

Stuttgart Research Centre for Simulation Technology (SRC SimTech)

SimTech – Cluster of Excellence
Pfaffenwaldring 7a
70569 Stuttgart
publications@simtech.uni-stuttgart.de
www.simtech.uni-stuttgart.de

M. Sonntag K. Görlach D. Karastoyanova F. Leymann M. Reiter

Process Space-Based Scientific Workflow Enactment

Stuttgart, July 2010

Institute of Architecture of Application Systems (IAAS)
University of Stuttgart,
Universitaetsstrasse 38
70569 Stuttgart, Germany
{Sonntag, goerlach, karastoyanova, leymann, reiter}@iaas.uni-stuttgart.de
www.iaas.uni-stuttgart.de

Abstract In the scientific field, workflow technology is often employed to conduct computer
simulations or computer supported experiments. The underlying IT infrastructure typically comprises
resources distributed among different institutes and organisations all over the world. Traditionally,
workflows are executed on a single machine while the invoked software is accessed remotely. This
approach imposes many drawbacks which are outlined in this paper. To address these weaknesses, we
investigate the application of decentralised workflow enactment in the scientific domain. In this
context, we explore the employment of process spaces, a middleware for the decentralised execution
of workflows. Furthermore, we propose the combination of process spaces with the concept of data
references to increase the overall performance of distributed simulations based on workflows. The
considerations are discussed with the help of a scenario that calculates and visualises the ink diffusion
in water over a period of time.

Keywords business process execution language; BPEL; process space; scientific workflow; data
references; distributed system.

Reference Sonntag, M., Görlach, K., Karastoyanova, D., Leymann, F. and Reiter, M. (2010) ‘Process
space-based scientific workflow enactment’, Int. J. Business Process Integration and Management,
Vol. 5, No. 1, pp.32–44.

© Inderscience Publishers
http://www.inderscience.com/browse/index.php?journalID=115&year=2010&vol=5&issue=1

International Journal of Business Process Integration and Management, Volume X, No. X, 2010 1

Process Space-based
Scientific Workflow
Enactment

Mirko Sonntag, Katharina Görlach,
Dimka Karastoyanova, Frank Leymann, Michael Reiter
Institute of Architecture of Application Systems
University of Stuttgart
Universitaetsstrasse 38
70569 Stuttgart, Germany
E-mail: {sonntag, goerlach, leymann, karastoyanova, reiter}
 @iaas.uni-stuttgart.de

Abstract: In the scientific field, the workflow technology is often employed to conduct
computer simulations or computer supported experiments. The underlying IT infrastructure
typically comprises resources distributed among different institutes and organizations all
over the world. Traditionally, workflows are executed on a single machine while the
invoked software is accessed remotely. This approach imposes many drawbacks which are
outlined in this paper. To address these weaknesses we investigate the application of
decentralized workflow enactment in the scientific domain. In this context, we explore the
employment of process spaces, a middleware for the decentralized execution of workflows.
Furthermore, we propose the combination of process spaces with the concept of data
references to increase the overall performance of distributed simulations based on
workflows. The considerations are discussed with the help of a scenario that calculates and
visualizes the ink diffusion in water over a period of time.

Keywords: BPEL, Process Space, Scientific Workflow, Data References, Distributed
System.

Biographical notes: Mirko Sonntag, Katharina Görlach, and Michael Reiter are PhD
students in the DFG Cluster of Excellence Simulation Technology (EXC310) at the
University of Stuttgart, Germany. Mirko Sonntag and Katharina Görlach hold a Master’s
degree in Computer Science, Michael Reiter is a Master of Mathematics. Dimka
Karastoyanova is a junior professor in simulation workflows at the IAAS and a member of
the cluster of Excellence Simulation Technology (SimTech) at the University of Stuttgart,
Germany. She has a PhD in Computer Science from the Technical University of Darmstadt,
Germany. Frank Leymann is a full professor in Computer Science and director of the
Institute of Architecture of Application Systems (IAAS) at the University of Stuttgart. His
research interests are in the areas of application architectures, middleware, workflow
management, service-oriented computing and cloud computing.

1 INTRODUCTION

Applications in the scientific domain need to meet different
requirements: Huge amounts of data are processed. Since
scientific applications are often complex there are
performance requirements for the hardware used for running
the application. Additionally, the IT infrastructure should be
robust, scalable and extensible. As scientists need a proof of
how certain results of other scientists have been achieved,
the run of an application must be reproducible. Finally,
scientists want to share their applications, data and hardware
for the purpose of reuse and resource utilization.

In distributed systems people, information, software and
hardware are dispersed [1]. The owners of computing nodes
connect their systems in order to exchange and share
information and resources. Additionally, distributed systems
afford speed-up through parallel computing, especially for
computing-intensive tasks such as those in scientific
applications. Furthermore, distributed systems allow an
incremental growth of the IT infrastructure. This means the
integration of additional storage facilities or compute
servers for more compute power is facilitated. Distributed
applications ensure scalability by avoiding centralized
components. Another advantage of decentralized
components is that the availability of the system can be

2 MIRKO SONNTAG, KATHARINA GÖRLACH, DIMKA KARASTOYANOVA, FRANK LEYMANN, MICHAEL REITER

ensured even if a single component fails. The availability of
services and information is achieved by redundant
functionalities support and data replication. A downside of
distributed systems is the increased effort for configuration
and coordination. Previously unconnected components must
be wired. The parts of distributed applications need to
manage their interactions and handling of data while being
located on different machines. Additional aspects of fault
tolerance have to be considered, such as the unavailability
of servers or networks. Distributed systems must be able to
deal with these problems. Nevertheless, distributed systems
fulfill a lot of requirements for scientific applications which
qualifies them for practical use.

The Web service (WS) technology [2] can be used for the
integration of heterogeneous applications in a loosely
coupled fashion. WSs are self-contained, self-describing
pieces of functionality exposing stable interfaces. The WS
descriptions are programming language and technology
independent; the underlying implementation details of WSs
are thereby hidden. To support meaningful application
scenarios composability of services is a must and is a
property enabled by the WS technology. Service
orchestrations are compositions of WSs into processes (or
workflows) that provide higher levels of functionality. The
Business Process Execution Language (BPEL) [3] is the de-
facto standard to define machine-readable orchestrations of
WSs. Since these workflows can again be exposed as WSs
that may be incorporated into another workflow, BPEL
enables a recursive aggregation model. BPEL fulfills basic
requirements for scientific workflows, for example the
support of exception handling, user interactions to facilitate
interactive steering and monitoring, compensation
mechanism, and the dynamic selection of services [4].
BPEL processes are executed by a so-called BPEL engine.
The used WSs can be distributed among several partners
throughout a network. Thus, BPEL can be used to
implement distributed applications. Traditionally, a BPEL
engine is part of a centralized workflow management
system (WfMS). That means the workflow logic runs on a
single server. This results in several drawbacks, such as the
WfMS as single point of failure. In contrast to that,
decentralized WfMSs distribute workflow logic across
several participants what promises to gain multiple
advantages.

