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Abstract: In the scientific field, the workflow technology is often employed to conduct 
computer simulations or computer supported experiments. The underlying IT infrastructure 
typically comprises resources distributed among different institutes and organizations all 
over the world. Traditionally, workflows are executed on a single machine while the 
invoked software is accessed remotely. This approach imposes many drawbacks which are 
outlined in this paper. To address these weaknesses we investigate the application of 
decentralized workflow enactment in the scientific domain. In this context, we explore the 
employment of process spaces, a middleware for the decentralized execution of workflows. 
Furthermore, we propose the combination of process spaces with the concept of data 
references to increase the overall performance of distributed simulations based on 
workflows. The considerations are discussed with the help of a scenario that calculates and 
visualizes the ink diffusion in water over a period of time. 
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1   INTRODUCTION 

Applications in the scientific domain need to meet different 
requirements: Huge amounts of data are processed. Since 
scientific applications are often complex there are 
performance requirements for the hardware used for running 
the application. Additionally, the IT infrastructure should be 
robust, scalable and extensible. As scientists need a proof of 
how certain results of other scientists have been achieved, 
the run of an application must be reproducible. Finally, 
scientists want to share their applications, data and hardware 
for the purpose of reuse and resource utilization. 

In distributed systems people, information, software and 
hardware are dispersed [1]. The owners of computing nodes 
connect their systems in order to exchange and share 
information and resources. Additionally, distributed systems 
afford speed-up through parallel computing, especially for 
computing-intensive tasks such as those in scientific 
applications. Furthermore, distributed systems allow an 
incremental growth of the IT infrastructure. This means the 
integration of additional storage facilities or compute 
servers for more compute power is facilitated. Distributed 
applications ensure scalability by avoiding centralized 
components. Another advantage of decentralized 
components is that the availability of the system can be 
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ensured even if a single component fails. The availability of 
services and information is achieved by redundant 
functionalities support and data replication. A downside of 
distributed systems is the increased effort for configuration 
and coordination. Previously unconnected components must 
be wired. The parts of distributed applications need to 
manage their interactions and handling of data while being 
located on different machines. Additional aspects of fault 
tolerance have to be considered, such as the unavailability 
of servers or networks. Distributed systems must be able to 
deal with these problems. Nevertheless, distributed systems 
fulfill a lot of requirements for scientific applications which 
qualifies them for practical use. 

The Web service (WS) technology [2] can be used for the 
integration of heterogeneous applications in a loosely 
coupled fashion. WSs are self-contained, self-describing 
pieces of functionality exposing stable interfaces. The WS 
descriptions are programming language and technology 
independent; the underlying implementation details of WSs 
are thereby hidden. To support meaningful application 
scenarios composability of services is a must and is a 
property enabled by the WS technology. Service 
orchestrations are compositions of WSs into processes (or 
workflows) that provide higher levels of functionality. The 
Business Process Execution Language (BPEL) [3] is the de-
facto standard to define machine-readable orchestrations of 
WSs. Since these workflows can again be exposed as WSs 
that may be incorporated into another workflow, BPEL 
enables a recursive aggregation model. BPEL fulfills basic 
requirements for scientific workflows, for example the 
support of exception handling, user interactions to facilitate 
interactive steering and monitoring, compensation 
mechanism, and the dynamic selection of services [4]. 
BPEL processes are executed by a so-called BPEL engine. 
The used WSs can be distributed among several partners 
throughout a network. Thus, BPEL can be used to 
implement distributed applications. Traditionally, a BPEL 
engine is part of a centralized workflow management 
system (WfMS). That means the workflow logic runs on a 
single server. This results in several drawbacks, such as the 
WfMS as single point of failure. In contrast to that, 
decentralized WfMSs distribute workflow logic across 
several participants what promises to gain multiple 
advantages. 

In this work, we investigate to what extent decentralized 
execution of workflows is advantageous in the scientific 
domain in general. Therefore we present a general 
discussion about centralized vs. decentralized WfMSs and 
subsequently we explain why the process space approach 
(also presented in the paper) fits best to serve as a basis for 
further development in the scientific workflows area.  

Process spaces are a middleware to execute workflows in 
a decentralized manner. We propose the use of this 
approach in the area of scientific workflows and present a 
scenario that is realized using this approach. Particular 
challenges arise especially when applying the solution in a 
highly dynamic environment. In this context, the challenges 

we identify are related to the deployment and undeployment 
of scientific workflow models on distributed resources.  

Since scientific workflows typically deal with huge data 
sets, the process spaces will probably run into problems 
when handling data sets with a size of several mega bytes, 
for example. To address this weakness we propose the 
adoption of the BPEL data reference concept [5] for 
avoiding bulks of data in process spaces.  

Finally, we discuss the feasibility of the approach: We use 
a concrete scientific simulation workflow and demonstrate 
how it can be implemented by a centralized and a process 
space-based WfMS with and without data references. We 
compare and assess the different implementations and 
discuss application areas for the respective solutions. 

The remainder of the paper is structured as follows: 
Section 2 covers background information important for the 
rest of the paper. Section 3 presents related work in the 
areas of scientific workflows and distributed workflow 
enactment. Section 4 introduces a concrete scenario that is 
used for argumentation. Section 5 points out the general 
advantages when employing the process space-based 
workflow execution for scientific workflows. The set-up of 
the scenario is illustrated and the challenge of deploying 
distributed workflow models is touched. Additionally, the 
concept of data references in this context is examined. 
Section 6 compares the centralized and decentralized 
workflow execution and discusses the results. Section 7 
provides a conclusion and gives future directions. 

