
An Execution Engine for Semantic Business
Processes

Tammo van Lessen1, Jörg Nitzsche1, Marin Dimitrov2, Mihail Konstantinov2,
Dimka Karastoyanova1, Luchesar Cekov2, Frank Leymann1

1 Institute of Architecture of Application Systems
University of Stuttgart

Universitätsstrasse 38, 70569 Stuttgart, Germany
{tammo.van.lessen, joerg.nitzsche, dimka.karastoyanova,

frank.leymann}@iaas.uni-stuttgart.de
2 Ontotext Lab. / Sirma Group

135 Tsarigradsko Shose Blvd., Office Express IT Center, Sofia 1784, Bulgaria
{firstname.lastname}@ontotext.com

Abstract In this paper we present the architecture and design of an
extended BPEL engine that implements the operational semantics of
BPEL4SWS. BPEL4SWS is an extension of the BPEL language with
support for Semantic Web Service concepts like mediation and semantic
descriptions of activity implementations. We describe the basic communi-
cation scenarios of processes with services and the interaction between
the engine components involved in the execution of BPEL4SWS processes.
The presented prototype is based on the open source BPEL engine Apache
ODE, features improved configurability and facilitates the definition of
additional BPEL extensions with minimal development effort.

1 Introduction

The Web Services Business Process Execution Language (BPEL) [1] is the de facto
standard for the orchestration of Web Services. However, two major shortcomings
of BPEL can be identified, namely (i) hard-coding of service interfaces, i.e. actual
activity implementation types [2], and (ii) lack of semantics of used data types.
Interfaces of partner services used within a BPEL process and the interface of
the process itself are hard-coded within the process logic via WSDL [3] interfaces.
Therefore, services providing equivalent functionality but through different WSDL
interfaces cannot be used. In BPEL messages are described in XML and have
no formal semantics. As a result, automated or semi-automated matching of
and translation (mediation) between different XML schemata used by different
business partners is not possible. Instead, handcrafted XPath expressions or other
transformation approaches (like XSLT) are used in order to provide message
manipulation on the syntactical level.

These shortcoming are eliminated by BPEL4SWS [4], which is an extension
of BPEL. It uses ontologies as a data model, supports descriptions of activity



implementations independent of WSDL interfaces using Semantic Web Services
and enables data manipulation, i.e. mediation, on an ontological level.

For conventional BPEL there is already a huge amount of tool support
available. This holds for both modelling tools and execution environments. Since
BPEL4SWS is an extension of BPEL, existing BPEL engines can be extended to
support and make use of the new features introduced by BPEL4SWS. In this
paper we show how the existing open source Apache ODE3 BPEL engine can be
extended in a non-intrusive manner to a BPEL4SWS compliant execution engine.
The extended engine implements the basic scenarios for communication between
processes and services as provided for by BPEL4SWS.

The paper is structured as follows. Section 2 gives a short introduction of
BPEL4SWS. The communication scenarios it supports are described in section 3.
The architecture and design of the extended ODE engine are presented in section
4 and the actual implementation is described in section 5. Section 6 concludes
the paper and gives directions for future work.

2 BPEL for Semantic Web Services

BPEL4SWS [4] attempts to overcome the aforementioned deficiencies of BPEL
by (i) allowing semantic descriptions of activity implementations (instead of
referring to syntactic WSDL interfaces), (ii) using ontologies as an underlying
data model and employing the concept of ontology mediation.

The attributes of BPEL interaction activities that refer to WSDL opera-
tions and to partner links, which are in turn dependent on WSDL interfaces,
are mandatory. Hence there is a need for a new interaction model that is in-
dependent of WSDL. This interaction model is provided by BPELlight [2]. It
introduces a new interaction activity type (interactionActivity) using the
BPEL extensionActivity mechanism. The interactionActivity is indepen-
dent of WSDL and can be configured to behave like the different basic interaction
activities in BPEL. Additionally, a conversation element is introduced which
allows grouping together a set of activities that in combination are able to
achieve a functional goal on behalf of the process or enable the process to provide
functionality to other partners.

BPEL4SWS builds on top of the interaction model provided by BPELlight

and can utilize SWS frameworks like OWL” S [5] and WSMO [6] to semantically
describe what a conversation is meant to achieve. Due to its advantages over OWL-
S (see [7]) the implementation we present in this paper focuses on supporting
WSMO.