In this work, we investigate to what extent decentralized
execution of workflows is advantageous in the scientific
domain in general. Therefore we present a general
discussion about centralized vs. decentralized WfMSs and
subsequently we explain why the process space approach
(also presented in the paper) fits best to serve as a basis for
further development in the scientific workflows area.

Process spaces are a middleware to execute workflows in
a decentralized manner. We propose the use of this
approach in the area of scientific workflows and present a
scenario that is realized using this approach. Particular
challenges arise especially when applying the solution in a
highly dynamic environment. In this context, the challenges

we identify are related to the deployment and undeployment
of scientific workflow models on distributed resources.

Since scientific workflows typically deal with huge data
sets, the process spaces will probably run into problems
when handling data sets with a size of several mega bytes,
for example. To address this weakness we propose the
adoption of the BPEL data reference concept [5] for
avoiding bulks of data in process spaces.

Finally, we discuss the feasibility of the approach: We use
a concrete scientific simulation workflow and demonstrate
how it can be implemented by a centralized and a process
space-based WfMS with and without data references. We
compare and assess the different implementations and
discuss application areas for the respective solutions.

The remainder of the paper is structured as follows:
Section 2 covers background information important for the
rest of the paper. Section 3 presents related work in the
areas of scientific workflows and distributed workflow
enactment. Section 4 introduces a concrete scenario that is
used for argumentation. Section 5 points out the general
advantages when employing the process space-based
workflow execution for scientific workflows. The set-up of
the scenario is illustrated and the challenge of deploying
distributed workflow models is touched. Additionally, the
concept of data references in this context is examined.
Section 6 compares the centralized and decentralized
workflow execution and discusses the results. Section 7
provides a conclusion and gives future directions.

2 BACKGROUND

In this section we introduce the necessary background
information for the rest of the paper. We explain centralized
and distributed WfMSs and give a comparison between
these two based on the application area of scientific
workflows. Furthermore, we introduce the approach of a
process space-based workflow enactment as an example for
a distributed WfMS.

2.1 Centralized WfMSs
Workflow instances are carried out according to the control
flow, data flow, and rules as prescribed by their models. A
so-called navigator component follows the control and data
flow of a workflow instance’s, supervises the
accomplishment of the tasks to be done (e.g. the invocation
of WSs), and keeps the status and the progress of the
execution. Typically, executing workflows is done by the
enactment service of a centralized WfMS. The term
“centralized” denotes the WfMS as a single unit. However,
such a centralized WfMS may be running across several
nodes of a cluster. Nevertheless, even clustered navigators
need to share state and thus rely on each other. Furthermore,
a cluster is assumed to operate within a single domain or
organization, such as a scientific institute.

PROCESS SPACE-BASED SCIENTIFIC WORKFLOW ENACTMENT 3

2.2 Distributed WfMSs
As opposed to a centralized workflow execution the

decentralized approach arbitrarily distributes the workflow
(i.e. its coordination logic) among different independent
machines of possibly different organizations. No single
navigation component is needed anymore that supervises
the overall workflow execution. There are different
mechanisms that can be used to support the realization of
decentralized WfMSs (e.g. message-oriented middleware,
tuplespace middleware [6]).

2.3 Centralized vs. Distributed execution of scientific
workflows

In the scientific domain a typical setting consists of
several special-purpose, distributed machines with different
characteristics, for example servers with huge hard drives
but relatively slow processors, or computers with efficient
GPUs ideal for taking over visualization tasks. Being able to
deploy and execute parts of a workflow on machines that
provide the application logic significantly reduces the
number of remote interactions. On the one hand, network
traffic is decreased dramatically. On the other hand, calling
applications locally is fast since the overhead of
marshalling, transmitting, and demarshalling messages is
reduced. In case of BPEL, WSs could be bound locally, for
instance a Java class could be called natively. These
arguments have even greater importance having in mind that
scientific workflows typically process huge data sets.

In contrast to a centralized system, a decentralized WfMS
can process distributed workflows potentially fully parallel
(as far as allowed by logical dependencies between
activities (and cf. Amdahl’s law), and as long as there is no
better clustered navigator solution). There is neither a
sequentially working navigator nor need non-interacting
activities (e.g. <assign> activities in BPEL) be carried out
on the same server. Moreover, this approach precludes the
navigator to become a potential bottleneck. The workload is
thus distributed among all participants.

The distributed enactment of a workflow over several
machines increases the overall robustness of the system (i.e.
its resistance against failures). For example, if a single
machine crashes, the workflow execution may continue on
the other workflow engines. The continuation of a workflow
instance depends on whether another machine can take over
the tasks assigned to the failed one or on the workflow parts
that are deployed on the failing machine (e.g. one of
multiple parallel branches, data not available, security
issued).

Because of the characteristics of scientific simulations and
experiments and the infrastructure used for them, it is only
natural to choose the decentralized approach for process
execution. In the next section we present the process space-
based approach as an example for distributed workflow
execution. Later, in Section 5 we argue that this approach is
particularly suitable for scientific workflows.

2.4 Process Space-based Workflow Enactment
The process space-based workflow enactment is an
approach for the distributed execution of coordination logic
[7]. Process spaces are shared, remotely accessible storages
for tuples (ordered lists of typed fields, also referred to as
tokens). Tuples can be retrieved and stored via three
operations: out stores a tuple, in reads a tuple destructively,
rd reads a tuple non-destructively. Reading tuples is done
with the help of templates. A template prescribes criteria a
demanded tuple must match to be fetched from the process
space.

Process space-based workflow enactment is conducted
without a centralized navigator as known from traditional
(i.e. centralized) workflow engines. Instead of that, the
coordination is split among several so-called activity clients
that are reading from and writing to process spaces. An
activity client performs the coordination of a single activity.
In case of a non-interacting activity, an activity client also
implements the activity’s functionality. Activity clients have
a very local view on the process. They only know the
process spaces they access and thus are completely
decoupled from each other. Workflow execution is
performed with the help of two types of tuples, namely
control tokens and data tokens, passed by activity clients.
The coordination logic of the workflow model is
represented by the token templates of the activity clients. A
control bus can used to configure and manage activity
clients at runtime (e.g. change their token templates).
Process spaces also provide operations tailored for their
application with workflows (e.g. the join of control flow
branches).

