity to the editor palette ..46
Listing 82: Extension of the delete command ..47
Listing 83: Extension of the create command..47
Listing 84: Registering at the Model Creation Factory...48
Listing 85: Definition of the function for instance creation in the BPEL Model Factory......48
Listing 86: General instance creation function...48
Listing 87: Specific instance creation function ...48
Listing 88: Registering the activity at the model descriptor..49
Listing 89: Model Descriptor Implementation...50
Listing 90: Create contents of the Model Descriptor Implementation50
Listing 91: Initialize contents of the Mode Descriptor Implementation...............................50
Listing 92: Adapting the process definition ..51
Listing 93: Adding getter and setter of the activity to the process implementation51
Listing 94: Adapting the eInverseRemove function of the process implementation52
Listing 95: Adapting eGet on the process implementation ..52
Listing 96: Adapting eSet on the process implementation...52
Listing 97: Adapting eUnset on the process implementation...52
Listing 98: Adapting eIsSet on the process implementation ..53
Listing 99: Adapted activity defintion ...53
Listing 100: New imports in the activity implementation ..54
Listing 101: Adaptation the eInverseRemove function of the activity implementation54
Listing 102: Adapting eGet on the process implementation ..54
Listing 103: Adapting eSet on the process implementation...55
Listing 104: Adapting eUnset on the process implementation...55
Listing 105: Adapting eIsSet on the process implementation ..55
Listing 106: Adaptation of BPEL output generator for attribute removal............................56
Listing 107: Removing an attribute from the data model: eGet ...57
Listing 108: Removing the dynamic feature number ...57

 VI

Listing 109: Exchanging the static feature number in the implementation.........................57
Listing 110: Removing initial creation of the attribute in the model implementation58
Listing 111: Removing the modeling of the attribute..58
Listing 112: Removing attribute on related construct interface..58
Listing 113: Removing attribute on related construct implementation58
Listing 114: Removing unused model provider functions ..58
Listing 115: Removing unused model annotation..59
Listing 116: Transformation of the attribute until into a nested XML element59
Listing 117: Construct naming in the BPEL output generator..60
Listing 118: Construct naming in the editor palette..60
Listing 119: BPEL output generation of boolean values ..63
Listing 120: Dynamic link naming ..64
Listing 121: Activity traversing for scope construct..65
Listing 122: Display of activity type in the Property View...65

 VII

Table of Figures

Figure 1: EMF and GEF...28
Figure 2: General Structure of the Graphical Editor ..29
Figure 3: Integration of an Activity into the controller...31
Figure 4: Connections of an activity in the data model ..32
Figure 5: Icon for new construct validate ..46
Figure 6: New constructs on the editor palette ..61
Figure 7: New construct validate nested inside a scope...61
Figure 8: New construct validate in BPEL code..61
Figure 9: New constructs forEach and extensionActivity in a process..................61
Figure 10: New construct forEach and extensionActivity in BPEL code62
Figure 11: New attribute suppressJoinFailure in Eclipse Property View...................62
Figure 12: Attribute transformed into nested XML element on activity wait.....................63
Figure 13: Activity terminate renamed to exit in the editor palette63
Figure 14: Dynamic link naming ..64
Figure 15: Activity type display in the Property View...65

1

Abstract

Nowadays Web Services (WS) are the most prominent technology for solving the key
problem facing businesses - the Application Integration (AI). To elaborate on this, both,
Intra Enterprise Integration (Enterprise Application Integration, EAI) and Integration with
Business Partners (Business Process Integration, BPI) can be achieved by loosely
coupled applications using WS interfaces.

Here the Business Process Execution Language for Web Services (BPEL) comes into
play. It enables the definition of business processes as coordinated sets of WS
interactions (Orchestration) recursively into new aggregated Web Services. Furthermore
BPEL may be used to define the external behavior of a service (through an Abstract
Process) as well as the internal implementation (through an Executable Process)
[ACKM04, pp. 284].

Although there is a variety of languages for service orchestration, such as the business
process modeling language [BPML], the language BPEL4WS initially proposed in July
2002 by BEA, Microsoft and IBM [BPEL1.0] has emerged as de facto standard in this
area. It has been transferred to OASIS for standardization and was released in April 2007
as BPEL 2.0.

The basis for this thesis is a graphical process modeling tool, implemented as an Eclipse-
Plugin [Kapl06], which was designed to be compliant with BPEL 1.1 standard. The
objective of this thesis is to extend this tool in order to be compliant with the OASIS BPEL
2.0 standard.

2

1. Introduction

1.1. Requirements

For graphical modeling of BPEL 2.0 processes [BPEL2.0], an existing tool [Kapl06] shall
be analysed and extended. In the first step the specifications BPEL 1.1 and BPEL 2.0
shall be compared and differences shall be pointed out. In the second step different
approaches for extending the existing modeling tool shall be analysed and the most
appropriate one used, occuring bugs and incompleteness shall be resolved. Furthermore
the possibilities for adapting the tool to support the Business Process Modeling Notation
(see [BPMN1.0] and [BPMN2.0]) shall be investigated.

As a result of the modeling a .bpel file will be generated, which is executable on a BPEL
2.0 compliant engine. The implementation of the graphical process modeler in the form of
an Eclipse-Plugin shall be maintained. The already implemented support for Templates
shall be maintained as in the version of the modeling tool presented in [Kapl06]. Beyond,
the integration and implementation of an extensionActivity with two Attributes and two
Variables is required.

1.2. Notational Conventions

"The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC2119", [RFC2119, p.1]:

The BPEL specification [BPEL2.0, p.9] uses an informal syntax to describe the XML
grammar of the XML fragments, which will also be used in this document:

• <-- description --> is a placeholder for elements from some "other" namespace (like

##other in XSD).

• Characters are appended to elements, attributes, and as follows:

"?" (0 or 1)
"*" (0 or more)
"+" (1 or more)
The characters "[" and "]" are used to indicate that contained items are to be
treated as a group with respect to the "?", "*", or "+" characters.

• Elements and attributes separated by "|" and grouped by "(" and ")" are meant to be

syntactic alternatives.

3

2. Comparison of BPEL 1.1 and BPEL 2.0

In the following section the modifications that have been made to BPEL 1.1 during the
standardization to BPEL 2.0 are described. Where necessary, code is listed to support a
better understanding of new or modified constructs and syntactical changes. Note, that
BPEL was first released as Version 1.0 in 2002; this comparison only regards the
modifications since Version 1.1.

2.1. Static Analysis

BPEL 1.1 takes as general principle that compliant implementations may choose to
perform static analysis in order to detect and reject process definitions that may have
undefined semantics. Such analysis is necessarily pessimistic and therefore might in
some cases prevent the use of processes that would not, in fact, create situations with
undefined semantics, either in specific uses or in any use. [BPEL1.1, p.14]
This optional functionality of a BPEL implementation has been altered in the BPEL 2.0
standard to an absolute requirement:
“BPEL 2.0 takes it as a general principle that conformant implementations must perform
basic static analysis [BPEL2.0, Appendix B] to detect and reject process definitions that
fail any of those static analysis checks” [BPEL2.0, p.13].

2.2. Structure of a Business Process

2.2.1. Process Attributes

The following fragments of the top level attributes of a process have been changed:

1. The description of the attribute suppressJoinFailure has been enriched:
When this attribute is not specified for an activity, it implicitly inherits its value from its
closest enclosing activity or from the <process> if no enclosing activity specifies this
attribute [BPEL2.0, p.23].

2. The attribute enableInstanceCompensation has been removed [BPEL2.0, p.21].

3. A new attribute, exitOnStandardFault has been added:
"If the value of this attribute is set to yes, then the process must exit immediately as if an
<exit> activity (formerly known as <terminate>) has been reached, when a BPEL 2.0
standard fault other than bpel:joinFailure is encountered. If the value of this attribute is
set to no, then the process can handle a standard fault using a fault handler. The default
value for this attribute is no. When this attribute is not specified on a <scope> it inherits its
value from its enclosing <scope> or <process>.
If the value of exitOnStandardFault of a <scope> or <process> is set to yes, then a fault
handler that explicitly targets the BPEL 2.0 standard faults must not be used in that scope.
A process definition that violates this condition must be detected by static analysis and
must be rejected by a conformant implementation" [BPEL2.0, p.23].

4. The attribute abstractProcess has been removed; instead this can be distinguished by
the target namespace (xmlns): The syntax of Abstract Process has its own distinct target
namespace [BPEL2.0, p.23].

4

5. “Constructs that require or allow queries or expressions provide the ability to override
the default query/expression language for individual queries/expressions” [BPEL2.0, p.49],
this corresponds to the expressionLanguage attribute of a process.
Listing 1: BPEL Process Attributes Schema

A.) [BPEL1.1, p.24]:

<process name="ncname" targetNamespace="uri"
queryLanguage="anyURI"?
expressionLanguage="anyURI"?
suppressJoinFailure="yes|no"?
enableInstanceCompensation="yes|no"?
abstractProcess="yes|no"?
xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/">

B.) [BPEL2.0, p.21]:

<process name="NCName" targetNamespace="anyURI"
queryLanguage="anyURI"?
expressionLanguage="anyURI"?
suppressJoinFailure="yes|no"?
exitOnStandardFault="yes|no"?
xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/executable">

Listing 2: BPEL Process Attributes Example

A.) [BPEL1.1, p.98]:

<process name="loanApprovalProcess"
targetNamespace="http://acme.com/loanprocessing"
xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
xmlns:lns="http://loans.org/wsdl/loan-approval"
suppressJoinFailure="yes">

B.) [BPEL2.0, p.175]:

<process name="OrderingServiceProcess"
targetNamespace="http://example.com/ordering/"
xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/abstract"
xmlns:ext="http://example.com/bpel/some/extension"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
abstractProcessProfile="http://docs.oasisopen.org/wsbpel/2.0/process/
 abstract/simple-template/2006/08"
suppressJoinFailure="yes">

2.2.2. Document Linking
The modified <import> element is used within a BPEL 2.0 process to declare a
dependency on external XML Schema or WSDL definitions: “Any number of <import>
elements may appear as children of the <process> element. The new and mandatory
importType attribute identifies the type of document being imported by providing an
absolute URI that identifies the encoding language used in the document” [BPEL2.0,
p.32]. “The value of the importType attribute of element <import> must be set to
http://www.w3.org/2001/XMLSchema when importing XML Schema 1.0 documents and to
http://schemas.xmlsoap.org/wsdl/ when importing WSDL 1.1 documents” [BPEL2.0,
p.195]. Other URI values may be used as well.

Listing 3: Import Statement Schema

A.) BPEL1.1:

<import namespace="URI"
location="URI"/>

5

B.) BPEL2.0:

<import importType="URI"
location="URI"
namespace="URI" />

Listing 4: Import Statement Example

A.) [BPEL1.1, p.16]:

<import namespace="http://manufacturing.org/xsd/purchase"
location="http://manufacturing.org/xsd/purchase.xsd"/>

B.) [BPEL2.0, p.169]:

<import importType="http://schemas.xmlsoap.org/wsdl/"
location="shippingLT.wsdl"
namespace="http://example.com/shipping/partnerLinkTypes/" />

<import importType="http://schemas.xmlsoap.org/wsdl/"
location="shippingPT.wsdl"
namespace="http://example.com/shipping/interfaces/" />

<import importType="http://schemas.xmlsoap.org/wsdl/"
location="shippingProperties.wsdl"
namespace="http://example.com/shipping/properties/" />

2.2.3. Conditional Linking
In BPEL 2.0 the syntax for expressing Join and Transition Conditions has been altered
from XML attributes to nested XML elements.

Listing 5: Conditional Linking Schema

A.) [BPEL1.1, p.31, p.67]

<invoke name="activity" joinCondition="bool-expr">
<target linkName="ncname"/>
<source linkName="ncname" transitionCondition="bool-expr"?/>*

</invoke>

B.) [BPEL2.0, p.31]

<targets>?
<joinCondition expressionLanguage="anyURI"?>?

 bool-expr
</joinCondition>
<target linkName="NCName" />+

</targets>
<sources>?

<source linkName="NCName">+
 <transitionCondition expressionLanguage="anyURI"?>?
 bool-expr
 </transitionCondition>
</source>

</sources>

Listing 6: Conditional Linking Example

A.) [BPEL1.1, p.31, p.67]

<invoke name="settleTrade" joinCondition="bpws:getLinkStatus('buyToSettle') and
 bpws:getLinkStatus('sellToSettle')">

<target linkName="getBuyerInformation"/>
<target linkName="getSellerInformation"/>
<source linkName="toBuyConfirm"/>
<source linkName="toSellConfirm"/>

 </invoke>

6

B.) [BPEL2.0, p.31]

<invoke name="settleTrade" ...>
 <targets>
 <joinCondition>$buyToSettle and $sellToSettle</joinCondition>
 <target linkName="buyToSettle" />
 <target linkName="sellToSettle" />
 </targets>

<sources>
 <source linkName="toBuyConfirm" />
 <source linkName="toSellConfirm" />

 </sources>
 </invoke>

2.3. Partner Link Types, Partner Links, Partners and Endpoint References

2.3.1. Partner Link Types
The syntax of Partner Link Type has been altered, in the BPEL 2.0 standard the portType
declaration is no longer a nested XML element, instead it is written as an XML attribute of
the <role> tag.

Listing 7: Partner Link Type Schema

A.) [BPEL1.1, p.34]:

<plnk:partnerLinkType name="ncname">
<plnk:role name="ncname">
 <plnk:portType name="qname"/>
</plnk:role>

</plnk:partnerLinkType>

B.) [BPEL2.0, p.37]:

<plnk:partnerLinkType name="NCName">
<plnk:role name="NCName" portType="QName" />

</plnk:partnerLinkType>

Listing 8: Partner Link Type Example

A.) [BPEL1.1, p.97]:

<plnk:partnerLinkType name="loanPartnerLinkType">
<plnk:role name="loanService">

 <plnk:portType name="lns:loanServicePT"/>
</plnk:role>

</plnk:partnerLinkType>

B.) [BPEL2.0, p.166]:

<plnk:partnerLinkType name="shippingLT">
<plnk:role name="shippingService"

 portType="sif:shippingServicePT" />
 <plnk:role name="shippingServiceCustomer"
 portType="sif:shippingServiceCustomerPT" />
</plnk:partnerLinkType>

2.3.2. Partner Links
A new attribute is introduced in Partner Links, initializePartnerRole:
"The initializePartnerRole attribute specifies whether the BPEL 2.0 processor is
required to initialise a <partnerLink>'s partnerRole value. The attribute has no affect on
the partnerRole's value after its initialization. The initializePartnerRole attribute must

7

not be used on a partner link that does not have a partner role. If the
initializePartnerRole attribute is set to yes then the BPEL 2.0 processor must initialize
the EPR of the partnerRole before that EPR is first utilized by the BPEL 2.0 process. An
example would be when an EPR is used in an <invoke> activity. If the
initializePartnerRole attribute is set to no then the BPEL 2.0 processor must not
initialise the EPR of the partnerRole before that EPR is first utilised by the BPEL 2.0
process. If the initializePartnerRole attribute is omitted (see 2.10.3) then the partner
role may be initialised by a BPEL 2.0 processor.
When initializePartnerRole is set to yes, the EPR value used in partnerRole
Initialization is typically specified as a part of BPEL 2.0 process deployment or execution
environment configuration. Hence, the initializePartnerRole attribute may be used as a
part of process deployment contract" [BPEL2.0, p.37].

2.3.3. Partners
The (optional) Partner definitions have completely been removed from the new BPEL 2.0
specification. Partner definitions had the following intention: "A partner is defined as a
subset of the partner links of the process. From the process perspective a partner
definition introduces a constraint on the functionality that a business partner is required to
provide" [BPEL1.1, p.24].

Listing 9: Partner Definition Schema in BPEL1.1

[BPEL1.1, p.35]:

<partner name="ncname" xmlns="URI">
<partnerLink name="ncname"/>+

</partner>

Listing 10: Partner Definition Example in BPEL 1.1

[BPEL1.1, p.24]:

<partner name="SellerShipper" xmlns="http://schemas.xmlsoap.org/partner-link/">
<partnerLink name="Seller"/>
<partnerLink name="Shipper"/>

</partner>

2.3.4. Endpoint References
In BPEL 1.1 Endpoint References were only explained in principle and a reference to the
corresponding Web Service standard, WS-Addressing [W3C04], was given, in order to
keep the standard modular and composable [BPEL1.1, p. 36].
In the BPEL 2.0 standard the Schema is specified: Endpoint References associated with
partnerRole and myRole of <partnerLink>s are manifested as service reference
containers (<sref:service-ref>) in the new standard. This container is used as an
envelope to wrap the actual Endpoint Reference value. The Address element is the only
mandatory element and the omitted attribute PortName in the schema (see
Listing 12:) provided in BPEL 2.0 is optional. Thus the schema complies with the WS-
Addressing standard (see Listing 13:).
The <sref:service-ref> has an optional attribute called reference-scheme to denote the
URI of the reference interpretation scheme of service endpoint, which is the child element
of <sref:service-ref> [BPEL2.0, p.39].