WSMO distinguishes between Goals and Web Services. A WSMO Web Service
describes the functional and non-functional properties of a Web service in a
machine-processible manner (i.e. using ontologies and abstract state machines).
A WSMO Goal describes in a similar way the requirements a client has on a
particular Web Service. Having this distinction allows to use Goals as query

3 http://ode.apache.org/

http://ode.apache.org/


to discover matching Web services. Applied to BPEL4SWS this means that
depending on whether the process requires or provides functionality, either
a WSMO Goal or a WSMO Web Service must be assigned to the affected
conversation.

While lacking flexibility on an abstract level, WSDL provides excellent low
level support. All kinds of protocols and all kinds of encodings can be defined
and used for the purpose of communication. For that reason, Semantic Web
Service frameworks (including WSMO) mainly use WSDL groundings for en-
abling communication and benefit from its flexibility and existing infrastructure.
BPEL4SWS also defines a WSDL grounding. There are two different kinds of
grounding according to the different use cases: (i) partial grounding of the interac-
tion model when using and exposing Semantic Web Services, i.e. grounding of the
receiving activities only and (ii) full grounding when exposing the functionality
of a process as conventional Web Services for backward compatibility.

XML data is communicated “over the wire” when BPEL4SWS processes
are invoked. Semantic Annotations for WSDL and XML Schema (SAWSDL) [8]
is an approach that enables lifting XML data to an ontological representation
and vice versa, i.e. it facilitates making data accessible to ontological reasoning.
Thus, conditions in the process that contain ontologically described data can
be evaluated using reasoning and semantic mediation can be applied (via an
<extensionAssignOperation> called <mediate> ). The semantic representation
of data is also required to enable semantic discovery and invocation of Semantic
Web Services using an SWS middleware (e.g. WSMX [9]).

3 Service Interaction Scenarios

In this section we present several execution scenarios of BPEL4SWS processes with
partner services that have to be supported by an execution engine implementation.
The execution scenarios include conventional invocation and invocation using a
semantic middleware considering both asynchronous and synchronous invocation.

To support the goal based communication features BPEL4SWS provides,
a semantic aware middleware like WSMX has to provide several operations
[7]. To establish a conversation with a partner service that is able to fulfil a
WSMO Goal, the registerCommunication(goal):context operation can be
used. The returned context identifies the created conversation in the middle-
ware. Sending messages via an already established conversation to a partner
service hosted by the semantic middleware is enabled by two different operations:
invokeWebService(context, data):data for synchronous communication and
invokeWebService(context, data) for asynchronous communication. These
operations are used by the BPEL engine presented in this paper to communicate
with a WSMO-enabled middleware.

3.1 Synchronous Invocation of a BPEL4SWS Process

In case a process is exposed via a request-response WSDL operation it can be
invoked synchronously, i.e. a client that invokes the process blocks and waits until



the return result is sent back. Therefore a receiving activity and a subsequent
sending activity of the BPELlight process logic are grounded to this particular
WSDL operation. This happens in a grounding file, which contains deployment
specific information.

When a client invokes the WSDL operation, the call is resolved to a receiving
activity in the process model by the process engine using the information given
in the grounding file. Later, when the corresponding sending activity is executed,
the return value is assigned to the WSDL operation using the grounding file and
the WSDL call is completed.

Additionally, the process can be made available as a Semantic Web Service at
a semantic middleware (see Figure 1). Therefore a WSMO WS has to be modelled
that describes the process’ interface and capability semantically and grounds to
the WSDL operation the process exposes. In addition, semantic annotations and
lifting & lowering rules can be defined using the SAWSDL.

After the process has been discovered, the ontological instance data has to be
lowered to its XML Schema representation. This is done by the middleware via
the loweringSchemaMapping defined using SAWSDL. In the next step, the service
binding and location given in the WSMO WS grounding is used together with
the XML data to invoke the BPEL4SWS process. The process engine processes
the request like described above. After the WSDL call is completed, the semantic
middleware lifts the returned XML data to an ontological level, i.e. creates
ontological instances using the liftingSchemaMapping defined in the SA-WSDL
of the process.