BPEL is used as underlying workflow meta-model. BPEL
process models are split among process participants
according to specific strategies and constraints [8] (called
process segmentation), e.g. an activity must be carried out
on a particular server. After segmentation, the BPEL
process model is transformed into an Executable Workflow
Network (EWFN). EWFNs are a special Petri net dialect.
They realize the token passing mechanism and enable the
execution of workflows on process spaces [9]. Finally, the
EWFN model can be installed and executed on participating
servers in form of process spaces and activity clients [10].

Figure 1: Example for a process space-based workflow
execution

4 MIRKO SONNTAG, KATHARINA GÖRLACH, DIMKA KARASTOYANOVA, FRANK LEYMANN, MICHAEL REITER

In Figure 1 an example for a process space-based
workflow execution is given. The workflow consists of
three sequentially performed, interacting activities. The
corresponding activity clients are distributed among two
machines. There are two process spaces, one on each
machine. Activity client 1 invokes a Web service (step 1.
and 2.) and writes the response into process space 1 as data
token A (3.). After that the activity is finished and the
control is passed to activity client 2 via a control flow token
in process space 1 (4., 5.). Activity client 2 uses the data in
data token A to invoke a Web service (6., 7., 8.), writes the
response into data token B in process space 2 (9.), and
passes the control to activity client 3 via a control flow
token in process space 2 (10.). Activity client 3 takes the
control (11.), invokes a Web service with data from data
token C (12., 13., 14.) and overwrites C with the response
(15.).

Distributed workflow execution based on a process space
middleware has several advantages [7, 8] described in the
following. With BPEL and WS-* the approach relies on
standards and thus promises a high acceptance in the
workflow community.

The process space-based approach implements a natural
way of distributing orchestration logic. There is neither a
need for a workflow redesign (e.g. because of the
introduction of additional message exchanges for
coordination) nor for the usage of coordinating
choreographies [11].

In contrast to centralized WfMSs, the navigator is no
single point of failure anymore and the workload is
distributed among all participants (i.e. activity clients).

In case of strategic decisions of enterprises, workflow
parts can easily be outsourced (or merged). There is no need
to split (or merge) processes by hand, manually install the
supporting middleware on all sides and deploy the workflow
parts. Outsourcing and merging can be done with the
process space-based middleware by simple reconfiguration
steps.

Since the orchestration logic can be executed on the same
machine where the used service(s) reside, shipping data
from and to services can be reduced. Furthermore, Web
services can be bound locally without leaving the address
space. The same result could be obtained with a centralized
WfMS by relocating services to the side of the workflow
system. But often this is not possible because other
applications would break if they rely on services at specific
locations or because service ownership forbids relocation.

3 RELATED WORK

This section presents related work in the fields of WfMSs
especially designed for application in the area of scientific
workflows and WfMSs enabling a distributed workflow
execution.

3.1 Scientific WfMSs
Askalon [12] executes scientific workflows on top of Grid
infrastructures based on the Globus Toolkit 4 (GT4) [13].
Typical application areas are theoretical chemistry and
image processing. The centralized engine executes
processes supplied in the Askalon-specific Abstract Grid
Workflow Language (AGWL). AGWL models are
independent of concrete resources. The scheduler maps
workflow jobs on Grid resources. The resource manager
deploys workflow jobs (i.e. software used by activities) on
heterogeneous and decentralized Grid infrastructures. The
GT4 middleware enables a dynamic binding of resources.
Askalon uses workflow segmentation to cope with a
changing IT environment. Particular workflow segments are
bound to concrete resources during workflow execution if
the control flow reaches the segment. However, workflow
segmentation is not used for a decentralized workflow
execution.

Pegasus [14] is rather a workflow compiler than a
scientific WfMS. It cooperates with the centralized
workflow execution system Condor DAGMan [15]. Thus,
Pegasus supports native DAGMan workflows and specific
XML1-based formats. The workflows are templates without
resource binding. Based on a template Pegasus determinates
an execution strategy that can include workflow
segmentation and data movements. Similar to Askalon, a
late binding concept is provided on basis of workflow
segmentation: Pegasus binds resources for a specific
workflow segment which is then executed by Condor
DAGMan. After that, Pegasus binds resources for the next
segment, and so on. Additionally, Pegasus aims at reducing
the amount of data produced during workflow execution.
Therefore, it identifies and reuses existing data.

In contrast to Askalon and Pegasus, our approach makes
use of a decentralized workflow execution engine.
Workflow segmentation is not used for late binding of
resources but to identify workflow parts that can be
deployed on different machines. Moreover, both approaches
do not rely on the traditional workflow technology as
described in [16] and by the WfMC2. Traditional workflow
systems distinguish between process models and process
instances, they are separated into a build time and a runtime
environment, to name just a few properties.

Swift [17] is a system to specify, execute and manage
scientific and engineering workflows. Similar to Pegasus,
Swift is does not execute workflows on its own but utilizes
a centralized execution engine called Karajan [18].
Furthermore, it makes use of Falkon [19] for provisioning of
resources and submission of tasks to resources. Swift
employs a mechanism to access data sets independent of
their physical representation and location with the help of
XML Dataset Typing and Mapping (XDTM) [20]. A
mapper accesses data sources and converts data into an
XML form. It is also possible to write and update data
sources. As opposed to Swift, we advocate a decentralized

1 eXtensible Markup Language
2 Workflow Management Coalition, http://www.wfmc.org

PROCESS SPACE-BASED SCIENTIFIC WORKFLOW ENACTMENT 5

execution of scientific workflows. Moreover, the data
reference mechanism we want to employ helps keeping
massive data out of a workflow engine by using pointers
instead of the complete data payload. The Swift XDTM
approach transforms non-XML to XML data. Thus, the
converted data is processed by the workflow engine.
Additionally, the process space-based solution is built upon
agreed-on standards like BPEL or WS-* and hence promises
a higher user acceptance.

Trident [21] is a commercial scientific WfMS built on
traditional workflow technology. The contained workflow
engine performs a centralized execution of processes. These
processes are specified with a proprietary workflow
language (eXtensible Object Markup Language, XOML),
but can be transformed to and from BPEL. In contrast to
Trident, our WfMS executes workflows in a distributed
manner. To the best of our knowledge, Trident does not
follow a data pointer concept as we foresee for our system.

3.2 Distributed WfMSs
Juliette [22] is a workflow system for the distributed
execution of Little-JIL coordination models. Main parts of
Juliette are an interpreter that coordinates the execution of
workflows, and a resource manager to allocate resources
and agents to perform the workflow steps. The interpreter
can be split and distributed among the utilized resources.
Each Little-JIL step thereby gets its own interpreter. These
step interpreters (comparable to process space activity
clients, see Section 2.4) are structured hierarchically: each
step interpreter only reacts on events of its own step or of
sub-steps, thus minimizing the global knowledge of the
interpreters. By contrast, in our approach the activity clients
do not know each other at all. They are completely
decoupled with the help of process spaces, thus enabling
more flexibility and robustness (e.g. exchanging of activity
clients does not affect other clients).

