
Institute of Architecture of Application Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Diploma Thesis Nr. 3546

Approach and Realization of a
Multi-tenant Service Composition

Engine

Michael Hahn

Course of Study: Software Engineering

Examiner: Jun.-Prof. Dr.-Ing.

Dimka Karastoyanova

Supervisor: Dipl.-Inf., Dipl.-Wirt. Ing.(FH)

Karolina Vukojevic-Haupt

Commenced: June 17, 2013

Completed: November 11, 2013

CR-Classification: C.2.4, D.2.11, H.4.1, H.3.4

Abstract

The support of multi-tenancy is an essential requirement to leverage the full extent of Cloud
computing. Multi-tenancy enables service providers to maximize the utilization of their
infrastructure and to reduce the servicing costs per customer. With regard to the fact that
nowadays new applications or services are often composed out of multiple existing services or
applications, a middleware is required which enables these compositions. A Service Composition
Engine (SCE) provides the required functionality to enable the definition and execution of
service compositions.

In this diploma thesis we investigate the requirements and define an abstract architecture
for the realization of a multi-tenant SCE. This architecture is prototypically realized with
an open-source SCE and integrated into an existing multi-tenant aware ESB. The resulting
middleware provides configurability for service compositions, tenant-aware messaging and
tenant-based administration and management of the SCE and the ESB.

3

Contents

1 Introduction 9
1.1 Background . 9

1.1.1 SimTech . 9
1.1.2 4CaaSt . 11

1.2 Motivation . 13
1.3 Outline . 13

2 Fundamentals 15
2.1 Service-Oriented Architecture . 15
2.2 Enterprise Service Bus . 15
2.3 Cloud Computing . 16
2.4 Workflow Technology . 17
2.5 Extentend Apache ODE . 19
2.6 Java Business Integration . 22
2.7 OSGi Framework . 24
2.8 Multi-tenant aware Apache ServiceMix . 24

2.8.1 Multi-tenant HTTP Binding Component 25
2.8.2 Apache Camel . 26

2.9 JBIMulti2 . 26

3 Related Works 29
3.1 Configurability . 31
3.2 Scalability . 32
3.3 Isolation of Tenants . 32

3.3.1 Data Isolation . 32
3.3.2 Communication Isolation . 33
3.3.3 Administration Isolation . 34
3.3.4 Performance Isolation . 34

3.4 Existing Multi-tenant SCE Approach . 34

4 Requirements and Concepts 37
4.1 General SCE Architecture . 37
4.2 Multi-tenancy aspects of a Service Composition Engine 38

4.2.1 Configurability . 39
4.2.2 Isolation . 41
4.2.3 Scalability . 42

5

4.3 Multi-tenancy aspects of a Process Model . 42
4.3.1 Configurability . 42
4.3.2 Isolation . 44
4.3.3 Scalability . 44

4.4 Behavior of a Multi-tenant aware SCE and Process Models 44
4.4.1 Process Deployment . 44
4.4.2 Process Instantiation . 46
4.4.3 Service Invocation . 46
4.4.4 Correlation of Process Instances . 46

4.5 Collaboration Aspects of a Multi-tenant SCE 48
4.6 Multi-tenancy Requirements . 53

4.6.1 Functional Requirements . 54
4.6.2 Non-functional Requirements . 54

4.7 Multi-tenant SCE Architectures . 55
4.8 Integration of SCEMT into an ESB . 60

4.8.1 Integration of SCEMT over Binding Components 60
4.8.2 Integration of SCEMT as Service Engine 63

5 Implementation 67
5.1 Overall Architecture of the Realization Approach 67
5.2 Database Schemas . 69
5.3 Interaction of JBIMulti2, ESBMT, SCE-MT Manager and SWfMSMT 73

5.3.1 Overall Messaging Infrastructure . 73
5.3.2 Registration of SWfMSMT instances at SCE-MT Manager 75
5.3.3 Tenant-aware Administration over JBIMulti2 and Status Forwarding . . 77
5.3.4 Tenant-based Configuration of SCE Instances and Process Models over

JBIMulti2 . 78
5.3.5 Tenant-based Deployment of Process Models over JBIMulti2 79
5.3.6 Tenant-aware Process Instantiation with ESBMT 84
5.3.7 Tenant-aware Event Messaging and Event Message Routing 85
5.3.8 Routing of SWfMSMT Management Messages 87

5.4 Multi-tenant SWfMS Architecture . 90
5.5 Configurability of SWfMSMT . 93
5.6 Architecture of SCE-MT Manager . 96
5.7 Extensions of the JBIMulti2 application . 98

6 Conclusion and Future Work 99

Bibliography 103

6

List of Abbreviations

API Application Programming Interface
Axis2 Apache eXtensible Interaction System v. 2
BC Binding Component
BLOB Binary Large Object
BPEL Business Process Execution Language
BPM Business Process Management
DAO Data Access Objects
DRL Dynamic Recipient List
DSL Domain Specific Language
EAI Enterprise Application Integration
EIP Enterprise Integration Pattern
ESB Enterprise Service Bus
IaaS Infrastructure as a Service
JaCOb Java Concurrent Objects Framework
JAR Java Archive
JBI Java Business Integration
JMX Java Management eXtension
JVM Java Virtual Machine
MOM Message Oriented Middleware
NIST National Institute of Standards and Technology
NM Normalized Message
NMF Normalized Message Format
NMR Normalized Message Router
ODE Orchestration Director Engine
PaaS Platform as a Service
PGF Pluggable Framework
POJO Plain Old Java Object
POM Project Object Model
PSA Process Service Assembly
SA Service Assembly
SaaS Software as a Service

7

Contents

SCE Service Composition Engine
SCE-MT Manager Service Composition Engine Multi-tenancy Manager
SE Service Engine
SLA Service Level Agreement
SOA Service Oriented Architecture
SU Service Unit
SWfMS Simulation Workflow Management System
UI User Interface
UML Unified Modeling Language
UUID Universally Unique Identifier
WE Workflow Engine
WfMC Workflow Management Coalition
WfMS Workflow Management System
WfRM Workflow Reference Model
WS Web Service
WSDL Web Service Description Language
XML eXtensible Markup Language

8

1 Introduction

Nowadays Cloud computing is one of the most important technologies in the IT landscape.
It provides IT resources in an agile way over the Internet in a pay-per use model. The
outsourcing of applications and services into the Cloud can provide many advantages like
reduced operational costs and rapid elasticity for enterprises. To leverage the full extent
Cloud computing provides, the outsourced applications and services have to be adapted to be
multi-tenant aware. This means applications and services should be designed to maximize the
resource sharing between multiple customers. Thus service providers are able to maximize
the resource utilization and as a result reducing their servicing costs per customer [SALM12].
The main requirements to fulfill are isolation, configurability and scalability. Isolation between
tenants is one of the most important requirements for outsourcing to the Cloud. All resources
(e.g. data) which belong to a specific tenant should not be accessible by any other entity (e.g.
tenant, service provider). If the same application or service is used to serve multiple tenants,
it must be customizable in some degree to comply with the different requirements of its users.
Configurability is the key concept to provide predefined configuration possibilities which allow
the tenants to customize some parts of an application to their needs. Scalability is important
to serve any number of tenants with a single instance of an application. In the scope of this
diploma thesis a multi-tenant aware Service Composition Engine (SCE) is conceptualized
and prototypically implemented. Furthermore the realized multi-tenant SCE prototype is
integrated into the multi-tenant aware Enterprise Service Bus (ESB) realized by [Muh12],
[Ess11] and [Sáe13]. The following sections provide the background of this thesis and a short
motivation why a multi-tenant SCE integrated with a multi-tenant ESB should be realized.

1.1 Background

This diploma thesis is based on two different research projects: SimTech and 4CaaSt. The
result of this thesis will be used in both projects to solve different requirements. For a better
understanding, these two projects are described in the following.

1.1.1 SimTech

The Simulation Technology (SimTech)1 excellence cluster is a research cluster of the German
Research Foundation (DFG) and is embedded in the Stuttgart Research Center for Simulation

1SimTech - Cluster of Excellence: http://www.simtech.uni-stuttgart.de/index.en.html

9

http://www.simtech.uni-stuttgart.de/index.en.html

1 Introduction

Technology. It represents a massive platform for developing scientific methods for modeling
and simulation techniques. The Institute of Architecture of Application Systems (IAAS)2 of
the University of Stuttgart contributes four projects to the SimTech cluster which work on the
provisioning of a Workflow Management System (WfMS) for simulation workflows, referred
to as Scientific Workflow Management System (SWfMS). The SWfMS and a modeling tool
(Eclipse BPEL Designer3) are especially adapted to conform to the scientists way of working
(trial and error) and to hide the technical complexity of the underlying technology. Each
of the four projects: Modeling, Runtime, Flexibility and Humans in Simulation Workflows
therefore concentrates on the improvement of the SWfMS and the definition of new concepts
and techniques to model and execute simulation workflows in a flexible manner. The realized
SWfMS is based on the open source workflow engine Apache ODE4 and is described in detail
in Chapter 2.5. The goal of the project is to provide scientists an easy to use environment
which enables them to dynamically model, execute and monitor their simulations based on
workflow technology. The use of workflow technology provides therefore some advantages,
like

• a new abstract layer to combine the isolated simulations of different scientists to much
more powerful multi-domain, multi-physics or multi-scale simulations [SCLGK10] (Mod-
eling),

• the possibility to dynamically influence the execution of simulations during their runtime
[Nin11, Sch11, Tol11] (Flexibility, Humans in Simulation Workflows),

• the possibility to directly interact with a running simulation, e.g. to enable a scientist to
specify how a simulation workflow should proceed in an exceptional situation [KDS+12]
(Humans in Simulation Workflows),

• and the possibility to integrate existing simulation applications over Web Service Inter-
faces [Rut09, Hot10] or for example define quality of data (e.g. accuracy) which steers
the execution of a simulation workflow [RBKK12] (Runtime).

The SWfMS and the modeling tool together with some additional components form the SimTech
prototype which is shown in Figure 1.1. The SWfMS runs in a Java Servlet Container (Apache
Tomcat5). Furthermore this container hosts the SimTech Auditing Service. The SimTech
Modeling and Monitoring tool is based on Eclipse and therefore consists of a set of Eclipse
Plugins. For example, the extended SimTech BPEL Designer is one of those plugins which
enable the modeling and monitoring of simulation workflows. The communication between the
SimTech Modeling and Monitoring Tool and the services hosted in the Servlet Container is
enabled by a Messaging System and the Web Service APIs of the services. For example, the
event data which is propagated by SWfMS is published to multiple consumers by the Messaging
System. The SimTech Modeling and Monitoring Tool consumes those event messages to realize

2Institute of Architecture of Application Systems (IAAS), University of Stuttgart. SimTech Project Contribu-
tion: http://www.iaas.uni-stuttgart.de/forschung/projects/simtech/

3The Eclipse Foundation, BPEL Designer Project: http://www.eclipse.org/bpel/
4The Apache Software Foundation, Apache ODE (Orchestration Director Engine): http://ode.apache.org
5The Apache Software Foundation, Apache Tomcat: http://tomcat.apache.org/

10

http://www.iaas.uni-stuttgart.de/forschung/projects/simtech/
http://www.eclipse.org/bpel/
http://ode.apache.org
http://tomcat.apache.org/

1.1 Background

Messaging System
(Apache ActiveMQ)

Servlet Container (Apache Tomcat)

SimTech Modeling and Monitoring Tool
(Eclipse JEE)

SimTech Auditing Service MySQL

Message transfer

SWfMS

Data transfer

Web Service call

Figure 1.1: Architecture of the SimTech prototype

the monitoring of process executions and the SimTech Auditing Service persists the event
messages in a database. Furthermore, the messaging system is used by the SimTech BPEL
Designer to influence the execution of a process instance by sending corresponding command
messages to SWfMS. For example, the registration of activity breakpoints or changing variable
values are possible ways to influence a process instance during runtime. Chapter 2.5 provides
some detailed descriptions of the SWfMS functionality.

1.1.2 4CaaSt

4CaaSt6 is a research project funded by the European Union and aims to create a Cloud platform
which “supports the optimized and elastic hosting of Internet-scale multi-tier applications”.
The main goal is to offer an advanced environment which provides all necessary features to
design services and compositions based on Cloud-aware building blocks of different vendors
[SALM12]. This will lower the entry barrier for small and medium enterprises to “create
innovative applications leveraging the benefits of Cloud computing” [SALM12]. Figure 1.2
shows the architecture of the Taxi Scenario use case which is defined in the scope of 4CaaSt.
In this scenario a service provider offers a taxi management application as a service to different
taxi companies (tenants) [SALM12]. This management software can be used by the taxi
companies to enable the communication between their customers (users of a tenant) and
drivers. If a customer submits a transportation request over the Customer GUI to a taxi
company, the management software contacts nearby taxi drivers. As soon as one of the
contacted drivers confirms the request over the Taxi Drivers’ GUI, the management software
sends a transport notification containing the estimated arrival time to the customer [SALM12].
The taxi management software is realized as a BPEL process (Taxi Service Provider Process).

6The 4CaaSt project: http://www.4caast.eu/

11

http://www.4caast.eu/

1 Introduction

Taxi Company Taxi Service Provider

Servlet Container

Servlet Container Taxi Service
Provider Process

Google Maps Web
Service Adapter

C-CAST CMF
Adapter

CCCastCast

Customer GUI

TAXI

TAXI

Taxi Drivers‘ GUI

TAXI

TAXI
TAXI

TAXI

Multi-tenant Enterprise Service BusMulti-tenant Enterprise Service Bus

Figure 1.2: Architecture of the 4CaaSt Taxi Scenario [SALM12]

This process uses the Context Casting Context-Management Framework (C-CAST CMF)7 and
the Google Maps Web Services8. The C-CAST CMF provides information about the locations
of the taxi cabs and how to contact the taxi drivers. The Google Maps Web Services are used
by the process for distance calculations between the current location of a taxi cab and the
pick up location of a customer. In case of incompatibilities between the service endpoints of
the C-CAST CMF, Google Maps Web Services and the BPEL process, two adapters mediate
between the process and these external services [SALM12]. The taxi service provider process
is executed by the non multi-tenant aware BPEL engine Orchestra9. The communication
between all components is realized over messaging.

The Institute of Architecture of Application Systems (IAAS) of the University of Stuttgart
introduced a multi-tenant ESB (ESBMT) as the messaging middleware to enable loose cou-
pling and a flexible integration solution which avoids the use of hard-coded point-to-point
connections [SALM12]. Furthermore, the multi-tenant ESB makes it possible that the same
taxi management application can be offered as a service to multiple customers by a single
provider. This maximizes the benefits for the taxi companies which outsource their software
and also for the service providers which can serve their tenants more cost effective. In case

7The C-CAST project: http://www.ict-ccast.eu
8Google Inc., Google Maps API Web Services: http://code.google.com/intl/en/apis/maps/

documentation/webservices/
9OW2 Consortium, Orchestra: http://orchestra.ow2.org

12

http://www.ict-ccast.eu
http://code.google.com/intl/en/apis/maps/documentation/webservices/
http://code.google.com/intl/en/apis/maps/documentation/webservices/
http://orchestra.ow2.org

1.2 Motivation

of that, the multi-tenant ESB is an essential building block of the 4CaaSt project [SALM12].
The multi-tenant aware SCE implementation which is provided by this diploma thesis should
replace the currently used BPEL engine Orchestra.

1.2 Motivation

Adding multi-tenancy support to a SCE enables service providers to offer the same SCE as a
service to multiple customers. As a result customers do not have to care about the underlying
infrastructure, required middleware (e.g. an ESB, Servlet Container) or the management of
the SCE. They can just use the SCE as an execution environment for their process models.
Furthermore, service providers are able to maximize the utilization of their infrastructure,
thus reduce the operational costs and as a result lower the entry barrier for customers which
are not able to host an SCE on their own. Additionally the support of multi-tenancy on the
process model level enables the definition of multi-tenant aware service compositions which
again can be offered as a multi-tenant service. Another advantage multi-tenancy introduces
is the configurability of the SCE and the process models which define service compositions.
This enables customers to tailor the single SCE instance and a process model to their needs
based on a set of predefined customization options. A multi-tenant SCE in combination with
the multi-tenant ESB – realized in the 4CaaSt project – provides a powerful multi-tenant
aware integration and messaging middleware. The main outcomes are configurable service
compositions, tenant-aware messaging and tenant-based administration and management of
all middleware components.