…

BPEL4SWS process Semantic Service Bus

act=op

act=op

semantic synchronous invocation of a process

Capabilities
Choreography

grounding

SWS
Repository

WSMO Web Service

grounding file

Figure 1. Semantic Synchronous Invocation of a BPEL4SWS process.

3.2 Asynchronous Invocation of a BPEL4SWS Process

In case of asynchronous invocation a client that invokes the process via a one-way
WSDL operation is not blocked until the return result is sent back. Instead
it provides an endpoint where the process can call back via a WSDL one-way



operation. The grounding file of the process defines that a receiving activity is
grounded to the one-way operation the process provides and a subsequent sending
activity is grounded to the one-way operation the client is supposed to provide.

When a client invokes the WSDL operation of the process it also submits
information about the concrete endpoint and binding for the call-back. Like in
the previous scenarios, the grounding file is used to dispatch the invocation to a
certain activity in the process model. When processing the sending activity the
process engine evaluates again the grounding file and uses the appropriate WSDL
operation in conjunction with the endpoint information to call the client back.

Again, the process can also be made available at a semantic middleware as
a Semantic Web Service by specifying a WSMO WS that describes the process
interface and capability semantically and grounds the incoming message to the
WSDL operation the process provides. The outgoing message however is not
grounded to a specific operation because the WSDL operation of the partner
service is considered unknown prior to execution; the call-back endpoint is
provided by the semantic middleware.

In case of semantic asynchronous invocation of the process as shown in
Figure 2, the semantic middleware invokes the process using the grounding
information given in the WSMO Web Service description of the process and
the lowered instance data. Additionally, it submits context information in the
message header that identifies the communication between the middleware and
this particular process instance. Via this header information, the process engine
detects that it has been invoked semantically. When the process navigator reaches
the corresponding sending activity it does not use the WSDL operation specified
in the grounding file (the light gray parts of Figure 2) but rather sends the message
to the semantic middleware using the entry point invokeWebService(Context,
Data).

…

BPEL4SWS process Semantic Service Bus

act=op

act=op

semantic asynchronous invocation of a process

Capabilities
Choreography

grounding

WSMO Web Service

SWS
Repository1

2

Figure 2. Semantic Asynchronous Invocation of a BPEL4SWS process.



3.3 Synchronous Invocation of Services

When a service is to be invoked, the conversation and the invoking activity
are either grounded to the WSDL interface the service provides or they are
semantically described using a WSMO Goal.

When the process engine executes an activity that first sends and then
receives a message and there is no semantic attachment at the conversation, the
grounding file is used to figure out which operation should be invoked. In case
there is a semantic attachment at the conversation (linked with a synchronous
invocation activity), there is no grounding defined (see Figure 3). Instead, at the
beginning of the conversation, a goal is submitted to the semantic middleware.
The middleware performs semantic discovery and initializes the communication
between the discovered service and the process by creating context information
and sending it back to the process engine.

BPEL4SWS process Semantic Service Bus

semantic synchronous invocation of a service
WSMO Goal

…

…

Capabilities
Choreography

context

1

2

3

Figure 3. Synchronous Invocation of a WSMO Web Service.

3.4 Asynchronous Invocation of Services

The asynchronous invocation of a conventional service is similar to the conven-
tional asynchronous invocation of a process. When the process engine executes
the sending activity the WSDL operation that is to be invoked is resolved using
the grounding file. Later, when the invoked service calls back, the receiving
activity (associated with the call back operation) is also discovered using the
grounding file.

Similarly to the synchronous communication mode asynchronous semantic in-
vocation starts with submitting a goal associated with a conversation to the seman-
tic middleware. However, in contrast to the synchronous invocation, the incoming
message is grounded to a WSDL operation the process provides as call-back (see
Figure 4). The sending activity is executed by sending ontological lifted data
to the semantic middleware using the entry point invokeWebService(context,
data). In a later step, the semantic middleware uses the grounding information



…

BPEL4SWS process Semantic Service Bus

act=op

semantic asynchronous invocation of a service

grounding

WSMO Goal

Capabilities
Choreography

1

2

3

4

context

Figure 4. Asynchronous Invocation of a WSMO Web Service.

in the goal to call the process back via the provided WSDL one-way operation.
This call back is done using XML data generated by the middleware by lowering
the ontological data according to the lowering rules described using SAWSDL. It
is dispatched to the corresponding activity using the grounding file of the process.