Osiris [23] is a distributed workflow engine that works on
top of a peer-to-peer database system (hyper-database) that
is dispersed among all participating nodes. During
execution, process instance data is split and passed to the
involved nodes in case of parallel paths. This requires a
complex mechanism to join distributed data after parallel
execution. In the process space-based WfMS merging of
instance data is not needed.

ADEPT [24] is a WfMS with support for ad-hoc changes
at process runtime. There is a variant of ADEPT specifically
designed for a decentralized execution of workflows,
ADEPTdistribution [25, 26]. The aim of ADEPTdistribution is
reducing the amount of data shipped between applications
used in the workflow. The system allows static and dynamic
distribution of tasks to participating nodes.

Unlike the presented approaches, the process space
solution relies on the traditional workflow technology and
standardized languages as mentioned in Section 3.1.
Another main difference is that the considered systems are
not tailored to handling huge amounts of data as is often
required in scientific workflows. We address this problem

with the help of data references that keep data not needed
for process execution out of the workflow engine.

4 SCENARIO

With the scenario presented here we aim at illustrating the
concepts in the subsequent discussion and it will serve as a
basis for comparison of the centralized approach for
scientific workflow execution and the distributed one. The
presented scenario is a simulation of the diffusion of ink in
water over a particular period of time. It consists of two
major phases: first, the diffusion is calculated with the help
of the finite element method (FEM) [27]; second, a
procedure for visualizing the result of the simulation. The
scenario description is interleaved with details on the typical
infrastructure currently used for enacting it.

4.1 Simulation Step
The ink concentration in water can be expressed as
differential equation in three space and one time dimension
with particular conditions [28].

The simulation needs five general steps, as shown in
Figure 3. Currently, the simulation can be performed using
the Dune library. a widely used C++ library for the
numerical solution of partial differential equations with
mesh-based methods like finite elements (FE), finite
volumes (FV), or finite differences (FD). Dune includes
MPI3-support to enable the execution of simulations on
parallel systems like supercomputers. MPI is a standard that
describes the communication between distributed parts of an
application. Dune can work with different types of meshes:
2D (see Figure 2), 3D, rectangle, cuboid, equidistant, with
areas of greater accuracy, and more. In our previous work
we exposed parts of Dune (without MPI-support) as WSs
[29]. This allows us to (re)use Dune functions in service
compositions, e.g. BPEL processes, seamlessly.

Figure 2: Non-equidistant 2D Dune-based Alberta mesh

Each step produces data the subsequent one relies on (see

Figure 3). Create Mesh builds an equidistant FEM-mesh by
field discretization. That means a field with an infinite
number of points is transformed into a field with a finite
number of points. The FEM-mesh represents the water the

3 Message Passing Interface, http://www.mpi-forum.org

6 MIRKO SONNTAG, KATHARINA GÖRLACH, DIMKA KARASTOYANOVA, FRANK LEYMANN, MICHAEL REITER

ink is injected into. This step often consumes a huge amount
of main memory.

Global Refine enhances the FEM mesh based on factors,
such as geometry, simulation problem, initial or boundary
condition. This results in a non-equidistant mesh that
contains more points in areas of greater importance (e.g. the
injection area). The required main memory is often
substantially larger than after the Create Mesh step.

Figure 3: The Dune-based simulation process “ink diffusion in
water”.

Allocate Vector describes the allocate function, which is a

velocity field function that describes the ink diffusion in
water.

Initialize Mesh configures the FEM mesh with the initial
and boundary conditions which are described with
mathematical functions. The initial condition assigns every
mesh point with the corresponding function value at starting
time t0 (e.g. clear water without ink). The boundary
condition assigns boundary mesh points with corresponding
function values (e.g. “right” boundary must have the same
value as the “left” boundary).

Evolve solves the differential equation at a particular point
in time with the help of numerical solvers based on linear
algebra. The result is stored in a file. Evolve runs in a loop
that is responsible for the time discretization of the
differential equation. A typical start time is t0 = 0. After
each run the next time step ti+1 is taken. The loop stops if the
ink concentration in water is balanced or at a predefined
time tend. The Evolve step requires a fast central processing
unit (CPU).

4.2 Visualization Step
The simulation results need to be visualized. More
precisely, typically visualization of only some parts of the
simulated system is of importance, for example the ink
concentration close to the boundaries. It depends on the
goals of the scientific experiment and the evolution of the
simulation run.

Figure 4: The basic visualization process with main steps
Filtering, Mapping, and Rendering.

Figure 4 shows the basic steps needed to visualize the

results. In the first step, Filtering, the received data is
prepared for the following steps. More precisely the part of
data is extracted that is interesting for the visualization, for
example, the data that represents the ink concentration close
to the boundaries.

In the second step, Mapping, the extracted data is assigned
to a particular representation. For instance, this can be done

with the help of a lookup table that assigns scalar values to
dedicated color values or geometric objects.

Finally, an image is generated from this representation in
the Rendering step. Typically during rendering, specific
instructions of the graphics processing unit (GPU) on a
graphics board are executed. Therefore, the rendering
service must be executed on a server where the required
GPU exists and the used instructions are provided.

5 PROCESS SPACE-BASED SCIENTIFIC WORKFLOW
ENACTMENT

In this section we present reasons for employing the
process space-based solution for the application in the field
of scientific workflows. Based on the example ink diffusion
simulation (Section 4) we propose an appropriate process
segmentation and distribution over participating machines
for a concrete hardware and software infrastructure.
Furthermore, we discuss the role of the deployment step in
this context. Finally, we investigate whether the
combination of the process space middleware with an
approach of accessing data via pointers is beneficial for
scientific workflows.

5.1 Why Process Space-based Workflow Execution?
The process space-based solution as outlined in [7] uses
BPEL as workflow meta-model and thus promises a lot of
advantages. For example, heterogeneous applications can be
orchestrated since BPEL relies on WSs. Thus, even legacy
software can be integrated by creating an appropriate WS
wrapper.

Decoupling workflow model parts with the help of process
spaces opens up new possibilities for adaptability, a major
requirement in the field of scientific workflows. The
workflow model structure can be changed by inserting,
replacing or deleting particular activity clients. Similarly,
the control flow can be adapted by modifying the activity
client templates that are used to retrieve associated tokens.
That means it can be changed what tokens in which process
space activity clients are waiting for and in which process
space their tokens are put. The powerful mechanism of
templates used to read tokens from process spaces makes it
also possible to adapt single workflow instances instead of
whole process models. Such adaptations can be realized
even at runtime with the help of a control bus without a
redeployment of the whole workflow model. An explicit
channel creation like in message-oriented middleware is not
needed [7]. Adaptation in centralized WfMSs is much more
complex. The activities are hard-wired by means of an
engine-internal format that cannot be changed without
changing the engine internal implementation. A
redeployment step would be necessary. Modifying
workflows with running instances also constitutes the
problem of migrating the instances to the new workflow
model which may not be possible for all instances. In the
process space approach instance migration is inherently
done when the configuration of activity clients is changed.