1.3 Outline

This diploma thesis contains the following chapters.

Chapter 1 – Introduction introduces the background and motivates the topic of this
diploma thesis.

Chapter 2 – Fundamentals provides descriptions of the necessary technologies and con-
cepts used for the realization of this thesis.

Chapter 3 – Related Works contains a general overview of related works that deal with
multi-tenancy and the requirements and challenges to realize multi-tenant aware applica-
tions or services.

Chapter 4 – Requirements and Concepts provides the identified challenges and require-
ments to enable multi-tenancy for Service Composition Engines and Process Models.
Furthermore, two conceptual solution approaches are described and compared. One of
these two concepts is then used as the basis for the implementation of a multi-tenant
SCE based on the open-source BPEL engine Apache ODE.

13

1 Introduction

Chapter 5 – Implementation specifies how the general concept is realized and imple-
mented. Furthermore, the most important management and runtime scenarios of the
resulting system and the integration with JBIMulti2 and ESBMT are described.

Chapter 6 – Conclusion and Future Work: The last chapter summarizes the outcomes
of this diploma thesis and suggests some future extensions for the defined concepts and
the resulting system.

14

2 Fundamentals

This chapter provides short introductions to the main technologies and concepts which are
used in this diploma thesis. The descriptions should provide some basic knowledge to the
reader for a better understanding of the following chapters.

2.1 Service-Oriented Architecture

Service-Oriented Architecture (SOA) is defined by The Open Group as “an architectural
style that supports service-orientation – a way of thinking in terms of services, service-
based development and the outcomes of services” [SOA13]. A service is therefore a logical
representation of a business function that is self-contained, possibly composed of other services
while hiding any implementation details [SOA13]. As a result SOA provides the required
flexibility for building distributed systems by relying on loose coupling, interoperability,
efficiency and standardization [WCL+05].

The main roles in which the different participants of a SOA are distinguished are service
requester, service provider and service broker. A service provider creates a description of
its service and publishes this to the service broker. A service requestor is therefore able to
discover a required service at the service broker by searching through all the registered service
descriptions. As soon as a service is found which fits the needs of the service requestor, the
concrete endpoint of the service is replied by the discovering facility. With this information,
the requestor can then bind to the concrete service and finally invoke a business activity
[WCL+05].

The use of an Enterprise Service Bus (ESB) simplifies the described procedure for the service
requestor by combining the three steps (find, bind and invoke) into a single one. The ESB takes
care of finding an appropriate service, binding to it and invoking the service by forwarding the
initial request of the service requestor to it [WCL+05]. The following section provides some
more details of the functionality of an ESB.

2.2 Enterprise Service Bus

Business drivers like changing economic conditions or new regulatory compliance have led to
the need for a new broadly applicable and standardized integration solution [Cha04]. The ESB
concept consists of a variety of previously existing standards, concepts and technologies like
Enterprise Application Integration (EAI), SOA, Web Services or Message Oriented Middleware

15

2 Fundamentals

(MOM) and combines all their advantages in a new type of integration middleware. As a
result, an ESB provides a loosely coupled, event-driven SOA with a highly distributed universe
of named routing destinations across a multi-protocol message bus [Cha04]. All connected
applications are abstractly decoupled from each other by using logical endpoints that are
exposed as services. This enables that services, routings or data transformations can be
configured rather than written into code. A programmer has only to implement the binding to
a logical endpoint exposed as a service. This decouples the implementation of a service from
its integration with other components on the bus. To enable loose coupling, one of the core
principles of an ESB is reliable messaging. Therefore applications do not need to care about
resending messages on failure or if the target application is currently unavailable.

Chappel denotes the combination of loosely coupled interfaces and asynchronous interactions
as a key concept of the bus terminology [Cha04]. Services or applications plugged into the bus
have access to everything else on the bus without to be concerned about how the communication
is realized. As a result, the ESB makes the three SOA steps find, bind and invoke transparent
to the user. The only thing a user has to do, is to plug into the bus, post data to it and receive
the response data from the bus [Cha04]. The service requestor only has to send a service
description and a collection of data to the bus. With the service description the bus selects
the service which best fits to the requirements of the requestor. After that the bus binds the
requestor to the target service by creating a route between their logical endpoints. At the
end the bus uses the created route to enable the communication between the two parties and
executes any required data transformations for the exchange of data between the requestor
and the target service.

2.3 Cloud Computing

Cloud computing is a new paradigm in the IT world to provide IT resources in an agile way
over the Internet in a pay-per use model. The National Institute of Standards and Technology
(NIST) defines Cloud computing as “a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g. networks, servers,
storage, applications, and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction” [MG11]. The five essential characteristics
of which the Cloud computing model is composed of are described in [MG11]:

On-demand self-service A Cloud consumer can provision computing resource automatically
without the need of human interaction.

Broad network access All computing capabilities are available over the network and can
be accessed through standard mechanisms.

Resource Pooling The computing capabilities offered by a Cloud provider are virtualized
and pooled to serve multiple consumers using a multi-tenant model. Therefore the Cloud
consumer generally has no sense of the location of the provided resources.

Rapid Elasticity Based on the Cloud consumers’ demand the computing capabilities can be
elastically – and in some cases automatically – provisioned and released.

16

2.4 Workflow Technology

Measured Service The resource usage can be monitored and measured providing trans-
parency for both the Cloud consumer and the provider for any control and optimization
purposes.

The Cloud computing model offers three service models which provide different levels of control
the cloud consumer has over the provided computing resources. Software-as-a-Service (SaaS)
provides to the cloud consumer the use of cloud provider’s applications running on a cloud
infrastructure [MG11]. The consumer has no control over the underlying infrastructure to which
the application is deployed. Only provided user-specific configuration settings can be used
by the consumer to control individual application capabilities. Platform-as-a-Service (PaaS)
provides the consumer the capabilities to deploy applications created using programming
languages, required libraries, services and tools supported by the provider [MG11]. The
consumer has no control over the underlying infrastructure but has control over the deployed
applications. Infrastructure-as-a-Service (IaaS) is the service model which offers the most
control to the consumer. As a result, the consumer is able to deploy and run arbitrary
software and has also the control over operating systems, storage and deployed applications.
The management and control of the underlaying cloud infrastructure remains at the cloud
provider.

The NIST defines four deployment models how a cloud infrastructure can be provisioned. A
private cloud is provisioned to be exclusively used by a single organization and its members. A
community cloud is a cloud infrastructure that is used by a specific collection of organizations
which share the same requirements. A public cloud infrastructure is accessible and usable by
the general public. The hybrid cloud deployment model combines two or more distinct cloud
infrastructures which are bound together but each of them remain as a unique entity.

2.4 Workflow Technology

A business process consists of a set of activities that are carried out in a specific sequence and
passing data from one activity to another [LR00]. A process model describes the structure of
a business process and defines all possible paths and the actions which need to be performed
[LR00]. The process model is used as a template to create instances of it – so called process
instances – which actually execute a business process. Each process instance executes one
of the possible paths specified in the process model. This path is determined by a set of
instance-specific values (e.g. input data) and a set of rules which are defined in the process
model [LR00]. Not necessarily all parts of a process model must be executed by a computer.
The parts of a process model which can be run on a computer are called workflow models
[LR00]. Similar as for process models an instance of a workflow model is defined as a workflow
instance. The Workflow Management Coalition (WfMC) defines workflows as “computerised
facilitation or automation of a business process, in whole or part” [Hol95]. A Workflow
Management System (WfMS) provides the software environment for workflows. It is defined
as “a system that completely defines, manages and executes ‘workflows’ through the execution
of software whose order of execution is driven by a computer representation of the workflow
logic” [Hol95]. The “computer representation of the workflow logic” is realized by the use of

17

2 Fundamentals

standardized modeling languages like the Web Services Business Process Execution Language
(BPEL, [BPE07]) described in the next Section.

The WfMC has defined a Workflow Reference Model (WfRM, [Hol95]) which specifies the
main components and interfaces that each WfMS should provide. The central component of
the model is the Workflow Enactment Service which provides the runtime environment for one
or more Workflow Engines (WE). These realize the runtime and execution environment for
workflow instances [Hol95]. Defined workflow models are deployed to a WE which interprets
the models and maybe transforms them to an engine-internal representation. The main
functionality of a WE is the control of the lifecycle of workflow instances, navigation between
modeled activities, passing of workflow instance data and the invocation of external applications
or services [Hol95]. The Apache Orchestration Director Engine (ODE)1 used in the context of
this diploma thesis is such a WE.

The terms process and workflow are often used interchangeably. We follow this convention
in this document and use the terms process model and process instance when we are talking
about executable business processes. In the following we will have a look at the executable
process definition language BPEL.

Business Process Execution Language

BPEL is an XML-based language for the definition of executable business processes also known
as workflows. A BPEL process model describes the orchestration of Web Services and can be
itself exposed as a Web Service. Thus BPEL provides a recursive aggregation model for Web
Services. A BPEL process model consists of the following artifacts.

Process The process artifact is the root of a BPEL process model and contains all other
artifacts. It provides properties to specify the name, a target namespace or the expression
language (e.g. XPath or XQuery) amongst other things for the defined process model.

Partner Links are used to “directly model peer-to-peer conversational partner relationships”
[BPE07]. A partner link encapsulates a service with which a business process interacts
or itself provides. Partner links are characterized by a partner link type [BPE07]. This
construct defines some kind of conversation channel between two partners by specifying
the port type of each of the partners’ WSDL service interface and the role they are
playing in the conversation. For example, if they provide a service or require a service
from an external service provider. During the runtime of a process model, the partner
link holds the relevant binding and communication data (e.g. service endpoint address)
to enable the conversation between the process model and any partners. The endpoint
address of a referenced service can be dynamically assigned during runtime or statically
defined during the deployment of the process model.

1The Apache Software Foundation, Apache ODE (Orchestration Director Engine): http://ode.apache.org

18

http://ode.apache.org

2.5 Extentend Apache ODE

Variables are containers which persist the data of a process instance. They can be used to
exchange data with partners or to hold any other process related data (e.g. constant
values, intermediate results). Variables can be defined on the process level or in <scope>

activities. Their values can be set or manipulated over <assign> activities.

Correlation Sets enable the automatic routing of messages to the correct process instances
based on business data instead of using artificial identifiers. Therefore a correlation set
consists of a list of properties. A property is an abstract container for correlation data
which is located in the messages during runtime. Property aliases are used to define
a mapping between a property and the part of the message which should be used for
correlation. The defined correlation sets can then be referenced in any conversation
activity (e.g. <invoke>, <receive>, <reply>) to enable message correlation.

Handlers enable the modeling of specific control flow which should be executed to “han-
dle” different types of occurrences during the runtime of an instance of the process
model. BPEL provides handlers to react on faults (<faultHandlers>), different events
(<eventHandlers>), the termination of an instance (<terminationHandler>) or to enable the
compensation of a collection of activities (<compensationHandler>).

Activities The BPEL specification provides a variety of different activity types. They can
be divided into two categories: basic activities and structured activities. The former
provide atomic artifacts with specific functionality (e.g. invocation of external services,
data assignment) and the latter realize the composition of basic activities by prescribing
the order in which they should be executed [BPE07]. BPEL supports a combination
of graph-based (e.g. <flow>) and block-based (e.g. <sequence>) modeling for business
processes.

Furthermore BPEL provides language extensibility by the import of other XML namespaces.
This allows adding constructs defined in an imported XML namespace to any BPEL construct.
The BPEL specification provides also two explicit extension constructs: Extension Activities
and Extension Assign Operations. The former can be used to specify new activity types which
can then be used in a process model and the latter to define specialized data manipulation
constructs which can be used in <assign> activities.

2.5 Extentend Apache ODE

As introduced in Chapter 1.1.1, a modified version of the open source BPEL engine Apache
Orchestration Director Engine (ODE)2 is used. Since BPEL enables the orchestration of
services and therefore the definition of service compositions, the BPEL engine Apache ODE
provides also an implementation of a Service Composition Engine (SCE). The original version
of Apache ODE is extended for the SimTech project. Figure 2.1 shows the architecture of the
resulting SWfMS. The four layers and their components are described in the following.

2The Apache Software Foundation, Apache ODE (Orchestration Director Engine): http://ode.apache.org

19

http://ode.apache.org

2 Fundamentals

Simulation Workflow Management System (SWfMS)

Integration Layer

JBI Integration LayerAxis2 Integration Layer
Another Integration

Layer

Deployment
Web Service

Process&InstanceManagement
Web Service

...

Workflow Engine API

Process Management
API

Instance Management
API

Process Deployment
API

Engine Interface
API

...

Runtime Layer

Persistence Layer

ODE
Engine DB

BPEL RuntimeBPEL Engine Pluggable Framework
Flexibility:
Migration

Flexibility:
Iteration, Re-execution

...

BPEL CompilerProcess Store
ODE

Data Access Objects

Java Concurrent Objects
(JaCOb)

BPEL Process
Web Services

Message Broker
(Apache ActiveMQ)

Management Queue

Event Topic

...

Figure 2.1: Architecture of the extended BPEL Engine Apache ODE

The Integration Layer provides the engine-internal functionality to the outside and enables
communication. ODE provides per default an Axis2 and a JBI Integration Layer which handle
the correct routing of message exchanges to the engine-internal objects and provide the APIs of
the engine to the outside. The Axis2 Integration Layer provides a Web Service for Deployment,
Process and Instance Management and for each deployed BPEL Process. The JBI Integration
Layer integrates ODE into a JBI Environment (e.g. an ESB, for example Apache Service
Mix) which provides the Web Service Interfaces for Process and Instance Management and
the BPEL Processes to the outside. The deployment of new process models is handled by the
JBI Environment and therefore no Deployment Web Service exists. By the realization of a
new Integration Layer implementation, ODE can be integrated in any other environment as
with the two existing layers.

20

2.5 Extentend Apache ODE

The Workflow Engine API consists of a set of APIs which provide generic interfaces for the
engine-internal classes. For example, the Process Management API provides an interface
for the engine-internal management functionality provided by the BPEL Engine component.
This interface enables all Integration Layers to forward incoming management requests to the
classes of the Runtime Layer which provide an implementation for the interface. Additionally,
the Engine Interface API is used by the Integration Layer to forward incoming requests send
to the BPEL Process Web Services to the Runtime Layer.

The Runtime Layer provides the core functionality of the engine. Therefore the BPEL Engine
component contains all engine-related classes, like a BpelProcess class which represents a
process model and contains the corresponding functionality to initialize a new process instance.
Another important class contained in the BPEL Engine is the BpelRuntimeContext which
represents a running process instance and contains all related functionality, like the invocation
of external services, reading or writing variable values or the correlation of message exchanges
to the correct process instance. The BPEL Runtime component contains the implementation
of all BPEL constructs which are used by the engine to execute a process model. To enable the
reliable execution of process instances, the BPEL Runtime relies on Data Access Objects (DAO)
which are used to store all important runtime data in the engines’ database (see Persistence
Layer). To enable the persistent and concurrent execution of the BPEL runtime constructs,
the Java Concurrent Objects framework (JaCOb) is used. It provides an application-level
concurrency mechanism and a mechanism for interrupting execution and persisting execution
state. For example, this enables the resumption of all running instances after an outage of the
engine. The Pluggable Framework (PGF) is based on the work of Steinmetz who extended
ODE with a generic BPEL 2.0 Event Model and some additional event-based functionality. He
realized the propagation of engine-internal events to the outside with the help of messaging
and enabled the debugging of the execution of process instances [Ste08]. A messaging topic
(Event Topic) is used to provide all engine-internal events of the engine wrapped as Event
Messages to multiple external subscribers. These subscribers are able to influence or debug
the execution of instances by sending messages to a provided queue (Management Queue).
For example, by sending a corresponding management message, variable values can be set or
breakpoints can be resolved by an external application. This initial work was extended by other
diploma thesis with flexibility and model migration concepts. Ning added new functionality to
dynamically iterate or re-execute parts of a running process instance (Flexibility: Iteration,
Re-execution) [Nin11]. The difference between iteration and re-execution is, that the former
just starts a set of activities again whereas the latter first compensates the corresponding
activities in reverse order and then starts them again. In other words the iteration creates
a kind of loop cycle where all contained activities are executed once more. For example, if
the loop cycle contains a data assignment activity which increases the value of a variable,
this value is increased again. The re-execution creates also a loop cycle but first compensates
all completed activity contained in the cycle. For example, an increased variable is reset to
the value before it was increased. The compensation step resets the whole instance back to
the state before any of the activities which should be re-executed are started. Schliemann
added a model migration concept which provides the ability to change the underlying model
of a running instance by migrating the instance to the changed model (Flexibility: Migration)
[Sch11]. This enables a user to change the control flow of a running instance and provides a

21

2 Fundamentals

trial and error like modeling approach for scientists. They can start modeling their maybe
complex simulations with simple model templates. These templates are then extended with
additional BPEL constructs (e.g. new activities or variables) and immediately executed to try
if the model behaves like they expected. If an error occurs or something is missing, the model
is adapted and the running instance is migrated to this model. The migration is necessary
because simulation workflows are quite often long-running processes and therefore it must be
able to adapt the control flow of a running instance without loosing the current status of the
instance. The migration functionality is also combinable with the iteration and re-execution
flexibility functionality. This provides much more powerful possibilities because it enables the
migration of the past of a running instance by just re-executing the completed part, adapt the
model and migrate the instance.