2   BACKGROUND 

In this section we introduce the necessary background 
information for the rest of the paper. We explain centralized 
and distributed WfMSs and give a comparison between 
these two based on the application area of scientific 
workflows. Furthermore, we introduce the approach of a 
process space-based workflow enactment as an example for 
a distributed WfMS.  

2.1   Centralized WfMSs 
Workflow instances are carried out according to the control 
flow, data flow, and rules as prescribed by their models. A 
so-called navigator component follows the control and data 
flow of a workflow instance’s, supervises the 
accomplishment of the tasks to be done (e.g. the invocation 
of WSs), and keeps the status and the progress of the 
execution. Typically, executing workflows is done by the 
enactment service of a centralized WfMS. The term 
“centralized” denotes the WfMS as a single unit. However, 
such a centralized WfMS may be running across several 
nodes of a cluster. Nevertheless, even clustered navigators 
need to share state and thus rely on each other. Furthermore, 
a cluster is assumed to operate within a single domain or 
organization, such as a scientific institute. 
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2.2   Distributed WfMSs 
As opposed to a centralized workflow execution the 

decentralized approach arbitrarily distributes the workflow 
(i.e. its coordination logic) among different independent 
machines of possibly different organizations. No single 
navigation component is needed anymore that supervises 
the overall workflow execution. There are different 
mechanisms that can be used to support the realization of 
decentralized WfMSs (e.g. message-oriented middleware, 
tuplespace middleware [6]). 

2.3   Centralized vs. Distributed execution of scientific 
workflows 

In the scientific domain a typical setting consists of 
several special-purpose, distributed machines with different 
characteristics, for example servers with huge hard drives 
but relatively slow processors, or computers with efficient 
GPUs ideal for taking over visualization tasks. Being able to 
deploy and execute parts of a workflow on machines that 
provide the application logic significantly reduces the 
number of remote interactions. On the one hand, network 
traffic is decreased dramatically. On the other hand, calling 
applications locally is fast since the overhead of 
marshalling, transmitting, and demarshalling messages is 
reduced. In case of BPEL, WSs could be bound locally, for 
instance a Java class could be called natively. These 
arguments have even greater importance having in mind that 
scientific workflows typically process huge data sets.  

In contrast to a centralized system, a decentralized WfMS 
can process distributed workflows potentially fully parallel 
(as far as allowed by logical dependencies between 
activities (and cf. Amdahl’s law), and as long as there is no 
better clustered navigator solution). There is neither a 
sequentially working navigator nor need non-interacting 
activities (e.g. <assign> activities in BPEL) be carried out 
on the same server. Moreover, this approach precludes the 
navigator to become a potential bottleneck. The workload is 
thus distributed among all participants. 

The distributed enactment of a workflow over several 
machines increases the overall robustness of the system (i.e. 
its resistance against failures). For example, if a single 
machine crashes, the workflow execution may continue on 
the other workflow engines. The continuation of a workflow 
instance depends on whether another machine can take over 
the tasks assigned to the failed one or on the workflow parts 
that are deployed on the failing machine (e.g. one of 
multiple parallel branches, data not available, security 
issued).  

Because of the characteristics of scientific simulations and 
experiments and the infrastructure used for them, it is only 
natural to choose the decentralized approach for process 
execution. In the next section we present the process space-
based approach as an example for distributed workflow 
execution. Later, in Section 5 we argue that this approach is 
particularly suitable for scientific workflows. 

2.4   Process Space-based Workflow Enactment 
The process space-based workflow enactment is an 
approach for the distributed execution of coordination logic 
[7]. Process spaces are shared, remotely accessible storages 
for tuples (ordered lists of typed fields, also referred to as 
tokens). Tuples can be retrieved and stored via three 
operations: out stores a tuple, in reads a tuple destructively, 
rd reads a tuple non-destructively. Reading tuples is done 
with the help of templates. A template prescribes criteria a 
demanded tuple must match to be fetched from the process 
space.  

Process space-based workflow enactment is conducted 
without a centralized navigator as known from traditional 
(i.e. centralized) workflow engines. Instead of that, the 
coordination is split among several so-called activity clients 
that are reading from and writing to process spaces. An 
activity client performs the coordination of a single activity. 
In case of a non-interacting activity, an activity client also 
implements the activity’s functionality. Activity clients have 
a very local view on the process. They only know the 
process spaces they access and thus are completely 
decoupled from each other. Workflow execution is 
performed with the help of two types of tuples, namely 
control tokens and data tokens, passed by activity clients. 
The coordination logic of the workflow model is 
represented by the token templates of the activity clients. A 
control bus can used to configure and manage activity 
clients at runtime (e.g. change their token templates). 
Process spaces also provide operations tailored for their 
application with workflows (e.g. the join of control flow 
branches).  

BPEL is used as underlying workflow meta-model. BPEL 
process models are split among process participants 
according to specific strategies and constraints [8] (called 
process segmentation), e.g. an activity must be carried out 
on a particular server. After segmentation, the BPEL 
process model is transformed into an Executable Workflow 
Network (EWFN). EWFNs are a special Petri net dialect. 
They realize the token passing mechanism and enable the 
execution of workflows on process spaces [9]. Finally, the 
EWFN model can be installed and executed on participating 
servers in form of process spaces and activity clients [10]. 