8

Listing 11: Endpoint References in Service Reference Containers Schema

[BPEL2.0, p.39]:

<sref:service-ref reference-scheme="http://example.org">
<foo:barEPR xmlns:foo="http://example.org">...</foo:barEPR>

</sref:service-ref>

Listing 12: Endpoint References in Service Reference Containers Example

[BPEL2.0, p.188]:

<partnerLink name="auctionRegistrationService"
partnerLinkType="as:auctionHouseAuctionRegistrationServiceLT"
myRole="auctionHouse"
partnerRole="auctionRegistrationService" />

...
<assign>

<copy>
 <from>

 <sref:service-ref>
 <addr:EndpointReference>
 <addr:Address>
 http://example.com/auction/
 RegistrationService/
 </addr:Address>
 <addr:ServiceName>
 as:RegistrationService
 </addr:ServiceName>
 </addr:EndpointReference>
 </sref:service-ref>
 </from>
 <to partnerLink="auctionRegistrationService" />
 </copy>
</assign>

Listing 13: Endpoint Reference Schema in WS-Addressing

[W3C04, 2.2]:

<wsa:EndpointReference>
 <wsa:Address>xs:anyURI</wsa:Address>
 <wsa:ReferenceProperties>... </wsa:ReferenceProperties> ?
 <wsa:ReferenceParameters>... </wsa:ReferenceParameters> ?
 <wsa:PortType>xs:QName</wsa:PortType> ?
 <wsa:ServiceName PortName="xs:NCName"?>xs:QName</wsa:ServiceName> ?
 <wsp:Policy> ... </wsp:Policy>*
</wsa:EndpointReference>

2.4. Data Handling

2.4.1. Variables
1. The new standard introduces the complex XML Schema type for usage, previously only
simple XML Schema type was allowed besides WSDL message type and XML Schema
element [BPEL2.0, p.45].

2. Furthermore a new Variable related activity is introduced, <validate>: “Values stored in
variables can be mutated during the course of process execution. The <validate> activity
can be used to ensure that values of variables are valid against their associated XML data
definition, including XML Schema simple type, complex type, element definition and XML
definitions of WSDL parts. The <validate> activity has a variables attribute, listing the
variables to validate” [BPEL2.0, p.48].

9

Listing 14: New activity validate

<validate variables="BPELVariableNames" standard-attributes>
standard-elements

</validate>

3. The usage patterns for XPath variable access have been clarified and simplified by
leveraging "$" syntax, e.g. $myFooVar/lines/line[2]/text() [BPEL2.0, pp.49]. In BPEL
1.1 variable access is performed using the getVariableData function.

Listing 15: Variable Access Example

A.) [BPEL 1.1, pp. 99]:

<variables>
 <variable name="request" messageType="lns:creditInformationMessage"/>
</variables>
<from expression="bpws:getVariableData('request','amount')"/>
<to variable="itemsShipped"/>

B.) [BPEL 2.0, p. 60]:

<xsd:element name="StatusContainer">
<xsd:complexType>

 <xsd:sequence>
 <xsd:element name="statusDescription" type="xsd:string"
 form="qualified" />
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>
...
<variable name="AStatus" element="e:StatusContainer" />
...
$AStatus/e:statusDescription <!-- Access to variable -->

4. "The notion of aliasing is introduced to map a property to a field in a specific message
part or variable value. The property name becomes an alias for the message part and / or
location, and can be used as such in expressions and assignments” [BPEL2.0, p.41].
In the section formerly named Message Properties, two new attributes for propertyAlias
are introduced, called element and type, with mutual exclusive usage, see [BPEL2.0,
p.43] and Listing 16: B.

Listing 16: PropertyAlias Schema

A.) [BPEL1.1, p.135]:

<element name="propertyAlias">
<complexType>

 <attribute name="propertyName" type="QName" use="required"/>
 <attribute name="messageType" type="QName" use="required"/>
 <attribute name="part" type="NCName"/>
 <attribute name="query" type="string"/>

</complexType>
</element>

B.) [BPEL2.0, pp. 42]:

<vprop:propertyAlias
propertyName="QName"
messageType="QName"?
part="NCName"?
type="QName"?
element="QName"?>
<vprop:query queryLanguage="anyURI"?>?

 queryContent
 </vprop:query>
</vprop:propertyAlias>

10

Listing 17: PropertyAlias Example

A.) [BPEL1.1, p.104]:

<bpws:propertyAlias
propertyName="tns:auctionId"
messageType="tns:sellerData"
part="auctionId"/>

B.) [BPEL2.0, p.54]:

<vprop:propertyAlias
propertyName="p:price"
messageType="my:POMsg"
part="poPart">
<vprop:query>price</vprop:query>

</vprop:propertyAlias>

5. A variable can optionally be initialised by using an in-line from-spec [BPEL2.0, p.48].

Listing 18: Variable In-line Initialization Example

[BPEL2.0, p. 121]:

<variables>
<variable name="V1" type="xsd:int">

 <from>0</from>
</variable>

</variables>

6. The <fromParts> element in receiving activities like <receive>, <onEvent> etc. is used
as an alternative to indicate that the data from a received message is to be directly copied
to BPEL variables from a corresponding anonymous WSDL message variable. It may not
be used together with the variable attribute of the activity. Similarly, the <toParts>
element is used as an alternative to have data from BPEL variables directly copied into an
anonymous WSDL message used by a sending activity like <reply>, <invoke>, etc.
[BPEL2.0, p.88, p.91].

Listing 19: fromParts Schema

[BPEL2.0, p.22]:

<fromParts>?
<fromPart part="NCName" toVariable="BPELVariableName" />+

</fromParts>

Listing 20: toParts Schema

[BPEL2.0, p.25]:

<toParts>?
<toPart part="NCName" fromVariable="BPELVariableName" />+

</toParts>

Listing 21: fromParts / toParts Example

fromParts in Receive Activity:

<receive messageExchange="supplier"
partnerLink="businessPartner"
portType="businessPT"
operation="update">

 <fromParts>

11

 <fromPart toVariable="updatedData" />
 </fromParts>
</receive>

fromParts and toParts in Invoke Activity:

<invoke name="purchase"
partnerLink="Seller"
portType="SP:Purchasing"
operation="Purchase"/>

 <toParts>
 <toPart fromVariable="sendPO" />
 </toParts>
 <fromParts>
 <fromPart toVariable="getResponse" />
 </fromParts>
</invoke>

Without using fromParts and toParts:

<invoke name="purchase"
partnerLink="Seller"
portType="SP:Purchasing"

 operation="Purchase"
inputVariable="sendPO"
outputVariable="getResponse" />

2.4.2. Assignment
The <assign> activity is described more precise, and has been enriched with some
features:

1. The optional validate attribute can be used with the <assign> activity. When validate
is set to yes, the <assign> activity validates all the variables being modified by the activity
against their schema definition [BPEL2.0, p.63].

2. A new extension is introduced, the <extensionAssignOperation> element. It is possible
to include extensible data manipulation operations defined as extension elements under
namespaces different from the WS-BPEL namespace [BPEL2.0, p.59, p.63]. The
specification does not provide a detailed explanation, nor the intention of this extension.

3. The new optional keepSrcElementName attribute of the <copy> construct in an <assign>
activity is used to specify whether the element name of the destination (as selected by the
to-spec) will be replaced by the element name of the source (as selected by the from-
spec) during the copy operation [BPEL2.0, p.63].

4. The copy mechanism, when combined with the default XPath 1.0 expression language,
cannot perform complex XML transformations. To address this restriction in a portable
fashion, a BPEL 2.0 processor must support the new standardized bpel:doXslTransform()
XPath 1.0 extension function [BPEL2.0, pp.63].

5. The syntax for copying from a literal value has changed, in BPEL 2.0 it has to be
enveloped: <from><literal>literal value</literal></from> [BPEL2.0, p.63], formerly
this was not necessary [BPEL1.1, p.43].

Listing 22: Variable Assignment Schema

<assign standard-attributes>
standard-elements

12

<copy>+
 from-spec
 to-spec

</copy>
</assign>

Listing 23: Variable Assignment Example

A.) [BPEL1.1, p.45]:

<assign>
<copy>

 <from variable="c1"/>
 <to variable="c2"/>

</copy>
</assign>

B.) [BPEL2.0, p.183]:

<assign>
<copy>

 <from>
 <literal>yes</literal>

 </from>
 <to variable="approval" part="accept" />
 </copy>
</assign>

2.5. Correlation

The properties in Correlation sets have been enriched; the initiate attribute has a new
legal value, join: When the initiate attribute is set to join, the related activity must
attempt to initiate the correlation set, if the correlation set is not yet initiated [BPEL2.0,
pp.76]. Also the naming of pattern values has been modified.

Listing 24: Correlation Schema

A.) [BPEL1.1, p.54]:

<correlations>?
<correlation set="ncname"
 initiate="yes|no"?

 pattern="in|out|out-in"/>+
</correlations>

B.) [BPEL2.0, p.78]:

<correlations>
<correlation set="NCName"

 initiate="yes|join|no"?
 pattern="request|response|request-response"? />+
</correlations>

Listing 25: Correlation Example

A.) [BPEL1.1, p.72]:

<correlations>
 <correlation set="PurchaseOrder"
 initiate="yes"
 pattern="out"/>
</correlations>

13

B.) [BPEL2.0, pp.81]:

<correlations>
<correlation set="PurchaseOrder"
 initiate="yes"

 pattern="request" />
 <correlation set="Invoice"

 initiate="yes"
 pattern="response" />

</correlations>

2.6. Basic Activities

2.6.1. Receive

The new optional messageExchange attribute is used to disambiguate the relationship
between <receive> and <reply> activities. The explicit use of messageExchange is needed
only where the execution can result in multiple <receive>-<reply> pairs on the same
partnerLink and operation [BPEL2.0, pp.93]. The value of the attribute is a user-defined
NCName.

Listing 26: Receive Schema

A.) [BPEL1.1, p.27]:

<receive partnerLink="ncname"
portType="qname"
operation="ncname"
variable="ncname"?
createInstance="yes|no"?
standard-attributes>
standard-elements
<correlations>?

 <correlation set="ncname" initiate="yes|no"?>+
</correlations>

</receive>

B.) [BPEL2.0, pp.25]:

<receive partnerLink="NCName"
portType="QName"?
operation="NCName"
variable="BPELVariableName"?
createInstance="yes|no"?
messageExchange="NCName"?
standard-attributes>
standard-elements
<correlations>?

 <correlation set="NCName" initiate="yes|join|no"? />+
</correlations>
<fromParts>?
 <fromPart part="NCName" toVariable="BPELVariableName" />+
</fromParts>

</receive>

Listing 27: Receive Example

A.) [BPEL1.1, p.83]:

<receive name=“getOrder”
partnerLink=“buyer”
portType=“car”
operation=“order”
variable=“orderDetails”
createInstance=“yes”/>

14

B.) [BPEL2.0]:

<messageExchanges>
<messageExchange name="supplier"/>
<messageExchange name="manufacturer"/>

</messageExchanges>
...
<receive messageExchange="supplier"

partnerLink="businessPartner"
portType="businessPT"
operation="update" />

...
<receive messageExchange="manufacturer"

partnerLink="businessPartner"
portType="businessPT"
operation="update" />

2.6.2. Wait

The attributes for the <wait> activity have syntactically changed into nested XML
elements:

Listing 28: Wait Activity Schema

A.)[BPEL1.1:

<wait until="time"/>

B.) BPEL2.0:
<wait>

<until>time</until>
</wait>

Listing 29: Wait Activity Example

A.) [BPEL1.1, p.58]

<wait until="'2002-12-24T18:00+01:00'"/>

B.) [BPEL2.0, p.95]
<wait>

<until>'2002-12-24T18:00+01:00'</until>
</wait>

Also the attribute for has been altered to a nested XML element, it can be used instead of
until.

2.6.3. Extension Activity

A BPEL process definition can include new activities, which are not defined by the BPEL
2.0 specification, by placing them inside the new <extensionActivity> element. These
activities are known as extension activities. An <extensionActivity> may be also a
structured activity.

15

Listing 30: Extension Activity Schema

[BPEL2.0, p.95]:

<extensionActivity>
<anyElementQName standard-attributes>
 standard-elements
</anyElementQName>

</extensionActivity>

Listing 31: Extension Activity Example

BPEL2.0:

<extensionActivity>
<ext:suspend/>

</extensionActivity>

2.6.4. Terminate / Exit Activity

The <terminate> activity has been renamed to <exit> activity. It is used to immediately
end a business process instance. “In case an <exit> activity has been reached, no fault
handling, compensation handling or termination handling is being executed” [BPEL2.0,
p.96].

Listing 32: Terminate / Exit Schema

A.) [BPEL1.1, p.87]:

<terminate standard-attributes>
standard-elements

</terminate>

B.) [BPEL2.0, p.96]:

<exit standard-attributes>
standard-elements

</exit>

Listing 33: Terminate / Exit Example

A.) [BPEL1.1, p.81]:

<onMessage partnerLink=“buyer”
portType=“car”
operation=“cancel”
variable=“cancelDetails”>
<terminate/>

</onMessage>

B.) [BPEL2.0, p.162]:

<faultHandlers>
<catchAll>
 <exit />
</catchAll>

</faultHandlers>

2.6.5. Rethrow Activity

The new <rethrow> activity is used in fault handlers to rethrow the fault they caught, i.e.
the fault name and, where present, the fault data of the original fault. The fault is thrown to

16

the parent scope [BPEL2.0, p.127]. The <rethrow> activity can be used only within a fault
handler (<catch> and <catchAll>). “Modifications to the fault data must be ignored by
<rethrow>“ [BPEL2.0, p.96]. For example, if the logic in a fault handler modifies the fault
data and then calls <rethrow>, the original fault data would be rethrown and not the
modified fault data.

Listing 34: Rethrow Activity Schema

[BPEL2.0, p.30]:

<rethrow standard-attributes>
standard-elements

</rethrow>

Listing 35: Rethrow Activity Example

[BPEL2.0, p.132]:

<catchAll>
<sequence>
 <compensate />

 <rethrow />
 </sequence>
</catchAll>

2.7. Structured Activities

2.7.1. If / Switch Activity

The <if> activity in BPEL 2.0 provides conditional behavior and replaces the BPEL 1.1
activity <switch>. The activity consists of an ordered list of one or more conditional
branches defined by the <if> and optional <elseif> elements, followed by an optional
<else> element [BPEL2.0, p.99].

Listing 36: If / Switch Activity Schema

A.) [BPEL1.1, p.29]:

<switch standard-attributes>
 standard-elements
<case condition="bool-expr">+

 activity
 </case>
 <otherwise>?
 activity
 </otherwise>
</switch>

B.) [BPEL2.0, p.99]:

<if standard-attributes>
standard-elements
<condition expressionLanguage="anyURI"?>bool-expr</condition>
activity
<elseif>*
 <condition expressionLanguage="anyURI"?>bool-expr</condition>
 activity
</elseif>
<else>?
 activity
</else>

</if>

17

Listing 37: If / Switch Activity Example

A.) [BPEL1.1, p.60]:

<switch xmlns:inventory="http://supply-chain.org/inventory"
 xmlns:FLT="http://example.com/faults">
 <case condition= "bpws:getVariableProperty(stockResult,level) > 100">
 <flow>
 <!-- perform fulfillment work -->
 </flow>
 </case>
 <case condition="bpws:getVariableProperty(stockResult,level) >= 0">
 <throw faultName="FLT:OutOfStock" variable="RestockEstimate"/>
 </case>
 <otherwise>

 <throw faultName="FLT:ItemDiscontinued"/>
 </otherwise>
</switch>

B.) [BPEL2.0, p.171]:

<if>
<condition>
 bpel:getVariableProperty('shipRequest', 'props:shipComplete')
</condition>
<sequence>
 <invoke partnerLink="customer" operation="shippingNotice"

 inputVariable="shipNotice">
 </invoke>
</sequence>

</if>

2.7.2. While Activity

The <while> activity provides for the repeated execution of the contained activities. In the
BPEL 1.1 specification the <while> activity was described in a way, that nested activities
are executed until the Boolean condition evaluates to true [BPEL1.1, p.60]. This has been
clarified in BPEL2.0; the contained activity is now executed as long as the Boolean
<condition> evaluates to true at the beginning of each iteration [BPEL2.0, p.99]. Also a
part of the syntax has been altered: The condition attribute is now written as a nested
XML element.

Listing 38: While Activity Schema

A.) [BPEL1.1, p.60]:

<while condition="bool-expr" standard-attributes>
 standard-elements

activity
</while>

B.) [BPEL2.0, p.99]:

<while standard-attributes>
standard-elements
<condition expressionLanguage="anyURI"?>bool-expr</condition>
activity

</while>

18

Listing 39: While Activity Example

A.) [BPEL1.1, p.60]:

<while condition="bpws:getVariableData(orderDetails) > 100">
<scope>

 ...
 </scope>
</while>

B.) [BPEL2.0, p.100]:

<while>
<condition>$orderDetails > 100</condition>
<scope>...</scope>

</while>

2.7.3. repeatUntil Activity

The contained activity is executed until the given Boolean <condition> becomes true. The
condition is tested after each execution of the body of the loop. In contrast to the <while>
activity, the <repeatUntil> loop executes the contained activity at least once [BPEL2.0,
p.100].

Listing 40: repeatUntil Activity Schema

[BPEL2.0, p.100]:

<repeatUntil standard-attributes>
standard-elements
activity
<condition expressionLanguage="anyURI"?>bool-expr</condition>

</repeatUntil>

Listing 41: repeatUntil Activity Example

BPEL2.0:

<repeatUntil>
<scope>...</scope>
<condition>$orderDetails > 100</condition>

</repeatUntil>

2.7.4. forEach Activity

A new activity is introduced in BPEL 2.0, the serial or parallel <forEach>. By attaching an
optional <completionCondition> it also provides for “at least N out of M” semantics
[BPEL2.0, p.114]:
"The <forEach> activity will execute its contained <scope> activity exactly N+1 times where
N equals the <finalCounterValue> minus the <startCounterValue>. If the value of the
parallel attribute is “yes” then the activity is a parallel <forEach>. The enclosed <scope>
activity must be concurrently executed N+1 times.
The <forEach> activity without a <completionCondition> completes when its’ entire child
<scope>s have completed. The <completionCondition> element is optionally specified to
prevent some of the children from executing (in the serial case), or to force early
termination of some of the children (in the parallel case).