The Persistence Layer provides the Engine Database which holds all deployed process models
and all instance-related data like events, message exchanges, variable values or the execution
state. As already mentioned, the DAOs are used to mediate the interaction between the
Runtime Layer and the Engine Database. ODE provides per default two different DAO
implementations which can be used to realize data persistence, Hibernate3 and OpenJPA4. The
BPEL Compiler converts all files contained in a deployment bundle (e.g. BPEL process files,
WSDLs or schemas) into an engine-internal representation which is suitable for the execution.
The result of a compilation is an object model similar to the BPEL process structure but
with resolved references (e.g. variables or parner links referenced by their names) and some
generated default objects, like default fault handlers or compensation handlers. This object
model is serialized as a *.cbp file along with the deployment bundle. The Process Store
component handles the deployment of new process models and triggers their compilation. It
also uses DAOs to persistently store related data, like the set of deployed process models and
their state (e.g. active or retired).

2.6 Java Business Integration

The Java Business Integration (JBI) defined by the Java Community provides a standards-
based architecture for integration solutions [JBI05]. This architecture allows different vendors
to “plug in” their components into a standardized infrastructure which enables the decoupling
and interoperability between their components on the basis of standards-based messaging. The
result is a multivendor “echosystem” of interoperating components [JBI05].

The vendor-specific components therefore communicate over a standardized message exchange
format, the so called Normalized Message (NM) format. A NM has three fields. An eXtensible
Markup Language (XML) payload, a meta-data and an attachment field which is referenced by
the payload. Instead of directly connecting the JBI components – a mediator – the Normalized
Message Router (NMR) shown in Figure 2.2, routes the NMs between the components. A
component can either be provided as a Binding Component (BC) or a Service Engine (SE). The

3JBoss Community, Hibernate: http://www.hibernate.org/
4The Apache Software Foundation, OpenJPA: http://openjpa.apache.org/

22

http://www.hibernate.org/
http://openjpa.apache.org/

2.6 Java Business Integration

JBI Environment

Normalized Message Router

M
an

agem
en

t In
terface

Component Framework

SE1
Other
SEs...

BC1
Other
BCs...

Management Tools

External
Service

Consumer

External
Service

Provider

Figure 2.2: Architecture of the Java Business Integration, cf. [JBI05]

former are used to enable the exchange of protocol-specific messages between any connected
external service and the JBI environment. Therefore they isolate the JBI environment from
any particular protocol by normalizing and denormalizing any incoming or outgoing messages
to and from the internal NM format. The latter provide some advanced message processing
functionality like message transformation, message routing or the composition of existing
services. For example a SCE is such a JBI SE which enables the composition of existing
services. Both JBI components can act as service consumers or service providers where the
services are described according to the WSDL 2.0 5 specification. A service provider makes a
service available through an endpoint [JBI05]. A service consumer uses a provided service by
initiating a message exchange through the endpoint of the target service. All JBI components
are able to exchange normalized messages through the NMR. Therefore the components act
with the NMR over a Delivery Channel which provides a bidirectional delivery contract for
message reception and delivery [JBI05]. Different SEs can directly communicate with each
other using NMs without the need of normalizing or denormalizing messages from or to any
protocol-specific format.

The JBI specification provides four different asynchronous message exchange patterns which
enable the communication between the JBI components. They differ in the direction and the
reliability of the communication they provide. New component-specific artifacts, so called
Service Units (SU), can be deployed to any of the installed BCs or SEs of a JBI environment.

5W3C, Web Services Description Language (WSDL) Version 2.0: http://www.w3.org/TR/wsdl20/

23

http://www.w3.org/TR/wsdl20/

2 Fundamentals

The JBI specification does not define the contents of such SUs because they are opaque to
JBI and the contents are determined by the target JBI component to which they should be
deployed. For example, the contents of a HTTP SU which integrates an external service to the
JBI environment are completely different as for a SCE SE which contains a process model and
other related files. In case that the most integration problems could not be solved by involving
a single JBI component, one or more SUs are grouped into a Service Assembly (SA). These SAs
are usually packaged as ZIP files and contain a JBI deployment descriptor which specifies the
components where each of the contained SUs should be deployed to. As shown in Figure 2.2
the JBI environment provides a Java Management eXtension (JMX) Interface which enables
the installation and life cycle management of JBI components and the deployment of new
artifacts to installed components.

2.7 OSGi Framework

The OSGi framework supports the deployment of extensible and downloadable applications
known as bundles in a Java Virtual Machine (JVM) [OSG12]. It provides loose coupling for
modularized applications and encourages dynamic code-loading by resolving the dependencies
between the deployed bundles. An OSGi bundle is packaged as a Java Archive (JAR) file
which contains a collection of Java classes and meta-data specifying the list of capabilities
and requirements of the bundle. A capability is a reference to a Java package for which the
bundle provides Java classes for. They provide some functionality to other bundles or an end
user. Requirements are references to Java packages the bundle relies on, but that are provided
as capabilities by another bundle. If a new bundle is installed to an OSGi framework, the
framework uses the meta-data of the bundle to resolve its dependencies by matching the list
of required packages with the capabilities of all installed bundles. This enables the reuse of
any existing functionality encapsulated by a bundle and the realization of loosely coupled
modular applications. Another important aspect of the OSGi framework is the bundle lifecycle
management. One of its key features is the installation, update and uninstallation of bundles
without requiring a system reboot. Each bundle therefore has to implement OSGi specific
interfaces for lifecycle management that allow the OSGi framework to start and stop a bundle
after it is installed and resolved.

2.8 Multi-tenant aware Apache ServiceMix

In this diploma thesis the multi-tenant aware version of Apache ServiceMix6 4.3.0 realized
by Essl, Gómez and Muhler is used to provide and integrate a multi-tenant aware version of
SWfMS. The underlying Apache ServiceMix 4.3.0 version is referred to as ServiceMix in this
document. Essl evaluates in his work different available ESB solutions and decides to extend
ServiceMix with multi-tenancy support by realizing tenant-aware communication [Ess11].

6The Apache Software Foundation, Apache ServiceMix: http://servicemix.apache.org/

24

http://servicemix.apache.org/

2.8 Multi-tenant aware Apache ServiceMix

Muhler added with his work the required tenant-aware administration and management
functionality to ServiceMix [Muh12]. Gómez integrates the work of Essl and Muhler and
evaluates the resulting system [Sáe13]. This multi-tenant aware version of ServiceMix is used
for this diploma thesis and is further referred to as ESBMT.

The OSGi Framework implementation Apache Karaf7 builds the kernel layer of ServiceMix.
It provides a lightweight container into which various components and applications can be
deployed. To install new components like OSGi bundles, JBI components and SAs or to manage
the lifecycle of installed components, Apache Karaf provides an extensible management text
console. Furthermore, new components can also be deployed using Apache Karaf’s hot
deployment mechanism by just copying the component packages into a deploy folder. If one of
the package files is deleted from the deploy folder the corresponding component is automatically
undeployed.

ServiceMix includes a JBI container which is fully compliant with the JBI specification. The
NMR is based on the open source message broker Apache ActiveMQ8 and routes the messages
between the logical endpoints of the deployed JBI components. An endpoint is either registered
as consumer or provider. The former are exposed as services which consume messages that are
routed by the NMR to the correct JBI component and the latter provide access to an external
service by receiving messages from the NMR and sending them to the external endpoint of the
service. ServiceMix is delivered with a collection of already deployed OSGi bundles and JBI
components. In the scope of this thesis we will concentrate on the HTTP BC extended by
Muhler and Gómez and the Apache Camel9 SE.

2.8.1 Multi-tenant HTTP Binding Component

The HTTP JBI BC provides HTTP communication support in ServiceMix. The original
implementation is extended for ESBMT to enable tenant-aware HTTP communication in
[Muh12] and [Sáe13]. Therefore Muhler provides tenant-aware endpoints which are dynamically
created in the BC by injecting tenant context data in the generated JBI endpoint URLs [Muh12].
In addition to that, Gómez provides a Normalized Message Format (NMF) which attaches
tenant context data as a set of properties to a NM [Sáe13]. The assigned property values are
used by the NMR during runtime for the correct routing of the messages. The functionality
of the tenant-aware HTTP BC is used in this diploma thesis to provide multi-tenant aware
endpoints for the process model Web Services exposed by the SCE. This is further described
in Chapter 5.

7The Apache Software Foundation, Apache Karaf: http://karaf.apache.org/
8The Apache Software Foundation, Apache ActiveMQ: http://activemq.apache.org/
9The Apache Software Foundation, Apache Camel: http://camel.apache.org/

25

http://karaf.apache.org/
http://activemq.apache.org/
http://camel.apache.org/

2 Fundamentals

2.8.2 Apache Camel

Apache Camel10 is a powerful open source integration framework based on Enterprise Integra-
tion Patterns (EIP) [HW04]. It supports the definition of routing and mediation rules in a
variety of Domain Specific Languages (DSL). Each rule defines a routing or mediation between
two or more endpoints. For example a Java-based DSL, Spring-based XML configuration files
or a Scala DSL can be used to specify these rules. The Java-based DSL can be used in any
class which extends the Apache Camel RouteBuilder class and is packaged in a Plain Old
Java Object (POJO) file. The routing or mediation configuration files must be packaged in
a SU to comply with the JBI specification. As already described one or more SUs must be
packaged in a SA for deployment. To ease the process of creating SUs and package them in
SAs, Apache Camel provides a set of Apache Maven11 archetypes. Apache Maven is a software
project management tool which manages the build of a project based on a Project Object
Model (POM) file. An archetype is a kind of project template which can be used in Apache
Maven to generate an Apache Maven project with a predefined structure. For example in
the case of Apache Camel, the “camel-archetype-java” archetype generates a project which
contains already an example POJO file. This file provides a class which extends the Apache
Camel RouteBuilder class and can be directly used to define some rules using the Java-based
DSL. The definition of rules in a XML configuration file provides a much faster and easier
approach for developers but also restricts the complexity of the routing and mediation rules.
The use of the Java-based DSL in a POJO class provides a much more powerful approach but
therefore the development complexity increases. For example the developer is able to use the
data contained in the header or the body of a NM to dynamically route the message to the
correct target endpoint. In the context of this diploma thesis Apache Camel is used to realize
some dynamic message routing scenarios which are described in detail in Chapter 5.

2.9 JBIMulti2

Muhler has implemented JBIMulti2 which provides a tenant-aware administration and man-
agement layer to enable multi-tenancy awareness for ESBMT [Muh12]. In the context of this
diploma thesis, JBIMulti2 is reused and extended in some parts to provide a tenant-aware
administration and management layer for a multi-tenant SCE. As already described in Section
2.6, users deploy new component-specific artifacts in form of SAs which consists of a set of SUs
to a JBI environment. In a multi-tenant JBI environment these SAs and the SUs they contain,
must be deployed in a tenant-aware manner. This means some tenant information has to be
provided for the deployment so that for example a deployed endpoint configuration is exposed
as a service which is only accessible by the tenant who has deployed the corresponding SA.
Muhler solves this lack of tenant-specific data during deployment with JBIMulti2 by injecting
tenant context in all SA packages which makes them tenant-aware [Muh12].

10The Apache Software Foundation, Apache Camel: http://camel.apache.org/
11The Apache Software Foundation, Apache Maven: http://maven.apache.org/

26

http://camel.apache.org/
http://maven.apache.org/

2.9 JBIMulti2

User Interface

Business Logic

Web UI Web Service API

Service Registry Manager Tenant Registry Manager Configuration Manager

JBI Container Manager Service Assembly Manager

Service Registry
PostgreSQL Cluster

ESB
ServiceMix Cluster

Tenant Registry
PostgreSQL

Configuration Registry
PostgreSQL

Resources

WSDL / SA SA

Figure 2.3: JBIMulti2 System Overview, [Muh12]

Figure 2.3 shows an overview of the JBIMulti2 system. It consists of three parts: a user
interface, business logic and a set of resources. JBIMulti2 uses three registries to store the
data of tenants and their users, their configuration and management data and their deployed
SAs. If a new tenant or tenant user is registered at JBIMulti2 an unique identifier is created
and stored together with some other tenant data in the Tenant Registry. All three registries
are designed to persist the data of more than one application and therefore enable sharing of
data. This benefit is used in this diploma thesis for the tenant-aware deployment of process
models and the management of configuration data. The Tenant Registry is used to store any
required tenant information. The Service Registry stores SAs in a tenant-isolated manner. All
other tenant-related data is stored in the Configuration Registry. This contains for example
the user roles of each tenant or which SA belongs to which tenant user. In the context of this
diploma thesis the database schemas of the Service and Configuration Registry introduced by
Muhler are extended to store SCE and process model related data. Furthermore a new Event
Registry is introduced which stores the event data emitted by a SCE during the execution of
process models.

27

2 Fundamentals

The user interface provides access to the systems business logic. Currently only the Web Service
API is implemented. The business logic provides the secure and tenant-aware management
of tenants (or tenant users) and their resources (SAs, JBI components, etc.) by providing a
role-based access control mechanism. The tenant-aware deployment of SAs into an Apache
ServiceMix instance is realized over a JMS topic to which all ServiceMix instances are subscribed
to. JBIMulti2 publishes a message to this topic which contains the SA ZIP file and the tenant
context it belongs to. In each of the subscribed ServiceMix instances a JMS management service
is installed which consumes these messages and deploys the contained SAs in a tenant-aware
manner. This is realized by serializing the tenant context information send with the message
as a XML file into each SU contained in the SA. These tenant context XML files are then
used during runtime by the multi-tenant aware BCs to realize tenant-aware authentication
of incoming requests send to a service endpoint. To deploy the SAs, the JMS management
service uses the administration functionalities provided in ServiceMix. The communication
between JBIMulti2 and the ServiceMix instances is realized unidirectional. This means in case
of successful deployment the deployed endpoint is immediately reachable by the tenant and in
case of an error an unprocessed management message is send to a dead letter queue.

Detailed descriptions of the functionality of the JBIMulti2 application and how it is installed
and used are out of the scope of this thesis and will be provided in the work of Muhler [Muh12]
or Gómez [Sáe13].

28

3 Related Works

This chapter provides a general overview of existing work that deals with the topic of multi-
tenancy and the requirements and challenges to realize multi-tenant aware applications or
services. Furthermore, the identified challenges, requirements and solution approaches and
how they are applicable to this diploma thesis are evaluated.

There exist a variety of different multi-tenancy definitions in literature, for example in [GSH+07],
[KMK12] or [WTJ11]. In the context of this diploma thesis we use the definition provided
by Strauch et al. They define multi-tenancy as “the sharing of the whole technological stack
(hardware, operating system, middleware and application instances) at the same time by
different tenants and their corresponding users” [SALM12].

Most of the related works discussed in this chapter are based on enabling multi-tenancy and the
realization of isolation and scalability for software hosted in the cloud, for example Software as
a Service (SaaS) applications. SaaS is a cloud delivery model which enables multiple customers
to use an application which is hosted in the cloud [ALMS09]. Customers do not have to care
about the underlying infrastructure or the installation of applications or services. On the other
side, this service model enables service providers to use their infrastructure and middleware
in a shared way to provide such SaaS offerings and therefore to serve a much higher number
of customers in parallel. This reduces operational costs and enables new potential customers
(e.g. small and medium sized businesses) to use this kind of offerings. On the one hand the
architecture of this applications must enable maximized sharing of resources across tenants
and on the other hand still be able to recognize which data belongs to which customer [CC06].
The three main attributes to create such SaaS applications which are able to serve hundreds or
thousands of customers in a parallel and isolated manner are scalability, multi-tenant efficiency
and configurability [CC06].