 

 
Figure 1: Example for a process space-based workflow 
execution 
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In Figure 1 an example for a process space-based 
workflow execution is given. The workflow consists of 
three sequentially performed, interacting activities. The 
corresponding activity clients are distributed among two 
machines. There are two process spaces, one on each 
machine. Activity client 1 invokes a Web service (step 1. 
and 2.) and writes the response into process space 1 as data 
token A (3.). After that the activity is finished and the 
control is passed to activity client 2 via a control flow token 
in process space 1 (4., 5.). Activity client 2 uses the data in 
data token A to invoke a Web service (6., 7., 8.), writes the 
response into data token B in process space 2 (9.), and 
passes the control to activity client 3 via a control flow 
token in process space 2 (10.). Activity client 3 takes the 
control (11.), invokes a Web service with data from data 
token C (12., 13., 14.) and overwrites C with the response 
(15.). 

Distributed workflow execution based on a process space 
middleware has several advantages [7, 8] described in the 
following. With BPEL and WS-* the approach relies on 
standards and thus promises a high acceptance in the 
workflow community.  

The process space-based approach implements a natural 
way of distributing orchestration logic. There is neither a 
need for a workflow redesign (e.g. because of the 
introduction of additional message exchanges for 
coordination) nor for the usage of coordinating 
choreographies [11].  

In contrast to centralized WfMSs, the navigator is no 
single point of failure anymore and the workload is 
distributed among all participants (i.e. activity clients).  

In case of strategic decisions of enterprises, workflow 
parts can easily be outsourced (or merged). There is no need 
to split (or merge) processes by hand, manually install the 
supporting middleware on all sides and deploy the workflow 
parts. Outsourcing and merging can be done with the 
process space-based middleware by simple reconfiguration 
steps. 

Since the orchestration logic can be executed on the same 
machine where the used service(s) reside, shipping data 
from and to services can be reduced. Furthermore, Web 
services can be bound locally without leaving the address 
space. The same result could be obtained with a centralized 
WfMS by relocating services to the side of the workflow 
system. But often this is not possible because other 
applications would break if they rely on services at specific 
locations or because service ownership forbids relocation. 

3   RELATED WORK 

This section presents related work in the fields of WfMSs 
especially designed for application in the area of scientific 
workflows and WfMSs enabling a distributed workflow 
execution. 

3.1   Scientific WfMSs 
Askalon [12] executes scientific workflows on top of Grid 
infrastructures based on the Globus Toolkit 4 (GT4) [13]. 
Typical application areas are theoretical chemistry and 
image processing. The centralized engine executes 
processes supplied in the Askalon-specific Abstract Grid 
Workflow Language (AGWL). AGWL models are 
independent of concrete resources. The scheduler maps 
workflow jobs on Grid resources. The resource manager 
deploys workflow jobs (i.e. software used by activities) on 
heterogeneous and decentralized Grid infrastructures. The 
GT4 middleware enables a dynamic binding of resources. 
Askalon uses workflow segmentation to cope with a 
changing IT environment. Particular workflow segments are 
bound to concrete resources during workflow execution if 
the control flow reaches the segment. However, workflow 
segmentation is not used for a decentralized workflow 
execution. 

Pegasus [14] is rather a workflow compiler than a 
scientific WfMS. It cooperates with the centralized 
workflow execution system Condor DAGMan [15]. Thus, 
Pegasus supports native DAGMan workflows and specific 
XML1-based formats. The workflows are templates without 
resource binding. Based on a template Pegasus determinates 
an execution strategy that can include workflow 
segmentation and data movements. Similar to Askalon, a 
late binding concept is provided on basis of workflow 
segmentation: Pegasus binds resources for a specific 
workflow segment which is then executed by Condor 
DAGMan. After that, Pegasus binds resources for the next 
segment, and so on. Additionally, Pegasus aims at reducing 
the amount of data produced during workflow execution. 
Therefore, it identifies and reuses existing data. 

In contrast to Askalon and Pegasus, our approach makes 
use of a decentralized workflow execution engine. 
Workflow segmentation is not used for late binding of 
resources but to identify workflow parts that can be 
deployed on different machines. Moreover, both approaches 
do not rely on the traditional workflow technology as 
described in [16] and by the WfMC2. Traditional workflow 
systems distinguish between process models and process 
instances, they are separated into a build time and a runtime 
environment, to name just a few properties. 

Swift [17] is a system to specify, execute and manage 
scientific and engineering workflows. Similar to Pegasus, 
Swift is does not execute workflows on its own but utilizes 
a centralized execution engine called Karajan [18]. 
Furthermore, it makes use of Falkon [19] for provisioning of 
resources and submission of tasks to resources. Swift 
employs a mechanism to access data sets independent of 
their physical representation and location with the help of 
XML Dataset Typing and Mapping (XDTM) [20]. A 
mapper accesses data sources and converts data into an 
XML form. It is also possible to write and update data 
sources. As opposed to Swift, we advocate a decentralized 

                                                 
1 eXtensible Markup Language 
2 Workflow Management Coalition, http://www.wfmc.org 
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execution of scientific workflows. Moreover, the data 
reference mechanism we want to employ helps keeping 
massive data out of a workflow engine by using pointers 
instead of the complete data payload. The Swift XDTM 
approach transforms non-XML to XML data. Thus, the 
converted data is processed by the workflow engine. 
Additionally, the process space-based solution is built upon 
agreed-on standards like BPEL or WS-* and hence promises 
a higher user acceptance. 

Trident [21] is a commercial scientific WfMS built on 
traditional workflow technology. The contained workflow 
engine performs a centralized execution of processes. These 
processes are specified with a proprietary workflow 
language (eXtensible Object Markup Language, XOML), 
but can be transformed to and from BPEL. In contrast to 
Trident, our WfMS executes workflows in a distributed 
manner. To the best of our knowledge, Trident does not 
follow a data pointer concept as we foresee for our system. 