19

The <branches> element has an optional successfulBranchesOnly attribute with the default
value of no. If the value of successfulBranchesOnly is no, all <scope>s which have
completed (successfully or unsuccessfully) must be counted. If successfulBranchesOnly is
yes, only <scope>s which have completed successfully must be counted" [BPEL2.0,
pp.112].

Listing 42: forEach Activity Schema

A.) [BPEL2.0, p.112]:

<forEach counterName="BPELVariableName" parallel="yes|no"
standard-attributes>
standard-elements
<startCounterValue expressionLanguage="anyURI"?>
 unsigned-integer-expression
</startCounterValue>
<finalCounterValue expressionLanguage="anyURI"?>
 Unsigned-integer-expression
</finalCounterValue>
<completionCondition>?
 <branches expressionLanguage="anyURI"?

 successfulBranchesOnly="yes|no"?>?
 unsigned-integer-expression
 </branches>
</completionCondition>
<scope ...>...</scope>

</forEach>

Listing 43: forEach Activity Example

A.) BPEL2.0:

<forEach counterName="counter" parallel="no">
 <startCounterValue>1</startCounterValue>
 <finalCounterValue>50</finalCounterValue>
 <completionCondition>
 <branches successfulBranchesOnly="yes">
 10

</branches>
 </completionCondition>
 <scope>...</scope>
</forEach>

2.8. Scopes

Scopes became enriched by two new attributes, isolated and exitOnStandardFault:

1. The former variableAccessSerializable attribute [BPEL1.1, p.84] has been renamed
to the isolated attribute of a scope. When set to yes, it provides control of concurrent
access to shared resources: variables, partner links, and control dependency links. Such
a scope is called an isolated scope. “Suppose two concurrent isolated scopes, S1 and S2,
access a common set of variables and partner links (external to them) for read or write
operations. The semantics of isolated scopes ensure that the results would be no different
if all conflicting activities (read/write and write/write activities) on all shared variables and
partner links were conceptually reordered so that either all such activities within S1 are
completed before any in S2 or vice versa” [BPEL2.0, pp.143].

20

2. If the value of the exitOnStandardFault attribute on a scope is set to yes, then the
process must exit immediately, as if an <exit> activity has been reached, when any BPEL
2.0 standard fault other than bpel:joinFailure reaches the scope. If the value of this
attribute is set to no, then the process can handle a BPEL 2.0 standard fault using a fault
handler [BPEL2.0, p.135].

Listing 44: Scope Schema

A.) [BPEL1.1, p.30]

<scope variableAccessSerializable="yes|no" standard-attributes>

B.) [BPEL2.0, p.132]

<scope isolated="yes|no"? exitOnStandardFault="yes|no"? standard-attributes>

Listing 45: Scope Example

A.) [BPEL1.1, p.70]

<scope variableAccessSerializable=”yes”>
<faultHandlers>?
 ...
</faultHandlers>
<flow>

 <invoke
 ...
 </flow>
</scope>

B.) BPEL2.0

<scope name="purchase" isolated="yes" exitOnStandardFault="yes">
<targets>
 <target linkName="linkA" />
</targets>
<sources>

 <source linkName="linkB" />
 </sources>

<invoke name="purchase" partnerLink="Seller" portType="SP:Purchasing"
 operation="Purchase" inputVariable="sendPO"

 outputVariable="getResponse" />
</scope>

2.8.1. Scope Initialization

In the previous version, BPEL 1.1, the Scope Initialization was not specified and thus
implementation specific. In BPEL 2.0 the sequence of actions that are to be taken by the
implementation have exactly been specified [BPEL2.0, pp.116].

2.8.2. Message Exchange Handling

When the primary activity and the event handlers of a <scope> complete, then all Web
Service interactions dependent on partner links or message exchanges declared inside of
the <scope> need to be completed. An orphaned inbound message activity (IMA) occurs
when an IMA using a partner link or message exchange, declared in the completing
<scope> or its descendants, remains open. In this case, the new standard fault
bpel:missingReply must be thrown [BPEL2.0, pp.117].

21

2.8.3. Process State Usage in Compensation Handlers

In the BPEL 2.0 specification the Compensation Model has been extended:
“A compensation handler always uses the current state of the process at the time the
compensation handler is executed. This state comes from its associated scope and all
enclosing scopes, and includes the state of variables, partner links and correlation sets.
Compensation handlers are able to both: read and write the values of all such data. Other
parts of the process will see the changes made to shared data by compensation handlers,
and conversely, compensation handlers will see changes made to shared data by other
parts of the process” [BPEL2.0, pp.120].
Furthermore, “the process state consists of the current state of all scopes that have been
started. This includes scopes that have completed successfully but for which the
associated compensation handler has not been invoked. For successfully completed (but
uncompensated) scopes, their state is kept at the time of completion. Such scopes are not
running, yet they are still reachable. This is because their compensation handlers are still
available, and therefore the execution of such scopes may continue during the execution
of their compensation handlers, which can be thought of as an optional continuation of the
behaviour of the associated scope. A scope may have been executed several times (e.g.
in a <while> or in a <forEach>), so the state of the process includes the state of all
successfully completed (and uncompensated) iteration instances of the scope. We refer to
the preserved state of a successfully completed uncompensated scope as a scope
snapshot” [BPEL2.0, pp.120].

2.8.4. Invoking a Compensation Handler

Compensation handlers are both in BPEL 1.1 and BPEL 2.0 defined by using the
<compensationHandler> statement, yet the invocation mechanism differs:
In BPEL 2.0 a compensation handler can be invoked by using <compensateScope> or
<compensate> (together referred to as the "compensation activities") while in BPEL 1.1
only <compensate> is used, naming the targeted scope with the XML attribute scope.
“User-defined Fault / Compensation / Termination handlers may use <compensateScope>
activities to compensate specific immediately enclosed scopes and / or <compensate> to
compensate all immediately enclosed scopes in default order” [BPEL2.0, pp.123]. BPEL
2.0 furthermore specifies a new requirement: “Any repeated attempt to compensate
immediately enclosed scopes is treated as executing an <empty> activity” [BPEL2.0,
p.124].

Listing 46: Compensation Invocation Schema

A.) [BPEL1.1, p.72]:

<compensate scope="ncname"? standard-attributes>
standard-elements

</compensate>

B.) [BPEL2.0, p.122]:

<compensateScope target="NCName" standard-attributes>
standard-elements

</compensateScope>

<compensate standard-attributes>

standard-elements
</compensate>

22

Listing 47: Compensation Invocation Example

A.)

[BPEL1.1, p.75]:

<compensate scope="RecordPayment"/>

[BPEL1.1, p.75]:

<compensate/>

B.)

[BPEL2.0, p.123]:

<compensateScope target="RecordPayment"/>

[BPEL2.0, p.121]:

<faultHandlers>
<catch faultName="prefix:someFault">
 <compensate />
</catch>

</faultHandlers>

2.8.5. Fault Handlers

1. A BPEL 2.0 process is allowed to rethrow the original fault caught by the nearest
enclosing fault handler with the new <rethrow> activity. A <rethrow> activity is allowed to
be used within any fault handler and only within a fault handler. Regardless of how a fault
is caught and whether a fault handler modifies the fault data, a <rethrow> activity always
throws the original fault data and preserves its type [BPEL2.0, pp.131].

2. The default fault handling mechanism was informally described in BPEL 1.1 [BPEL1.1,
p.78], but BPEL 2.0 provides more precise details: “Whenever a <catchAll> fault handler
(for any fault), <compensationHandler>, or <terminationHandler> is missing for any given
<scope>, they must be implicitly created by the implementation” [BPEL2.0, pp.132], for the
Default Handlers’ definitions see Listing 48:, Listing 50: and Listing 52:.
The way of handling such process models (e.g. adding the default fault handlers to the
process model at deployment time) is not specified and thus implementation specific.

3. The Execution Order of Compensation activities has clearly been specified in BPEL 2.0
regarding also parallel activities [BPEL2.0, pp.132].

4. The new Termination handlers provide the ability for scopes to control the semantics of
forced termination to some degree. The syntax is as follows:
“The forced termination of a scope begins by terminating its primary activity and all
running event handler instances. Following this, the custom <terminationHandler> for the
scope, if present, is run” [BPEL2.0, pp.136]. In the former BPEL 1.1 specifications this
was handled by the fault handler with the standard bpws:forcedTermination fault
[BPEL2.0, pp.79].

5. Enriched Fault Handling Model: Several new faults are introduced in BPEL 2.0, for a
complete list see [BPEL2.0, pp.192] in comparison to [BPEL1.1, pp.112].

23

Listing 48: Default Fault Handler

[BPEL2.0, p.132]:

<catchAll>
<sequence>
 <compensate />
 <rethrow />
</sequence>

</catchAll>

Listing 49: Fault Handler Example

BPEL2.0:

<faultHandlers>
<catch faultName="KnownIssue">

 <compensate />
</catch>
<catchAll>
 <rethrow />
</catchAll>

</faultHandlers>

Listing 50: Default Compensation Handler

[BPEL2.0, p.132]:

<compensationHandler>
<compensate />

</compensationHandler>

Listing 51: Compensation Handler Example

[BPEL2.0, p.145]:

<compensationHandler>
<sequence name="undoQ_Seq">
 ...
</sequence>

</compensationHandler>

Listing 52: Default Termination Handler

[BPEL2.0, p.132]:

<terminationHandler>
<compensate />

</terminationHandler>
Listing 53: Termination Handler Example

[BPEL2.0, p.136]:

<terminationHandler>
activity

</terminationHandler>

2.8.6. Event Handlers

Event handling syntax and functionality has been modified and enriched in BPEL 2.0
[BPEL2.0, pp.137]:

24

1. The onMessage element has been renamed to onEvent.

2. Activities nested in the onEvent or onAlarm element have to be wrapped in a scope.

3. The onAlarm feature has additionally an optional repeatEvery expression: While the
parent scope is active, the <repeatEvery> alarm event is created repeatedly each time the
duration expires.

Listing 54: Event Handler Schema

A.) [BPEL1.1, pp.80]:

<eventHandlers>?
<!-- there must be at least one onMessage or onAlarm handler -->
<onMessage partnerLink="ncname" portType="qname" operation="ncname"
 variable="ncname"?>*
 <correlations>?
 <correlation set="ncname" initiate="yes|no">+
 </correlations>
 activity
</onMessage>

 <onAlarm for="duration-expr"? until="deadline-expr"?>*
 activity
 </onAlarm>
</eventHandlers>

B.) [BPEL2.0, pp.137]:

<eventHandlers>?
<onEvent partnerLink="NCName"

 portType="QName"?
 operation="NCName"
 (messageType="QName" | element="QName")?
 variable="BPELVariableName"?
 messageExchange="NCName"?>*

 <correlations>?
 <correlation set="NCName" initiate="yes|join|no"? />+

 </correlations>
 <fromParts>?
 <fromPart part="NCName" toVariable="BPELVariableName" />+
 </fromParts>
 <scope ...>...</scope>

</onEvent>
 <onAlarm>*
 (
 <for expressionLanguage="anyURI"?>duration-expr</for>
 |
 <until expressionLanguage="anyURI"?>deadline-expr</until>
)?
 <repeatEvery expressionLanguage="anyURI"?>?
 duration-expr
 </repeatEvery>
 <scope ...>...</scope>
 </onAlarm>
</eventHandlers>

Listing 55: Event Handler Example

A.) [BPEL1.1, pp.81]:

<eventHandlers>
<onMessage partnerLink=“buyer” portType=“car” operation=“cancel”

 variable=“cancelDetails”>
 <terminate/>
</onMessage>

 ...
</eventHandlers>

25

B.) [BPEL2.0, pp.139]:

<eventHandlers>
<onEvent partnerLink="travelAgency" portType="ns:agent"
 operation="travelUpdate" messageType="ns:travelStatsUpdate"
 variable="travelUpdate">
<correlations>

 <correlation set="travelCode" initialize="no" />
 <correlation set="updateCode" initialize="yes" />
 </correlations>
 <scope name="S2">
 ...

</scope>
</onEvent>

</eventHandlers>

2.9. Extensions

1. BPEL 2.0 introduces a new extension directive to specify, which extension must be
understood. If a BPEL 2.0 processor does not support one or more of the extensions with
mustUnderstand = yes, then the process definition must be rejected.
Optional extensions are extensions which the BPEL 2.0 process may ignore. There is no
requirement to declare any optional extensions. Optional extension can be declared using
the extensions element with mustUnderstand = no.

Listing 56: Process Extension Schema

[BPEL2.0, p.164]

<process ...>
...
<extensions>?

 <extension namespace="anyURI" mustUnderstand="yes|no" />+
 </extensions>

...
</process>

Listing 57: Process Extension Example

[BPEL2.0, p.164]

<process ...>
...
<extensions>
 <extension namespace="http://example.com/bpel/some/extension"

 mustUnderstand="no" />
 </extensions>

...
</process>

2. The optional <documentation> construct is applicable to any BPEL 2.0 extensible
construct. Typically, the contents of <documentation> are for human-readable annotations.
Example types for content are: plain text, HTML and XHTML [BPEL2.0, p.32].

26

2.10. Abstract Processes

The key distinction between public message exchange protocols and executable internal
processes is that internal processes handle data in rich private ways that need not be
described in public protocols [BPEL1.1, p.9].

2.10.1. Common Base

The common base is the “syntactic form” to which all BPEL 2.0 Abstract Processes must
conform. The syntactic characteristics of the common base are [BPEL2.0, p.147]:

1. The new abstractProcessProfile attribute must exist. Its value refers to an existing
profile definition.

2. All the constructs of Executable Processes are permitted. Thus, there is no
fundamental expressive power distinction between Abstract and Executable Processes.

3. Certain syntactic constructs in BPEL 2.0 Executable Processes may be hidden,
explicitly through the inclusion of opaque language extensions, and implicitly through
omission.

4. An Abstract Process may omit the createInstance activity (<receive> or <pick>) that is
mandatory for Executable BPEL 2.0 Processes.

2.10.2. Opaque Language Extensions

There are four opaque placeholders: expressions, activities, attributes and from-specs. A
usage profile may restrict the kinds of opaque tokens allowed at its discretion. However, a
usage profile must not expand allowable opacity above what is allowed by the common
base [BPEL2.0, p.148].

2.10.3. Omission

Omission may be used as a shortcut to opacity, from hereon referred to as omission
shortcut. The omission shortcut is exactly equivalent to representing the omitted artefact
with an opaque value at the omitted location. Tokens must only be omitted where the
location can be detected deterministically. To enforce this requirement, omittable tokens
are restricted to all attributes, activities, expressions and from-specs which are both
syntactically required by the Executable BPEL 2.0 XML Schema, and have no default
value [BPEL2.0, p.151].

2.10.4. Abstract Process Profiles

A usage profile defines the necessary syntactic constraints and the semantics based on
Executable BPEL 2.0 Processes for a particular use case for Abstract Processes. Every
Abstract Process must identify the usage profile that defines its meaning. A profile is
identified using a (mandatory) URI, which is referenced as value of the
abstractProcessProfile attribute by all Abstract Processes belonging to this profile. This
approach is extensible, new profiles can be defined as different areas are identified
[BPEL2.0, p.147]. Two profiles are provided in the BPEL 2.0 specification, Observable
Behaviour and Process Template.

27

2.10.5. Observable Behavior

The first usage profile is concerned with hiding internal processing of a business partner’s
process while capturing all the information required to describe, how the process interacts
with its partners [BPEL2.0, pp.155]. The set of usage restrictions is derived from the
original Abstract Process definition [BPEL1.1, pp.88]. The URI identifying this Abstract
Process Profile is:

Listing 58: Observable Behavior Reference

http://docs.oasis-open.org/wsbpel/2.0/process/abstract/ap11/2006/08

2.10.6. Process Template

BPEL 2.0 defines an Abstract Process profile called Template Profile. This usage profile
allows the definition of Abstract Processes which hide almost any arbitrary execution
details and have explicit opaque extension points for adding behavior. These Abstract
Processes allow process developers to complete execution details at a later stage – for
example, adding conditions and defining endpoints for an Executable Completion
[BPEL2.0, p.159]. The URI identifying this Abstract Process Profile is:

Listing 59: Process Template Reference

http://docs.oasis-open.org/wsbpel/2.0/process/abstract/simpletemplate/2006/08

28

3. Structure of the Graphical Editor

3.1. Eclipse, EMF and GEF

The Graphical BPEL Editor is built on top of several frameworks: It is implemented as an
Eclipse plug-in and thus integrated into the Eclipse Workbench. It is also using the Eclipse
Modeling Framework (EMF) for the generation and representation of the BPEL data
model in code. For the graphical editing functionality it is utilizing the Graphical Editing
Framework (GEF) which provides a rich platform for the graphical creation and
modification of data models. Both, EMF and GEF are also implemented as Eclipse plug-
ins.

Basic Elements of GEF applications are the so-called EditParts. Those elements define
the mapping between the data model and their graphical representation. For each
element in the data model that shall be graphically editable such an element has to be
created. There are three kinds of EditParts:

• GraphicalEditParts which are used for representing activities.
• ConnectionEditParts which are used for representing links.
• TreeEditParts which are used for representing other constructs like PartnerLinks

and Variables.

The following figure illustrates the simplified connection of the data model with the
graphical viewer using EditParts [Kapl06, p.26].

Figure 1: EMF and GEF

29

3.2. General Structure of the Graphical Editor

The graphical editor consists of a data model (generated with EMF), mapping elements
(EditParts) and a graphical viewer (GEF). To be more precise the mapping elements are
only part of a bigger structure, namely the controller. The figure below illustrates the
general structure of the graphical editor.