Chong and Carraro have defined a four-level maturity model where each level adds the support
for one of the three attributes defined above [CC06]. Figure 3.1 shows the four levels of
maturity. In Level 1 each tenant has its own customized version of the application and runs
one instance of it on the provider’s servers [CC06]. As a result the provider is able to reduce
costs by utilizing and sharing its server hardware in an efficient way to host the application
instances. Level 2 adds configurability to a SaaS application. In this level each tenant also has
its own instance of the application. The main difference is that the customization is realized
over configuration and not by customizing the implementation of the application for each
tenant. The SaaS application must provide therefore a set of configuration possibilities which
enable the tenant to customize its instance of the application. This move to a single code
base enables the provider to provision changes of the implementation of the application for
all tenants at once [CC06]. But the provider still needs to host a potentially high number

29

3 Related Works

Level 1

Instance 1 Instance 2 Instance 3

Tenant 1 Tenant 2 Tenant 3

Level 2

Instance 1 Instance 2 Instance 3

Tenant 1 Tenant 2 Tenant 3

Level 3

Tenant 1 Tenant 2 Tenant 3

Level 4

Tenant 1 Tenant 2 Tenant 3

configurable and
multi-tenant efficient

Instance

Instance Instance

Tenant Load Balancer

...

Pool of configurable, multi-tenant efficient and scalable InstancesPool of configurable, multi-tenant efficient and scalable Instances

...

Figure 3.1: Four-level SaaS maturity model defined by [CC06]

of concurrently running application instances. Level 3 adds multi-tenant efficiency to the
application. This enables the provider to use a single (configurable) instance of the application
to serve all tenants [CC06]. On the one hand this level introduces new challenges like the
isolation of resources between tenants (data, performance, . . .) or security concerns. On the
other hand the provider does not need to prepare dedicated server space for each of its tenants
to run a separate application instance. This efficient use of computing resources leads to much
lower costs [CC06]. The last level, Level 4, adds scalability to the application. A Tenant Load
Balancer provides scalability by dynamically increasing or decreasing the number of instances
based on the number of tenants to serve. Chong and Carraro indicated the four maturity
levels as “a continuum between isolated data and code on one end, and shared data and code on
the other”. This is important if you choose the “right” maturity level for an application. Level
4 is not for all scenarios the best case, for example if the customization needs of a customer
are not realizable over configuration options.

30

3.1 Configurability

Guo et al. introduce two main multi-tenancy patterns: multiple instances and native multi-
tenancy [GSH+07]. The former provides one separated instance of an application for each
tenant hosted on a shared infrastructure (e.g. shared hardware) [GSH+07]. In contrast to
that, native multi-tenancy provides one shared single instance of an application which serves
natively multiple tenants. Compared to the described maturity model of Chong and Carraro,
multiple instance multi-tenancy is provided by the Levels 1 and 2 and native multi-tenancy is
realized by the Levels 3 and 4.

Anstett et al. investigate the execution of BPEL processes in the cloud based on different
delivery models namely infrastructure as a service (IaaS), platform as a service (PaaS) and
software as a service (SaaS) [ALMS09]. They point out a set of requirements and challenges
based on the used delivery model. Outsourcing the execution of BPEL processes with the IaaS
delivery model has no special requirements since it is just a move of responsibilities for hosting
the infrastructure to the cloud provider [ALMS09]. The installation of the BPEL Engine and
the configuration of the infrastructure (e.g. security) are not much different, as everything
is hosted in their own data centers. Moving one level up the hierarchy by using the PaaS
delivery model, the provider also hosts the platform middleware, like the BPEL engine and
a database [ALMS09]. This forces new security requirements to ensure the confidentially of
the process models and their instances [ALMS09]. Since the PaaS provider might be able to
directly access the database and the file system of the operating system on which the BPEL
engine runs, the process models and their instance data must be protected (e.g. by encryption)
[ALMS09, GSH+07]. The use of the SaaS delivery model transfers all responsibilities to the
provider. The underlying infrastructure, middleware and even the BPEL processes are moved
to the area of responsibility of the provider. This reduces the complexity for the customer but
also forces a loss of flexibility because the provider decides which customization options he
offers to its customers [ALMS09]. By the move of responsibilities, the process models become
an asset of the SaaS provider and represent no longer an asset of the tenant’s enterprise. The
SaaS provider can serve multiple customers with the same process model. The SCE and the
database, therefore have to support multi-tenancy.

Now we want to have a closer look at some solution approaches discussed in the related works
for the (above introduced) new challenges and requirements to realize multi-tenant aware
applications.

3.1 Configurability

As discussed above, configurability is one of the main requirements to realize a multi-tenant
application ([CC06, KMK12, WTJ11]). Krebs et al. describe a configurable application as
“one which provides tenant specific behavior or appearance, whereby this behavior is configured
without tenant specific code” [KMK12]. The tenant-specific configurations can be specified
over configuration files or defined with the help of an administration user interface (UI). The
key requirement therefore is, that the change of the configuration of one tenant should not
impact other tenants or influence the way the application behaves or appears for other tenants
[KMK12, GSH+07]. Furthermore, the configuration of the application should be possible

31

3 Related Works

during runtime to minimize unnecessary downtime and to do not impact other tenants. The
configuration of an application is realized by the provisioning of a set of configuration options
(e.g. UI elements) which can be used by the tenants to adapt the application to their needs.
Possible configuration options for a SCE and its process models are evaluated in Chapter 4.2
and Chapter 4.3.

3.2 Scalability

As described above, scalability is an important requirement for a multi-tenant application.
Applications should be able to scale with the number of users. We can distinguish between
vertical and horizontal scalability. In the first case, applications can be scaled up by adding
more computing resources to the application or by moving the application to a more powerful
server. In the second case, applications can be scaled out by running more instances of the
application maybe on different servers [CC06]. Scaling out is only possible if the application
itself supports scalability. Chong and Carraro introduce some basic guidelines to design an
application which can be scaled out. The most important one is that an application should
run in a stateless fashion. Any user or session specific data should be stored apart from the
application (e.g. in a distributed store), so that each transaction can be handled by any of the
application’s instances [CC06]. In the context of this thesis, scalability is not realized, but the
architecture is designed with scalability in mind to enable an easier integration of a scalability
approach in a future work.

3.3 Isolation of Tenants

Another important topic for the realization of a multi-tenant aware application is to provide
isolation of tenants in nearly all parts of an application [GSH+07, KMK12]. To uniquely identify
a tenant or associate resources with a tenant, a tenant ID ([GSH+07]) or a so called tenant
context ([ALMS09, SALM12]) can be used. The following sections provide a short introduction
and discussed solutions approaches of the most important isolation requirements: Data Isolation,
Communication Isolation, Administration Isolation and Performance Isolation.

3.3.1 Data Isolation

The isolation of the tenants’ data is one of the most important requirements when providing a
multi-tenant application. Chong et al. introduce three different approaches to realize multi-
tenancy at the data layer: Separate Databases, Separate Schema and Shared Schema [CCW06].
Similar to the the four-level maturity model, the three approaches define a continuum between
isolation and sharing and the optimal degree between the two extremes depends on the tenants’
requirements [CCW06]. The following list provides a short description of each approach and
its advantages and disadvantages.

32

3.3 Isolation of Tenants

Separate Database The most isolated and simplest approach to realize a multi-tenant data
architecture is to store the data of each tenant in a separate database. With the help of
meta data (e.g. a tenant context) each tenant can be associated with his database and
the security layer of the database provides a reliable access control [CCW06]. This makes
it relatively easy to extend the application’s data model on the needs of each tenant, but
also causes relatively high hardware and maintenance requirements and costs [CCW06].
An advantage is the relatively easy restoring of the tenant’s data from a backup in case
of a failure. Since a database server can only host a specific number of databases, the
number of tenants which can be served is also limited by the database server.

Separate Schema This approach uses a shared database, with each tenant having its own
set of tables grouped in a separate schema [CCW06]. As a result, each tenant can then
be associated with its schema and the access control is provided by the database security
again. A significant drawback of this approach is the much more complicated restore
of tenant’s data in case of a failure [CCW06]. In fact that the data of all tenants is
stored in the same database, one tenant’s data can not be restored by just restoring
the most recent backup. This would lead to the loss of data for all other (non affected)
tenants because their current data is overwritten with the backup data. To restore just
the tables of a single schema - the data of a specific tenant, the database administrator
has to restore only the tables of the tenant’s schema from the backup. This approach
is appropriate for applications that use a relatively small number of database tables
(about 100 or fewer) and can serve more tenants than the Separate Database approach
[CCW06].

Shared Schema The most shared and cost effective approach to realize a multi-tenant data
architecture is to store the data of different tenants in the same database and the same
set of tables. Each table can contain records of all tenants where each record is associated
with its tenant over a tenant id. Therefore each table has to be extended with a new
column to store the tenant id to which a record belongs. The main advantage of the
Shared Schema approach are the low hardware and backup costs, because it allows you
to serve the largest number of tenants per database server [CCW06]. As a result of
sharing a schema between tenants, the access control can not be provided by the database
security. This leads to additional development effort because the application has to
ensure that tenants can never access the data of other tenants. The backup procedure in
case of a failure is similar to that for the Separate Schema approach. To restore the data
of one tenant, the database administrator has to restore only individual rows in each of
the database tables from the backup. This approach is therefore appropriate when the
application should serve a large number of tenants with a small set of servers and the
customers accept the lower level of data isolation in exchange for the lower costs of this
approach [CCW06].

3.3.2 Communication Isolation

Communication Isolation is a special kind of Data Isolation which keeps the message exchanges
for each tenant separate [SALM12]. Therefore, a message has to be associated with a tenant

33

3 Related Works

context to uniquely identify the tenant whom the message belongs. This enables the authen-
tication of incoming messages by a SCE based on the tenant context they are associated
to.

3.3.3 Administration Isolation

Administration Isolation is provided if no tenant is able to manage or administer resources
which belong to another tenant. For example, a SCE may provides functionality for the
administration of process models, process instances and auditing data. To enable Tenant
Isolation all of these resources are associated to a tenant. This tenant should be the only entity
which is able to administer the associated resources. The Administration Interface should also
isolate any high-level information (e.g. number of process models deployed, endpoint address
of a process model) from any unauthorized tenants.

3.3.4 Performance Isolation

Performance isolation means to ensure that each tenant gets the performance he paid for and
that the potentially bad behavior of one tenant does not adversely affect the performance
of other tenants [WMTJ12, GSH+07]. The requirements of a tenant are defined over so
called Service Level Agreements (SLA). Walraven et al. introduce a pluggable middleware
framework to enforce performance isolation for multi-tenant SaaS applications [WMTJ12].
A tenant-aware monitoring solution is required to associate each request to a tenant and to
monitor the resource usage of those tenant-aware requests throughout the whole processing
cycle [WMTJ12]. Furthermore, the tenants must be able to specify tenant-specific SLAs to
define their requirements as part of their configuration data. These SLAs are then validated
during runtime with the help of performance isolation algorithms and the resource monitoring
data by the pluggable middleware framework. A scheduling mechanism handles all incoming
requests and ensures that the requests are processed by the application in an order where all
tenant SLAs are met. If a tenant exceeds his quotas his requests are not processed until the
application meets all other tenant SLAs and has again some free resources to handle the new
requests.

3.4 Existing Multi-tenant SCE Approach

At the end of this chapter, we will have a look at an existing approach to realize a multi-tenant
SCE. Pathirage et al. introduce a multi-tenant SCE architecture based on the open source
BPEL engine Apache Orchestration Director Engine (ODE)1 [PPKW11]. They use the WSO2
Carbon2 platform to enable multi-tenancy in ODE. WSO2 Carbon is an OSGi based platform
for building scalable, high performance servers. It provides multi-tenancy support by some

1The Apache Software Foundation, ODE: http://ode.apache.org/
2WSO2 Inc., WSO2 Carbon: http://wso2.com/products/carbon

34

http://ode.apache.org/
http://wso2.com/products/carbon

3.4 Existing Multi-tenant SCE Approach

adaptations to its underlying execution engine Apache eXtensible Interaction System v. 2
(Axis2). Pathirage et al. reuse the multi-tenancy functionality of WSO2 Carbon in ODE by
adapting the Axis2 integration layer of ODE. An integration layer enables the communication
with external services and provides the internal services of ODE to the outside by the use of a
service middleware (e.g. Axis2, Enterprise Service Bus). This differs from our approach because
the use of Axis2 as multi-tenancy enablement layer and the adaption of ODE’s integration
layer makes the approach solution specific. Other SCE implementations may use another
service middleware or do not offer the ability to provide a set of interchangeable integration
layer implementations. We try to separate as much of the multi-tenancy functionality from
the SCE internal logic as possible to provide an abstract and reusable concept, as discussed in
Chapter 4. To make ODE itself multi-tenant aware, Pathirage et al. use one tenant-aware
Process Store for each tenant. This enables the logical isolation of all process models inside of
ODE on a per-tenant basis and directly identifies all models which belong to one tenant.

35

4 Requirements and Concepts

As described already multi-tenancy means sharing an application or service between a set of
tenants. The three most important points to realize a multi-tenant efficient application are
configurability, scalability and isolation. The conception of a multi-tenant SCE requires the
identification of multi-tenancy aspects for the SCE itself and also for the process models. This
is important because the process models are provided as services by the SCE as described in
Chapter 2.4. Considering that, this chapter introduces the different aspects for a SCE and the
executed process models and provides some general concepts how both can be extended to
become multi-tenant aware. To enable a better understanding of the components of a SCE and
what is required to realize multi-tenancy, first of all a general SCE architecture is introduced.
This architecture is used in the following chapters to describe the necessary adaptations and
extensions.

4.1 General SCE Architecture

There exists no standardized or reference architecture for Service Composition Engines in the
literate. Each SCE implementation has its own vendor-specific architecture. For example,
Apache ODE1, Orchestra2 or the YAWL Workflow Engine3 are based on very different
architectures. This is also one of the main reasons why the WfMC does not make any
statements about the architecture of a Workflow Engine in their Workflow Reference Model
[Hol95]. We use the descriptions in [LR00] to identify the main components and functionality of
which a SCE consists. Figure 4.1 shows the resulting abstract SCE architecture. The layering
is just used to organize the different components and their functionality. The components of
the architecture are used in the following chapters to reference a specific part or functionality
of a SCE. This should enable the mapping of the concepts provided in this thesis into any
SCE implementation. A developer can use the descriptions to identify and extend the correct
part of its implementation-specific architecture. Now we take a closer look on the abstract
SCE architecture.

First of all, the architecture consists of three layers. The Integration Layer provides the
engine-internal functionality to the outside and enables communication. It contains a Message
Exchange Processor which handles the correct routing of incoming and outgoing messages
to the their corresponding services (process models). For example, if a request is sent to the

1The Apache Software Foundation, Apache ODE (Orchestration Director Engine): http://ode.apache.org
2OW2 Consortium, Orchestra: http://orchestra.ow2.org
3The YAWL Foundation, YAWL (Yet Another Workflow Language): http://www.yawlfoundation.org

37

http://ode.apache.org
http://orchestra.ow2.org
http://www.yawlfoundation.org

4 Requirements and Concepts

service interface of a process model which creates a new instance of the model, the Message
Exchange Processor routes the request to the created instance and returns the response message
of the instance back to the sender of the request. The Service Interfaces component provides
the service of each deployed process model to the outside (e.g. as Web Service) and therefore
enables sending requests to a process model. The Management Interfaces component provides
the management functionality of the SCE to the outside (e.g. as Web Service), like querying
all deployed models or suspending a running instance.

The Runtime Layer contains the logic of the engine. The Navigator is responsible for the
execution of process instances based on the control flow defined in the process model. Each time
an activity completes, the navigator evaluates all outgoing control flow connectors, calculates the
next successor activities to execute and starts the corresponding Activity Runtime component.
The engine provides an Activity Runtime for each activity type of the underlying process
model language (meta-model). This runtime provides the functionality of an activity to the
engine, like the assignment of data or the invocation of external applications or services. The
Correlator component is responsible for the correlation of request and response messages. For
example, if a process model has multiple concurrently running instances which invoke an
external service, the response of this service has to be routed to the instance which sends the
corresponding request. The Process/Instance Manager component contains the implementation
of all process and instance management functionality which is provided over the Management
Interfaces. This contains for example, the change of the execution state of an instance (e.g.
suspend, resume, terminate), the deployment or undeployment of process models or querying
some information from the engines databases, like a list of running instances.