3.2   Distributed WfMSs 
Juliette [22] is a workflow system for the distributed 
execution of Little-JIL coordination models. Main parts of 
Juliette are an interpreter that coordinates the execution of 
workflows, and a resource manager to allocate resources 
and agents to perform the workflow steps. The interpreter 
can be split and distributed among the utilized resources. 
Each Little-JIL step thereby gets its own interpreter. These 
step interpreters (comparable to process space activity 
clients, see Section 2.4) are structured hierarchically: each 
step interpreter only reacts on events of its own step or of 
sub-steps, thus minimizing the global knowledge of the 
interpreters. By contrast, in our approach the activity clients 
do not know each other at all. They are completely 
decoupled with the help of process spaces, thus enabling 
more flexibility and robustness (e.g. exchanging of activity 
clients does not affect other clients). 

Osiris [23] is a distributed workflow engine that works on 
top of a peer-to-peer database system (hyper-database) that 
is dispersed among all participating nodes. During 
execution, process instance data is split and passed to the 
involved nodes in case of parallel paths. This requires a 
complex mechanism to join distributed data after parallel 
execution. In the process space-based WfMS merging of 
instance data is not needed.  

ADEPT [24] is a WfMS with support for ad-hoc changes 
at process runtime. There is a variant of ADEPT specifically 
designed for a decentralized execution of workflows, 
ADEPTdistribution [25, 26]. The aim of ADEPTdistribution is 
reducing the amount of data shipped between applications 
used in the workflow. The system allows static and dynamic 
distribution of tasks to participating nodes. 

Unlike the presented approaches, the process space 
solution relies on the traditional workflow technology and 
standardized languages as mentioned in Section 3.1. 
Another main difference is that the considered systems are 
not tailored to handling huge amounts of data as is often 
required in scientific workflows. We address this problem 

with the help of data references that keep data not needed 
for process execution out of the workflow engine. 

4   SCENARIO 

With the scenario presented here we aim at illustrating the 
concepts in the subsequent discussion and it will serve as a 
basis for comparison of the centralized approach for 
scientific workflow execution and the distributed one. The 
presented scenario is a simulation of the diffusion of ink in 
water over a particular period of time. It consists of two 
major phases: first, the diffusion is calculated with the help 
of the finite element method (FEM) [27]; second, a 
procedure for visualizing the result of the simulation. The 
scenario description is interleaved with details on the typical 
infrastructure currently used for enacting it. 

4.1   Simulation Step 
The ink concentration in water can be expressed as 
differential equation in three space and one time dimension 
with particular conditions [28]. 

The simulation needs five general steps, as shown in 
Figure 3. Currently, the simulation can be performed using 
the Dune library. a widely used C++ library for the 
numerical solution of partial differential equations with 
mesh-based methods like finite elements (FE), finite 
volumes (FV), or finite differences (FD). Dune includes 
MPI3-support to enable the execution of simulations on 
parallel systems like supercomputers. MPI is a standard that 
describes the communication between distributed parts of an 
application. Dune can work with different types of meshes: 
2D (see Figure 2), 3D, rectangle, cuboid, equidistant, with 
areas of greater accuracy, and more. In our previous work 
we exposed parts of Dune (without MPI-support) as WSs 
[29]. This allows us to (re)use Dune functions in service 
compositions, e.g. BPEL processes, seamlessly.  

 

 
Figure 2: Non-equidistant 2D Dune-based Alberta mesh 

 
Each step produces data the subsequent one relies on (see 

Figure 3). Create Mesh builds an equidistant FEM-mesh by 
field discretization. That means a field with an infinite 
number of points is transformed into a field with a finite 
number of points. The FEM-mesh represents the water the 

                                                 
3 Message Passing Interface, http://www.mpi-forum.org 
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ink is injected into. This step often consumes a huge amount 
of main memory.  

Global Refine enhances the FEM mesh based on factors, 
such as geometry, simulation problem, initial or boundary 
condition. This results in a non-equidistant mesh that 
contains more points in areas of greater importance (e.g. the 
injection area). The required main memory is often 
substantially larger than after the Create Mesh step. 

 

 
Figure 3: The Dune-based simulation process “ink diffusion in 
water”. 

 
Allocate Vector describes the allocate function, which is a 

velocity field function that describes the ink diffusion in 
water. 

Initialize Mesh configures the FEM mesh with the initial 
and boundary conditions which are described with 
mathematical functions. The initial condition assigns every 
mesh point with the corresponding function value at starting 
time t0 (e.g. clear water without ink). The boundary 
condition assigns boundary mesh points with corresponding 
function values (e.g. “right” boundary must have the same 
value as the “left” boundary). 

Evolve solves the differential equation at a particular point 
in time with the help of numerical solvers based on linear 
algebra. The result is stored in a file. Evolve runs in a loop 
that is responsible for the time discretization of the 
differential equation. A typical start time is t0 = 0. After 
each run the next time step ti+1 is taken. The loop stops if the 
ink concentration in water is balanced or at a predefined 
time tend. The Evolve step requires a fast central processing 
unit (CPU). 

4.2   Visualization Step 
The simulation results need to be visualized. More 
precisely, typically visualization of only some parts of the 
simulated system is of importance, for example the ink 
concentration close to the boundaries. It depends on the 
goals of the scientific experiment and the evolution of the 
simulation run.  
 