PROCESS SPACE-BASED SCIENTIFIC WORKFLOW ENACTMENT 7

An important step in the methodology of the process
space-based approach is mapping BPEL on EWFNs. This
allows a formal analysis of workflows, such as a check of
structural properties or the calculation of system invariants
[30]. Furthermore, standard Petri net verification algorithms
can be used to validate the correctness, soundness, and
reachability of workflow graphs [31]. A first open-source
prototype for activity clients and a process space
implementation is being developed. The prototype can be
used as basis for further development.

5.2 Set-up and Workflow Fragmentation
In this section we describe the infrastructure we use for the
execution of the scenario introduced in Section 4 and
suggest one fragmentation alternative for the distribution of
process activities on this infrastructure. The set-up (see
Figure 5) consists of two machines with specific properties.
Machine 1 is created to handle expensive computer graphic
calculation tasks. It contains a high-capacity GPU that
supports OpenGL4. Software appropriate for visualizing
simulation results is installed and provided as WS with three
operations (filtering, mapping, and rendering). Machine 2 is
specialized for compute-intensive tasks and therefore
possesses a fast CPU and a huge main memory. The WS-
ready variant of the Dune library [29] is installed to
calculate partial differential equations. Several functions
that the Dune library supports are made available as WSs.

Figure 5: Topology of scenario "ink concentration in water" in
a process space environment

The workflow consists of three main parts: the preparation

of the simulation (activities 1-4), the actual accomplishment
of the simulation (activity 5), and the visualization of results
(activities 6-8). The running numbers used as names of the
activities also denotes their processing order. Activities 5-8
are surrounded by a shaded area, which stands for a while
loop that models the repetition of these steps. The loop is
controlled by activity W. After each loop step activity W
decides whether to execute another iteration or not (the
latter would mean to finish the workflow run). According to
the supplied infrastructure the workflow is divided into two

4 Open Graphics Library – A specification of an interface for the
development of 2D and 3D computer graphics.

segments: activities that are implemented by Dune functions
and those activities that steer the visualization of results.
That means the “cut” is done through the while loop.
Obviously, activity clients for “Dune activities” get
deployed on machine 2 that also hosts the Dune library.
Similarly, clients for activities that realize the visualization
are assigned to machine 1 where the visualization software
is running. All activity clients are decoupled by process
spaces. That means they interact indirectly via passing
tokens to and reading tokens from process spaces. There are
two process spaces, one for each machine. For that reason
local access is in most cases sufficient to operate on the
spaces. Only the clients for activities 5 and 8 need to pass
tokens remotely to the process space that resides on the
other machine (indicated by a dashed arrow). To increase
the legibility of the figure it is assumed that the process
spaces are used for both control and data tokens.

5.3 Deployment
The deployment of workflow models is strongly dependent
on the used IT environment (i.e. available machines, data,
and applications). Deploying workflows in a distributed
process space environment requires a number of
information: the segmented workflow in BPEL form,
configured templates of activity clients, a deployment
descriptor that maps workflow segments on participating
machines, concrete service ports in case of a static service
binding, criteria for service selection in case of a dynamic
service binding, and properties of machines for the dynamic
selection of resources.

The decision about function or data shipping is a known
aspect in the scientific community. The process space-based
workflow enactment introduces another shipping type, a
mechanism we call workflow shipping, i.e. the distribution
of a workflow model over participating machines. Before
distribution, a workflow model needs to be segmented into
logically related units [10]. There are many forces driving
the segmentation of workflow models, ranging from IT
landscape to workflow logic [8]. For example, the
availability and capabilities of machines, installed WSs, the
location of data, or the dependencies between activities.

After segmentation the particular activity clients and
process spaces can be installed on chosen machines before
workflow execution. This is a static binding case for which
concrete addresses of machines are specified in the
deployment descriptor.

A key property of the scientific IT infrastructure is its
changing nature. Resources may come and go dynamically
so that running workflows can hardly rely on the availability
of resources (i.e. WSs) specified at build- or deployment
time, especially in the case of long-living workflows. With
respect to such a changing IT environment activity clients
and process spaces may also be dynamically shipped at
runtime by the middleware. In this case, the deployment
descriptor should not contain concrete addresses of
resources but rather the properties used to discover and
select them (e.g. CPU speed, HDD capacities, etc.). This
way of declarative specification of resources to be used

8 MIRKO SONNTAG, KATHARINA GÖRLACH, DIMKA KARASTOYANOVA, FRANK LEYMANN, MICHAEL REITER

supports the dynamic binding to resources, which is more
flexible in changing infrastructures but also has implications
on the workflow execution in terms of performance and
complexity. This is so because a resource manager has to
query a directory of registered resources and select a
resource that matches specified requirements (e.g. a GPU is
needed). Furthermore, in some cases software has to be
installed on a selected resource or data needs to be shipped.

Note, that there are several binding strategies when
specifying the binding of applications to services (as defined
in [2]) and similarly, binding strategies are needed when
applications like the simulation workflows need to be bound
to hardware. Independent of the chosen binding strategy the
major goals of workflow shipping should be to minimize
remote interactions (activity to activity as well as activity to
WS interactions) and to avoid passing huge amounts of data.
This most often implies deploying activities at the site of
associated WSs.

The distribution of workflow parts on the IT landscape has
implications on the explicit undeployment of workflow
models: All activity clients as well as process spaces need to
be uninstalled from all used servers. In case of a static
binding these machines can simply be addressed using
information from the deployment descriptor. In a dynamic
workflow shipping scenario the undeployment is more
complex especially if the workflow logic was adapted at
runtime (e.g. new or moved activity clients). Service bus
information is needed (e.g. a log file that recorded
discovered and bound machines) to find used servers. A
mechanism to ease the undeployment of a distributed
workflow is the introduction of a lifetime management as
known from Grid services [32]. Following the lifetime
management approach installed activity clients and process
spaces are associated a lifetime – duration or a deadline. If
their lifetime expires, they are simply uninstalled. So-called
“keep alive” messages can be utilized to negotiate a lifetime
extension. That way, used machines implicitly garbage
collect installed workflow parts that are not in use any more.

5.4 Data References
Although the introduction of process space-based workflow
enactment promises to decrease the number of remote
interactions and to distribute the workload over several
shoulders we can additionally improve the overall
performance of workflow execution with the help of data
references [5]. Since scientific workflows must cope with
large data sets we determined the process spaces as
remaining bottleneck.