3.5 Partner-based Semantic Web Service Discovery

The partner element in BPEL4SWS can be used to constrain that a partner
has to satisfy multiple goals. This partner can either be an abstract partner
that is discovered during runtime or a concrete partner. The concrete partner
can be configured during design time or can be assigned to the partner element
during runtime. Whenever a partner has to be discovered, a list of goals is
sent to the semantic middleware using the entry point findPartner(list of
goals):partner [7]. And whenever a conversation starts that belongs to a specific
partner, the entry point registerCommunication(partner, goal):context is
invoked. The communication between the process and the service(s) is then
conducted as presented in the previous sections.

4 Architecture of a BPEL4SWS Engine

The architecture of the BPEL4SWS engine is similar to well-known workflow
engines – the main components are described in the following (see Figure 5).

4.1 Components of the Architecture

To manage and configure the engine one uses the administration module. The same
component exposes operations for deployment and undeployment of processes.

The deployment component is responsible for deploying the artefacts needed to
execute a BPEL4SWS process. These are a BPEL4SWS description, correspond-
ing WSDL files and a deployment descriptor. The process model is validated,
compiled and stored in the buildtime database of the engine.



Build Time
Data

Runtime
Data

Deployment
Component

Integration Layer

Reasoner

Administration Module

Navigator

Lifting & 
Lowering

Mediator

Figure 5. Architecture of a BPEL4SWS Engine.

Process models and process instance data are stored in two logically separate
repositories - the buildtime database and the runtime database. The Buildtime
database stores the compiled process model representation while the Runtime
database handles runtime data of all process instances being executed. Each
process instance contains a reference to its corresponding process model in the
Buildtime database.

The communication between the engine and external services and clients is
handled by the integration layer. In particular, it is responsible for receiving
external messages, dispatching them to the execution components and sending
results back to the clients or partner services.

The process navigator uses the process models stored in the Buildtime database
to execute their instances. It navigates over the process model for each of its
instances. The navigator stores the state of each process instance in the Runtime
database. Whenever a service interaction must be performed, this component
delegates the interaction and the actual message exchange to the integration
layer.

Transition conditions on control connectors and join conditions that are
defined by logical expressions are evaluated by the reasoner. XPath expressions
are directly processed by the process navigator.

The mediation component is responsible for handling the data mismatches
when the process model makes use of different ontologies.

For transforming XML data into ontology instances and vice versa the engine
employs the lifting & lowering component. Semantically annotated XML variables
can thus always be made available in terms of their ontological representation,
whenever needed.

4.2 Component Interaction Scenarios

The interplay among the components of the architecture can be demonstrated in
terms of the following scenarios: (i) process deployment and (ii) process execution.



During process deployment the process model is parsed, validated and trans-
formed into an engine-internal representation. This representation is then stored
into the Buildtime database. The WSDL interfaces of the process are used to
expose it as a service, which is done by exposing a new endpoint at the integra-
tion layer. During process execution four basic scenarios are of interest: receiving
messages and sending messages on behalf of a process, evaluating semantically
defined conditions and mediation.

Whenever the engine receives a message it either dispatches it to an existing
process instance, or creates a new one. In both cases the messages arrive at the
process endpoint at the integration layer. The correlation of a message to an
existing or a new process instance is done by the integration layer. Once the
message is consumed by the navigator, the corresponding interaction activity is
executed.

Interaction activities can also send messages. Therefore during the execution
of such an activity the integration layer receives a command for sending a message
by the navigator. If the target is a WSDL Web Service, the message is serialized
in XML. In case an SWS is invoked (via a semantic middleware infrastructure
like WSMX), the data representation is an instance of an ontological concept,
generated by the Lifting & Lowering component. If the interaction is synchronous,
the navigator suspends the process instance at the activity and resumes it once
it receives data – either XML from a WSDL Web Service or an instance of
an ontological concept from an SWS. In contrast to this communication mode,
whenever asynchronous communication is required the process instance is not
blocked until the response is received.

Whenever the navigator needs to evaluate conditions that are expressed in
terms of logical expressions, all data visible in the current scope is ontological
lifted using the Lifting & Lowering component. Thereafter the ontological data
is provided to the reasoner which evaluates the logical expression and returns
the result to the navigator.