 
Figure 4: The basic visualization process with main steps 
Filtering, Mapping, and Rendering. 

 
Figure 4 shows the basic steps needed to visualize the 

results. In the first step, Filtering, the received data is 
prepared for the following steps. More precisely the part of 
data is extracted that is interesting for the visualization, for 
example, the data that represents the ink concentration close 
to the boundaries.  

In the second step, Mapping, the extracted data is assigned 
to a particular representation. For instance, this can be done 

with the help of a lookup table that assigns scalar values to 
dedicated color values or geometric objects.  

Finally, an image is generated from this representation in 
the Rendering step. Typically during rendering, specific 
instructions of the graphics processing unit (GPU) on a 
graphics board are executed. Therefore, the rendering 
service must be executed on a server where the required 
GPU exists and the used instructions are provided. 

5   PROCESS SPACE-BASED SCIENTIFIC WORKFLOW 
ENACTMENT 

In this section we present reasons for employing the 
process space-based solution for the application in the field 
of scientific workflows. Based on the example ink diffusion 
simulation (Section 4) we propose an appropriate process 
segmentation and distribution over participating machines 
for a concrete hardware and software infrastructure. 
Furthermore, we discuss the role of the deployment step in 
this context. Finally, we investigate whether the 
combination of the process space middleware with an 
approach of accessing data via pointers is beneficial for 
scientific workflows. 

5.1   Why Process Space-based Workflow Execution? 
The process space-based solution as outlined in [7] uses 
BPEL as workflow meta-model and thus promises a lot of 
advantages. For example, heterogeneous applications can be 
orchestrated since BPEL relies on WSs. Thus, even legacy 
software can be integrated by creating an appropriate WS 
wrapper.  

Decoupling workflow model parts with the help of process 
spaces opens up new possibilities for adaptability, a major 
requirement in the field of scientific workflows. The 
workflow model structure can be changed by inserting, 
replacing or deleting particular activity clients. Similarly, 
the control flow can be adapted by modifying the activity 
client templates that are used to retrieve associated tokens. 
That means it can be changed what tokens in which process 
space activity clients are waiting for and in which process 
space their tokens are put. The powerful mechanism of 
templates used to read tokens from process spaces makes it 
also possible to adapt single workflow instances instead of 
whole process models. Such adaptations can be realized 
even at runtime with the help of a control bus without a 
redeployment of the whole workflow model. An explicit 
channel creation like in message-oriented middleware is not 
needed [7]. Adaptation in centralized WfMSs is much more 
complex. The activities are hard-wired by means of an 
engine-internal format that cannot be changed without 
changing the engine internal implementation. A 
redeployment step would be necessary. Modifying 
workflows with running instances also constitutes the 
problem of migrating the instances to the new workflow 
model which may not be possible for all instances. In the 
process space approach instance migration is inherently 
done when the configuration of activity clients is changed. 
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An important step in the methodology of the process 
space-based approach is mapping BPEL on EWFNs. This 
allows a formal analysis of workflows, such as a check of 
structural properties or the calculation of system invariants 
[30]. Furthermore, standard Petri net verification algorithms 
can be used to validate the correctness, soundness, and 
reachability of workflow graphs [31]. A first open-source 
prototype for activity clients and a process space 
implementation is being developed. The prototype can be 
used as basis for further development. 

5.2   Set-up and Workflow Fragmentation 
In this section we describe the infrastructure we use for the 
execution of the scenario introduced in Section 4 and 
suggest one fragmentation alternative for the distribution of 
process activities on this infrastructure. The set-up (see 
Figure 5) consists of two machines with specific properties. 
Machine 1 is created to handle expensive computer graphic 
calculation tasks. It contains a high-capacity GPU that 
supports OpenGL4. Software appropriate for visualizing 
simulation results is installed and provided as WS with three 
operations (filtering, mapping, and rendering). Machine 2 is 
specialized for compute-intensive tasks and therefore 
possesses a fast CPU and a huge main memory. The WS-
ready variant of the Dune library [29] is installed to 
calculate partial differential equations. Several functions 
that the Dune library supports are made available as WSs. 
 

 
Figure 5: Topology of scenario "ink concentration in water" in 
a process space environment 

 
The workflow consists of three main parts: the preparation 

of the simulation (activities 1-4), the actual accomplishment 
of the simulation (activity 5), and the visualization of results 
(activities 6-8). The running numbers used as names of the 
activities also denotes their processing order. Activities 5-8 
are surrounded by a shaded area, which stands for a while 
loop that models the repetition of these steps. The loop is 
controlled by activity W. After each loop step activity W 
decides whether to execute another iteration or not (the 
latter would mean to finish the workflow run). According to 
the supplied infrastructure the workflow is divided into two 

                                                 
4 Open Graphics Library – A specification of an interface for the 
development of 2D and 3D computer graphics. 

segments: activities that are implemented by Dune functions 
and those activities that steer the visualization of results. 
That means the “cut” is done through the while loop. 
Obviously, activity clients for “Dune activities” get 
deployed on machine 2 that also hosts the Dune library. 
Similarly, clients for activities that realize the visualization 
are assigned to machine 1 where the visualization software 
is running. All activity clients are decoupled by process 
spaces. That means they interact indirectly via passing 
tokens to and reading tokens from process spaces. There are 
two process spaces, one for each machine. For that reason 
local access is in most cases sufficient to operate on the 
spaces. Only the clients for activities 5 and 8 need to pass 
tokens remotely to the process space that resides on the 
other machine (indicated by a dashed arrow). To increase 
the legibility of the figure it is assumed that the process 
spaces are used for both control and data tokens. 