Figure 2: General Structure of the Graphical Editor

30

Walkthrough

1. For both, the BPEL 1.1 and BPEL 2.0 model XML Schema Definitions (XSD) are
available.

2. The BPEL model (XSD) is used as initial input for the generation of the BPEL
model in code.

3. For the generation of the model in code, the Eclipse Modeling Framework (EMF) is
used. The EMF builds up an internal representation of the model, called Ecore
model.

4. The Ecore model is the basis for the generation of the model in code. To certain
extend - only Java Interfaces - the generated model can also be used as input for
the Ecore model. Thus multiple cycles of code generation are possible.

5. The generated BPEL model consists of Java classes extending EMF components.
The basic structure of the data model is discussed in 3.4.

6. These components have to be available during runtime.
7. The EMF is implemented as Eclipse plug-in; hence the whole development work of

the BPEL model in code is performed using the Eclipse development platform.
8. The generated BPEL model provides a factory for the instantiation of model

elements; this interface is used by the controller.
9. The controller connects the elements of the data model to the other components

and frameworks. The detailed structure of the controller is discussed in 3.3.
10. Some interactions with the user can neither be realized with the Graphical Editing

Framework (GEF) nor with Eclipse functionality.
11. For this kind of interactions Java SWT / SWING Dialogs are used, for example to

import a Partner Link into the process model.
12. The controller has to deal with the transformation of the internal representation of

the process model into XML (BPEL code) and the other way round.
13. For the accessing, manipulating and outputting XML data from Java code, e.g.

outputting BPEL code or importing a PartnerLink WSDL, the JDOM framework is
used. This is similar to the Document Object Model (DOM).

14. The controller connects the elements of the process model to the Eclipse API.
15. Firstly for the integration with the Eclipse Property View for providing access to

activity attributes for example. Secondly for the integration with the Eclipse Outline
View for providing access to other constructs like PartnerLink and Variable.

16. The controller is implemented as Eclipse plug-in and has to connect itself to the
Eclipse development platform.

17. These connections provide the automatic startup of the graphical editor when a file
with the extension .bpel is opened in Eclipse and also the integration into the
workbench which is required for all Eclipse plug-ins. The graphical editor makes
usage of further Eclipse features like the multi-page functionality for switching
between the graphical representation of the BPEL process and its BPEL code.

18. As already described in 3.1 the controller connects the elements of the data model
to the Graphical Editing Framework using Edit Parts. These however are not the
only connection, also editing policies, commands and according call backs, the
content of the editor palette and instructions for graphical display of elements have
to be defined.

19. The Graphical Editing Framework provides the graphical platform for the visual
creation and modification of BPEL process models.

20. This framework is also implemented as an Eclipse plug-in.

31

3.3. Structure of the Controller

The controller consists of various components that connect the data model to other the
frameworks. In this thesis the components that connect an Activity are most important, so
the following description omits other aspects like for example the integration of the editor
as Eclipse plug-in. For a complete description of the controller please refer to [Kapl06].

• The Activity Edit Part defines the mapping of the Activity from the data model to
the Graphical Editing Framework.

• The Edit Part Factory instantiates the Edit Part of the Activity
• The Editor Palette is required to make the Activity accessible within the Graphical

Editor. It provides a palette of grouped activities with a label and an icon.
• The command classes define the call backs for events (e.g. Add Activity) in the

Graphical Editing Framework.
• The commands are using Edit Policies that declare how the command shall be

handled for a specific activity. For example the ActivityXYLayoutEditPolicy
declares, how movements of activities onto other activities are reflected in the data
model, e.g. by nesting the Activity into a Scope.

• The Bpel Output Generator transforms the Activity into Bpel code using the Java
Document Object Model Package for building up the XML tree structure.

• The Property View Provider makes the properties of the Activity accessible in the
Eclipse Property View.

• The Model Creation Factory is the connection between the controller and the data
model. It is delegating the request for the creation of elements to the data model.

Figure 3: Integration of an Activity into the controller

32

3.4. Basic Structure of the Data Model

The data model is the representation of the Bpel Model in code. The data model is
generated using the Eclipse Modeling Framework (EMF) and is based on Java. It makes
additional usage of generic EMF classes like EAttribute and EClass. These EMF classes
are used for internal representation of the data model during runtime. The EMF code
generation produces the following class structure:
“For each EClass in the EPackage, an interface is generated in the base package, and a
Java class that implements it is generated in the impl package. If the EClass inherits from
another EClass, then the generated interface and implementation extend the interface and
implementation generated for the supertype” [MDGW04, p.46].
The Model Descriptor “contains accessors for the meta objects to represent each class,
each feature of each class, each enum and each data type” [EMF JavaDoc]. For example
the Property View Provider from the controller accesses the Model Descriptor to find out,
which attributes a certain class has and what their display name is.

Figure 4: Connections of an activity in the data model

33

4. Analysis of the Extensibility of the Existing Tool

4.1. BPEL 1.1 Data Model Generation

“The Eclipse Modeling Framework (EMF) is designed to ease the design and
implementation of a structured model. The Java framework provides a code generation
facility in order to keep the focus on the model itself and not on its implementation details.
The key concepts underlying the framework are: meta-data, code generation, and default
serialization” [MDGW04, p.3].
The Eclipse Modeling Framework has been used during the implementation of the prior
version of this editor, which this thesis is based on. For the code generation of the editor
the BPEL 1.1 XML Schema Definitions (XSD) have been used as initial input, see
[BPEL1.1XSD].
After the initial code generation the generated interface classes have been modified to
support Extensions like Evaluate, Find & Bind and the support for BPEL Templates
[Kapl06, pp. 7]. These interface classes have been used for a second cycle of code
generation as described in [Kapl06, pp. 34]. After the second cycle the generated
skeletons have partially been implemented.

4.2. BPEL 2.0 Data Model Generation

The OASIS consortium has provided the XML Schema Definition for BPEL 2.0 executable
processes (see [BPEL2.0XSD]). This enables the generation of a BPEL 2.0 data model
using the Eclipse Modeling Framework.
After the initial code generation the generated interface classes can be modified to
support Extensions like Evaluate, Find & Bind and the support for BPEL Templates
[Kapl06, pp. 7] like in the prior version of the editor. These interface classes can also be
used for a second cycle of code generation as described in [Kapl06, pp. 34].
The generated BPEL 2.0 model files provide the skeletons for the model but they are
missing the implementation of language elements existing in BPEL1.1 and which have
already been provided by the former version of the editor. Nevertheless this
implementation could be accomplished with tolerable effort, thus it would be theoretically
possible to exchange the underlying data model of the editor completely.
The various adaptations of the generated BPEL 1.1 data model in [Kapl06] and the
multitude of syntactical changes from BPEL 1.1 to BPEL 2.0 make the merge of the
available BPEL 1.1 data model and the BPEL 2.0 data model hardly possible.

4.3. BPEL 1.1 Data Model Integration

Based on the knowledge about building graphical editors using EMF and GEF [MDGW04]
and plug-in development, it turns out that the real development work lies in connecting the
generated data model with the Graphical Editing Framework. In other words, the
development of the controller and its embedding into an eclipse plug-in are the main
tasks.
The controller of the former version of the editor is not generic and hard-wired with the
underlying data model. It is also not embedded into a plug-in instead it is the plug-in itself.
The actual development work of the editor was the architecture and implementation of this
controller.

34

4.4. BPEL 2.0 Data Model Integration

The investigation of the BPEL 1.1 data model integration identifies two options on how to
integrate the BPEL 2.0 model into the editor:

The first option is to redevelop the editor using the BPEL 2.0 data model. Some code can
be reused but most of the development work has to be performed again. This option
would also allow using a more generic approach during the development of the controller.
In this case an MDA approach would bring benefits, however, the requirements in the
project have been to extend a particular existing modeling tool.

The other option is to integrate the BPEL 2.0 data model into the controller piece by piece.
The first section of this thesis provides the background information that is needed to follow
this approach. This option is challenging as the BPEL 1.1 data model with its extensions
and its integration with the controller on the basis of an eclipse plug-in is quite complex.
This option has been chosen in this thesis and is described and demonstrated in detail
(see the following section).

4.5. BPMN Integration

The Business Process Management Initiative of the Object Management Group (OMG)
has developed a standard Business Process Modeling Notation (BPMN):
“The primary goal of BPMN is to provide a notation that is readily understandable by all
business users, from the business analysts that create the initial drafts of the processes,
to the technical developers responsible for implementing the technology that will perform
those processes, and finally, to the business people who will manage and monitor those
processes. Thus, BPMN creates a standardized bridge for the gap between the business
process design and process implementation“, see [BPMN1.0, p.1].

A hybrid editor that supports BPMN and BPEL would be a great improvement for the
collaboration of both, business analysts and technical developers. Therefore the
possibilities for integrating BPMN into the existing tool are investigated in the following.

4.5.1. Mapping BPMN to BPEL

The specification BPMN 1.0 describes extensively (see [BPMN1.9, pp.137]) how parts of
a Business Process Diagram can be mapped to BPEL 1.1 processes. One of the essential
disparities is mentioned in the preamble:
“A Business Process Diagram can be made up of a set of (semi-) independent
components, which are shown as separate Pools. Thus, there is not a specific mapping to
the diagram itself. Rather, there are separate mappings to each of the Pools that are in
the diagram. That is, each Pool in the diagram, if it is a “white box” that contains process
elements, will map to an individual BPEL4WS [BPEL1.1] process. However, in the course
of mapping the contents of the Process, there may be one or more derived processes
necessary to handle complex behavior, such as looping. The attributes of “black box”
Pools will also be used in determining specific BPEL4WS [BPEL1.1] elements, such as
partnerLink” [BPMN1.0, p.137].
As a conclusion it can be stated that a procedure for mapping a BPMN 1.0 Business
Process Diagram to BPEL 1.1 processes and elements has already been specified from
the OMG, see [BPMN1.0, p.137], and demonstrated, see [Whit05]. The mapping has not
yet been specified for BPEL 2.0 but as the specification for BPMN 2.0 is ongoing, it can be
expected, that support for BPEL 2.0 mapping will be considered, see [BPMN2.0, p.24].

35

Although this procedure has been specified and demonstrated in various examples, it is
also described as “intrinsically complex to map the diagrams to BPEL processes because
of the structural disparity between BPMN and BPEL. BPEL is a block structured language
overall, even though a flow with links in BPEL can be more flexible. In contrast, BPMN is a
constrained, but relative free form graph. Structurally, BPMN can be a super-set of BPEL.
There are no fundamental difficulties in mapping a BPEL process to an isomorphic BPMN
diagram. In other words, any BPEL process can be visualized as a BPMN diagram without
rearranging the flows. But it is not always possible to map a BPMN diagram directly to an
isomorphic BPEL process”, see [Gao06, p.1].

4.5.2. Mapping BPEL to BPMN

The procedure for mapping BPEL 2.0 processes and elements to a BPMN 1.0 Business
Process Diagram has not been provided by the organization that has developed the BPEL
2.0 standard, OASIS. However there exisits a proprietary solution [eClarus] for this
problem, which is partially described in a related white paper, see [Gao06]. As the
procedure, which is used in this solution, has not been released to the public and probably
will not be in near future it would be necessary to elaborate on this before integration into
any tool can take place.

4.5.3. Integration Approaches

The prior investigation identifies three main approaches for integrating BPMN with BPEL
in general, with respect to the enormous benefits of graphical editing technologies:

• Developing a graphical editor for BPMN, that provides the transformation into
BPEL processes and elements and supports preferably their visualization.

• Developing a graphical editor for BPEL processes and elements, that provides

transformation into BPMN and its visualization.

• Developing a graphical editor for BPMN and BPEL offering Round-Trip-
Engineering with respect to certain constraints and limitations.

The first approach has already been implemented by various proprietary solutions, yet the
open source projects are just at the beginning. The most promising project in this area is
the Eclipse SOA Tools Platform (STP) that will contain a BPMN editor [STP07]. An
interface for the generation of BPEL code is planned for this project but not assigned to
contributors yet. This approach can not be implemented in the existing graphical BPEL
editor, as only BPEL model instances and its data structures can be processed and
stored. All additional (only BPMN related) information could not be taken into account.

The second approach is developing a graphical editor for BPEL processes and elements
that provides transformation into BPMN and its visualization is the most feasible for the
existing editor. For realization of this approach first the mapping rules from BPEL 2.0 into
BPMN 1.0 would have to be defined. Afterwards a read-only BPMN visualization-tab could
be integrated into the editor, where BPMN objects according to the BPEL model instance
can be displayed. Daniel Lee [Lee03] describes how to use the java libary Draw2d to
display user-defined graphical objects in a GEF environment, this also applies here. The
BPMN visualization-tab is described as read-only, as the existing editor is only able to
process and store BPEL model instances due to the underlying BPEL data model.

36

The third approach is developing a graphical editor for BPMN and BPEL, offering Round-
Trip-Engineering with respect to certain constraints and limitations is undisputably the
most challenging one. It has already been implemented by [eClarus] in a proprietary
solution for Round-Trip-Engineering BPMN and BPEL (1.1). For realization of this
approach an editor has to be developed, that is capable of modeling and processing both
models, BPEL and BPMN. Additionaly, BPMN related constraints and limitations would
have to be definded in order to allow only constructs that can be mapped to BPEL. Finally
the mapping procedures from BPEL 2.0 to BPMN 1.0 and the other way round have to be
defined and implemented. The existing graphical editor is not appropriate for such an
extension.

37

5. BPEL 2.0 model integration

5.1. Integration overview

In order to preserve the existing controller and the already integrated extensions and
conducted implementation work, the data model files are not exchanged completely. For
some of the integration tasks, the generation of the data model is a prerequisite and has
to be performed beforehand. These are the classes of integration:

New attributes
For additional attributes like suppressJoinFailure on any activity (see 2.2.1) integration
can be achieved by adapting the graphical editor (editor palette and property provider),
the BPEL output generator and the data model accordingly.

New construct
For completely new constructs like validate (see 2.4.1) it is feasible to integrate the
generated BPEL 2.0 model files into the existing data model of the editor and adapt the
various parts of the controller accordingly.

New elements
New elements with single occurrence like documentation (see 2.9) can be integrated like
new attributes, while elements with more than one occurrence like fromParts (see 2.4.1)
have to be integrated like new constructs.

Removed constructs
For the removal of constructs like Partners (see 2.3.3) integration can be achieved by
adapting the existing data model provider and the editor palette accordingly. Although the
construct Partners has been removed from the BPEL 2.0 specification it will not be
removed from the editor as required for further development of the tool. Since no other
constructs or activities were removed from the former BPEL 1.1 specification during the
standardization by OASIS, the removal of elements is not described in detail.

Removed attributes and construct elements
For the removal of attributes like the process attribute abstractProcess (see 2.2.1)
integration can be achieved by adapting the BPEL output generator and the existing data
model accordingly. The procedure of removing elements is the same.

Attributes and nested XML elements
For the transformation of attributes into nested XML elements like until in the activity
wait (see 2.6.2) and the other way round like portType in partnerLinks (see 2.3)
integration can be achieved by adapting the BPEL output generator of the editor
accordingly.

Constructs naming
For the change of the naming like from Terminate to Exit (see 2.6.4) integration can be
achieved by adapting the editor palette and the BPEL output module of the editor
accordingly.

Distinguishing between the Controller and the Data Model
The adaptations that are made affect in most of the described integration classes both,
the controller and the data model. They can easily be distinguished by the package name:
Package name of the controller: org.xmlsoap.schemas.ws.bpeleditor
Package name of the data model: org.xmlsoap.schemas.ws.bpelmodel

38

5.2. Integration of new attributes

As an example of the integration of a new attribute suppressJoinFailure (see 2.2.1) on
the activity invoke is described in detail. Actually, the attribute was already included in the
specification of BPEL 1.1, as a (optional) standard-attribute for all activites and is still
included in the specification of BPEL 2.0, but it was not implemented for all activities in the
former version of the editor. The parts of the integration are described top-down,
beginning on top at the BPEL output the editor produces going down to its actual
implementation in the data model. As data type for the attribute the type String is
preferred to boolean because the native Java boolean type does not support having no
value. It is important to have the option that no value is set in order to be able to
distinguish whether the attribute has to be generated in the BPEL output or not.

5.2.1. BPEL output generator

The BPEL output generator is the unit that produces the BPEL code out of the BPEL
process model. Each type of construct has a related function to build its subtree in the
JDOM tree, in this example the function buildInvokeSubtree.

Listing 60: Adaptation of BPEL output generator for attribute integration

File: org.xmlsoap.schemas.ws.bpeleditor.xml.BpelBuilder.java
Function: buildInvokeSubtree

//optional: supressJoinFailure
if ((invokeActivity.getSuppressJoinFailure() != null) &&
 (invokeActivity.getSuppressJoinFailure() != "")){
 invokeElement.setAttribute(new Attribute("suppressJoinFailure",
 invokeActivity.getSuppressJoinFailure()));
}

Explanation:

• invokeActivity is the instance of the invoke activity class TInvokeActivityImpl
• invokeElement is the element in the JDOM tree that is being built
• The attribute name in the generate output is “suppressJoinFailure”
• The attribute is only generated, if its value is defined (!= null) and if its value is

not an empty string (!= "")
• getSuppressJoinFailure is a getter function of the invoke activity class

TInvokeActivity which is implemented by TInvokeActivityImpl. The function
returns the value of the new attribute.

5.2.2. Property View Provider

For some attributes it is feasible to limit the allowed values the user can set. For the
suppressJoinFailure attribute the values “yes” and “no” are defined by the specification.
A third value, the empty string “”, has to be added to allow the user to completely unset
the attribute. This value limitation is implemented in the Property Source Descriptor class,
which provides additional functionality for the Eclipse Property View.