The Data Layer provides the persistent stores of the engine which are normally realized with
databases. The Process Database contains all process-related data, like a persisted version
of all deployed process models, the state of each process model or a complete list of all
started instances of each process. The Runtime Database contains all runtime-related data
(instance contexts, event data, . . .) in a persistent manner. This database is very important
because it holds the instance contexts of all process instances, like variable data, incoming and
outgoing messages or activity states. The Navigator and other components of the Runtime
Layer use this instance contexts and the Instance Database to provide their functionality.
The Process/Instance Manager component also works with both of the databases to provide
information to the outside or to manage a process or an instance. For example, undeploying a
process model over the Process/Instance Manager causes the deletion of the corresponding
process model from the Process Database.

4.2 Multi-tenancy aspects of a Service Composition Engine

The SCE itself is (nearly) stateless because the execution state of process instances is hold in
so called instance contexts separated from the status of the engine. These contexts hold all
the data of an instance e.g. variable data, activity status or the current instance execution
state. This makes it possible to use a single instance of a SCE to serve multiple tenants

38

4.2 Multi-tenancy aspects of a Service Composition Engine

Service Composition Engine

Integration Layer

Data Layer

Model
Database

Runtime Layer

CorrelatorNavigator ...

Message Exchange
Processor

Service Interfaces Management Interfaces

Process/Instance Manager

...

Runtime
Database

...

Activity
Runtime

Figure 4.1: General architecture of a SCE

(single instance multi-tenancy/native multi-tenancy). The following sections describe how
configurability, isolation and scalability can be realized in a SCE.

4.2.1 Configurability

Configurability is a key requirement for multi-tenancy and therefore the configuration of the
single SCE instance on a per tenant basis should be possible.

Figure 4.2 shows the above introduced general SCE architecture with some exemplary configu-
ration options. Tenants are able to use different configurations to adapt some parts in each
layer of the shared SCE instance to their needs. All configurations are stored in a Configuration
Database. To get the correct configuration for each tenant the corresponding data can be
queried from the database with a tenant context. A tenant context uniquely identifies a tenant
and can therefore be used to associate resources to a tenant. Each of the three layers provide
some opportunities for configuration based on its functionality. The following descriptions
provide just a subset of possible configuration options because they vary based on the used
SCE implementation. In case of that, Chapter 5 provides the configuration options which are
realized in the context of this thesis based on the extended ODE implementation.

39

4 Requirements and Concepts

Service Composition Engine

Configuration DB

Integration Layer

Runtime Layer

Data Layer

tenantContext

configuration

data

configurable
endpoints

configurable Web GUI

configurable
persistence

DBMS A

DBMS B

(embedded)
DBMS

configurable
engine
extensions

Extension

Bundle
Extension

Bundle
Extension

Bundle

Figure 4.2: Some examples for the configurability of a SCE

As described above, the Integration Layer provides the SCE internal logic to the outside.
Tenants might be able to use the following two configuration points:

Configurable Web GUI Tenants can define customized views on their data (e.g. process
instance meta-data, runtime event data or statistics) and customize an Administration
Web UI. For example, this can be realized with portlets [Por08].

Configurable Endpoints Tenants can specify the endpoints (e.g. HTTP address, JMS
address, . . .) on which the services of their deployed process models should be reachable.
Another possibility would be the definition of a pattern to generate the endpoints, e.g.
http://[ip]:8085/sce/processes/[processServiceName]. The values surrounded by square
brackets are replaced by the SCE during runtime. This enables tenants to separate their

40

4.2 Multi-tenancy aspects of a Service Composition Engine

services from other tenants by using different ports and URL paths without the need to
specify the endpoint for each process model.

The Runtime Layer provides the core functionality to execute process models. One useful
configuration option would be the possibility to register Extension Bundles on a per tenant basis.
An Extension Bundle provides the runtime implementation of one or more activities. This
will enable the injection of tenant-specific code into the SCE which provides a customization
opportunity. If the Navigator executes an activity for which an Extension Bundle is registered,
the tenant-specific implementation is used instead of the default implementation. The process
modeling language BPEL provides already the possibility to define so called BPEL Extension
Activities which can be used to model new types of activities. To make these new activities
executable an Extension Bundle which contain the runtime logic of the new activities, can be
registered at the BPEL engine. This makes it possible that each tenant can define a set of new
activity types which provide some tenant-specific functionality and register the corresponding
implementation at the engine. Nevertheless it makes also sense that, e.g. the SCE provider
registers a set of Extension Bundles which can be used by all tenants. The management of
such Extension Bundles can be realized over an extension of the SCE Management API. So
that tenants can dynamically activate or deactivate a set of registered Extension Bundles and
register or deregister new/existing Extension Bundles.

The Data Layer realizes the persistent storage of the engine’s data in one or more databases.
The configurable persistence option shown in Figure 4.2 enables tenants to specify the database
where to store their data of the SCE. A tenant is therefore able to choose whether he will use
the default database of the SCE provider or hosts his own (self-managed) database. This is
an important configuration option if data privacy and strict Data Isolation are fundamental
requirements for a tenant or its users. If the default database of the SCE provider uses a
Shared Schema approach to enable Data Isolation, this option enables the tenant to isolate his
data in a separate database. The use of a separate database is a trade-off between an increase
of isolation and a decrease of performance. As shown in Figure 4.2 the configurable persistence
option is also filled with the color of the Runtime Layer. This is because this option also
implicates some adaptations of the Runtime Layer to enable the selection of a database.

4.2.2 Isolation

As introduced in Chapter 3 the isolation of tenants has to be provided in nearly all layers of
an application. Therefore, we analyze how a SCE can provide the different kinds of isolation
based on the architecture shown in Figure 4.1.

Data Isolation The Data Layer should provide Data Isolation. Therefore, the Model
Database and the Runtime Database must be realized multi-tenant with one of the
Multi-tenant Data Architecture approaches described in 3.3.1. Also the configuration
data has to be stored in a multi-tenant database which isolates the tenants’ data.

Communication Isolation The tenant context of incoming requests must be forwarded by
the Message Exchange Processor to the Runtime and Database Layer. As a result, the

41

4 Requirements and Concepts

tenant context will be associated to the process instance which handles the request
message. This makes it possible to use the tenant context for communication isolation
and attach it to every outgoing message which is send by a process instance to an external
service or application. The Correlator is also able to use the tenant context associated
to the messages if this is required to realize message correlation in an multi-tenant SCE.

Administration Isolation One tenant should not be able to manage the process models
or instances of another tenant. Therefore, the Process/Instance Manager should be
extended to authenticate request messages send to the Management Interfaces. The
authentication can be realized by comparing the tenant context which is associated to a
process model or instance and the tenant context which is associated to the incoming
message.

4.2.3 Scalability

To enable scalability the SCE should be run in a stateless fashion. This means that any tenant
specific data (e.g. process models or configuration data) should not be bound to a single
SCE instance and therefore be stored apart from a SCE instance in a distributed store. As
a result, this enables the realization of a load balancing mechanism which uses the data of
the distributed store to dynamically create new configured instances of a multi-tenant SCE
(maybe based in different implementations), deploy the tenants process models and thus serve
new incoming requests of the tenant’s users in a highly flexible and transparent manner.

4.3 Multi-tenancy aspects of a Process Model

A process model is per default multi-tenant because each incoming request which is send to the
service interface of a process model creates a new instance (multiple instances multi-tenancy).
The following sections describe how configurability, isolation and scalability can be realized for
process models.

4.3.1 Configurability

By enabling the configuration of process models, tenants can adapt some parts of the model or
influence the execution of an instance. Figure 4.3 shows some possible configuration options.
All configurations are registered in a Configuration Database by the tenants or users. The
figure shows two different types of configuration options for process models.

One possibility is to just register a set of runtime data (variable values, partner-link values, . . .).
These runtime data are loaded during instantiation time of the process model and assigned to
the target elements of the instance, like variables or partner-links. This makes it possible that
instances of the same model use automatically the correct tenant data without any further
work. With the help of this configuration option, tenants are able to specify different callback

42

4.3 Multi-tenancy aspects of a Process Model

Service Composition Engine

Process Model
A

Process Instance 250

tenantID: 1
userID: 2
instanceID: 250

cVariable1 :=
 ...
cVariableN :=

Process Instance 251

tenantID: 2
userID: 4
instanceID: 251

cVariable1 :=
 ...
cVariableN :=

Configuration DB

...

...

Process Model
A‘

Figure 4.3: Some examples for the configurability of a process model

endpoints over partner-links or use other constant values (e.g. country specific tax rates or
simulation constants) in variables without any changes to the process model.

Another option is to register process fragments (control flow snippets). These fragments
are dynamically weaved in the process model on instantiation time. This is realized by a
re-compilation of the original (template) model (Process Model A, in Figure 4.3) with all
referenced process fragments. The result is a new temporary Process Model A’ which can then
be instantiated. This changes the control flow of the process model for all instances of one
tenant. This option is not realized in the context of this thesis, but Chapter 6 provides some
more details how the configuration of process models with process fragments can be realized.

43

4 Requirements and Concepts

For both possibilities, some elements (variables, partner-links, activities, . . .) of the process
model are enriched with marks by the process modeler. These marks are used by the SCE to
load the corresponding configuration data from the database. How far process models can
be configured is limited by the process model itself. If there are no configurable (marked)
elements modeled a tenant or user is not able to configure anything.

4.3.2 Isolation

The SCE holds the tenant/user specific runtime data in an instance context during the
execution of a process instance. This provides Data Isolation on a process model level since
each instance has its own context which is by default not accessible from another instance. All
other isolation requirements must be fulfilled by the SCE, as described above.

4.3.3 Scalability

A process model provides native scalability because each request is handled per default by a
new instance of the model. The number of parallel running instances is only limited by the
performance of the SCE on which the instances are running. But this restriction is rescinded
by just deploying the process model to more than one SCE instance. For example, with the
help of a Load Balancer the customers’ requests can then be spread across all SCE instances
on which the process model is deployed.

4.4 Behavior of a Multi-tenant aware SCE and Process Models

This section describes how the behavior of the SCE and the process models changes if they
become multi-tenant aware and the process models are deployed and executed by a multi-tenant
SCE. For that, the four most important procedures will be described: process deployment,
process instantiation, service invocation and instance correlation.

4.4.1 Process Deployment

Figure 4.4 shows how tenant-based deployment of process models looks like in a multi-tenant
SCE. The yellow components mark extensions or adaptations of the SCE to enable multi-
tenancy. All Deployment Bundles which are deployed under tenant context, are associated to a
specific tenant or user. “Deployment under tenant context” means that a Deployment Bundle
is registered for one specific tenant or user which is uniquely identified by the tenant context.
This tenant or user becomes the owner of the contents of the Deployment Bundle and therefore
is the only entity who is able to use the Deployment Bundle (e.g. to instantiate a process
model). A Deployment Bundle contains a set of process models and any other information
which the SCE needs to execute the process models, like service interface descriptions (e.g.
WSDL files) or a deployment descriptor. The deployment descriptor is used to provide the

44

4.4 Behavior of a Multi-tenant aware SCE and Process Models

Service Composition Engine

(Role-based) Access Control

Tenant
context

Tenant
context

Tenant/User A Tenant/User B Tenant/User N

Multi-tenant
Process Store

Deployment Bundle
A

Tenant
context

Tenant
context

Deployment Bundle
B

Tenant
context

Tenant
context

Deployment Bundle
N

Deployment Bundle A

Process Models

Service Interfaces

Deployment
Descriptor

...

Tenant
context

Tenant
context

Deployment Bundle B

Process Models

Service Interfaces

Deployment
Descriptor

...

Tenant
context

Tenant
context

Deployment Bundle N

Process Models

Service Interfaces

Deployment
Descriptor

...

Tenant
context

Tenant
context

Figure 4.4: Process Deployment with a multi-tenant SCE

SCE some deployment specific information for the process models of a bundle. For example,
the endpoint location of used external services or of the provided process services. A new
role-based Access Control layer validates if a tenant or user has the corresponding role or
access permission to deploy a new bundle. After that, the engine associates the Deployment
Bundle and all its contents with the tenant context and persists the bundle in a multi-tenant
aware Process Database. This enables the engine to evaluate if a tenant or user is allowed to
instantiate a process model or for example query information about process models over the
Management Interfaces of the engine (see Chapter 4.1). To loosen the one-to-one relationship
between a tenant or user and a process model it should be possible to define a so called
deployment style when deploying new bundles. This enables some kind of collaboration and
makes it possible that a tenant can deploy process models which can be used by other tenants
and their users. The SCE provider is also able to deploy some public process models for all
tenants he serves. The different deployment styles and their effects are described in detail in
Chapter 4.5.

45

4 Requirements and Concepts

4.4.2 Process Instantiation

Figure 4.5 shows the process instantiation behavior of a multi-tenant SCE. The colored
components mark extensions or adaptations to provide multi-tenancy. First of all, to uniquely
identify the tenant or user a message belongs to, all messages should be extended with a tenant
context. With the help of the tenant context, the SCE is then able to check if an incoming
request send to a process service is valid or not. The instantiation of a process model by a
message which contains a tenant context is referred to as “invocation under tenant context”.
Therefore the SCE compares the tenant context associated to the incoming request with the
tenant context which is associated to the process model stored in the Multi-tenant Process
Database. In other words the engine has to check if the sender of the request is the owner of
the process model (e.g. owner(ProcessModel1) = UserA?). If the tenant contexts are equal
the engine can forward the request to the service interface of the process model as shown
in Figure 4.5 for User A and B. If the tenant contexts are not equal the engine returns a
corresponding fault message to the requester as shown in Figure 4.5 for User N. The generated
new process instance is directly associated with the tenant context contained in the request.
This is necessary to enable the SCE later to authenticate calls to the Management Interfaces
for an instance, like suspending or terminating the instance. If a tenant has registered any
configuration data for the instantiated process model, these data is dynamically loaded from
the Configuration database and assigned to the instance. The runtime data of all process
instances is persisted in the Multi-tenant Instance Store.

4.4.3 Service Invocation

The invocation of engine internal services (process models) and external services is shown in
Figure 4.6. An instance of Process A invokes an external service and instantiates another
process model (Process B). As described in the previous section, a tenant context is used to
identify the tenant and user to whom a message belongs. For the invocation of services the
tenant context plays another important role. If the invoked service is also multi-tenant aware
like Process B, the tenant context is used to check if the referenced user has the permissions
to use the service or not. For that purpose, the tenant context must be forwarded by the
SCE to any invoked service whether it is multi-tenant or not. This is no problem because if
the invoked service is not multi-tenant aware it just ignores the tenant context send with the
request message. In both scenarios the service could respond with a fault message. The reason
for the fault response might be an internal exception of the service which is thrown to the
outside or a tenant context which references a user without the correct permissions to use the
service. For example, those fault messages can then be handled by the SCE with the fault
handling mechanisms of the underlying process modeling language (e.g. BPEL).

4.4.4 Correlation of Process Instances

The correlation of asynchronously communicating process instances shown in Figure 4.7 does
not change in case of enabling multi-tenancy. An instance of Process A (Instance A) creates a

46

4.4 Behavior of a Multi-tenant aware SCE and Process Models

(Role-based) Access Control

Tenant
context

Tenant
context

Tenant
context

Tenant
context

Tenant
context

Tenant
context

Tenant
context

Tenant
context

FaultFaultTenant
context

Tenant
context

Tenant
context

Tenant
context

Tenant/User A Tenant/User B Tenant/User N

Service Composition EngineService Composition Engine

...

Multi-tenant
Instance Store

{ } { }

owner(ProcessModel1) = UserA ?

true

owner(ProcessModel2) = UserB ?

true

owner(ProcessModel1) = UserN ?