5.3   Deployment 
The deployment of workflow models is strongly dependent 
on the used IT environment (i.e. available machines, data, 
and applications). Deploying workflows in a distributed 
process space environment requires a number of 
information: the segmented workflow in BPEL form, 
configured templates of activity clients, a deployment 
descriptor that maps workflow segments on participating 
machines, concrete service ports in case of a static service 
binding, criteria for service selection in case of a dynamic 
service binding, and properties of machines for the dynamic 
selection of resources. 

The decision about function or data shipping is a known 
aspect in the scientific community. The process space-based 
workflow enactment introduces another shipping type, a 
mechanism we call workflow shipping, i.e. the distribution 
of a workflow model over participating machines. Before 
distribution, a workflow model needs to be segmented into 
logically related units [10]. There are many forces driving 
the segmentation of workflow models, ranging from IT 
landscape to workflow logic [8]. For example, the 
availability and capabilities of machines, installed WSs, the 
location of data, or the dependencies between activities.  

After segmentation the particular activity clients and 
process spaces can be installed on chosen machines before 
workflow execution. This is a static binding case for which 
concrete addresses of machines are specified in the 
deployment descriptor.  

A key property of the scientific IT infrastructure is its 
changing nature. Resources may come and go dynamically 
so that running workflows can hardly rely on the availability 
of resources (i.e. WSs) specified at build- or deployment 
time, especially in the case of long-living workflows. With 
respect to such a changing IT environment activity clients 
and process spaces may also be dynamically shipped at 
runtime by the middleware. In this case, the deployment 
descriptor should not contain concrete addresses of 
resources but rather the properties used to discover and 
select them (e.g. CPU speed, HDD capacities, etc.). This 
way of declarative specification of resources to be used 
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supports the dynamic binding to resources, which is more 
flexible in changing infrastructures but also has implications 
on the workflow execution in terms of performance and 
complexity. This is so because a resource manager has to 
query a directory of registered resources and select a 
resource that matches specified requirements (e.g. a GPU is 
needed). Furthermore, in some cases software has to be 
installed on a selected resource or data needs to be shipped.  

Note, that there are several binding strategies when 
specifying the binding of applications to services (as defined 
in [2]) and similarly, binding strategies are needed when 
applications like the simulation workflows need to be bound 
to hardware. Independent of the chosen binding strategy the 
major goals of workflow shipping should be to minimize 
remote interactions (activity to activity as well as activity to 
WS interactions) and to avoid passing huge amounts of data. 
This most often implies deploying activities at the site of 
associated WSs. 

The distribution of workflow parts on the IT landscape has 
implications on the explicit undeployment of workflow 
models: All activity clients as well as process spaces need to 
be uninstalled from all used servers. In case of a static 
binding these machines can simply be addressed using 
information from the deployment descriptor. In a dynamic 
workflow shipping scenario the undeployment is more 
complex especially if the workflow logic was adapted at 
runtime (e.g. new or moved activity clients). Service bus 
information is needed (e.g. a log file that recorded 
discovered and bound machines) to find used servers. A 
mechanism to ease the undeployment of a distributed 
workflow is the introduction of a lifetime management as 
known from Grid services [32]. Following the lifetime 
management approach installed activity clients and process 
spaces are associated a lifetime – duration or a deadline. If 
their lifetime expires, they are simply uninstalled. So-called 
“keep alive” messages can be utilized to negotiate a lifetime 
extension. That way, used machines implicitly garbage 
collect installed workflow parts that are not in use any more. 

5.4   Data References 
Although the introduction of process space-based workflow 
enactment promises to decrease the number of remote 
interactions and to distribute the workload over several 
shoulders we can additionally improve the overall 
performance of workflow execution with the help of data 
references [5]. Since scientific workflows must cope with 
large data sets we determined the process spaces as 
remaining bottleneck.  

There can be multiple process spaces serving activity 
clients. However, similarly to a central navigator a single 
process space executes templates in a sequence. While 
parallel execution of activities or workflows a process space 
concurrently receives multiple read and write requests. That 
means activity clients have to wait until a process space 
completed previous tasks, especially if multiple clients are 
served in parallel (what is typical in scientific workflows). 
Additionally, if the size of data sets increases noticeable, the 
data transfer increases as well and the process space-internal 

operations get slower. The latter is due to the expensive 
template matching mechanism on very large tokens. That 
means a process space can be overloaded quickly if it is 
used for the execution of scientific workflows. 

Therefore we propose the use of data references to avoid 
the transfer of large data sets to and from process spaces as 
well as eased internal operations. Figure 6 illustrates the 
approach. The transfer of a large or small data set is 
represented by a bold and fine arrow, respectively. 
Certainly, a data reference is represented by a fine arrow. In 
our example, the data that has to be visualized is 
successively processed by the services Filtering, Mapping 
and Rendering. The Filtering-service stores its result data in 
an available storage (3) that is extended by a Reference 
Resolution System (RRS) that is provided as WS. The RRS 
is responsible for the storage of data including the return of 
an appropriate reference, and the resolution of a reference 
including the return of the corresponding data. After the 
receipt of the data reference the Filtering-service sends the 
reference to the visualization process in response (4 and 5). 
The visualization process queries the process space for 
storing the reference as variable value and also passes a 
control token for the next activity (6). The Mapping-activity 
reads the control token as well as the data token with the 
data reference (7). It invokes the Mapping-service by 
passing the reference (8). Now the Mapping-service queries 
the RRS stated in the reference for the corresponding data 
and starts the processing (9 and 10). The result is passed to 
an RRS (can be the same one) which returns a new 
reference (11 and 12). The Mapping-service sends this 
result data reference to the activity in response (13). 
Afterwards the Rendering-activity and -service behave 
similarly. 