Listing 61: Initialization of allowed attribute values array

File: org.xmlsoap.schemas.ws.bpeleditor.model.EObjectPropertySource.java
Function: class EObjectPropertySource

//Creating a new ArrayList for the allowed values
ArrayList suppressJoinFailureValues = new ArrayList();

39

Listing 62: Initialization of allowed attribute values

File: org.xmlsoap.schemas.ws.bpeleditor.model.EObjectPropertySource.java
Function: EObjectPropertySource

//Add values to Attribute Array
suppressJoinFailureValues.add("yes");
suppressJoinFailureValues.add("no");
suppressJoinFailureValues.add("");

Listing 63: Getter function for the Property Descriptor

File: org.xmlsoap.schemas.ws.bpeleditor.model.EObjectPropertySource.java
Function: getPropertyDescriptors

//Iteration over all attributes
. . .
else if (attr.getName() == "suppressJoinFailure"){
 ComboBoxPropertyDescriptor desc = new ComboBoxPropertyDescriptor(
 Integer.toString(attr.getFeatureID()), attr.getName(),
 (String[])suppressJoinFailureValues.toArray(new
 String[suppressJoinFailureValues.size()]));
 desc.setCategory(groupName);
 descriptors.add(desc);
}

Listing 64: Getter function for the Property Values

File: org.xmlsoap.schemas.ws.bpeleditor.model.EObjectPropertySource.java
Function: getPropertyValue

else if(feature.getName().equals("suppressJoinFailure")){
 //get the value of the attribute instance
 String value = (String)object.eGet(feature);
 //return position in array for Property View
 result = new Integer(suppressJoinFailureValues.indexOf(value));
}

Listing 65: Setter function for the Property Values

File: org.xmlsoap.schemas.ws.bpeleditor.model.EObjectPropertySource.java
Function: setPropertyValue

else if (feature.getName() == "suppressJoinFailure"){

//Sets the value on the attribute instance (as String)
 object.eSet(feature, suppressJoinFailureValues.get(
 ((Integer)value).intValue()));
}

5.2.3. Abstract Activity Interface

At this point the adaptations of the controller are complete and those of the data model
begin:
In this case - adding a standard-attribute - the general class TActivity (interface
definition) and TActivityImpl (interface implementation) can be adapted, as its functions
are getting inherited by all activities. In any other case all of the following adaptations have
to be conducted directly in the related classes, e.g. TInvoke and TInvokeImpl.

Listing 66: Abstract Activity Definition for getter and setter function of the attribute

File: org.xmlsoap.schemas.ws.bpelmodel.TActivity.java
Function: getSuppressJoinFailure; setSuppressJoinFailure

40

//Defintion of the suppressJoinFailure attribute getter and setter

String getSuppressJoinFailure();

void setSuppressJoinFailure(String value);

Explanation:
The interface description has to include the getter and setter functions of the attribute.

5.2.4. Abstract Activity Implementation

In order to stay consistent with the generated code the integration is performed in the
same manner as how the code generator (EMF) would act: The abstract activity
implementation class TActivityImpl implements the getter and setter function for the
common activity attribute, and defines a default setting and the variable itself.

Listing 67: Definition of default values for the attribute in the activity implementation

File: org.xmlsoap.schemas.ws.bpelmodel.impl.TActivityImpl.java
Function: class TActivityImpl

//Setting the default value of the attribute supressJoinFailure
protected static final String SUPPRESS_JOIN_FAILURE_EDEFAULT = null;
protected String suppressJoinFailure = SUPPRESS_JOIN_FAILURE_EDEFAULT;

Listing 68: Implementation of the getter and setter function of the attribute

File: org.xmlsoap.schemas.ws.bpelmodel.impl.TActivityImpl.java
Function: getSuppressJoinFailure; setSuppressJoinFailure

//Attribute supressJoinFailure getter and setter implementation
public void setSuppressJoinFailure(String newSupressJoinFailure) {
 suppressJoinFailure = newSupressJoinFailure;
}

public String getSuppressJoinFailure() {
 return suppressJoinFailure;
}

5.2.5. Activity Implementation

The activity implementation contains the functionality for accessing the attribute. Four
kinds of functions are provided, eGet, eSet, eIsSet und eUnset. Those are functions for
dynamic access to activity features and references. Parameters for these functions are
the feature IDs from the Model Descriptor. These functions overwrite those of the abstract
activity implementation.

Listing 69: Implementation of the interface for the controller: eGet

File: org.xmlsoap.schemas.ws.bpelmodel.impl.TInvokeImpl.java
Function: eGet

switch (eDerivedStructuralFeatureID(eFeature)) {

. . .
//supressJoinFailure Attribute dynamic get

 case BpelmodelPackage.TACTIVITY__SUPPRESS_JOIN_FAILURE:
 return getSuppressJoinFailure();

41

Listing 70: Implementation of the interface for the controller: eSet

File: org.xmlsoap.schemas.ws.bpelmodel.impl.TInvokeImpl.java
Function: eSet

switch (eDerivedStructuralFeatureID(eFeature)) {
 . . .

//supressJoinFailure attribute dynamic set
 case BpelmodelPackage.TACTIVITY__SUPPRESS_JOIN_FAILURE:
 setSuppressJoinFailure((String) newValue);
 return;

Listing 71: Implementation of the interface for the controller: eUnset

File: org.xmlsoap.schemas.ws.bpelmodel.impl.TInvokeImpl.java
Function: eUnset

switch (eDerivedStructuralFeatureID(eFeature)) {
 . . .

//suppressJoinFailure dynamic unset
 case BpelmodelPackage.TACTIVITY__SUPPRESS_JOIN_FAILURE:
 setSuppressJoinFailure(SUPPRESS_JOIN_FAILURE_EDEFAULT);
 return;

Listing 72: Implementation of the interface for the controller: eIsSet

File: org.xmlsoap.schemas.ws.bpelmodel.impl.TInvokeImpl.java
Function: eIsSet

switch (eDerivedStructuralFeatureID(eFeature)) {
 . . .

//suppressJoinFailure dynamic eIsSet
 case BpelmodelPackage.TACTIVITY__SUPPRESS_JOIN_FAILURE:
 return suppressJoinFailure != null;

5.2.6. Model Descriptor

The Model Descriptor “contains accessors for the meta objects to represent each class,
each feature of each class, each enum and each data type” [EMF JavaDoc].

Listing 73: Definition of a feature number

File: org.xmlsoap.schemas.ws.bpelmodel.BpelmodelPackage.java
Function: class BpelmodelPackage

//suppressJoinFailure EAttribute definition
EAttribute getTActivity_SuppressJoinFailure();

//New Feature number
int TACTIVITY__SUPPRESS_JOIN_FAILURE = TEXTENSIBLE_ELEMENTS_FEATURE_COUNT + 14;

//Feature number count incremented, was: 14
int TACTIVITY_FEATURE_COUNT = TEXTENSIBLE_ELEMENTS_FEATURE_COUNT + 15;

Explanation:
Each feature that is used in the graphical editor has a feature number, which is unique in
its scope, so the feature TACTIVITY__SUPPRESS_JOIN_FAILURE is the only feature within the

42

type TActivity with the number 14 (plus an offset). For iterations over all features the
controller uses the variable TACTIVITY_FEATURE_COUNT, which has to be incremented for
each added feature.
For each of the activities, there is one feature count variable. This variable represents the
information how many features (attributes or class references) an activity has.
When a standard-attribute, that is valid for all activities, is added, the abstract activity
feature count has to be incremented. In any other case, the feature count of the specific
activity has to be incremented.

5.2.7. Model Descriptor Implementation

The Model Descriptor Implementation provides the access to the feature that has been
declared in its interface. The code which was produced by the Eclipse Modeling
Framework does not make use of this declaration; it uses its static value instead.

Listing 74: Adding the static feature number to the implementation

File: org.xmlsoap.schemas.ws.bpelmodel.impl.BpelmodelPackageImpl.java
Function: init

//Implementation of the suppressJoinFailure attribute
public EAttribute getTActivity_SuppressJoinFailure() {
 return (EAttribute)tActivityEClass.getEStructuralFeatures().get(14);
}

Explanation:
It is unclear why the Eclipse Modeling Framework generates static references, although
the variable TACTIVITY__SUPPRESS_JOIN_FAILURE is accessible from within this context. In
order to stick to the style of the generated code a static reference is used here also. The
number is the same as the one added to TACTIVITY__SUPPRESS_JOIN_FAILURE in the class
loader of the interface.

Listing 75: Initial creation of the attribute in the model implementation

File: org.xmlsoap.schemas.ws.bpelmodel.impl.BpelmodelPackageImpl.java
Function: createPackageContents

createEAttribute(tActivityEClass, TACTIVITY__SUPPRESS_JOIN_FAILURE);

Listing 76: Modeling the attribute

File: org.xmlsoap.schemas.ws.bpelmodel.impl.BpelmodelPackageImpl.java
Function: initializePackageContents

//Attribute suppressJoinFailure initialization
initEAttribute(getTActivity_SuppressJoinFailure(),
 ecorePackage.getEString(),
 "suppressJoinFailure",
 "", //may not be null
 0,
 1,
 TActivity.class,
 !IS_TRANSIENT, !IS_VOLATILE, IS_CHANGEABLE, !IS_UNSETTABLE,
 !IS_ID, !IS_UNIQUE, !IS_DERIVED, !IS_ORDERED);

Explanation:
The generic function initEAttribute is used to initialize the datatype and its behavior in
the editor. The first parameter, getTActivity_SuppressJoinFailure(), is a function call of
the attribute constructor. The second attribute defines the datatype of the attribute. In this

43

case the type ecorePackage.getEString() ist used, a datatype to hold strings. The third
parameter is the internal name. The forth is its initial value. The following numbers are
upper and lower bounds for numbered data types. Next is the parent class of the attribute.
The other parameters are additional settings for the Property View of the graphical editor.
For a complete description of the addition settings see the IBM redbook for GEF and EMF
[MDGW04, pp.24].

5.3. Integration of new constructs

As an example for completely new constructs the integration of the activity validate (see
2.4.1) is described in detail. Validate is a basic activity with one attribute and no
functionality for nesting other constructs like for example the new activity forEach. The
integration of this activity is already quite complex and has thus been chosen as example
for demonstration.

5.3.1. BPEL output generator

The BPEL output generator produces the BPEL code out of a process instance. Each
construct has an according function for building its specific subtree.

Listing 77: Adding the function call for the validate subtree

File: org.xmlsoap.schemas.ws.bpeleditor.xml.BpelBuilder.java
Function: buildActivitySubtree

import org.xmlsoap.schemas.ws.bpelmodel.TValidate;

//Insertion of new activity Validate
if (activity instanceof TValidate) {
 buildValidateSubtree(root, (TValidate)activity);
}

Explanation:
The function buildActivitySubtree calls the according function to generate BPEL output
for the specific type, in this case for a validate activity. Note that class-casting has to be
used extensively in the controller for the usage of the generated data model.

Listing 78: Building the validate subtree

File: org.xmlsoap.schemas.ws.bpeleditor.xml.BpelBuilder.java
Function: buildValidateSubtree

//Insertion of new Activity Validate
Element validateElement = new Element("validate", ns);

if (!validateActivity.eCrossReferences().isEmpty()) {
 getSourceLinkNames(validateElement, (TActivity)validateActivity);
 getTargetLinkNames(validateElement, (TActivity)validateActivity);
}

// Standard attribute: name
if ((validateActivity.getName() != null) &&
 !(validateActivity.getName().equals(""))){
 validateElement.setAttribute(new Attribute("name",
 validateActivity.getName()));
}

//optional: supressJoinFailure
if ((validateActivity.getSuppressJoinFailure() != null) &&
!(validateActivity.getSuppressJoinFailure().equals(""))){

44

 validateElement.setAttribute(new Attribute("suppressJoinFailure",
eliminateNull(validateActivity.getSuppressJoinFailure())));
}

if ((validateActivity.getVariables() != null) &&
!(validateActivity.getVariables().equals(""))){
 validateElement.setAttribute(new Attribute("variables",
eliminateNull(validateActivity.getVariables())));

root.addContent(validateElement);

Explanation:
Building the tree for the validate activity has two main parts. The first part is the calculation
of the links from and to the activity, done by the function getSourceLinkNames and
getTargetLinkNames. Afterwards the attributes and elements of the construct are
processed, in this case the attributes name, suppressJoinFailure and variables. If the
activity would have nested constructs then a call of the buildActivitySubtree would be
necessary, this is for this basic activity not the case.

5.3.2. Validate Edit Part

This editor is, among other frameworks, based on the Graphical Editing Framework
(GEF). This framework provides functions for graphically editing any part of a model
instance that is connected by the controller: each class in the model needs a so-called
Edit Part to be accessible by this framework.

Listing 79: Edit Part for the validate activity

File: org.xmlsoap.schemas.ws.bpeleditor.editparts.ValidateEditPart.java

public class ValidateEditPart extends ActivityEditPart
 implements NodeEditPart, Adapter {
 protected AdapterFactoryLabelProvider labelProvider;
 protected AdapterFactory adapterFactory;
 private IPropertySource propertySource = null;
 private Notifier target;

public ValidateEditPart(TValidate activity){
 super(activity);
 setModel(activity);
}

protected ActivityFigure getActivityFigure(){
 return (ActivityFigure) getFigure();
}

protected void refreshVisuals() {
 getActivityFigure().setName(getActivity().getName());
 Point loc = new Point(getActivity().getX(), getActivity().getY());
 Dimension size = new Dimension((int)getActivity().getWidth(),
 (int)getActivity().getHeight());
 Rectangle r = new Rectangle(loc, size);
 if (getParent() instanceof GraphicalEditPart)
 ((GraphicalEditPart) getParent()).setLayoutConstraint(this,
 getFigure(), r);
}

public boolean isAdapterForType(Object type) {
 return type.equals(getModel().getClass());
}

public Notifier getTarget() {
 return target;
}

public void setTarget(Notifier newTarget) {

45

 target = newTarget;
}

public Object getAdapter(Class key) {
 if (IPropertySource.class == key) {
 return getPropertySource();
 }

return super.getAdapter(key);
}

protected IPropertySource getPropertySource() {
 if(propertySource == null) {
 propertySource = new EObjectPropertySource(getActivity());
 }
 return propertySource;
}

protected IFigure createFigure() {

//Create an Object for the item Provider
Object image = BpelmodelEditPlugin.INSTANCE.getImage(
 "full/obj16/TValidate");
//Cast Object into Image
Image img = ExtendedImageRegistry.getInstance().getImage(image);
//Create new label with image
Label l = new Label(img);
ActivityFigure figure = new ActivityFigure(l);
return figure;

}

protected AdapterFactoryLabelProvider getLabelProvider() {
 adapterFactory = new BpelmodelItemProviderAdapterFactory();
 if (labelProvider == null)
 labelProvider = new AdapterFactoryLabelProvider(adapterFactory);
 return labelProvider;
}
}

Explanation:

• The class constructor ValidateEditPart binds the activity model to Edit Part.
• getActivityFigure is the standard getter function for the activity figure/icon. The

call is delegated to the class ActivityEditPart.
• The function refreshVisuals is used for redrawing and rescaling of the graphical

object, especially when it is nested in other objects. Therefore Draw2d functions are
being used.

• The function isAdapterForType is used for identifiying the object when the type is
unknown in some part of the controller.

• The functions getTarget and setTarget are used for positioning of the graphical
object on the editor pane.

• The function getPropertySource provides the functionality of the activity for being
accessible in the eclipse Property View; also the function getAdapter is used in this
context.

• createFigure is a function provided for the integration into the Graphical Editing
Framework, it provides the figure that is drawn on the editor pane.

5.3.3. Edit Parts factory

All Edit Parts are instantiated in the Edit Parts factory, where the validate Edit Part has to
be registered.

Listing 80: Edit Parts factory including the Edit Part for validate

File: org.xmlsoap.schemas.ws.bpeleditor.editparts.GraphicalEditPartsFactory.java
Function: createEditPart

import org.xmlsoap.schemas.ws.bpelmodel.TValidate;

46

. . .

//Insertion of new activity Validate
else if(obj instanceof TValidate) {
 ValidateEditPart p = new ValidateEditPart((TValidate)obj);
 p.setShell(shell);
 return p;
}

5.3.4. Editor palette

The editor palette is the feature of the graphical editor where the user can select
constructs to include into a process model. The constructs are displayed with an icon, a
display name and a ToolTip, that gives a more detailed description when the mouse
cursor is over the icon. To make the activity validate accessible within the editor palette it
has to be registered accordingly.

Listing 81: Adding the activity to the editor palette

File: org.xmlsoap.schemas.ws.bpeleditor.editor.ProcessPaletteRoot.java
Function: ProcessPaletteRoot

import org.xmlsoap.schemas.ws.bpelmodel.TValidate;
. . .

PaletteDrawer symbols = new PaletteDrawer("Activities",null);
add(symbols);
...
//New activity Validate
entry = new CombinedTemplateCreationEntry(

"Validate",
"Create Validate Activity",
TValidate.class,
new ModelCreationFactory(TValidate.class),
BpelEditorPlugin.getDefault().getImageDescriptor(
 "icons/full/obj16/TValidate.gif"),
BpelEditorPlugin.getDefault().getImageDescriptor(
 "icons/full/obj16/TValidate.gif"));

symbols.add(entry);

Explanation:
The editor palette is divided into several sections like Activities or Structured

Activites. The activity validate is a basic activity and thus inserted into the Activities
section. The class CombinedTemplateCreationEntry is constructed with all relevant
parameters for the entry in the palette: the name, the ToolTip, the class type, the data
model and the icons for displaying the activity on the editor palette and on the editor pane.