There can be multiple process spaces serving activity
clients. However, similarly to a central navigator a single
process space executes templates in a sequence. While
parallel execution of activities or workflows a process space
concurrently receives multiple read and write requests. That
means activity clients have to wait until a process space
completed previous tasks, especially if multiple clients are
served in parallel (what is typical in scientific workflows).
Additionally, if the size of data sets increases noticeable, the
data transfer increases as well and the process space-internal

operations get slower. The latter is due to the expensive
template matching mechanism on very large tokens. That
means a process space can be overloaded quickly if it is
used for the execution of scientific workflows.

Therefore we propose the use of data references to avoid
the transfer of large data sets to and from process spaces as
well as eased internal operations. Figure 6 illustrates the
approach. The transfer of a large or small data set is
represented by a bold and fine arrow, respectively.
Certainly, a data reference is represented by a fine arrow. In
our example, the data that has to be visualized is
successively processed by the services Filtering, Mapping
and Rendering. The Filtering-service stores its result data in
an available storage (3) that is extended by a Reference
Resolution System (RRS) that is provided as WS. The RRS
is responsible for the storage of data including the return of
an appropriate reference, and the resolution of a reference
including the return of the corresponding data. After the
receipt of the data reference the Filtering-service sends the
reference to the visualization process in response (4 and 5).
The visualization process queries the process space for
storing the reference as variable value and also passes a
control token for the next activity (6). The Mapping-activity
reads the control token as well as the data token with the
data reference (7). It invokes the Mapping-service by
passing the reference (8). Now the Mapping-service queries
the RRS stated in the reference for the corresponding data
and starts the processing (9 and 10). The result is passed to
an RRS (can be the same one) which returns a new
reference (11 and 12). The Mapping-service sends this
result data reference to the activity in response (13).
Afterwards the Rendering-activity and -service behave
similarly.

Figure 6: The use of data references in a workflow. When run
on a process space-based enactment engine the large data sets
are not stored into the process space.

Since the data that has to be visualized is not relevant for

the process logic it can remain in the storages of
participating services. A service transfers a reference to the
process instead of a large data set. Therefore, the process
space does not need to handle huge amounts of data which
improves the overall performance of workflow execution.
According to this, the bold arrows in Figure 6 occur merely
on the right side where services and their storage are
illustrated whereas the fine arrows are by the majority on
the left side where process and process space are located.

In BPEL a data reference is introduced as a special
variable. The referencing is done by a WS-Addressing
Endpoint Reference [33] that includes uniform resource

PROCESS SPACE-BASED SCIENTIFIC WORKFLOW ENACTMENT 9

identifiers for the eventual data location and the location of
the appropriate RRS. There are different types of reference
variables that additionally enable the use of context data in
the process logic. A more detailed description of references
in BPEL processes is given in [5].

6 DISCUSSION

As outlined in the previous section the decentralized
workflow execution promises to meet particular
requirements that arise especially in the area of scientific
simulations. However, to emphasize the capabilities of the
considerations the central and decentralized WfMS
solutions are compared with the help of the scenario as
introduced in Section 4. Each of the approaches is also
combined with the concept of data references to achieve
further improvements of the overall performance.

Figure 7: Legend for arrows and lines used in the following
illustrations of the scenario.

The comparison bases upon four major aspects: the

number of remote interactions, the size of the payload of a
message to transmit, the size of the workload to be
processed by the engine, and the complexity of the
deployment mechanism. Figure 7 shows the legend that is
useful to understand the illustrations of the particular
approaches. In short, local interactions are denoted by
dashed lines, remote ones by solid lines. Passing small data
is indicated by thin lines, huge data by thick lines. Note the
weight of the different edges. It can be seen as the effort to
pass control or data between two components. We decided
to set the costs of remote interactions twice as much as local
interactions, moving huge data sets (e.g. of several mega
bytes) is chosen to be eight times as expensive as small
ones. However, the respective relations are selected
restrictive. In fact, they may diverge even more. The
illustrations contain up to three machines. Machine 1 (the
visualization server) and 2 (the Dune server) feature the
capabilities described in Section 5.1. The actual process
spaces are omitted for readability. Machine 3 is the server
for a centralized workflow engine. The workflow logic is
also explained in Section 5.1.

6.1 Centralized Workflow Engine without Data References
Figure 8 illustrates the traditional approach that runs a
central workflow engine on a single participant (machine 3).
Therefore, the activities in the simulation workflow are
coordinated internally by the workflow engine and no
interaction with other machines is necessary. The

deployment mechanism in this setting is simple. On the
other hand all interactions between WfMS and WSs are
remote since the WSs are installed on machines 1 and 2.
The data is handled by value. This results in frequently
passing huge data sets remotely over the network.
Furthermore, the navigator component of the engine acts as
bottleneck. All instances of the workflow model are running
on the same server (machine 3). Moreover, huge data items
are processed by the engine (receiving and storing the data
into corresponding databases of the WFMS) even if they are
not needed for control flow evaluation.

1

W

8

7

5

6

4

3

2

Machine 1 Machine 2Machine 3

Figure 8: Control and data flow for the scenario “ink
concentration in water” when using a centralized workflow
execution.

Figure 9: Control and data flow for the scenario “ink
concentration in water” when using a decentralized process
space-based workflow execution.

6.2 Process Space-based Workflow Engine without Data
References
In contrast to that, the process space-based approach (Figure
9) makes use of a decentralized WfMS. The activity clients
are distributed among machines 1 and 2, locally to the used
WSs. In our scenario, the optimal segmentation results in
only local interactions between WfMS and WSs, i.e. the
services and the activity clients run on the same machine.
That means although the data is moved by value, less data is
conveyed over the network. The engine-internal workload is
carried by the participating servers 1 and 2 instead of a

10 MIRKO SONNTAG, KATHARINA GÖRLACH, DIMKA KARASTOYANOVA, FRANK LEYMANN, MICHAEL REITER

single machine. The major downside is the much more
complex deployment mechanism (see Section 5.3). But
indeed this complexity may have little or no impact on the
runtime since it is a pre-runtime step for the most parts.
Moreover, data and control flow tokens may need to be
remotely shipped between activities. However, the applied
segmentation strategy should aim to constrict these remote
interactions (the example has only 3n remote interactions
where n is the number of iterations in the loop).