Multi-tenant
Process Store

Configuration DB

ProcessInstance 1ProcessInstance 1 ProcessInstance 2ProcessInstance 2

C
o

n
fi

gu
ra

b
ili

ty

setConfigurationData

false

Tenant
context

Tenant
context

Request MessageRequest Message

Response MessageResponse Message

Receive MessageReceive Message

Send MessageSend Message
{ } Placeholder for any

process logic

Placeholder for any
process logic

Check access permissions

Figure 4.5: Process Instantiation with a multi-tenant SCE

new instance of Process B (Instance B) during the execution of the modeled Invoke activity by
sending a request message to the service interface of Process B. Instance A is suspended until
it receives a corresponding response of Instance B. After the execution of some process logic,
Instance B sends a response message back to Instance A and is also suspended until it receives
an additional message from Instance A. Right after that, Instance A executes some process
logic and then sends another message to Instance B. Since the message should be routed to the
same process instance as the first request message, a correlation context has to be attached to
the message. This correlation context is used by the SCE to identify the correct instance of
Process B (Instance B) to which the message should be forwarded. Instance B also attaches a
correlation context to enable the routing of the response message to Instance A. As described
in the section above, the tenant context will be forwarded in all message exchanges. The only
adaption might be the use of the tenant context to realize the correlation of messages between
instances by a SCE. But this would depend on the used SCE implementation.

47

4 Requirements and Concepts

Service Composition Engine

Tenant
context

Tenant
context

Tenant
context

Tenant
context

Tenant
context

Tenant
context

Tenant
context

Tenant
context

Tenant
context

Tenant
context

Process BProcess B

{ }
(R

o
le

-b
as

ed
)

A
cc

es
s

C
o

n
tr

o
l

Invoke

Process AProcess A

External (non)
multi-tenant
service

Request MessageRequest Message

Response MessageResponse Message

Service
Interface

Receive MessageReceive Message

Send MessageSend Message

Invoke Service

{ } Placeholder for any
process logic

Placeholder for any
process logic

Fault ResponseFault Response

Figure 4.6: (External) Service invocation with a multi-tenant SCE

4.5 Collaboration Aspects of a Multi-tenant SCE

Especially for the SimTech project (see chapter 1.1.1), where a variety of scientists are working
together to realize multi-scale, multi-physics and multi-domain simulations, collaboration is an
important aspect. Simple multi-tenancy realizes the isolation of resources between tenants. To
enable collaboration in a multi-tenant environment this isolation must be loosened in some areas.
The two Figures 4.8 and 4.9 illustrate the differences between “collaborative” multi-tenancy
on process model or process instance level. The main thing to enable collaboration between
tenants and their users is that access permissions for process models and instances must be
easily assignable across tenants’ boundaries. The possibility to dynamically define fine-grained
access permissions during the runtime of the SCE and its process instances would make the
collaboration more flexible but is outside of the scope of this thesis. Chapter 6 provides some
initial ideas how to enable the dynamic assignment of fine-grained access permissions on a
process model and process instance level.

48

4.5 Collaboration Aspects of a Multi-tenant SCE

Service Composition Engine

Tenant
context

Tenant
context

Tenant
context

Tenant
context

Tenant
context

Tenant
context

Tenant
context

Tenant
context

Correlation context

Correlation context

Tenant
context

Tenant
context

Tenant
context

Tenant
context

(R
o

le
-b

as
ed

)
A

cc
es

s
C

o
n

tr
o

l

Process BProcess B

{ }

{ }

Invoke

Process AProcess A

{ }

Request MessageRequest Message

Response MessageResponse Message

Receive MessageReceive Message

Send MessageSend Message

Invoke Service

{ } Placeholder for any
process logic

Placeholder for any
process logic

Figure 4.7: Correlation of process instances with a multi-tenant SCE

Deployment Styles to enable Collaboration

A first step to enable the collaborative work with process models is to provide a mechanism
to share them across tenant boundaries. Therefore, a process model is deployed with a
specific deployment style constant. The SCE uses this constant to select the level of equality
which should be used for the authentication of incoming requests. For example, the strictest
deployment style only authenticates requests with a tenant context fully equal to the one
which is associated to the process model. In contrast to that, the loosest deployment style
authenticates all incoming requests whether they specify a tenant context or not. In the
following three basic deployment style constants are described which provide different access
possibilities and influence the way the engine authenticates incoming requests.

49

4 Requirements and Concepts

Public Process models which are deployed under a Public deployment style do not specify
any access permissions. This means in contrast to the description in Chapter 4.4.1,
the corresponding Deployment Bundle is not associated with any tenant context. Any
incoming request send to the Service Interface of a public process model is forwarded
without any authentication. These process models can be used by any user of any
tenant without any restrictions. The fact that a process model is public means not
that the created instances of it are also accessible by any user. If a public process
model is instantiated under tenant context, the instance is directly associated with the
corresponding tenant context as described in Chapter 4.4.2. This secures all tenant-
specific instances and their data from any unauthorized entities. If a public process
model is instantiated without a specified tenant context, the instance is also public. In
case of that, everyone is able to manage these instances over the Management Interfaces
of the SCE. This deployment style enables for example the SCE provider to deploy a
bunch of process models which can be used by all of its tenants and may provide some
useful domain-specific functionality. It also provides backward compatibility because non
multi-tenant aware applications or services are able to send requests to public deployed
process models.

Tenant-private The tenant-private deployment style enables the deployment of process
models which can be used by all users of one tenant. The process models are deployed
as usual under tenant context. The SCE only forwards requests with a tenant context
which references the same tenant as the target process model. For example, if the
process model is deployed for tenant A only requests of users of tenant A are forwarded,
any other requests are rejected. The referenced user of the tenant context is irrelevant
because the users would not be compared by the engine to authenticate an incoming
request. Requests without a tenant context are also rejected. As described for the public
deployment style the created instances of a tenant-private model also belong to a single
entity – identified by the tenant context of the initial request.

User-private Process models which are deployed under a user-private deployment style are
only accessible by a single user. The process models are deployed as usual under tenant
context. The SCE only forwards requests with a tenant context which references the
same tenant and user as the target process model. Requests without a tenant context
are also rejected. As described for the public deployment style the created instances of a
user-private model also belong to a single entity – identified by the tenant context of the
initial request. This is the default deployment style and if no style constant is specified
during the deployment of a new process model, the engine behaves like for user-private
models.

Table 4.1 provides an overview of the three deployment styles and the behavior they determine.
Therefore for each deployment style all possible authentication scenarios are listed. This
includes request messages without a tenant context, with a tenant context where only the
tenantId matches or both the tenantId and the userId are equal. A “+” indicates that the
request message is forwarded and a “-” that it will be rejected by the SCE. Chapter 5.3.6
describes in detail how the deployment styles influence the authentication process of request
messages during the process instantiation.

50

4.5 Collaboration Aspects of a Multi-tenant SCE

Messages with
Deployment Style no tenant context a tenant context with matching

tenantId tenantId&userId

Public + + +
Tenant-private - + +
User-private - - +

Table 4.1: Overview of the three deployment styles

Collaborative Multi-tenancy

Figure 4.8 shows a simple collaborative multi-tenancy scenario which enables collaboration
on a process model level. Tenant 1 has deployed one tenant-private process model (Process
Model A) which can be instantiated by all users of the tenant (Users a and b). In contrast
to that, User b (blue user, see Fig. 4.8) has deployed a user-private process model (Process
Model B) which can only be instantiated by User b. The two deployed process models are
provided as services by the SCE and can be instantiated over a corresponding service call. The
multi-tenant SCE has to ensure that only tenants and users which have access permissions
are able to call the operations of the provided services. As an example, User b has started an
instance of both process models (Process Instances A2,b and B1,b) and User a (yellow user) is
only able to start an instance of Process Model A (Process Instance A1,a). All started process
instances are under the control of one specific user during their runtime.

Figure 4.9 shows a complex collaborative multi-tenancy scenario which additionally enables
collaboration on a process instance level. As a result, users (of different tenants) are able to
work together on the same process model or process instance. In this scenario an additional
tenant and user are introduced. User c (red user, see Fig. 4.9) belongs to Tenant 2. He is
for example a professional in Business Process Management (BPM) and perhaps a scientist
too. As a result User c is able to help other scientists if they have some problems to realize or
run their simulations by using BPM and the workflow technology. Tenant 2 provides a global
Process Model C. The global process model is accessible by all (other) tenants and their users
as described above. The three process models and their instances show a subset of a variety of
possible collaboration scenarios. The three different scenarios are described from left to right.
Process Model A illustrates a scenario where User b starts a new instance (Process Instance
A3,bc) which runs not as expected. The collaboration aspect enables User b to dynamically
assign (fine-grained) access rights for instance A3,bc to get help from a BPM professional like
User c. With corresponding access rights User c is now able to monitor the execution of the
instance or analyze stored event data and solve the execution problems. Another scenario
is shown by Process Model B. User b enables User c to instantiate Process Model B which
was originally deployed as a user-private process model of User b. Process instance C2,ab
shows another kind of collaboration. In this case User a and User b work together on the
same instance. For example, instance C2,ab is a multi-domain simulation where one part is
provided by User a and the other part comes from User b. Both users are able to monitor the

51

4 Requirements and Concepts

Tenant 1

Process
Model A

Process
Instance A1,a

Process
Instance A2,b

Process
Model B

Process
Instance B1,b

SCEMT

Process Model A
Service

Process Model B
Service

User b

Provides a Service

Service call

Process
Instance A1,a

Process Instance 1 of Process
Model A owned by User a

User a

Resources of
User a

Resources of
User b

UP

Tenant-private
Process Model

TP
User-private
Process Model

UP
Resources of
Tenant 1

TP

Figure 4.8: Example for a simple collaborative multi-tenancy scenario with a multi-tenant
SCE

execution or influence the instance behavior based on the access permissions they have. The
collaborative multi-tenancy on a process instance level is not realized in the context of this
diploma thesis. Chapter 6 provides some initial ideas how collaboration on a process instance
level can be realized.

52

4.6 Multi-tenancy Requirements

Tenant 1

Process
Model A

Process
Instance A1,a

Process
Instance A2,b

Process
Model B

Process
Instance B1,b

SCEMT

Process Model B
Service

User b

User a

Tenant 2

Process
Model C

Process
Instance C1,a

Process
Instance A3,bc

Process
Instance B2,c

Process
Instance C2,ab

User c

Process Model C
Service

Process Model A
Service

Provides a Service

Service call

Process
Instance A1,a

Process Instance 1 of Process
Model A owned by User a

Process Instance 3 of Process
Model A used in collaboration
by User b and c

Process
Instance A3,bc

Resources of
User a

Resources of
User b

Tenant-private
Process Model

TP
User-private
Process Model

UP

Resources of
Tenant 1

Public
Process Model

P

Resources of
Tenant 2

Resources of
User c

PUPTP

Figure 4.9: Example for a complex collaborative multi-tenancy scenario with a multi-tenant
SCE

4.6 Multi-tenancy Requirements

Based on the descriptions and the introduced requirements in the previous chapters, this
chapter provides a set of functional and non-functional requirements which should be fulfilled
to realize a multi-tenant SCE and process models.

53

4 Requirements and Concepts

4.6.1 Functional Requirements

Tenant awareness A Service Composition Engine (SCE) must be able to identify multiple
tenants and their associated resources (e.g. deployment bundles, process instances,
messages, event data). For example, a tenant-based identification and an access control
for tenants and their users must be supported.

Tenant-based deployment and configuration The SCE should provide tenant-based con-
figuration options for both the engine and the process models. Furthermore, the SCE
must enable the deployment of process models on a per-tenant basis.

Tenant-specific interfaces A set of customizable interfaces must be provided, which en-
able the tenant-based management of SCE resources, like process models, instances or
configuration data. For that, both GUIs and Web services interfaces should be provided.

Shared registries Since the SCE solution will be integrated into an environment with other
multi-tenant components demanding similar information, the SCE must work with a set
of shared registries which contain data about tenants/users, services and configurations.

Backward compatibility The SCE solution should be able to work with applications and
services which are not multi-tenant aware and conversely should be able to be used
seamlessly and transparently by such applications and services.

Collaboration The SCE solution should support collaborative work with provided process
models and process instances between different tenants and their users.

4.6.2 Non-functional Requirements

Tenant Isolation Tenants must be isolated on all layers of the SCE to prevent them from
gaining access to resources (e.g. data or computing resources) of other tenants.

Reusability & extensibility The multi-tenancy enabling mechanisms and the underlying
concepts should not be specific for one Service Composition Engine implementation or
depend on specific technologies. The defined mechanisms, concepts and the realized
components should therefore be extensible/adaptable and reusable in different Service
Composition Engines.

Transparent integration A tenant/user should be able to use the SCE in the same way,
whether it has been integrated into an ESB or not. For example, the deployment of new
process models on the SCE should be always handled with a single call. Any additional
operations should therefore be executed invisibly in the background.

Scalability To enable horizontal scalability (scale out) the SCE should be run in a stateless
fashion. Any tenant specific data (e.g. process models or configuration data) should
therefore be stored in a distributed store and only be buffered by the SCE. A load
balancing mechanism is then able to use the distributed store to dynamically create new
configured instances of the multi-tenant SCE, deploy the tenants process models and
thus serve new incoming requests of the tenant’s users in a highly flexible and transparent

54

4.7 Multi-tenant SCE Architectures

manner. The horizontal scalability is out of the scope of this diploma thesis, but the
underlying concept and its implementation is realized with scalability in mind.

4.7 Multi-tenant SCE Architectures

This section introduced two different architectures for the realization of a multi-tenant SCE. At
the end of this chapter one of these approaches is selected, which is then further elaborated in
Chapter 5 and prototypically implemented within the context of this thesis. The two different
extended architectures are based on the general SCE architecture shown in Figure 4.1.

Figure 4.10 shows one possible high-level architecture to enable multi-tenancy. This architecture
approach in the following is referenced as “Architecture A”. It contains a new Multi-tenancy
Enablement Layer (MT-Layer) which provides an intermediate layer between the Integration
Layer (Service interfaces) and the Runtime Layer with the internal logic. The new layer
contains a set of loosely coupled modules which provide the necessary functionality to enable
multi-tenancy. Therefore, some of the SCE components must be extended or adapted, for
example to enable the Configurability component of the MT-Layer to configure the SCE. In
the following all new or changed components of the general SCE architecture – which are
marked green in Figure 4.10 – are described. Since the descriptions are based on an abstract
SCE architecture, the SCE components which have to be changed vary based on the used SCE
implementation.

The Message Exchange Processor must be extended to enable tenant-aware communication.
This means the tenant context of all incoming messages should be forwarded to the underlying
layers. On the other side, each outgoing message has to be associated with the tenant context
it belongs to. In addition to that, the Model and Instance Database should be extended to
provide Data Isolation and data privacy for the tenant-specific data. Therefore one of the
Data Isolation approaches introduces in Chapter 3.3.1 can be used. The Application Layer
must be adapted to support tenant-based configurations of the SCE. To enable the correlation
of tenant-aware message exchanges and provide Communication Isolation, the Correlator
has to be extended. The management of tenants and their users is realized by an external
Tenant Registry which should be connected to the MT-Layer. The external Configuration
Registry provides the tenant-based configuration data to the SCE and is also connected to
the MT-Layer. The management of the configuration data can be realized by an external
application or through the extension of the SCE Management Interfaces and the Configurability
module of the MT-Layer.

The MT-Layer itself contains a set of modules where each module complies to a different
requirement to enable a multi-tenant SCE. The Security module contains all security related
functionality and enables Communication Isolation, like the authentication of incoming mes-
sages to process models or the Management Interfaces. Furthermore, it authenticates all calls
to the Management Interfaces and provides with that Administration Isolation. It may also
provide some encryption and decryption functionality, for example to secure the stored process
models from any direct access (e.g. by the SCE provider). The Configurability module handles
the management of tenant-based configurations. For example, on process instantiation it

55

4 Requirements and Concepts

Multi-tenant Service Composition Engine

Integration Layer

Data Layer

Multi-tenant
Model

Database

Runtime Layer

Multi-tenant
Correlator

Navigator ...

Multi-tenant
Message Exchange

Processor
Service Interfaces Management Interfaces

Process/Instance Manager

...

Multi-tenant
Runtime
Database

Multi-tenancy Enablement Layer

Security Configurability Scalability Performance Isolation ...

Activity
Runtime

...

Tenant
Registry

Configuration
Registry

External RegistriesExternal Registries

...