5.3.5. Insertion of icons for the activity into project

The icons used by the Graphical Editing Framework have to be designed and inserted into
the project. This refers to the graphic file TValidate.gif (16 x 16 pixels, transparent GIF)
which has to be inserted into the project BpelEditor in the folder /full/obj16/ (for the
editor palette) and in the project BpelModel.edit in the folder /icons/full/obj16 (for the
editor pane) (see also Listing 81:).

Figure 5: Icon for new construct validate

47

5.3.6. Commands on the Edit Part

When a new construct is integrated into the editor the commands on the Edit Parts have
to be extended. This extension provides the functionality for creating and deleting the
activity.

Listing 82: Extension of the delete command

File: org.xmlsoap.schemas.ws.bpeleditor.editpolicy.ActivityComponentEditPolicy
Function: createDeleteCommand

import org.xmlsoap.schemas.ws.bpelmodel.TValidate;
. . .

//Delete command support for new activity validate
if (getHost().getModel() instanceof TValidate) {
 deleteCmd.setActivity((TValidate) getHost().getModel());
}

Listing 83: Extension of the create command

File: org.xmlsoap.schemas.ws.bpeleditor.editpolicy.ProcessXYLayoutPolicy.java
Function: getCreateCommand

import org.xmlsoap.schemas.ws.bpelmodel.TValidate;
. . .

if (newObjectType == TValidate.class) {
 create = new CreateElementCommand();
 create.setActivity((TValidate) request.getNewObject());
}

5.3.7. Display in the Property View

For correctly displaying the activity in the eclipse Property View it is necessary to extend
the class EObjectPropertySource and register the activity at the getGroupName function.
This class extends the object meta-data provided by the Model Descriptor. For example it
is providing enumerations of attribute values as combo boxes in the Property View. It also
groups the attributes of an activity into BPEL attributes and View attributes.

File: org.xmlsoap.schemas.ws.bpeleditor.model.EObjectPropertySource
Function: getGroupName
. . .
else if (. . . || className.equals("TValidate") . . . {
 groupName = "Activity: " + className.substring(1, className.length());
}
return groupName;

Explanation:
When the activity is registered in this function, it will be displayed in the Property View in
the scheme Activity: Validate followed by a list of its attributes.

5.3.8. Registering at the Model Creation Factory

The Model Creation Factory is the class that answers requests from the Graphical Editing
Framework for the creation of instances of classes of the data model. The request is
redirected to the factory of the data model, BpelmodelFactory.

48

Listing 84: Registering at the Model Creation Factory

File: org.xmlsoap.schemas.ws.bpeleditor.model.ModelCreationFactory.java
Function: getNewObject
import org.xmlsoap.schemas.ws.bpelmodel.TValidate;
. . .

BpelmodelFactory factory = bpelmodelPackage.getBpelmodelFactory();
. . .
//Inserted new Activity Validate
else if (targetClass.equals(TValidate.class)) {
 result = factory.createTValidate();
}
return result;

5.3.9. BPEL Model Factory

Now the adaptations of the controller are complete and those of the data model begin:
The BPEL Model Factory is described by the interface Bpelmodelfactory. In this class the
function to create instances of the data class TValidate is defined.

Listing 85: Definition of the function for instance creation in the BPEL Model Factory

File: org.xmlsoap.schemas.ws.bpelmodel.BpelmodelFactory.java

TValidate createTValidate();

5.3.10. BPEL Model Factory implementation

The BPEL Model Factory implementation provides one function for creating any instance
of the data model, create. The creation of the specific class is redirected to the specific
instance creation function createTValidate, where the class is actually instantiated.

Listing 86: General instance creation function

File: org.xmlsoap.schemas.ws.bpelmodel.impl.BpelmodelFactoryImpl.java
Function: create

switch (eClass.getClassifierID()) {
 //Inserted new activity Validate
 case BpelmodelPackage.TVALIDATE: return createTValidate();

Listing 87: Specific instance creation function

File: org.xmlsoap.schemas.ws.bpelmodel.impl.BpelmodelFactoryImpl.java
Function: createTValidate

TValidateImpl tValidate = new TValidateImpl();
return tValidate;

5.3.11. Model Descriptor

Each feature that is used in the graphical editor has a feature number, which is unique in
its scope. When a new activity is integrated, many new features have to be added, one for
each explicit (e.g. validate: name) or implicit (e.g. validate: width) feature. Additionally
the activity has to be registered as a feature of the process and the activity container to
enable the nesting of the activity into activity containers like flow and the process itself.
Also the functions for accessing the class instance, its attributes or elements and
references are defined in the model descriptor.

49

Listing 88: Registering the activity at the model descriptor

File: org.xmlsoap.schemas.ws.bpelmodel.BpelmodelPackage.java
Function: interface BpelmodelPackage

//Registering new activity Validate on activity container
int TACTIVITY_CONTAINER__VALIDATE = 14;
//Was before insertion: int TACTIVITY_CONTAINER_FEATURE_COUNT = 14;
int TACTIVITY_CONTAINER_FEATURE_COUNT = 15;

//Registering new activity Validate on process
int TPROCESS__VALIDATE = TEXTENSIBLE_ELEMENTS_FEATURE_COUNT + 28;
//Was before insertion: 28, now:
int TPROCESS_FEATURE_COUNT = TEXTENSIBLE_ELEMENTS_FEATURE_COUNT + 29;

//Defining new Activity: Validate
//Last Value: 59
int TVALIDATE = 60;
//General
int TVALIDATE__ANY = TACTIVITY__ANY;
int TVALIDATE__ANY_ATTRIBUTE = TACTIVITY__ANY_ATTRIBUTE;
int TVALIDATE__WIDTH = TACTIVITY__WIDTH;
int TVALIDATE__HEIGHT = TACTIVITY__HEIGHT;
int TVALIDATE__SOURCE_CONNECTIONS = TACTIVITY__SOURCE_CONNECTIONS;
int TVALIDATE__TARGET_CONNECTIONS = TACTIVITY__TARGET_CONNECTIONS;
int TVALIDATE__ACTIVITY = TACTIVITY__ACTIVITY;
int TVALIDATE__LOCATION = TACTIVITY__LOCATION;
int TVALIDATE__X = TACTIVITY__X;
int TVALIDATE__Y = TACTIVITY__Y;
int TVALIDATE__NAME = TACTIVITY__NAME;
int TVALIDATE__TARGETS = TACTIVITY__TARGET;
int TVALIDATE__SOURCES = TACTIVITY__SOURCE;
int TVALIDATE__BPEL_TEMPLATE = TACTIVITY__BPEL_TEMPLATE;
int TVALIDATE__PROCESS = TACTIVITY__PROCESS;
//Features
int TVALIDATE__VARIABLES = TACTIVITY_FEATURE_COUNT + 0;
int TVALIDATE_FEATURE_COUNT = TACTIVITY_FEATURE_COUNT + 1; //Has 1 feature

//Validate References:
EReference getTActivityContainer_Validate();
EReference getTProcess_Validate();
EClass getTValidate();
EAttribute getTValidate_Variables();

Explanation:

• The activity validate is registered at the activity container and the process as a
feature whereas the total number of features has to be incremented.

• Each feature of the activity has to be registered at the model descriptor; all of the
standard features like width, height, name etc. are already implemented by the
abstract activity interface TActivity so no new feature numbers have to be set for
these features.

• New features - attributes or elements of the activity - have to be registered using a
new feature number with the offset TACTIVITY_FEATURE_COUNT and also the total
number of features of the activity has to be defined the same way. Note that for the
integration of structured activities class references have to be listed before
attributes.

• The definitions of references contain the process, the activity container, the
actual activity class and all of its non-standard features.

5.3.12. Model Descriptor Implementation

The functions for the integration of the activity into the model are directly related to the
feature definitions in the model descriptor.

50

Listing 89: Model Descriptor Implementation

File: org.xmlsoap.schemas.ws.bpelmodel.impl.BpelmodelPackageImpl.java
Function: class BpelmodelPackageImpl

import org.xmlsoap.schemas.ws.bpelmodel.TValidate;

//Insertion for new Activity Validate
private EClass tValidateEClass = null;

//Insertions for activity validate
public EClass getTValidate(){
 return tValidateEClass;
}

public EAttribute getTValidate_Variables() {
 return (EAttribute)tValidateEClass.getEStructuralFeatures().get(0);
}

public EReference getTActivityContainer_Validate(){
 //Adapt Structural Feature number for new activity Validate
 return (EReference)
 tActivityContainerEClass.getEStructuralFeatures().get(14);
}

public EReference getTProcess_Validate() {
 //Adapt structural Feature number for new activity Validate
 return (EReference)tProcessEClass.getEStructuralFeatures().get(28);
}

Explanation:
Any reference or attribute is identified by is feature number defined in the Model
Descriptor. The fact that the feature numbers from the Model Descriptor are not
referenced here but rather statically inserted by the code generator is strange. It leads
back to the implementation of the Eclipse Modeling Framework (EMF) that has been used
to generate this code. In order to stay compliant with the generated code this form has
been retained.

The contents of the Model Descriptor are first created (createPackageContents) and
afterwards initialized (initializePackageContents) in a separate function.

Listing 90: Create contents of the Model Descriptor Implementation

File: org.xmlsoap.schemas.ws.bpelmodel.impl.BpelmodelPackageImpl.java
Function: createPackageContents

//Insertions for new activity Validate
createEReference(tActivityContainerEClass, TACTIVITY_CONTAINER__VALIDATE);
createEReference(tProcessEClass, TPROCESS__VALIDATE);
tValidateEClass = createEClass(TVALIDATE);
createEAttribute(tValidateEClass, TVALIDATE__VARIABLES);

Listing 91: Initialize contents of the Mode Descriptor Implementation

File: org.xmlsoap.schemas.ws.bpelmodel.impl.BpelmodelPackageImpl.java
Function: initializePackageContents

//Add Supertype to class
tValidateEClass.getESuperTypes().add(this.getTActivity());
//Activity Container Reference

initEReference(getTActivityContainer_Validate(), this.getTValidate(), null,
"validate", null, 0, 1, TActivityContainer.class, !IS_TRANSIENT, !IS_VOLATILE,
IS_CHANGEABLE, IS_COMPOSITE, !IS_RESOLVE_PROXIES, !IS_UNSETTABLE, IS_UNIQUE,
!IS_DERIVED, IS_ORDERED);

initEReference(getTProcess_Validate(), this.getTValidate(), null, "validate",
null, 0, 1, TProcess.class, !IS_TRANSIENT, !IS_VOLATILE, IS_CHANGEABLE,

51

IS_COMPOSITE, !IS_RESOLVE_PROXIES, !IS_UNSETTABLE, IS_UNIQUE, !IS_DERIVED,
IS_ORDERED);

initEClass(tValidateEClass, TValidate.class, "TValidate", !IS_ABSTRACT,
!IS_INTERFACE, IS_GENERATED_INSTANCE_CLASS);

initEAttribute(getTValidate_Variables(), ecorePackage.getEString(), "variables",
null, 0, 1, TValidate.class, !IS_TRANSIENT, !IS_VOLATILE, IS_CHANGEABLE,
!IS_UNSETTABLE, !IS_ID, !IS_UNIQUE, !IS_DERIVED, IS_ORDERED);

5.3.13. Adapting the process definition

The process definition TProcess has to be adapted for the reference of the new activity.
Note that also the activity container definition TActivityContainer has to be adapted in
the same manner.

Listing 92: Adapting the process definition

File: org.xmlsoap.schemas.ws.bpelmodel.TProcess.java
Function: interface TProcess

//Insertion for new activity validate
TValidate getValidate();
void setValidate(TValidate value);

5.3.14. Adapting the process implementation

The getter and setter function for the validate activity have to be integrated in the process
implementation TProcessImpl. This integration contains the protected variable validate,
the getter function getValidate and two setter functions, basicSetValidate (only for
objects) and setValidate (for all types). Note that also the activity container
implementation TActivityContainerImpl has to be adapted in the same manner.

Listing 93: Adding getter and setter of the activity to the process implementation

File: org.xmlsoap.schemas.ws.bpelmodel.impl.TProcessImpl.java
Function: class TProcessImpl

//Insertion for new activity validate
protected TValidate validate = null;

public TValidate getValidate() {
 return validate;
}

public NotificationChain basicSetValidate(TValidate newValidate,
 NotificationChain msgs) {
 TValidate oldValidate = validate;
 validate = newValidate;
 if (eNotificationRequired()) {
 ENotificationImpl notification = new ENotificationImpl(this,

 Notification.SET, BpelmodelPackage.TPROCESS__VALIDATE,
 oldValidate, newValidate);

 if (msgs == null) msgs = notification; else msgs.add(notification);
 }
 return msgs;
}

public void setValidate(TValidate newValidate) {
 if (newValidate != validate) {
 NotificationChain msgs = null;
 if (validate != null)
 msgs = ((InternalEObject)validate).eInverseRemove(this,
 EOPPOSITE_FEATURE_BASE -
 BpelmodelPackage.TPROCESS__VALIDATE, null, msgs);

52

 if (newValidate != null)
 msgs = ((InternalEObject)newValidate).eInverseAdd(this,
 EOPPOSITE_FEATURE_BASE –
 BpelmodelPackage.TPROCESS__VALIDATE, null, msgs);
 msgs = basicSetValidate(newValidate, msgs);
 if (msgs != null) msgs.dispatch();
 }
 else if (eNotificationRequired())
 eNotify(new ENotificationImpl(this, Notification.SET,
 BpelmodelPackage.TPROCESS__VALIDATE,
 newValidate, newValidate));
}

The function eInverseRemove has to be adapted for the integration of the activity.
According to its Javadoc documentation this function “removes the object at the other end
of a bidirectional reference from the appropriate feature and returns accumulated
notifications.” For details see the JavaDoc on org.eclipse.emf.ecore.InternalEObject.

Listing 94: Adapting the eInverseRemove function of the process implementation

File: org.xmlsoap.schemas.ws.bpelmodel.impl.TProcessImpl.java
Function: eInverseRemove

switch (eDerivedStructuralFeatureID(featureID, baseClass)) {

. . .
//Inserted for new activity validate
case BpelmodelPackage.TPROCESS__VALIDATE:
 return basicSetValidate(null, msgs);

Next the functions for dynamic access to process features and references have to be
adapted, eGet, eSet, eUnset and eIsSet. This adaptation is similar to the integration of a
new attribute.

Listing 95: Adapting eGet on the process implementation

File: org.xmlsoap.schemas.ws.bpelmodel.impl.TProcessImpl.java
Function: eGet

switch (eDerivedStructuralFeatureID(eFeature)) {
 . . .
 //Inserted for new activity validate
 case BpelmodelPackage.TPROCESS__VALIDATE:
 return getValidate();

Listing 96: Adapting eSet on the process implementation

File: org.xmlsoap.schemas.ws.bpelmodel.impl.TProcessImpl.java
Function: eSet

switch (eDerivedStructuralFeatureID(eFeature)) {
 . . .
 case BpelmodelPackage.TPROCESS__VALIDATE:
 setValidate((TValidate)newValue);
 return;

Listing 97: Adapting eUnset on the process implementation

File: org.xmlsoap.schemas.ws.bpelmodel.impl.TProcessImpl.java
Function: eIsSet

switch (eDerivedStructuralFeatureID(eFeature)) {
 . . .
 case BpelmodelPackage.TPROCESS__VALIDATE:
 setValidate((TValidate)null);
 return;

53

Listing 98: Adapting eIsSet on the process implementation

File: org.xmlsoap.schemas.ws.bpelmodel.impl.TProcessImpl.java
Function: eIsSet

switch (eDerivedStructuralFeatureID(eFeature)) {
 . . .
 case BpelmodelPackage.TPROCESS__VALIDATE:
 return validate != null;

5.3.15. Generating activity classes

The activity definition (here: TValidate) and the activity implementation (here:
TValidateImpl) are generated using the Eclipse Modeling Framework (EMF). Input for the
code generation is the BPEL 2.0 XML Schema Definition for executable processes
[BPEL2.0XSD] provided by the OASIS Organization. In the first step the Java interfaces of
the data model are generated and adapted for usage in the Graphical Editing Framework
(GEF) as described in [Kapl06, pp. 34]. This adaptation includes the extension by the
attributes width, height, X, Y and lists for the graphical display of the connections
between activities, SourceConnections and TargetConnections. For this activity the data
type of the attribute variables has also been changed from List to String for the purpose
of simplification of the already complex example. The adapted java interfaces are
afterwards used as input for the second and final code generation as described in
[Kapl06, p.36].

The resulting classes for the activity validate, TValidate and TValidateImpl have to be
imported into the according package (org.xmlsoap.schemas.ws.bpelmodel and
org.xmlsoap.schemas.ws.bpelmodel.impl) in the BpelModel project. Afterwards they have
to be adapted to the current package structure.

5.3.16. Adapting the activity definition

The activity definition has to be adapted to the current package structure. When it was
generated it was located in the package org.open.oasis.docs.wsbpel._2._0.
process.executable.impl. After renaming and omitting the comments added by the code
generator the activity definition is quite clear.

Listing 99: Adapted activity defintion

File: org.xmlsoap.schemas.ws.bpelmodel.TValidate.java

package org.xmlsoap.schemas.ws.bpelmodel;
public interface TValidate extends TActivity {
String getVariables();
void setVariables(String value);
}

5.3.17. Adaptation of the activity implementation

In the same way the activity implementation has to be adapted, the package has to be
renamed from the new BPEL 2.0 package naming to the former BPEL 1.1 naming:
BPEL 2.0: org.open.oasis.docs.wsbpel._2._0.process.executable.impl
BPEL 1.1: org.xmlsoap.schemas.ws.bpelmodel.impl
Afterwards the references to ExecutablePackage have to be replaced by references to
BpelmodelPackage, this can be done by using the find and replace function of eclipse. After
this the import statements have to be extended:

54

Listing 100: New imports in the activity implementation

import org.xmlsoap.schemas.ws.bpelmodel.BpelTemplate;
import org.xmlsoap.schemas.ws.bpelmodel.BpelmodelPackage;
import org.xmlsoap.schemas.ws.bpelmodel.TValidate;

In the function eInverseRemove some changes are necessary for the integration into the
existing model.