6.3 Centralized Workflow Engine and Data References
Figure 10 presents the scenario when applying data
references and a central WfMS (machine 3). The WSs and
appropriate RRSs are distributed among machine 1 and 2.
Obviously, using the data by reference relieves the
workflow engine of processing huge data sets if they are
unnecessary for control flow evaluation (as in our scenario).
Instead it is up to the WSs themselves to provision and store
the actual data items with the help of RRSs. This fact can
decrease the number of remote transmission of huge data
amounts over the network depending on the location of
RRSs (there is only one remote data provisioning operation
per loop iteration in the scenario). The drawbacks are the
need for an RRS infrastructure and additional wrapper for
WSs [5] as well as more messages that are exchanged with
respect to the overall system. The number of remote
interactions between WfMS and WSs is as before.
Moreover, the workflow engine is still a bottleneck that
processes all instances of all deployed workflow models.

Figure 10: Control and data flow for the scenario “ink
concentration in water” when using a centralized workflow
execution and data references.

6.4 Process Space-based Workflow Engine and Data
References
The approach of using both process space-based workflow
enactment and data references is shown in Figure 11. This
solution combines the benefits of both ideas. There are very
few remote messages (5 per loop step), most of which
transmit a small payload (only 1 message per loop with a
huge payload). The process spaces are held free of large
data tokens. The workload for workflow execution is shared
among all participants. As mentioned earlier, the main

drawbacks are the complex deployment mechanism, an
additional RRS infrastructure, and an increased number of
messages needed to resolve the data references.

1

W

8

7

5

6

4

3

2

Machine 1 Machine 2

RRS

RRS

Figure 11: Control and data flow for the scenario “ink
concentration in water” when using the concept of data
references and a process space-based workflow enactment.

6.5 Comparison
In order to compare all of the approaches presented above
all weighted arrows (including the control flow) are counted
and added up for all four approaches according to the
scenario. The respective result is an indicator about how
expensive the considered solution is (the higher the score,
the more expensive the solution). We assume three
iterations of the while loop to keep the numbers simple.
Table 1 gives an overview of the results. Obviously, the
traditional approach is the most expensive one for our
scenario. This is due to the moving of large data over the
network (28 times). That means this approach is especially
useful if no huge data items are exchanged or if the
workflow logic is confidential. The decentralized workflow
enactment achieves better results. It is a relatively cheap
solution because of its few remote messages (6 times
control flow and 3 times huge data flow). But the process
spaces might get into trouble when handling tokens with a
size of several mega bytes or larger. This solution should be
applied if there are many remote interactions between

Weight

Σ # Σ # Σ # Σ
CF (local) 1 19 19 13 13 19 19 13 13

CF (remote) 2 6 12 6 12

DF (WF‐int., local, small) 1 13 13 10 10

DF (WF‐int., remote, small) 2 3 6

DF (WF‐int., local, huge) 8 13 104 10 80

DF (WF‐int., remote, huge) 16 3 48

DF (WF‐ext., local, small) 1 4 4 25 25 57 57

DF (WF‐ext., remote, small) 2 4 8 35 70 3 6

DF (WF‐ext., local, huge) 8 28 224 25 200 25 200

DF (WF‐ext., remote, huge) 16 28 448 3 48 3 48

Total points

CF = Control Flow, DF = Data Flow, PS = Process Space, Refs = Data References,

WF‐int. = Workflow internal, WF‐ext. = Workflow external

No Refs,

No PS

No Refs,

with PS

With Refs,

no PS

With Refs,

with PS

579 381 375 352

Table 1: Estimated effort/costs for the execution of the
scenario “ink concentration in water” according to the four
considered solutions.

PROCESS SPACE-BASED SCIENTIFIC WORKFLOW ENACTMENT 11

WfMS and WSs, especially if many activities address the
same server. The message payload should be relatively
small. The data references approach in a centralized WfMS
is slightly cheaper but needs a lot of remote messages (35
with small payload and 3 with huge payload). This means
that this setting can be applied if the number of remote
messages is small but the message payload is huge.
However, the cheapest solution results from the
combination of data references with a process space-based
WfMS. This is achieved by fewer remote interactions as
opposed to the data references only setting. Again,
increasing the penalty for remote messages will negatively
affect the result compared to the process space-based
approach without data references. The strongest argument
for the last solution is that the process spaces are not
cluttered up with huge amounts of data and data is not
moved from the local data storages of services to the space-
based middleware used by the engine and vice versa. This
cannot be reflected in the table since it only accounts for
messages being sent. The approach is applicable in
scenarios where many messages with large payload are
remotely exchanged.

The results of the comparison are based on our
assumptions about the weights of each of the considered
factors and may slightly change should the weight
coefficients be modified. More precise results for this
comparison can only be collected through performance
measurements, which are planned activity in our future
work.

7 CONCLUSION AND FUTURE WORK

In this paper we investigated the applicability of the process
space-based workflow enactment for the scientific domain.
There are particular factors that influence the performance
of scientific IT applications, such as distributed resources
with different capabilities, or huge data sets that are created
and processed. We argue that the overall performance of an
IT system in this context can be increased with the help of a
decentralized workflow execution using process spaces.
Moreover, we combine the approach with the concept of
BPEL data references to prevent process spaces from
becoming a bottleneck when handling large data tokens
relevant for most scientific scenarios. A comparison
between the centralized and process space-based workflow
execution with and without data references based on a
scenario illustrated the potential of the solution. In settings
where many messages are exchanged remotely it decreases
the network traffic dramatically. Especially the capabilities
with respect to adaptability promise additional benefit for
scientists. However, there are challenges that need further
investigation and that drive our future work. For instance,
the deployment and undeployment of activity clients and
process spaces at runtime has to be improved to
accommodate the dynamic characteristics of the scientific
infrastructures. Additionally, we need sophisticated
segmentation algorithms that meet the requirements of a

scientific IT landscape. Finally, there is the challenge of
developing provenance and recovery mechanisms in a
workflow environment with no global state. There is still
much work to be done in the area of modeling scientific
workflows and the automated optimal segmentation of
workflows across the infrastructure in a user-friendly
manner.

ACKNOWLEDGEMENT

The work presented in this paper has been funded by the
DFG Cluster of Excellence Simulation Technology5
(EXC310).

REFERENCES

1 S. J. Mullender (ed.): “Distributed Systems”. 2nd ed., ser.
ACM Press frontier series, New York, NY: ACM Press, 1993.

2 S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and
D. F. Ferguson: “Web Services Platform Architecture: SOAP,
WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-
Reliable Messaging, and More”. Prentice-Hall, 2005.

3 OASIS: “Web Services Business Process Execution
Language Version 2.0”, 2007.

4 A. Akram, D. Meredith, and R. Allan: “Evaluation of BPEL
to Scientific Workflows”. In: Cluster Computing and the Grid
(CCGrid). IEEE Computer Society, 2006, pp. 269–274.

5 M. Wieland, K. Görlach, and D. Schumm: “Towards
Reference Passing in Web Service and Workflow-based
Applications”. In. 13th IEEE Enterprise Distributed Object
Conference (EDOC), 2009.