During the execution of the mediate activity the navigator delegates the
mediation to the mediation component that first uses the Lifting & Lowering
component in case the data is not available in a semantic form and then discovers
and executes an appropriate mediator. After the mediation the result is returned
to the navigator.

5 Implementation

In order to choose a BPEL execution engine that we can base our work on,
we have evaluated several open source options, including Apache ODE, JBoss
BPEL4 and ActiveBPEL5, according to various functional and non-functional
criteria such as licensing, support for WS-BPEL 2.0, extensibility & integration
options, community and industry adoption. Apache ODE has been selected as
the option satisfying our requirements to the highest extent.
4 http://www.jboss.org
5 http://www.activebpel.org

http://www.jboss.org
http://www.activebpel.org


A number of extensions and modifications to Apache ODE were required to
realise the architecture described in the section above and thus provide support
for BPEL4SWS.

5.1 Apache ODE Extensibility

Apache ODE follows a lightweight and modular architecture but lacks support for
extensibility so far, in particular for the elements extensionActivity and the
extensionAssignOperation. For that reason, we introduced a plug-in concept
to the engine that allows plugging in so called ExtensionBundles. Such a bundle
is linked to a particular extension namespace and consists of several operations
that are referenced by extensionActivity and extensionAssignOperation
elements in the BPEL process model and implement the concrete extension
functionality. The bundles can be registered in the engine via a configuration
properties file; its namespace must be made known to the process by declaring it
in an <extension> element.

5.2 Parser, Compiler, and Object Model

Deployment in Apache ODE happens in two steps. First, the BPEL file is parsed
into an in-memory representation. Next, the compiler transforms the parsed
process model into an optimized object model. The compiler executes several
optimisations that simplify the implementation of the navigation component.
Additionally the process model is checked against a set of static analysis rules. To
implement BPEL4SWS, ODE needs to be able to parse and compile WS-BPEL
2.0 extensions. Therefore, we changed both its Parser and Compiler to support
the elements <extensions>, <extension>, <extensionAssignOperation> and
<extensionActivity>.

The elements needed to model a BPEL4SWS <conversation> do not require
a special handling by the parser as all unknown elements are preserved in the
object model and can be accessed from the extension implementations at any
time.

5.3 Interaction Activities

In the first development integration, we extended the BPEL engine with a
semantic counterpart of the invoke activity, i.e. an interactionActivity that
first sends and subsequently receives a message. This activity implementation
performs a look up of the referenced <conversation> element, which in turn
keeps a reference to a WSMO Goal. This goal is passed to the Semantic Web
Services execution environment (WSMX) which then discovers, selects and invokes
a best-matching Semantic Web Service.

The next step will be the full implementation of the interactionActivity
that enables a conversational (i.e. asynchronous) communication between the
process and the provider of a WSMO Web Service once the asynchronous com-
munication mode is supported by the WSMX infrastructure.



5.4 Semantic Assign – Data Mediation

In order to enable the engine to perform data mediation, i.e. transformation
between instances of different ontological concepts, the engine relies on WSMX
and its mediation component. Data mediation is defined by a <mediate> element
– a custom assign operation. It takes two parameters, the source and the target
variable. The engine analyses their SAWSDL annotations to find out which
ontological concepts are representing the variables’ type. Then the engine delegates
the mediation to WSMX which discovers an appropriate data mediator that is
capable to transform from the source to the target ontology and invokes the
actual transformation.

5.5 Monitoring and Event Logging

Business Process Monitoring [10] and in particular Business Activity Monitoring
(BAM) [11] can strongly benefit from semantic annotated data. By means of
appropriate ontologies, monitoring dashboards can group and visualize audit
events, which semantically belong together.

In order to enable semantic process monitoring, the Apache ODE logging event
infrastructure has been extended to publish process events in a WS-Notification
[12] compliant manner. The events are serialised instances of the event ontology
(EVO) [13] that is capable of capturing the information needed for semantic
monitoring and mining.

6 Conclusion and Future Work

BPEL4SWS extends BPEL 2.0 with the ability to use semantic information
for describing activity implementations using semantics and thus independent
of their interface descriptions. In addition, data models used in processes are
represented semantically using ontologies, which enable the use of process relevant
data for reasoning. Mismatches on the data and process level can also be resolved
using mediation on the ontological level. Unlike other existing approaches, e.g.
METEOR-S [14], the BPEL4SWS processes contain no reference to any imple-
mentation infrastructure, but rather only use semantic descriptions to define
requirements toward service functionality or capabilities of the process being a
service.