Listing 101: Adaptation the eInverseRemove function of the activity implementation

File: org.xmlsoap.schemas.ws.bpelmodel.impl.TValidateImpl.java
Function: eInverseRemove

switch (eDerivedStructuralFeatureID(featureID, baseClass)) {
 //Should be implemented Abstract
 //case BpelmodelPackage.TVALIDATE__DOCUMENTATION:
 //return ((InternalEList)getDocumentation()).basicRemove(otherEnd, msgs);
 case BpelmodelPackage.TVALIDATE__TARGETS:
 return ((InternalEList)getTarget()).basicRemove(otherEnd, msgs);
 case BpelmodelPackage.TVALIDATE__SOURCES:
 return ((InternalEList)getSource()).basicRemove(otherEnd, msgs);

Explanation:

• The documentation element should be implemented as an attribute of the abstract
TActivty class and should thus be inherited by all activities.

• The notation of target and source has to be adapted to the old notation; in the
new standard links are enveloped into targets and sources (see 2.2.3).

Just like with the adaptation of the process implementation the functions for accessibility
of the activity features and references have to be adapted, i.e. eGet, eSet, eUnset and
eIsSet. In the following listing only the changes are shown that have to be made, other
code is not affected.

Listing 102: Adapting eGet on the process implementation

File: org.xmlsoap.schemas.ws.bpelmodel.impl.TValidateImpl.java
Function: eGet

switch (eDerivedStructuralFeatureID(eFeature)) {
 //Should be implemented Abstract
 //case BpelmodelPackage.TVALIDATE__DOCUMENTATION:
 // return getDocumentation();
 case BpelmodelPackage.TVALIDATE__TARGETS:
 return getTarget();
 case BpelmodelPackage.TVALIDATE__SOURCES:
 return getSource();
 case BpelmodelPackage.TACTIVITY__SUPPRESS_JOIN_FAILURE:
 return getSuppressJoinFailure();
 case BpelmodelPackage.TVALIDATE__BPEL_TEMPLATE:
 if (resolve) return getBpelTemplate();
 return basicGetBpelTemplate();
 case BpelmodelPackage.TACTIVITY__JOIN_CONDITION:
 return getJoinCondition();
}

Explanation:

• The documentation element is commented out in all functions for dynamic access.
• Also the notation of target and source has to be adapted in those functions
• suppressJoinFailure is an attribute (see 2.2.1), which has already been modeled

as an attribute of the abstract acitivity TActivty (see 5.2) and must hence be
implemented in this function.

• The support for BPEL templates, see [Kapl06, pp.9] is maintained.
• joinCondition has been modeled as an attribute of the abstract acitivity TActivty

in the prior version of the editor and must hence be implemented in this function.

55

The other functions for accessibility have according modifications and are listed here for
completeness.

Listing 103: Adapting eSet on the process implementation

File: org.xmlsoap.schemas.ws.bpelmodel.impl.TValidateImpl.java
Function: eSet

switch (eDerivedStructuralFeatureID(eFeature)) {
 //Should be implemented Abstract
 //case BpelmodelPackage.TVALIDATE__DOCUMENTATION:
 // getDocumentation().clear();
 // getDocumentation().addAll((Collection)newValue);
 // return;
 case BpelmodelPackage.TVALIDATE__TARGETS:
 getTarget().clear();
 getTarget().addAll((Collection)newValue);
 case BpelmodelPackage.TVALIDATE__SOURCES:
 getSource().clear();
 getSource().addAll((Collection)newValue);
 case BpelmodelPackage.TACTIVITY__SUPPRESS_JOIN_FAILURE:
 setSuppressJoinFailure((String) newValue);
 return;
 case BpelmodelPackage.TVALIDATE__BPEL_TEMPLATE:
 setBpelTemplate((BpelTemplate)newValue);
 return;
 case BpelmodelPackage.TACTIVITY__JOIN_CONDITION:
 setJoinCondition((String)newValue);
 return;
}

Listing 104: Adapting eUnset on the process implementation

File: org.xmlsoap.schemas.ws.bpelmodel.impl.TValidateImpl.java
Function: eUnset

switch (eDerivedStructuralFeatureID(eFeature)) {
 //Should be implemented Abstract
 //case BpelmodelPackage.TVALIDATE__DOCUMENTATION:
 // getDocumentation().clear();
 // return;
 case BpelmodelPackage.TVALIDATE__TARGETS:
 getTarget().clear();
 return;
 case BpelmodelPackage.TVALIDATE__SOURCES:
 getSource().clear();
 return;
 case BpelmodelPackage.TACTIVITY__SUPPRESS_JOIN_FAILURE:
 setSuppressJoinFailure(SUPPRESS_JOIN_FAILURE_EDEFAULT);
 return;
 case BpelmodelPackage.TVALIDATE__BPEL_TEMPLATE:
 setBpelTemplate((BpelTemplate)null);
 return;
 case BpelmodelPackage.TACTIVITY__JOIN_CONDITION:
 setJoinCondition(JOIN_CONDITION_EDEFAULT);
 return;
}

Listing 105: Adapting eIsSet on the process implementation

File: org.xmlsoap.schemas.ws.bpelmodel.impl.TValidateImpl.java
Function: eIsSet

switch (eDerivedStructuralFeatureID(eFeature)) {
 //Should be implemented Abstract
 //case BpelmodelPackage.TVALIDATE__DOCUMENTATION:
 // return documentation != null && !documentation.isEmpty();
 case BpelmodelPackage.TVALIDATE__TARGETS:
 return target != null && !target.isEmpty();
 case BpelmodelPackage.TVALIDATE__SOURCES:
 return source != null && !source.isEmpty();

56

 case BpelmodelPackage.TACTIVITY__SUPPRESS_JOIN_FAILURE:
 return suppressJoinFailure != null;
 case BpelmodelPackage.TVALIDATE__BPEL_TEMPLATE:
 return bpelTemplate != null;
 case BpelmodelPackage.TACTIVITY__JOIN_CONDITION:
 return JOIN_CONDITION_EDEFAULT == null ? joinCondition != null :

 !JOIN_CONDITION_EDEFAULT.equals(joinCondition);
}

5.4. Removal of attributes and elements

As an example the removal of the process attribute abstractProcess (see 2.2.1) is
described in detail. First the modification of the BPEL output generator is explained and
consecutively the changes that have to be made in the data model. The removal of an
(XML) element is not described in detail, as the procedure is same with the one for
removing an attribute. In principle the removal of an attribute is almost the inverse of the
addition of an attribute (see 5.2), so almost the same steps have to be made in reverse
order.

5.4.1. BPEL output generator

The BPEL output generator is the unit that produces the BPEL code from the BPEL
process instance. Each type of construct has a related function to build its sub tree in the
JDOM tree, which has to be modified accordingly. In this case, a process attribute, it
refers to the function buildProcessSubtree:

Listing 106: Adaptation of BPEL output generator for attribute removal

File: org.xmlsoap.schemas.ws.bpeleditor.xml.BpelBuilder.java
Function: buildProcessSubtree

//removing the attribute abstractProcess
//rootElement.setAttribute(new Attribute("abstractProcess",
//eliminateNull(String.valueOf(process.isAbstractProcess()))));

Explanation:
The function buildProcessSubtree prepares the root element of the tree: process. The
variable process, which provides the data value by the function isAbstractProcess, is
implemented by the class TProcessImpl which is typed as the interface TProcess.

5.4.2. Releated Construct Implementation

Again, the adaptations of the controller are complete and those of the data model begin:
The parent construct implementation, in case of the abstractProcess attribute this is the
process construct implementation TProcessImpl, contains the functionality for accessing
the attribute. Four kinds of functions for the accessibility are provided, eGet, eSet, eIsSet
und eUnset. Each has a switch construct to distinguish the requested feature which is
represented by a number that is unique in its scope. As the feature
(TPROCESS__ABSTRACT_PROCESS) has been removed the according case statement has to be
deleted or commented also, see eGet as example:

57

Listing 107: Removing an attribute from the data model: eGet

File: org.xmlsoap.schemas.ws.bpelmodel.impl.TProcessImpl.java
Function: eGet

switch (eDerivedStructuralFeatureID(eFeature)) {

. . .
//Removing the attribute abstractProcess
//case BpelmodelPackage.TPROCESS__ABSTRACT_PROCESS:
//return isAbstractProcess() ? Boolean.TRUE : Boolean.FALSE;

5.4.3. Model Descriptor

Listing 108: Removing the dynamic feature number

File: org.xmlsoap.schemas.ws.bpelmodel.BpelmodelPackage.java
Function: class BpelmodelPackage

//Removing the definition of the attribute abstractProcess
//EAttribute getTProcess_AbstractProcess();

//Removing the feature number of the attribute abstractProcess or set to 0
//int TPROCESS__ABSTRACT_PROCESS = TEXTENSIBLE_ELEMENTS_FEATURE_COUNT + 24;

//Exchange of the feature number with the last feature, it was 28 before
int TPROCESS__TARGET_NAMESPACE = TEXTENSIBLE_ELEMENTS_FEATURE_COUNT + 24;

//Feature number count decremented, it was 29 before:
int TPROCESS_FEATURE_COUNT = TEXTENSIBLE_ELEMENTS_FEATURE_COUNT + 28;

Explanation:
Each feature that is used in the graphical editor has a feature number, which is unique in
its scope, so the feature TPROCESS__ABSTRACT_PROCESS is the only feature within the type
TProcess with the number 24 (plus an offset). For iterations over all features the graphical
editor uses the variable TPROCESS_FEATURE_COUNT, which has to be decremented for each
removed feature. Each construct has its own feature count. As there may not be a gap in
between, the last feature takes the place of the removed feature.
Note: when the feature number is being removed, the optional modifications (see 5.4.5)
have to be made. As an alternative it can be set to 0.

5.4.4. Model Descriptor Implementation

The model descriptor implementation contains functions for creating, initializing and
preparing the attribute for accessibility by the controller. The attribute has to be removed
from these functions for consitency with the model descriptor.

Listing 109: Exchanging the static feature number in the implementation

File: org.xmlsoap.schemas.ws.bpelmodel.impl.BpelmodelPackageImpl.java
Function: init

//Removed attribute abstractProcess
//public EAttribute getTProcess_AbstractProcess() {
// return (EAttribute)tProcessEClass.getEStructuralFeatures().get(24);
//}

public EAttribute getTProcess_TargetNamespace() {

//Exchanged feature number because the attribute
//abstractProcess was removed, was before: 28

58

 return (EAttribute)tProcessEClass.getEStructuralFeatures().get(24);
}

Listing 110: Removing initial creation of the attribute in the model implementation

File: org.xmlsoap.schemas.ws.bpelmodel.impl.BpelmodelPackageImpl.java
Function: createPackageContents

//createEAttribute(tProcessEClass, TPROCESS__ABSTRACT_PROCESS);

Listing 111: Removing the modeling of the attribute

File: org.xmlsoap.schemas.ws.bpelmodel.impl.BpelmodelPackageImpl.java
Function: initializePackageContents

//Removing initialization for the attribute abstractProcess
//initEAttribute(getTProcess_AbstractProcess(), ecorePackage.getEBoolean(),
// "abstractProcess", "yes", 1, 1, TProcess.class, !IS_TRANSIENT,
// !IS_VOLATILE, IS_CHANGEABLE, IS_UNSETTABLE, !IS_ID, !IS_UNIQUE,
// !IS_DERIVED, IS_ORDERED);

5.4.5. Optional modifications

In order to stay consistent with the generated code, also the basic functions, that provide
the functionality for the attribute, can be removed.

Listing 112: Removing attribute on related construct interface

File: org.xmlsoap.schemas.ws.bpelmodel.TProcess.java

// boolean isAbstractProcess();
// void setAbstractProcess(boolean value);
// void unsetAbstractProcess();
// boolean isSetAbstractProcess();

Listing 113: Removing attribute on related construct implementation

File: org.xmlsoap.schemas.ws.bpelmodel.impl.TProcessImpl

// protected static final boolean ABSTRACT_PROCESS_EDEFAULT = false;
// protected boolean abstractProcess = ABSTRACT_PROCESS_EDEFAULT;
// protected boolean abstractProcessESet = false;
// public boolean isAbstractProcess()
// public void setAbstractProcess(boolean newAbstractProcess)
// public void unsetAbstractProcess()
// public boolean isSetAbstractProcess()

Listing 114: Removing unused model provider functions

File: org.xmlsoap.schemas.ws.bpelmodel.provider.TProcessItemProvider

// protected void addAbstractProcessPropertyDescriptor()

// public void notifyChanged(Notification notification) {
 . . .
 switch (notification.getFeatureID(TProcess.class)) {
 //Removing attribute abstractProcess
 //case BpelmodelPackage.TPROCESS__ABSTRACT_PROCESS:

59

 // . . .

public List getPropertyDescriptors(Object object) {
 //Removing attribute abstractProcess

//addAbstractProcessPropertyDescriptor(object);

Explanation:
The generated model provider code for describing properties has not been used in the
graphical editor. To avoid compiler warnings and errors this code has to be removed.

Listing 115: Removing unused model annotation

File: org.xmlsoap.schemas.ws.bpelmodel.impl.BpelmodelPackageImpl.java

//public EAttribute getTProcess_AbstractProcess()

//addAnnotation (getTProcess_AbstractProcess(), source, new String[] {
// “kind", "attribute", "name", "abstractProcess" });

5.5. Attributes and nested XML elements

For the transformation of attributes into nested XML elements like until in the activity
wait (see 2.6.2) and the other way round like portType in partnerLinkTypes (see 2.3)
integration can be achieved by adapting the BPEL output generator of the editor
accordingly. In this section, as an example the transformation from attribute into nested
XML element is described, the other way round is alike. This procedure does not require a
modification of the data model.

5.5.1. BPEL output generator

Listing 116: Transformation of the attribute until into a nested XML element

File: org.xmlsoap.schemas.ws.bpeleditor.xml.BpelBuilder.java
Function: buildWaitSubtree

//Transform attribute “until” into element “until”
//if ((waitActivity.getUntil() != null) &&
// !(waitActivity.getUntil().equals(""))){
// waitElement.setAttribute(new Attribute("until", waitActivity.getUntil()));
//}

if ((waitActivity.getUntil() != null) && !(waitActivity.getUntil().equals(""))){
 Element untilElement = new Element("until", ns);
 untilElement.addContent(waitActivity.getUntil());
 waitElement.addContent(untilElement);
}

Explanation:
During the build-up of the JDOM tree that is used for the BPEL output generation the
process tree is parsed. The data types Attribute and Element are treated by the output
generator as an XML attribute and an XML element. The function setAttribute
(addContent) inserts the data value into the attribute (element). The namespace ns is the
xmlns namespace of the related process.

60

5.6. Activity renaming

As an example of providing new names to constructs the activity Exit (see 2.6.4),
formerly know as Terminate, is described in detail. It is sufficient to change the naming at
those parts of the editor, where the construct name is (graphically) displayed to the user
on the one hand and where the final BPEL output is generated on the other. A change of
file names and internal naming is not necessary.

5.6.1. BPEL output generator

The BPEL output generator is the unit that produces the BPEL code from the BPEL
process instance. Each type of construct has a related function to build its subtree in the
JDOM tree, in this example the function buildTerminateSubtree.

Listing 117: Construct naming in the BPEL output generator

File: org.xmlsoap.schemas.ws.bpeleditor.xml.Bpelbuilder.java
Function: buildTerminateSubtree

Element terminateElement = new Element("exit", ns);

Explanation:
The function to create a new XML element in the output is performed by the constructor of
the JDOM class element. The two parameters are the name for the output XML element
and the namespace of the XML element, ns is the namespace of the related process (see
2.2.1). In the output the namespace is not generated, as it is equal to the default
namespace xmlns, which is already declared in the process element.

5.6.2. Editor palette

The editor palette is the feature of the graphical editor where the user can select
constructs that shall be included in the process. The constructs are displayed with an icon,
a display name and a ToolTip that gives a more detailed description when the mouse
cursor is over the icon.

Listing 118: Construct naming in the editor palette

File: org.xmlsoap.schemas.ws.bpeleditor.editor.ProcessPaletteRoot.java
Function: ProcessPaletteRoot

entry = new CombinedTemplateCreationEntry(
 "Exit", //Display name on the editor palette
 "Create Exit Activity", //ToolTip
 TTerminate.class,
 new ModelCreationFactory(TTerminate.class),
 BpelEditorPlugin.getDefault().getImageDescriptor(

 "icons/full/obj16/TTerminate.gif"),
 BpelEditorPlugin.getDefault().getImageDescriptor(

 "icons/full/obj16/TTerminate.gif"));
symbols.add(entry);

Explanation:
The entry variable is passed to the GEF function that visualizes the editor palette. In the
function ProcessPaletteRoot the items of the editor palette are prepared.

61

6. Accomplished BPEL 2.0 Extensions

6.1. New constructs

Activities:

• validate (see 2.4.1)
• extensionActivity (see 2.6.3)
• forEach (see 2.7.4)

Figure 6: New constructs on the editor palette

Figure 7: New construct validate nested inside a scope

Figure 8: New construct validate in BPEL code

Figure 9: New constructs forEach and extensionActivity in a process

62

Figure 10: New construct forEach and extensionActivity in BPEL code

6.2. New attributes

• suppressJoinFailure (see 2.2.1) on:
o exit
o invoke
o scope
o flow
o assign
o empty
o pick
o receive
o reply
o sequence
o switch
o throw
o validate
o wait
o while

• xmlns on the construct process (see 2.2.1)

Figure 11: New attribute suppressJoinFailure in Eclipse Property View

6.3. Removed constructs

No constructs have been removed, neither from the data model nor from the graphical
editor.