6 D. Gelernter: “Generative Communication in Linda”. In:
ACM Transactions on Programming Languages and Systems,
7(1):80–112, 1985.

7 D. Wutke, D. Martin, and F. Leymann: “Model and
Infrastructure for Decentralized Workflow Enactment”. In:
23rd ACM Symposium on Applied Computing (SAC2008),
2008.

8 D. Martin, D. Wutke, and F. Leymann: “A Novel Approach to
Decentralized Workflow Enactment”. In: 12th IEEE EDOC
Conference, 2008.

9 D. Martin, D. Wutke, and F. Leymann: “EWFN - a Petri Net
Dialect for Tuplespace-based Workflow Enactment”. In: 15th
German Workshop on Algorithms and Tools for Petri Nets
(AWPN 2008), N. Lohmann and K. Wolf, Eds., 2008.

10 D. Wutke, D. Martin, and F. Leymann: “Tuplespace-based
Infrastructure for Decentralized Enactment of BPEL
Processes”. In: 9. Internationale Tagung
Wirtschaftsinformatik: Business Services, Konzepte,
Technologien, Anwendungen (WI 2009), 2009.

11 G. Decker, O. Kopp, F. Leymann, M. Weske: “BPEL4Chor:
Extending BPEL for Modeling Choreographies”. In: IEEE
Computer Society (eds.): Proceedings of the IEEE 2007
International Conference on Web Services (ICWS 2007), Salt
Lake City, Utah, USA, July 2007.

12 T. Fahringer, R. Prodan, R. Duan, J. Hofer, F. Nadeem,
F. Nerieri, S. Podlipnig, J. Qin, M. Siddiqui, H.-L. Truong,
A. Villazon, and M. Wieczorek: “Askalon: A Development
and Grid Computing Environment for Scientific Workflows”,
In: Workflows for e-Science: Scientific Workflows for Grids,
I. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields
(Eds.), Springer, 2007, pp. 451–471.

5 http://www.simtech.uni-stuttgart.de

12 MIRKO SONNTAG, KATHARINA GÖRLACH, DIMKA KARASTOYANOVA, FRANK LEYMANN, MICHAEL REITER

13 I. Foster: “Globus Toolkit Version 4: Software for Service-
oriented Systems”, In: Journal of Computer Science and
Technology, vol. 21, no. 4. Springer, 2006.

14 E. Deelman, J. Blythe, Y. Gil, C. Kesselmann, G. Mehta,
S. Patil, M.-H. Su, K. Vahi, and M. Livny: “Pegasus:
Mapping Scientific Workflows onto the Grid”. In: Lecture
Notes in Computer Science (Second European AcrossGrids
Conference), vol. 3165/2004. Springer, 2004, pp. 11–20.

15 Lovas et al., “Workflow support for complex grid
applications: Integrated and portal solutions”. In: Grid
Computing. Springer, 2004.

16 F. Leymann and D. Roller: “Production Workflows: Concepts
and Techniques”. Prentice Hall, 2000.

17 Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. v. Laszewski,
I. Raicu, T. Stef-Praun, and M. Wilde: “Swift: Fast, Reliable,
Loosely Coupled Parallel Computation”. In: IEEE
International Workshop on Scientific Workflows, 2007, Salt
Lake City, Utah, U.S.A.

18 G. v. Laszewski, M. Hategan, and D. Kodeboyina: “Java CoG
Kit Workflow”. In: I. J. Taylor, E. Deelman, D. B. Gannon,
and M. Shields (eds.): Workflows for eScience, 2007, pp. 340-
356.

19 I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M. Wilde:
“Falkon: a Fast and Light-weight tasK executiON
framework”. In: IEEE/ACM Supercomputing, 2007.

20 L. Moreau, Y. Zhao, I. Foster, J. Voeckler, and M. Wilde:
“XDTM: XML Data Type and Mapping for Specifying
Datasets”. In: European Grid Conference, 2005.

21 R. S. Barga, J. Jackson, N. Araujo, D. Guo, N. Gautam, and
Y. Simmhan: “The Trident Scientific Workflow Workbench”.
In: IEEE International Conference on eScience, 2008.

22 A. G. Cass, B. S. Lerner, E. K. McCall, L. J. Osterweil, and
A. Wise: “Logically central, physically distributed control in
a process runtime environment”. Technical Report 99-65,
University of Massachusetts at Amherst, Nov. 1999.

23 C. Schuler: “Verteiltes Peer-to-Peer-Prozessmanagement –
Die Realisierung einer Hyperdatenbank”. PhD thesis,
Eidgenössische Technische Hochschule Zürich, Switzerland,
2004.

24 M. Reichert and P. Dadam: “ADEPTflex – Supporting
Dynamic Changes of Workflows Without Losing Control”.
In: Journal of Intelligent Information Systems, 10(2), 1998.

25 T. Bauer and P. Dadam: “A Distributed Execution
Environment for Large-Scale Workflow Management
Systems with Subnets and Server Migration”. In: Proceedings
of the 2nd Conference on Cooperative Information Systems
(Coopis), 1997.

26 T. Bauer and P. Dadam: “Efficient Distributed Workflow
Management Based on Variable Server Assignments”. In:
Lecture Notes in Computer Science, Springer-Verlag, 2000.

27 O. C. Zienkiewicz and R. L. Taylor: “The Finite Element
Method”, 4th ed. McGraw-Hill, 1989, vol. 1.

28 P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn,
M. Nolte, M. Ohlberger, and O. Sander: “The Distributed and
Unified Numerics Environment (DUNE) Grid Interface
HowTo”, 2009, version 1.3.

29 J. Rutschmann: “Generisches Web Service Interface um
Simulationsanwendungen in BPEL-Prozesse einzubinden”.
Diploma Thesis No. 2895, University of Stuttgart, 2009.

30 C. Ouyang: “WofBPEL: A Tool for Automated Analysis of
BPEL Processes”. In: Proceedings of the ICSOC, 2005.

31 K. Jensen: “Coloured Petri Nets, Volume 1: Basic Concepts”.
Monographs in Theoretical Computer Science, Springer-
Verlag, 1992.

32 I. Foster and C. Kesselmann: “The Grid 2: Blueprint for a
New Computing Infrastructure”. Morgan Kaufmann, 2004.

33 W3C: “Web services addressing 1.0 - core”, 2006, W3C
Recommendation.
Available: http://www.w3.org/TR/ws-addr-core/

Reference to this paper should be made as follows: Mirko
Sonntag, Katharina Görlach, Dimka Karastoyanova, Frank
Leymann, Michael Reiter (2010) ‘Process Space-based Scientific
Workflow Enactment’, International Journal of Business Process
Integration and Management, Special Issue on Scientific
Workflows, Vol. X, No. X, pp.000–000.