New
component

Adapted or
extended
component

Figure 4.10: Possible architecture of a multi-tenant SCE with an integrated multi-tenancy
enablement layer (Architecture A)

collects all necessary configuration data referenced by the calling tenant from the Configuration
Registry and sets the data in the corresponding components of the SCE. The Scalability module
provides functionality to enable scaling out the SCE and the Performance Isolation module
handles the performance which the SCE provides to each of the tenants. These two modules
are out of the scope of this diploma thesis and will not be further described in Chapter 5. The
MT-Layer is designed extensible and can therefore be extended with additional modules to
provide other multi-tenancy related functionality to the SCE in the future.

Now we have a look on some of the advantages and implications of Architecture A.

Advantages:

• The SCE is itself multi-tenant aware and does not need any external application or
service.

• Any SCE component or internal data can be directly (re)used for the realization of the
MT-Layer.

Implications:

• Integration of multi-tenancy enablement functionality into the SCE makes the result
implementation-specific.

56

4.7 Multi-tenant SCE Architectures

Multi-tenant Service Composition Engine

Integration Layer

Runtime Layer

Navigator ...

Service Interfaces Configuration Interface

Multi-tenant
Process/Instance Manager

...
Multi-tenant

Message Exchange
Processor

SCE Multi-tenancy Manager

Presentation Layer

Data Access Layer

ProcessRegistry

Application Layer

Web Service API

Security Configurability Scalability Performance Isolation ...

...

...

Messaging API

Configuration
Manager

Activity
Runtime

Data Layer

Multi-tenant
Model

Database

Multi-tenant
Runtime
Database

...

Tenant
Registry

Configuration
Registry

External RegistriesExternal Registries
...

External Registry
Clients

Multi-tenant
Correlator

SCE Management
Interfaces

Process
Service
Interface(s)

Management Interfaces

New
component

Adapted or
extended
component

Figure 4.11: Possible architecture of a multi-tenant SCE with an outsourced multi-tenancy
enablement layer (Architecture B)

• MT-Layer has to be (re-)designed and (re-)implemented for each SCE implementation.

• Realization of Scalability inside the SCE implementation is more complex as with an
external component (e.g. a Load Balancer).

• Any extension or change of the MT-Layer is a change of the SCE implementation.

Figure 4.11 shows the second architecture, which in the following is referenced as “Architecture
B”. In contrast to Architecture A, as much as possible of the multi-tenancy functionality has
been outsourced to a standalone application, the SCE Multi-tenancy Manager.

57

4 Requirements and Concepts

The SCE Multi-tenancy Manager (SCE-MT Manager) acts as the Multi-tenancy Enablement
Layer introduced in Architecture A. The main difference is, that the multi-tenancy functionality
is not bound to the SCE implementation. The SCE implementation must only be adapted to
integrate it with the SCE-MT Manager. This provides a much easier approach because the
SCE-MT Manager has to be realized only once and is then able to be used by any adapted SCE
implementation. The SCE-MT Manager acts like a surrounding container for a set of maybe
different SCE implementations. All requests send to one of the SCE interfaces are consumed
by the SCE-MT Manager to authenticate and reroute them to one of the SCE interfaces.
This is necessary because the SCE-MT Manager provides the multi-tenancy functionality
and therefore needs to act as an intermediate layer between the outside and the connected
SCE instances. For example, the SCE-MT Manager may provide the SCE interfaces over a
Middleware Container like an ESB to the outside. The authentication of all incoming requests
send to the Process Service Interfaces can then be handled over the ESB message routing
mechanisms. On successful authentication the message is forwarded to the corresponding
SCE service and in any other case the message is directly rejected. Messages send to the
SCE Management Interfaces are just forwarded to the SCE because the authentication of
management requests requires some SCE-internal data like which instances belong to a tenant.
The SCE-MT Manager consists of a three layer architecture – Presentation Layer, Application
Layer and Data Access Layer.

The Presentation Layer provides a Web Service and a Messaging Application Programming
Interface (API) which provide interfaces to communicate with the manager and the interfaces
of all connected SCE instances. For example, a SCE is able to register itself at the manager
by sending a message to the Messaging API or calling a Web Service operation. The SCE-MT
Manager also uses this APIs to communicate with all registered SCE instances, for example to
send configuration data to a SCE if a new tenant is registered at the Tenant Registry.

The Data Access Layer provides a new Process Registry which is used to independently store
the Deployment Bundles of all tenants. By default a Deployment Bundle and the contained
process models are stored by a SCE instance. This might become a bottleneck in case of
scalability and availability. If a new SCE instance is created to scale out, first of all the process
models must be extracted from the SCE instance they are currently deployed, to be able to
deploy them on the new SCE instance. A similar problem emerges if an SCE instance becomes
unavailable as a result of a server outage. If the process models are not stored independently
from the SCE instance by which they are executed, there is no chance to handle new incoming
requests send to these models. Therefore, the Process Registry is realized to store process
models independent of any SCE instance. This enables the dynamic deployment of one or
more process models on a dynamic changeable set of SCE instances. If one SCE instance
becomes unavailable or in terms of scalability a new SCE instance should be created, the
SCE-MT Manager is able to deploy any process model stored in the Process Registry to the
new SCE instance. The Data Access Layer also contains a set of database clients (External
Registry Clients) which are used to access external registries, like the Tenant Registry or the
Configuration Registry.

The Application Layer contains a set of modules where each module complies to a different
requirement to provide multi-tenancy to all integrated SCE implementations. The Security

58

4.7 Multi-tenant SCE Architectures

module contains all security related functionality and enables Communication Isolation, like the
already described authentication of incoming messages. Furthermore, it realizes Administration
Isolation by the authentication of any access to the Configuration Registry or the Process
Registry. It may also provide some encryption and decryption functionality, for example to
secure all stored process models in the Process Registry from any unintended direct access. The
Configurability module handles the management of tenant-based configurations. For example,
on process instantiation it collects all necessary configuration data referenced by the calling
tenant from the Configuration Registry and sends the data to the Configuration Interface
of the corresponding SCE instance. The Scalability module provides functionality to enable
scaling out like the dynamic creation of new SCE instances described above and maybe can
provide some kind of load balancing mechanism. The Performance Isolation module provides
some functionality to analyze the performance of all registered SCE instances (e.g. based on
auditing data) and maybe reject new incoming requests of a tenant if he exceeds his quotas.
These two modules are out of the scope of this diploma thesis and will not be further described
in Chapter 5. The SCE-MT Manager is designed extensible and can therefore be extended
with additional modules to provide other multi-tenancy related functionality in the future.

As described for Architecture A the databases (Model and Instance Database), the Message
Exchange Processor and the Correlator of the SCE implementation must be adapted to
become multi-tenant aware. Furthermore, the Process/Instance Manager component has to be
extended to realize the authentication of incoming calls to the Management Interfaces. This
has to be done inside the SCE because the authentication depends on context-related data like
the instance or process model for which a management operation is invoked. It may be also
possible to outsource this to the SCE-MT Manager, but then all necessary data to handle the
authentication has to be synchronized between the SCE instance and the SCE-MT Manager.
Another problem is, that this approach might become very complex if scalability (multiple
SCE instances managed by one SCE-MT Manager) and fine-grained access permissions come
into play in the future. Since the advantages of this approach are much lower as its effort,
the authentication of requests send to the Management Interfaces are handled by the SCE
implementation itself. The new Configuration Manager component provides the functionality
to configure the SCE and its process models on a tenant basis. It contains all implementation
specific code and is provided over a new Configuration Interface to the outside.

Now we have a look on some of the advantages and implications of Architecture B.

Advantages:

• The multi-tenancy functionality is separated from the SCE implementation as much as
possible. As a result the SCE-MT Manager can be used in combination with different
SCE implementations.

• New multi-tenancy functionality can be integrated into the SCE-MT Manager without
any changes to the SCE implementation.

• Parts of a maybe complex access control are outsourced to the SCE-MT Manager.

• Scalability can be efficiently realized apart from the SCE implementation.

59

4 Requirements and Concepts

• The powerful messaging and integration functionality of an ESB can be used to provide
parts of the SCE-MT Manager functionality (discussed in the next section).

• SCEMT without the SCE-MT Manager can also be used as “non multi-tenant” workflow
engine (in some scenarios certainly useful, e.g. for testing or if only a few users of one
department work with it).

Implications:

• The SCE is only multi-tenant aware in combination with the SCE-MT Manager.

• The design and implementation of the SCE-MT Manager application is more complex
than just realizing everything inside the SCE implementation.

• Routing of messages through the SCE-MT Manager may reduce the overall performance.

Based on the advantages of Architecture B and the requirement to integrate the solution of
this thesis in a multi-tenant aware ESB, this architecture is used as the basis for the realization
of a multi-tenant SCE (SCEMT) and is further referenced as SCEMT Architecture. The next
sections describe how SCEMT can be integrated into an ESB and describe the advantages and
implications of the different integration possibilities.

4.8 Integration of SCEMT into an ESB

As a result of this thesis, a multi-tenant SCE should be realized and integrated in an existing
multi-tenant ESB (ESBMT). Therefore, this section provides two different ways how a SCE
can be integrated into an ESB over a JBI container. One solution is to integrate applications
over one or more JBI Binding Components. The other solution is to integrate an application
as a JBI Service Engine into an ESB. This section describes these two possibilities and their
advantages or implications based on the SCEMT architecture defined in the previous section.

4.8.1 Integration of SCEMT over Binding Components

As described in Chapter 2.6, (external hosted) services can be integrated with the ESB over
Binding Components. A Binding Component (BC) enables the definition of consumer or
provider endpoints for a specific protocol (e.g, HTTP or JMS). A consumer endpoint is used
by the ESB to reroute incoming messages to an ESB-internal hosted service (Service Engine)
or another provider endpoint which consumes the incoming messages. A provider endpoint
is used by the ESB to send messages to the correct (external or internal) service interface
which processes the messages. Figure 4.12 shows this solution to integrate an application or
service to the ESB. To integrate the SCE over Binding Components a provider endpoint and a
corresponding consumer endpoint is registered at the ESB for all service interfaces of the SCE.
If a message is sent to one of these endpoints it is rerouted to the correct SCE service by the
ESB as shown in Figure 4.12.

60

4.8 Integration of SCEMT into an ESB

ESBESB

SCE

JBI Container

JMS-BC ...

Normalized Message RouterNormalized Message Router

Standardised Interfaces for Binding Components

Standardised Interfaces for Service Engines

Process
Service
Interface(s)

Process
Service
Interface(s)

HTTP-BC

WS

HTTP

WS

HTTP

WS

HTTP

WS

HTTP

WS

HTTP

WS

HTTP

WS

HTTP

WS

HTTP

WS

HTTP

WS

HTTP

WS

HTTP

WS

HTTP

HTTP
Consumer
Endpoint

HTTP
Provider
Endpoint

SCE Management
Interfaces

Process
Service
Interface(s)

Service
Engine(s)

...

SCE Management
Interfaces

Figure 4.12: Integration of a SCE over Binding Components

Figure 4.13 shows how the integration of SCEMT looks like. The SCE-MT Manager is integrated
into the ESB as Service Engine to be able to use the ESB functionality inside the manager.
All SCE Service Interfaces are provided by the SCE-MT Manager to the outside over a set of
registered HTTP consumer endpoints. The SCE-MT Manager consumes all incoming messages
send to these endpoints as described above. All messages send to the Process Service endpoints
are authenticated and then forwarded to the correct HTTP provider endpoint. In case of
that, all valid requests are send to the correct SCE Process Interfaces. Messages send to
the Management Interfaces endpoints are just passed through the SCE-MT Manager which
reroutes them to the correct SCE provider endpoint without any authentication.

The advantages of integrating SCEMT over Binding Components are

• A SCE can be integrated over its existing interfaces into the ESB without any changes
to the underlying implementation.

61

4 Requirements and Concepts

ESBESB

SCEMT

JBI Container

JMS-BC ...

Normalized Message RouterNormalized Message Router

Standardised Interfaces for Binding Components

Standardised Interfaces for Service Engines

Process
Service
Interface(s)

Process
Service
Interface(s)

HTTP-BC

WS

HTTP

WS

HTTP

WS

HTTP

WS

HTTP

WS

HTTP

WS

HTTP

WS

HTTP

WS

HTTP

WS

HTTP

WS

HTTP

HTTP
Consumer
Endpoint

HTTP
Provider
Endpoint

SCE Management
Interfaces

Process
Service
Interface(s)

...SCE-MT
Manager

SCE Management
Interfaces

Figure 4.13: Integration of SCEMT over Binding Components

• Message Authentication and Routing can be realized most efficient with the ESB.

• Parts of the SCE-MT Manager functionality can be implemented by using the ESB, e.g.
using a set of rule-based message routings or a Context-based Message Router to realize
message authentication.

The integration approach has the following implications:

• Messaging overhead: Every message that is forwarded to the SCE has to be normalized
and de-normalized again.

• Management overhead: For each of the Process Services provided by the SCE, a new
consumer and provider endpoint must be registered at the ESB by the SCE-MT Manager.

• Realization of the access control over the ESB allows unauthorized (direct) calls to the
external provided SCE Service Interfaces.

62

4.8 Integration of SCEMT into an ESB

ESB

JBI Container

JMS-BC ...

Normalized Message RouterNormalized Message Router

Standardised Interfaces for Binding Components

Standardised Interfaces for Service Engines

HTTP-BC

WS

HTTP

WS

HTTP

WS

HTTP

WS

HTTP

SCE

SCE Management
Interfaces

Process
Service
Interface(s)

Service
Engine(s)

WS

HTTP

HTTP
Consumer
Endpoint

Figure 4.14: Integration of a SCE as Service Engine

4.8.2 Integration of SCEMT as Service Engine

The second approach is to integrate the SCE as a Service Engine (SE) into the ESB. This
provides some advantages as described in Chapter 2.6. For example, that the SCE can
communicate with other SEs directly over the Normalized Message Router without any
message (de-)normalization as shown in Figure 4.14. The Process Service and the SCE
Management Interfaces are provided over the JBI HTTP BC to the outside. For each of the
services a HTTP Consumer Endpoint is deployed to the BC which routes the messages over
the NMR to the SCE. This contains the normalization of all protocol-specific request messages
into the NMF to route them over the NMR. As well as the denormalization of all response
messages provided in the NMF by the NMR back into protocol-specific response messages.
As a result that the SCE directly communicates over NMs, it can exchange messages with all
components plugged to the NMR without the need of (de-)normalizing those messages.

63

4 Requirements and Concepts

ESB

JBI Container

JMS-BC ...

Normalized Message RouterNormalized Message Router

Standardised Interfaces for Binding Components

Standardised Interfaces for Service Engines

HTTP-BC

WS

HTTP

WS

HTTP

WS

HTTP

WS

HTTP

SCEMT

SCE Management
Interfaces

Process
Service
Interface(s)

SCE-MT
Manager

WS

HTTP

HTTP
Consumer
Endpoint

Figure 4.15: Integration of SCEMT as Service Engine

Figure 4.15 shows how the integration of SCEMT looks like. The SCE-MT Manager is again
integrated as Service Engine. All SCE Service Interfaces are provided by the SCE-MT Manager
to the outside over a set of registered HTTP consumer endpoints. The SCE-MT Manager
consumes all incoming messages send to these endpoints. All messages send to the Process
Service endpoints are authenticated and then forwarded over the Normalized Message Router
(NMR) to the correct SCE Service Interface. In case of that, all valid requests are send to the
correct SCE Process Interfaces. Messages send to the Management Interfaces endpoints are
just passed through the SCE-MT Manager which reroutes them over the NMR to the correct
SCE Management Interface without any authentication.

Advantages:

• The SCE is available, if the ESB is available.

• Message Authentication and Routing can be realized most efficient with the ESB.

• Existing components and functionality of the ESB can be (re)used and/or extended.

64

4.8 Integration of SCEMT into an ESB

• Parts of the SCE-MT Manager functionality can be implemented in a flexible manner
by using the ESB, e.g. registering a set of rule-based message routings or define a
Context-based Message Router to realize message authentication.

• Messaging infrastructure of the ESB can be used to realize an asynchronous and reliable
communication between one SCE-MT Manager and a set of SCEMT instances.

• SCE-MT Manager and all connected SCEMT instances directly communicate over Nor-
malized Messages, no normalization and de-normalization is required.

Implications:

• Setup and administration of an ESB makes infrastructure a bit more complicated.

• To integrate the SCE as a Service Engine into the ESB the underlying implementation
maybe has to be changed.