 

 
Figure 6: The use of data references in a workflow. When run 
on a process space-based enactment engine the large data sets 
are not stored into the process space. 

 
Since the data that has to be visualized is not relevant for 

the process logic it can remain in the storages of 
participating services. A service transfers a reference to the 
process instead of a large data set. Therefore, the process 
space does not need to handle huge amounts of data which 
improves the overall performance of workflow execution. 
According to this, the bold arrows in Figure 6 occur merely 
on the right side where services and their storage are 
illustrated whereas the fine arrows are by the majority on 
the left side where process and process space are located.  

In BPEL a data reference is introduced as a special 
variable. The referencing is done by a WS-Addressing 
Endpoint Reference [33] that includes uniform resource 
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identifiers for the eventual data location and the location of 
the appropriate RRS. There are different types of reference 
variables that additionally enable the use of context data in 
the process logic. A more detailed description of references 
in BPEL processes is given in [5]. 

6   DISCUSSION 

As outlined in the previous section the decentralized 
workflow execution promises to meet particular 
requirements that arise especially in the area of scientific 
simulations. However, to emphasize the capabilities of the 
considerations the central and decentralized WfMS 
solutions are compared with the help of the scenario as 
introduced in Section 4. Each of the approaches is also 
combined with the concept of data references to achieve 
further improvements of the overall performance. 
 

 
Figure 7: Legend for arrows and lines used in the following 
illustrations of the scenario. 

 
The comparison bases upon four major aspects: the 

number of remote interactions, the size of the payload of a 
message to transmit, the size of the workload to be 
processed by the engine, and the complexity of the 
deployment mechanism. Figure 7 shows the legend that is 
useful to understand the illustrations of the particular 
approaches. In short, local interactions are denoted by 
dashed lines, remote ones by solid lines. Passing small data 
is indicated by thin lines, huge data by thick lines. Note the 
weight of the different edges. It can be seen as the effort to 
pass control or data between two components. We decided 
to set the costs of remote interactions twice as much as local 
interactions, moving huge data sets (e.g. of several mega 
bytes) is chosen to be eight times as expensive as small 
ones. However, the respective relations are selected 
restrictive. In fact, they may diverge even more. The 
illustrations contain up to three machines. Machine 1 (the 
visualization server) and 2 (the Dune server) feature the 
capabilities described in Section 5.1. The actual process 
spaces are omitted for readability. Machine 3 is the server 
for a centralized workflow engine. The workflow logic is 
also explained in Section 5.1. 

6.1   Centralized Workflow Engine without Data References 
Figure 8 illustrates the traditional approach that runs a 
central workflow engine on a single participant (machine 3). 
Therefore, the activities in the simulation workflow are 
coordinated internally by the workflow engine and no 
interaction with other machines is necessary. The 

deployment mechanism in this setting is simple. On the 
other hand all interactions between WfMS and WSs are 
remote since the WSs are installed on machines 1 and 2. 
The data is handled by value. This results in frequently 
passing huge data sets remotely over the network. 
Furthermore, the navigator component of the engine acts as 
bottleneck. All instances of the workflow model are running 
on the same server (machine 3). Moreover, huge data items 
are processed by the engine (receiving and storing the data 
into corresponding databases of the WFMS) even if they are 
not needed for control flow evaluation.  
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Figure 8: Control and data flow for the scenario “ink 
concentration in water” when using a centralized workflow 
execution. 

 

 
Figure 9: Control and data flow for the scenario “ink 
concentration in water” when using a decentralized process 
space-based workflow execution. 

6.2   Process Space-based Workflow Engine without Data 
References 
In contrast to that, the process space-based approach (Figure 
9) makes use of a decentralized WfMS. The activity clients 
are distributed among machines 1 and 2, locally to the used 
WSs. In our scenario, the optimal segmentation results in 
only local interactions between WfMS and WSs, i.e. the 
services and the activity clients run on the same machine. 
That means although the data is moved by value, less data is 
conveyed over the network. The engine-internal workload is 
carried by the participating servers 1 and 2 instead of a 
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single machine. The major downside is the much more 
complex deployment mechanism (see Section 5.3). But 
indeed this complexity may have little or no impact on the 
runtime since it is a pre-runtime step for the most parts. 
Moreover, data and control flow tokens may need to be 
remotely shipped between activities. However, the applied 
segmentation strategy should aim to constrict these remote 
interactions (the example has only 3n remote interactions 
where n is the number of iterations in the loop). 

6.3   Centralized Workflow Engine and Data References 
Figure 10 presents the scenario when applying data 
references and a central WfMS (machine 3). The WSs and 
appropriate RRSs are distributed among machine 1 and 2. 
Obviously, using the data by reference relieves the 
workflow engine of processing huge data sets if they are 
unnecessary for control flow evaluation (as in our scenario). 
Instead it is up to the WSs themselves to provision and store 
the actual data items with the help of RRSs. This fact can 
decrease the number of remote transmission of huge data 
amounts over the network depending on the location of 
RRSs (there is only one remote data provisioning operation 
per loop iteration in the scenario). The drawbacks are the 
need for an RRS infrastructure and additional wrapper for 
WSs [5] as well as more messages that are exchanged with 
respect to the overall system. The number of remote 
interactions between WfMS and WSs is as before. 
Moreover, the workflow engine is still a bottleneck that 
processes all instances of all deployed workflow models. 