63

6.4. Removed attributes

• abstractProcess on the process construct (see 2.2.1)

6.5. Attributes and nested XML elements

• Attribute transitionCondition on links (see 2.2.3)
• Nesting of element source on links into sources (see 2.2.3)
• Nesting of element target on links into targets (see 2.2.3)
• Attribute joinCondition on activities (see 2.2.3)
• Attribute for on the activity Wait (see 2.6.2)
• Attribute until on the activity Wait (see 2.6.2)
• Attribute condition on the activity while (see 2.7.2)

Figure 12: Attribute transformed into nested XML element on activity wait

6.6. Activity renaming

The following constructs have been renamed:

• exit, was formerly named terminate (see 2.6.4)

Figure 13: Activity terminate renamed to exit in the editor palette

6.7. Bug-fixing and Additional Features

6.7.1. Attribute values

Attributes in BPEL that stand for boolean use “yes” and “no” instead of “true” and
“false” in both standards. The existing data model partly uses the native Java boolean
type for modeling these kinds of attributes. To comply with the BPEL standard, the
boolean values have to be transformed during the BPEL output generation. This example
fixes the wrong display of the values of the createInstance attribute (see 2.6.1) in the
receive activity.

Listing 119: BPEL output generation of boolean values

File: org.xmlsoap.schemas.ws.bpeleditor.xml.BpelBuilder.java
Function: buildReceiveSubtree

String createInstance = String.valueOf(receiveActivity.isCreateInstance());
. . .
if (createInstance.equals("true")) {
 createInstance = "yes";
}
else {
 createInstance = "no";
}
receiveElement.setAttribute(new Attribute("createInstance", createInstance));

64

Explanation:
The function isCreateInstance of the object receiveActivity provides the boolean data
value of the attribute. The receiveElement object is the XML element prepared for output
where createInstance is set as an attribute.

6.7.2. Dynamic link naming

In the prior version of the editor links were not given a name dynamically. This deficiency
has been addressed using the following algorithm and implementation, respectively.The
name returned by the link object is dynamically calculated according to the schema
“<fromActivity>-to-<toActivity>” as long as it is not overwritten.

Listing 120: Dynamic link naming

File: org.xmlsoap.schemas.ws.bpelmodel.impl.TLinkImpl.java
Function: getName

if (!(target == null) && !(source == null) && ((name == "")||(name == null))){
 return source.getName() + "-to-" + target.getName();
}
else {
 return name;
}

Explanation:
The variable name is the variable of the link object that holds the actual name of the link.
The objects target and source are the constructs that this link connects. Both provide the
function getName which is used for the dynamic link naming at initialization. After a user-
defined link name has been set, the dynamic naming is inactive. After deleting the link
name it is active again.

Figure 14: Dynamic link naming

6.7.3. Activity traversing at BPEL output generation

For some constructs the traversing of nested activities was not yet implemented. This has
been resolved for the scope and while constructs. Without this traversing the generated
BPEL output would not contain the nested activites or constructs. The following example
shows the modifications for the scope construct.

65

Listing 121: Activity traversing for scope construct

File: org.xmlsoap.schemas.ws.bpeleditor.xml.BpelBuilder.java
Function: buildScopeSubtree

//Traversing the Subactivites
Element linksElement = null;

if (!scopeActivity.eContents().isEmpty()) {
 for (int i=0; i<scopeActivity.eContents().size(); i++) {
 if (scopeActivity.eContents().get(i) instanceof TActivity) {
 buildActivitySubtree(scopeElement,
 (TActivity)scopeActivity.eContents().get(i));
 }
 if (scopeActivity.eContents().get(i) instanceof TLink) {
 if (linksElement == null) {
 linksElement = new Element("links",ns);
 scopeElement.addContent(linksElement);
 }
 buildLinkSubtree(linksElement,
 (TLink)scopeActivity.eContents().get(i));
 }
 }
}

Explanation:
scopeActivity is a scope object in a BPEL model instance. Its function eContents provides
a list of nested activites or constructs. For each contained activity or construct the
according subtree builder function is called by buildActivitySubtree. The function
buildLinkSubtree builds up the subtree for links from and to this scope.

6.7.4. Activity type display in the Property View

In the prior version of the editor an activity type could only be distinguished by its icon; this
has been resolved by displaying the className without the preceding “T” in the name in
the Property View. The Property View displayed only the string “Activity” before.

Listing 122: Display of activity type in the Property View

File: org.xmlsoap.schemas.ws.bpeleditor.model.EObjectPropertySource
Function: getGroupName
. . .

else if (className.equals("TReply") || className.equals("TReceive") . . . {
 groupName = "Activity: " + className.substring(1, className.length());
}
return groupName;

Figure 15: Activity type display in the Property View

66

7. Remaining BPEL 2.0 Extensions

Due to the high complexity of the generated code on the one hand and the time schedule
on the other, additional modifications constructs and features can still be added to the
tool. The following list of extensions and modifications describes the remaining differences
from BPEL 1.1 to BPEL 2.0. Note that the tool was not yet entirely BPEL 1.1 compliant,
and maybe the underlying BPEL 1.1 constructs that these modifications require are not
yet implemented.

7.1. New constructs

Activities:

• rethrow in fault handlers (see 2.6.5)
• repeatUntil (see 2.7.3)
• compensateScope (see 2.8.4)
• default fault handlers (see 2.8.5)

Other:

• import on the construct process (see 2.2.2)
• Service reference containers (<sref:service-ref>) (see 2.3.4)
• In-line variable initialization (see 2.4.1)
• fromParts in receiving activities (see 2.4.1)
• toParts in sending activities (see 2.4.1)
• extensionAssignOperation on assign (see 2.4.2)
• extensions on the construct process (see 2.9)
• abstractProcess profiles (see 2.10)

7.2. New attributes

• exitOnStandardFault on the construct process (see 2.2.1)
• expressionLanguage on constructs that allow or require expressions (see 2.2.1)
• initializePartnerRole on partnerLinks (see 2.3.2)
• element on propertyAlias (see 2.4.1)
• type on propertyAlias (see 2.4.1)
• validate on assign (see 2.4.2)
• keepSrcElementName on copy in assign (see 2.4.2)
• messageExchange on receive (see 2.6.1)
• isolated on scope (see 2.8)
• exitOnStandardFault on scope (see 2.8)
• repeatEvery on onAlarm (see 2.8.6)
• mustUnderstand on extensions (see 2.9)
• documentation on all constructs (see 2.9)
• Custom namespaces on process

7.3. Removal of attributes

• enableInstanceCompensation on the construct process (see 2.2.1)

67

7.4. Attributes and nested XML elements

• portType on partnerLinks (see 2.3.1)
• from in copy (see 2.4.2)
• to in copy (see 2.4.2)
• activities nested in onEvent or onAlarm elements have to be wrapped in a scope

(see 2.8.6)

7.5. Construct renaming

• switch and subelements are renamed into if and according subelements (see
2.7.1)

• onMessage is renamed into onEvent in events handlers (see 2.8.6)

68

8. Discussion and Outlook

8.1. Discussion

Modeling of buiness processes is gaining more and more importance within the
framework of business process management. An essential factor for the successful
modeling of processes is the use of tools, which offer sufficient functionality and permit
user-friendly and intuitive interactions. The motivation of this thesis is to develop a
modeling tool that supports graphical process modeling in BPEL 2.0. The tool is an
extension of an existing modelling BPEL1.1 tool that did not completely support modelling
of all language constructs.

On account of this, the specifications BPEL 1.1 and BPEL 2.0 were compared and the
differences have been identified. The structure and the extensibility of the existing tool
have been analyzed and necessary changes have partially been implemented, including
the required integration of the extensionActivity. Also the possibilities for supporting
BPMN have been discussed.

The analysis of this tool combined with the experience of how it can be adapted to the
new standard raise a general discussion about the usage of code generators for the
development of applications. The code, which has been generated with the Eclipse
Modeling Framework (EMF) for this tool to model the BPEL 1.1 data model is very
complex and hard to maintain manually. Much of the generated code is either redundant
or unused and the whole code needs refactoring. Unfortunately, the generated code also
does not implement any debugging or exception-handling functionality. These
characteristics have been discovered, when the modifications on the data model for BPEL
2.0 compliance have been made. For example, the integration of one additional attribute
required enormous effort whereas manual architecture could enormously reduce this
complexitiy.

It was shown, that re-generation of the code for the data model is quite simple, but it has
also become apparent that the controler is hard-coded with the data model and as well as
with the visualization component - the Graphical Editing Framework (GEF). This does not
allow exchanging the underlying data model completely.

One question that arises is whether one should give up maintainability in favor of
development speed. Another question is how much effort may or can be invested into the
development of a generic controller. Both questions are open research topics in the area
of Model Driven Architecture (MDA).

8.2. Outlook

The Graphical Modeling Framework (GMF) provides a generative component and runtime
infrastructure for developing graphical editors based on EMF and GEF” [GMF06, “About”].
Yet GMF is not fully generic and with this framework much code is getting generated, too.
The problem of implementing model changes for particular projects still needs to be
investigated.

A far more complex approach would be the development of a completely generic editor.
This should enable the creation and modification of arbitrary XML based languages like
BPEL. Input for the editor could be a data model defined as XSD or XSI (XML Metadata
Interchange). However, the data model would have to be extended by semantics.

69

For example, a link in BPEL needs to be described in the XSD in such a way, that it
becomes clear to the editor, that the link connects two constructs. The idea about this
approach emerged during the work on the graphical BPEL editor presented in this thesis.
To the best of our knowledge, this approach has not been proposed or implemented yet.

The new technologies and unexplored approaches sound promising and so a decision on
the further development of this tool has to be made in favor of one of the following
possibilities:

The first option is to go on and accomplish the remaining BPEL 2.0 extensions that are
listed in section 7 and use BPMN as described in 4.5.3.

The other option is the creation of an editor from scratch using a newer technology like
GMF or a completely different framework like the SOA Tools Platform (STP), which
provides a BPMN editing framework that has an unimplemented interface for BPEL
export, as described in 4.5.3.

The investigation and implementation of a generic model driven editor could be a possible
solution as well.

In conclusion, at the time the specification of BPEL 2.0 was completed, various Web
Service standard works, such as from WSDL 1.1 [W3C01] to WSDL 2.0 and WS-
Addressing [W3C04], were ongoing and not ready for consideration for BPEL 2.0. Future
versions of BPEL 2.0 may provide support for these standards [BPEL2.0, p.12]. Also the
BPMN 2.0 standard works [BPMN2.0] are in progress and may provide support for BPEL
2.0. A BPEL modeling tool must be extended with such support as well.

70

Appendices

References

[ACKM04]
Gustavo Alonso, Fabio Casati, Harumi Kuno, Vijay Machiraju:
Web Services – Concepts, Architectures and Applications
Springer, 2004

[BPEL1.0]
Francisco Burbera, Yaron Goland, Johannes Klein, Frank Leymann, Dieter Roller, Satish
Thatte, Sanjiva Weerawarana:
Business Process Execution Language for Web Services Version 1.0
July 2002
ftp://www6.software.ibm.com/software/developer/library/BPEL 2.01.pdf

[BPEL1.1]
Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes
Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte, Ivana
Trickovic, and Sanjiva Weerawarana:
Business Process Execution Language for Web Services Version 1.1
May 2003
http://www-128.ibm.com/developerworks/library/specification/BPEL 2.0/

[BPEL2.0]
Alexandre Alves, Assaf Arkin, Sid Askary, Ben Bloch, Francisco Curbera, Mark Ford,
Yaron Goland, Alejandro Guízar, Neelakantan Kartha, Canyang Kevin Liu, Rania Khalaf,
Dieter König, Mike Marin, Vinkesh Mehta, Satish Thatte, Danny van der Rijn, Prasad
Yendluri and Alex Yiu:
OASIS Web Services Business Process Execution Language Version 2.0,
Comitee Specification
January 2007
http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.pdf

[BPEL4People]
Ashish Agrawal, Mike Amend, Manoj Das, Mark Ford, Chris Keller, Matthias Kloppmann,
Dieter König, Frank Leymann, Ralf Müller, Oracle Gerhard Pfau, Karsten Plösser, Ravi
Rangaswamy, Alan Rickayzen, Michael Rowley, Patrick Schmidt, Ivana Trickovic, Alex
Yiu, Matthias Zeller:
BPEL Extension for People Version 1.0
June 2007
http://www.ibm.com/developerworks/webservices/library/specification/ws-bpel4people/

[BPML]
Assaf, Arkin:
Business process modeling language 1.0
June 2002
http://www.omg.org/technology/documents/br_pm_spec_catalog.htm

[BPMN1.0]
Object Management Group:
Business Process Model and Notation 1.0, Final Adopted Specification
February 2006
http://www.bpmn.org/Documents/BPMN 2-0 RFP 07-06-05.pdf

71

[BPMN2.0]
Object Management Group:
Business Process Model and Notation (BPMN) 2.0 Request For Proposal
June 2006
http://www.bpmn.org/Documents/BPMN 2-0 RFP 07-06-05.pdf

[eClarus]
eClarus Business Process Modeler for SOA Architects
2005 - 2006
http://www.eclarus.com/pdf/DS-SOA-05-06-v1-0.pdf

[Evde06]
John Evdemon:
What’s new in BPEL 2.0
August 2006
www.oasis-open.org/committees/download.php/20266/whats_new_in_bpel_2.0.ppt

[Gao06]
Yi Gao:
BPMN-BPEL Transformation and Round Trip Engineering
May 2006
http://www.eclarus.com/pdf/BPMN_BPEL_Mapping.pdf

[GMF06]
Eclipse Graphical Modeling Framework (GMF)
June 2007
http://www.eclipse.org/gmf

[inno05]
innoQ:
Web Service Standards overview
September 2005
http://www.innoq.com/soa/ws-standards/poster/

[Kapl06]
Institut für Architektur von Anwendungssystemen, Michael Kaplan:
Graphisches BPEL Modellierungstool für parametrisierte Prozesse und Templates
Diploma thesis, No. 2439,
June 2006

[KCHK04]
Martin Keen, Jonathan Cavell, Sarah Hill, Chee Keong Kee, Wendy Neave, Bradley
Rumph, Hoang Tran:
BPEL4WS Business Processes with WebSphere Business Integration:
Understanding, Modeling, Migrating
December 2004
http://www.redbooks.ibm.com/abstracts/sg246381.html

[Lee03]
Daniel Lee:
Display a UML Diagram using Draw2D
August 2004
http://www.eclipse.org/articles/Article-GEF-Draw2d/GEF-Draw2d.html

72

[LeRo00]
Frank Leymann, Dieter Roller:
Production Workflow - Concepts and Techniques
Prentice Hall, 2000

[MDGW04]
Bill Moore, David Dean, Anna Gerber, Gunnar Wagenknecht, Philipe Vanderheyden:
Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling
Framework
February 2004
http://www.redbooks.ibm.com/abstracts/sg246302.html

[RFC2119]
Scott Bradner:
Key words for use in RFCs to Indicate Requirement Levels, RFC 2119
Harvard University, March 1997
http://www.ietf.org/rfc/rfc2119.txt

[STP07]
SOA Tools Platform Project (STP):
STP BPMN
2007
http://www.eclipse.org/stp/bpmn/

[WeCu06]
Sanjiva Weerawarana, Francisco Curbera, Frank Leymann, Tony Storey, Donald F.
Ferguson:
Web Services Platform Architecture
Prentice Hall, 2006

[Whit05]
Stephen A. White:
Using BPMN to Model a BPEL Process
February 2005
http://www.bpmn.org/Documents/Mapping BPMN to BPEL Example.pdf

[W3C01]
W3C:
Web Services Description Language (WSDL) 1.1
March 2001
http://www.w3.org/TR/wsdl

[W3C04]
W3C:
Web Services Addressing (WS-Addressing) Member Submission
August 2004
http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/

73

Used Resources

[BPELValidator]
Active Endpoints OnDemand BPEL 2.0 Validation
Version: August 2007
Website: http://www.activebpel.org/BPEL_Validator/

[BPEL1.1XSD]
XML Schema Definitions by Mircosoft, IBM, BEA, SAP and Siebel
March 2003
http://schemas.xmlsoap.org/ws/2003/03/business-process/

[BPEL2.0XSD]
XML Schema Definitions by OASIS for executable BPEL processes
April 2007
http://docs.oasis-open.org/wsbpel/2.0/OS/process/executable/ws-bpel_executable.xsd

[Eclipse]
Eclipse Development Platform
Version: 3.1.1
http://www.eclipse.org/

[EMF]
Extended Modeling Framework
Version: 2.1.1
http://www.eclipse.org/modeling/emf/

[GEF]
Graphical Editing Framework
Version: 3.1.1
http://www.eclipse.org/gef/

[J2SDK]
Java 2 Software Development Kit
Version: 1.4.2 release 14
http://java.sun.com/j2se/1.4.2/download.html

[Jigloo]
Jigloo Java UI Builder
Version: 3.9.5
http://www.cloudgarden.com/jigloo/

[Kdiff3]
Kdiff3 File Comparison
Version: 0.9.92
http://kdiff3.sourceforge.net/

[XMLMarker]
 XML Editor
Version 1.1
http://symbolclick.com/

74

Erklärung

Ich versichere, dass ich diese Arbeit selbstständig verfasst und nur die
angegebenen Hilfsmittel verwendet habe.

 (David Schumm)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