In this paper an extended engine implementing BPEL4SWS has been pre-
sented. The architecture of the enhanced engine enables support for execution
and monitoring. It features improved configurability, and it makes it easier to
provide support for other language extensions using the extension bundles concept
without major implementation effort.

As part of our future work we intend to enhance and improve the implementa-
tion of the interactionActivity in BPEL4SWS to support also asynchronous
communication modes. This task depends on the ability of the WSMX infras-
tructure to support asynchronous communication with Semantic Web Services;



such a feature is not yet available. A monitoring tool that supports monitoring
is currently being developed. It is not only based on conventional data logs but
also on semantic information and the ability to reason over it; BAM-like features
will be in the focus of our future work with emphasis on the use of semantics for
this purpose.

Acknowledgements

The work published in this article was partially funded by the SUPER project6

under the EU 6th Framework Programme Information Society Technologies
Objective (contract no. FP6-026850).

References

1. A. Alves et al.: Web Services Business Process Execution Language version 2.0.
Committee specification, OASIS (2007)

2. Nitzsche, J., van Lessen, T., Karastoyanova, D., Leymann, F.: BPELlight. In: 5th
International Conference on Business Process Management (BPM). (2007) Brisbane,
Australia.

3. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services De-
scription Language (WSDL) 1.1 (2001)

4. Nitzsche, J., van Lessen, T., Karastoyanova, D., Leymann, F.: BPEL for Semantic
Web Services. In: Proceedings of the 3rd International Workshop on Agents and
Web Services in Distributed Environments (AWeSome’07). (2007)

5. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S.,
Narayanan, S., Paolucci, M., Parsia, B., Payne, T., et al.: OWL-S: Semantic markup
for web services. W3C Member Submission. World Wide Web Consortium (2004)

6. Roman, D., Lausen, H., Keller, U., de Bruijn, J., Bussler, C., Domingue, J., Fensel,
D., Hepp, M., Kifer, M., König-Ries, B., Kopecky, J., Lara, R., Oren, E., Polleres,
A., Scicluna, J., Stollberg, M.: Web Service Modeling Ontology, v1.4. WSMO
working draft, DERI (2007) Available at http://www.wsmo.org/TR/d2/v1.4/.

7. Nitzsche, J., van Lessen, T., Karastoyanova, D., Leymann, F.: WSMO/X in the
Context of Business Processes: Improvement Recommendations. International
Journal of Web Information Systems, ISSN: 1744-0084 (2007)

8. Farrell, J., Lausen, H.: Semantic annotations for WSDL and XML Schema. W3C
working draft, W3C (2006) Available online at http://www.w3.org/TR/sawsdl/.

9. Haller, A., Cimpian, E., Mocan, A., Oren, E., Bussler, C.: WSMX – a semantic
service-oriented architecture. In: Proceedings of the International Conference on
Web Services (ICWS 2005), Orlando, USA (2005)

10. zur Muehlen, M., Rosemann, M.: Workflow-based process monitoring and
controlling-technical and organizational issues. In: Proceedings of the 33rd Annual
Hawaii International Conference on System Science (HICSS-33), Los Alamitos,
California (2000)

11. Hellinger, M., Fingerhut, S.: Business Activity Monitoring: EAI meets Data
Warehousing. EAI Journal, July (2002) 18–21

12. Graham, S., Hull, D., Murray, B.: WS-BaseNotification. OASIS standard (2006)

6 http://www.ip-super.org/

http://www.ip-super.org/


13. Pedrinaci, C., Domingue, J.: Towards an ontology for process monitoring and
mining. In: Proceedings of the Workshop on Semantic Business Process and
Product Lifecycle Management (SBPM 2007), Innsbruck, Austria (2007)

14. Verma, K., Gomadam, K., Sheth, A.P., Miller, J.A., Wu, Z.: The METEOR-S
Approach for Configuring and Executing Dynamic Web Processes. Technical report,
University of Georgia, Athens (2005)


	An Execution Engine for Semantic Business Processes
	Tammo van Lessen, Jörg Nitzsche, Marin Dimitrov, Mihail Konstantinov, Dimka Karastoyanova, Luchesar Cekov, Frank Leymann