 

 
Figure 10: Control and data flow for the scenario “ink 
concentration in water” when using a centralized workflow 
execution and data references. 

6.4   Process Space-based Workflow Engine and Data 
References 
The approach of using both process space-based workflow 
enactment and data references is shown in Figure 11. This 
solution combines the benefits of both ideas. There are very 
few remote messages (5 per loop step), most of which 
transmit a small payload (only 1 message per loop with a 
huge payload). The process spaces are held free of large 
data tokens. The workload for workflow execution is shared 
among all participants. As mentioned earlier, the main 

drawbacks are the complex deployment mechanism, an 
additional RRS infrastructure, and an increased number of 
messages needed to resolve the data references. 
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Figure 11: Control and data flow for the scenario “ink 
concentration in water” when using the concept of data 
references and a process space-based workflow enactment. 

6.5   Comparison 
In order to compare all of the approaches presented above 
all weighted arrows (including the control flow) are counted 
and added up for all four approaches according to the 
scenario. The respective result is an indicator about how 
expensive the considered solution is (the higher the score, 
the more expensive the solution). We assume three 
iterations of the while loop to keep the numbers simple. 
Table 1 gives an overview of the results. Obviously, the 
traditional approach is the most expensive one for our 
scenario. This is due to the moving of large data over the 
network (28 times). That means this approach is especially 
useful if no huge data items are exchanged or if the 
workflow logic is confidential. The decentralized workflow 
enactment achieves better results. It is a relatively cheap 
solution because of its few remote messages (6 times 
control flow and 3 times huge data flow). But the process 
spaces might get into trouble when handling tokens with a 
size of several mega bytes or larger. This solution should be 
applied if there are many remote interactions between 

Weight

# Σ # Σ # Σ # Σ 
CF (local)  1 19 19 13 13 19 19 13 13

CF (remote)  2 6 12 6 12

DF (WF‐int., local, small)  1 13 13 10 10

DF (WF‐int., remote, small) 2 3 6

DF (WF‐int., local, huge)  8 13 104 10 80

DF (WF‐int., remote, huge) 16 3 48

DF (WF‐ext., local, small)  1 4 4 25 25 57 57

DF (WF‐ext., remote, small) 2 4 8 35 70 3 6

DF (WF‐ext., local, huge)  8 28 224 25 200 25 200

DF (WF‐ext., remote, huge) 16 28 448 3 48 3 48

Total points

CF = Control Flow, DF = Data Flow, PS = Process Space, Refs = Data References,

WF‐int. = Workflow internal, WF‐ext. = Workflow external

No Refs, 

No PS 

No Refs, 

with PS 

With Refs, 

no PS 

With Refs, 

with PS 

579 381 375 352

Table 1: Estimated effort/costs for the execution of the
scenario “ink concentration in water” according to the four
considered solutions. 
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WfMS and WSs, especially if many activities address the 
same server. The message payload should be relatively 
small. The data references approach in a centralized WfMS 
is slightly cheaper but needs a lot of remote messages (35 
with small payload and 3 with huge payload). This means 
that this setting can be applied if the number of remote 
messages is small but the message payload is huge. 
However, the cheapest solution results from the 
combination of data references with a process space-based 
WfMS. This is achieved by fewer remote interactions as 
opposed to the data references only setting. Again, 
increasing the penalty for remote messages will negatively 
affect the result compared to the process space-based 
approach without data references. The strongest argument 
for the last solution is that the process spaces are not 
cluttered up with huge amounts of data and data is not 
moved from the local data storages of services to the space-
based middleware used by the engine and vice versa. This 
cannot be reflected in the table since it only accounts for 
messages being sent. The approach is applicable in 
scenarios where many messages with large payload are 
remotely exchanged. 

The results of the comparison are based on our 
assumptions about the weights of each of the considered 
factors and may slightly change should the weight 
coefficients be modified. More precise results for this 
comparison can only be collected through performance 
measurements, which are planned activity in our future 
work. 

7   CONCLUSION AND FUTURE WORK 

In this paper we investigated the applicability of the process 
space-based workflow enactment for the scientific domain. 
There are particular factors that influence the performance 
of scientific IT applications, such as distributed resources 
with different capabilities, or huge data sets that are created 
and processed. We argue that the overall performance of an 
IT system in this context can be increased with the help of a 
decentralized workflow execution using process spaces. 
Moreover, we combine the approach with the concept of 
BPEL data references to prevent process spaces from 
becoming a bottleneck when handling large data tokens 
relevant for most scientific scenarios. A comparison 
between the centralized and process space-based workflow 
execution with and without data references based on a 
scenario illustrated the potential of the solution. In settings 
where many messages are exchanged remotely it decreases 
the network traffic dramatically. Especially the capabilities 
with respect to adaptability promise additional benefit for 
scientists. However, there are challenges that need further 
investigation and that drive our future work. For instance, 
the deployment and undeployment of activity clients and 
process spaces at runtime has to be improved to 
accommodate the dynamic characteristics of the scientific 
infrastructures. Additionally, we need sophisticated 
segmentation algorithms that meet the requirements of a 

scientific IT landscape. Finally, there is the challenge of 
developing provenance and recovery mechanisms in a 
workflow environment with no global state. There is still 
much work to be done in the area of modeling scientific 
workflows and the automated optimal segmentation of 
workflows across the infrastructure in a user-friendly 
manner. 
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