65

5 Implementation

This chapter describes how the specified SCEMT architecture can be realized with the SWfMS
and how the resulting components will be integrated with ESBMT and JBIMulti2. Furthermore,
the most important procedures will be specified in detail, like the deployment of process models
or the registration of configuration data. First of all the overall architecture of the whole
system is introduced as an entry point for the detailed descriptions of the components and
their collaboration.

5.1 Overall Architecture of the Realization Approach

Figure 5.1 shows the high-level architecture of all realized, extended and integrated components
to provide a multi-tenant SCE as a JBI Service Engine. These components are the SCE-
MT Manager, a multi-tenancy enabled SCE implementation (SWfMSMT), the ESBMT, the
JBIMulti2 application and a set of databases.

Muhler realizes the JBIMulti2 application which provides an administration and management
interface with authentication and authorization for ESBMT [Muh12]. Since the SCE-MT
Manager also needs a secure administration and management interface, for example to register
SCE configuration data, the JBIMulti2 application is therefore reused and extended in the
scope of this diploma thesis. As a result the JBIMulti2 application additionally communicates
with the SCE-MT Manager and not only with the JMSManagementService as in the original
setup. The set of registries is also extended with a new EventRegistry. This registry is used
to store all event messages emitted by any SWfMS instance in a tenant-isolated manner.
The event data is stored in a separate database because the information provided by the
events could be used in various ways in the future. For example, to analyze the resource
consumption or overall performance of the execution of a process model as a basis for the
realization of Performance Isolation (see Chapter 3.3.4). Another possible use of the event data
could be some kind of Complex Event Processing, like for the realization of Business Activity
Monitoring [EB09]. The existing ConfigurationRegistry and ServiceRegistry are extended to
store some new SCE and process model related data. The registries are also used to integrate
the SCE-MT Manager with the JBIMulti2 application without having any duplicated data
or the need to synchronize data between two separated sets of databases. This is important
because the SCE-MT Manager writes some data to the registries which are used by JBIMulti2
to respond to user requests and vice versa the SCE-MT Manager needs access to the data
which is inserted to the registries by JBIMulti2. For example, the SCE-MT Manager needs
access to SCE configuration data of a tenant which was registered over JBIMulti2. JBIMulti2
needs therefore access to the event data stored by SCE-MT Manager to provide users a list

67

5 Implementation

ESBMT (Apache ServiceMix)

OSGi
JBI Environment

SCE-MT Manager
OSGi Bundle

HTTP-MT JMS-MT ...

Camel-MT

Normalized Message RouterNormalized Message Router

Standardised Interfaces for Binding Components

Standardised Interfaces for Service Engines

SWfMSMT

JMSManagementService
OSGi Bundle

(ESBMT)

PostgreSQLPostgreSQL

TenantRegistry Config.Registry

ServiceRegistryEventRegistry

JBIMulti2

Message-based Communication Database Connection

Figure 5.1: Overall architecture of ESBMT, JBIMulti2 and the SCEMT realization

of their running process instances over its Web Service API. As a result, JBIMulti2 and the
SCE-MT Manager write and read data to and from the shared registries without the need to
send the data to each other. The only required communication between JBIMulti2 and the
SCE-MT Manager consists of sending status updates which are just simple event messages to
inform the SCE-MT Manager that something has changed in the registries. For example if a
new tenant is registered at JBIMulti2, the SCE-MT Manager has to create a new topic for the
tenant’s event data and store the endpoint of the topic in the ConfigurationRegistry. The new
SCE administration functionalities and the status forwarding of JBIMulti2 are described in
detail in Section 5.3.3. The new or extended database schemas of the different registries are
described in detail in Section 5.2. The extended architecture of the JBIMulti2 application is
described in Section 5.7.

The SCE-MT Manager is realized as an OSGi bundle and is installed to the underlying OSGi
platform on which Apache ServiceMix is built on. The SCE-MT Manager is realized with
scalability in mind and therefore provides a management layer for a set of SCE instances.
Therefore, a tenant does not need to know on which SCE instance(s) its process models are
deployed or on which SCE instance the corresponding process instances are executed. Also the

68

5.2 Database Schemas

messaging infrastructure of all SWfMSMT instances is managed which are registered to the
SCE-MT Manager. The messaging infrastructure contains an event queue and a management
queue. The event queue is required to securely route the event messages of the execution of
a process instance to the correct tenant. The management queue is used to receive engine
management messages like for the registration of process breakpoints. As already mentioned
the SCE-MT Manager cooperates therefore with JBIMulti2 and also uses the powerful message
routing functionality of the ESB by the installation of a set of message routes. Furthermore,
the SCE-MT Manager is responsible for the tenant-isolated storage of all event messages in
the new EventRegistry. The architecture of the SCE-MT Manager realized in the scope of this
diploma thesis is described in Section 5.6. The interaction between the SCE-MT Manager,
ESBMT and SWfMSMT is described in Section 5.3.

As mentioned previously, the SWfMSMT workflow engine is integrated into the JBI environment
as a Service Engine. SWfMS is therefore adapted based on the SCEMT Architecture described
in Chapter 4.7. The resulting architecture which will be implemented in the scope of this thesis
is described in detail in Section 5.4. The realized SWfMSMT implementation will initially
provide two configuration options which are described in Section 5.5.

5.2 Database Schemas

This section provides the database schemas of the shared registries used by JBIMulti2 and
the SCE-MT Manager. The schema of the TenantRegistry is not adapted and therefore will
not be explained in this thesis. Interested readers can find it in the diploma thesis of Muhler
[Muh12]. Furthermore, only the adaptations and new components of the schemas introduced
by Muhler are described in this section. Muhler uses the (Min, Max) Notation defined by
Abrial (see [Abr74]) to model cardinality constraints for relations between entities. A (min,
max) constraint defines how often an entity participates in a relation and not the cardinality
of the entities. Therefore, the constraints must be interchanged while reading a relation. For
example, the relation [ProcessModel]-(0,n)-has-(1,1)-[ProcessInstance] defines that a process
model has zero to infinitely many process instances and a process instance belongs to exactly
one process model.

Figure 5.2 shows the extended database schema of the ServiceRegistry. The ServiceAssembly
entity type is extended with a new type and deploymentStyle attribute which are marked
yellow in the figure. The type is used to be able to identify Process Service Assemblies (PSA)
as a special kind of Service Assemblies (SA). The deploymentStyle attribute holds one of the
deployment style constants (Public, Tenant-private or User-private) defined in Chapter 4.5.
The JBIMulti2 application is extended to set these two attributes if a PSA is deployed over a
new deployProcessServiceAssembly() Web Service (WS) operation. With the help of the type
information, the SCE-MT Manager is able to identify all SAs which contain process models.
The deployment style constant is used during the authentication of requests send to a process
model HTTP endpoint (see Sect. 5.3.6).

Figure 5.3 shows the extended database schema of the ConfigurationRegistry where all new
elements are marked yellow. The SCE entity type represents a registered SCE instance and is

69

5 Implementation

ServiceAssembly

zipFile

userId tenantId SAName

type

ServiceInterface

Service

implements

(1,n)

(1,n)

XMLNamespace interfaceName

wsdlFile

userId

tenantId

serviceName

deploymentStyle

Figure 5.2: Extended entity-relationship diagram of the Service Registry using (Min,Max)
Notation, cf. [Muh12]

defined as a specialization of the JBIComponent entity type. This is required because the SCE-
MT Manager has to store additional information for each registered SCE instance. The key
attribute sceInstanceId is used to uniquely identify a SCE instance and to associate data which
belongs to this instance. For example, this makes it possible to store by which SCE instance a
specific process instance is executed. Furthermore, the sceInstanceId is used as a credential for
the authentication of connections and message exchanges between a SCE instance and the SCE-
MT Manager (see Section 5.3.2). The managementServiceEndpoint attribute holds the HTTP
address of the Management WS of a SCE instance. This HTTP address is used by the SCE-MT
Manager to install a corresponding message route at the ESB which is described in Section 5.3.8.
The attributes eventQueueEndpoint and managementQueueEndpoint hold the JMS endpoint
addresses of the corresponding SWfMS Message Queues. These two addresses are also used by
the SCE-MTManager to install message routes at the ESB which is described in detail in Section
5.3.1). The status attribute holds the current status of the SCE instance, like if it is available
to process requests or is shutdown or maybe in a maintenance mode. The SCEConfiguration
entity type represents the tenant-based configuration of one or more SCE instances (see Fig.
5.3). To isolate the configuration data of different tenants, the SCEConfiguration entity type
has a tenantId key attribute. The configurationId key attribute is used to uniquely identify a
configuration and can be used in the future to select one configuration out of a set of maybe
multiple interchangeable configuration sets specified by a tenant. A SCEConfiguration entity
contains a collection of SCEConfigurationEntry entities. These are defined as weak entities
because if a SCEConfiguration is deleted all contained SCEConfigurationEntry entities should
be also deleted from the database. To provide extensibility for future versions which support
more or other SCE configuration options, the ExtensionBundle entity type is defined as a

70

5.2 Database Schemas

SCEConfigurationSCE

sceInstanceId

eventQueueEndpoint

managementQueueEndpoint

tenantId

JBIContainer JBIComponent

JBICluster

contains

(1,1)

(1,n)

name

name

contains
(0,n) (1,n)

zipFile

name

date

installedBy
uses

(0,n)

ServiceUnitQuota
(1,1)

TenantRef

(0,n)
tenantId

tenantIdamount id

uses
(0,n) (1,1)

ISA

ServiceUnitContingent

partitions

(0,n)

(1,1)

nametenantId

amount

ServiceAssemblyRef

uses

(0,n)

(1,n)

userId

tenantId

SAName

date

ServiceRegistrationQuota

uses
(1,1)

(1,1)tenantId

amount

ServiceRef

ServiceRegistrationContingent

partitions

(0,n)

(1,1)

name
tenantId

amount

uses

(1,1)

(0,n)

userId

tenantId
serviceName

date

ProcessModelRef
modelId

userId

tenantId

has
(0,n) (1,n)

(1,1)

(0,n)

ProcessConfiguration

has

(1,n) (1,1)

configurationId

contains SCEConfigurationEntry

ISA

ExtensionBundle

tenantId

bundleId

jarFile

runtimeClassName

validationClassName

(1,n)

(1,1)
contains ProcessConfigurationEntry

ISA

RuntimeValue

elementValueelementXPath

userId

tenantId

tenantId
userId

managementServiceEndpoint

status

Figure 5.3: Extended entity-relationship diagram of the Configuration Registry using
(Min,Max) Notation, cf. [Muh12]

specialization of a SCEConfigurationEntry. The ExtensionBundle entity type provides the
tenant-aware registration of Extension Bundles (see Sect. 5.5). The tenantId key attribute is
used again to specify the tenant to which the configuration entry belongs. The bundleId key
attribute is an unique identifier for a ExtensionBundle entity type. The runtimeClassName,
validationClassName and jarFile attribute contain the required data which is used by SWfMSMT

for the installation of the bundle to the engine (see Sect. 5.5).

The ProcessModelRef entity type is used to reference a ProcessModel entity stored in the
EventRegistry shown in Figure 5.4. The key attributes tenantId and userId enable the tenant-
isolated storage and the modelId key attribute uniquely identifies a process model. The storage
of process model configuration data is handled the same way as for SCE configuration data.
The ProcessConfiguration entity type has an additional userId key attribute because also users
and not only tenants are able to specify configuration data for a process model. It contains
a collection of ProcessConfigurationEntry entities which again have a tenantId and userId

71

5 Implementation

ProcessModel

modelId

modelServiceEndpoint

modelQName

deployed_to
(0,n)

(1,n)

userId

tenantId

SCERef

sceInstanceId

ProcessInstance has

(0,n)

(1,1)

executes

(0,n)

(1,1)

instanceId

userId

tenantId

state

timestamp

Event

belongs_to

(0,n)

(1,1)
userId

tenantId

eventId

event_type message

timing

element_xpath

state

Figure 5.4: New entity-relationship diagram of the Event Registry using (Min,Max) Notation

attribute to enable data isolation and are realized in an extensible fashion by the use of special-
ization. The RuntimeValue entity type is a specialization of the ProcessConfigurationEntry and
enables the storage of process model configuration data. The elementXPath attribute holds
the XPath expression of the target element of a process model. For example, if a runtime value
for the third variable of the process model should be registered, the XPath expression of the
target element looks like this: /process/variables[1]/variable[3]. The elementValue attribute
holds the data which should be assigned to the target element in terms of configuration. The
data can be a simple literal value (e.g. a constant) or any structured XML data (e.g. the
endpoint data of a partner link).

Figure 5.4 shows the database schema of the new EventRegistry. To enable Data Isolation
between tenants and their users the Shared Schemas approach described by Chong et al.
(see Chapt. 3.3.1) is realized by adding a tenantId and userId key attribute to all defined
entity types. The SCERef entity type is used to reference a SCE entity contained in the
ConfigurationRegistry. The unique sceInstanceId attribute is used therefore to reference a SCE

72

5.3 Interaction of JBIMulti2, ESBMT, SCE-MT Manager and SWfMSMT

instance. If a new process model is deployed to a SCE instance, a new ProcessModel entity
is created and associated with the SCE instance over a SCERef entity. The ProcessModel
entity type has a globally unique modelId key attribute which is used to identify a process
model. The modelQName attribute holds the qualified name of the process model and the
modelServiceEndpoint attribute specifies the endpoint address of the process model service
(e.g. the HTTP address of the process model WS). The ProcessInstance entity type represents
a created process instance of a process model. Therefore it is associated with its process model
so that the process instance knows its model and vice versa a process model knows all of its
instances. The ProcessInstance entity is also associated to an SCERef entity to identify the
SCE instance on which a process instance is executed. This is important to enable scalability
in the future if process instances of one process model are executed on more than one SCE
instance. Then the SCE-MT Manager and the ESB have to know which SCE instance executes
which process instance to be able to route management requests to the correct SCE instance.
A ProcessInstance entity type has a unique instanceId key attribute, a state and a timestamp
attribute. The state attribute holds the current state of the process instance, for example
“executing”, “completed” or “suspended”. The timestamp attribute contains a timestamp when
the process instance was started. Each ProcessInstance entity is associated with a collection
of Event entities. The Event entity type has a eventId key attribute to uniquely identify an
event. The event-type attribute holds the type of the event, for example “Activity_Completed”
or “Loop_Condition_Evaluated”. The message attribute is stored as a Binary Large Object
(BLOB) and contains a serialized copy of the event message to which the event belongs. The
timing attribute holds a timestamp when the event was emitted by a SCE instance. The
element_xpath attribute references the element of a process model which is the source of the
event. The state attribute holds the current runtime state of the element which is referenced by
the event. The runtime states are based on the BPEL 2.0 Event Model defined by Steinmetz.
Therefore additional information can be found in his diploma thesis [Ste08].

5.3 Interaction of JBIMulti2, ESBMT, SCE-MT Manager and
SWfMSMT

This section provides some detailed descriptions for the most important interaction scenarios
between all introduced components, like the deployment of new process models, the authen-
tication of the instantiation of a process model or the routing of event messages by the
ESB.

5.3.1 Overall Messaging Infrastructure

Figure 5.5 shows the overall messaging infrastructure of ESBMT with installed SCE-MT Man-
ager. Sending management messages from a JBIMulti2 application to one or more subscribed
JMSManagementServices is realized over the Management Messages.topic as described in
[Muh12, Sáe13]. If the processing of a management message in a JMSManagementService
causes an exception, the JMSManagementService sends a corresponding fault message to the

73

5 Implementation

ESBMT
with SCE-MT Manager

SCE-MT Management Queue

Global ODE Management Queue

Global
Event
Topic

Tenant A

...

User 1

...

QueueQueue

Topic

Point-to-point
channel

Publish-subscribe
channel

Message
Sender

Queue
Message
Receiver Authentication

Message transport direction

Management
Messages.topic

Unprocessable Messages.queue

Management Queue

Event Queue
SWfMSMT

Management Queue

Event Queue
SWfMSMT

Management Queue

Event Queue
SWfMSMT

ESB-internal routing

Figure 5.5: Messaging infrastructure of ESBMT with installed SCE-MT Manager

Unprocessable Message.queue. To send status messages to a SCE-MT Manager, JBIMulti2
is connected to the SCE-MT Management Queue. The forwarding of this status messages
from JBIMulti2 to a SCE-MT Manager is described in Section 5.3.3. These three channels
provide the communication between JBIMulti2 and the components installed to the ESB
(JMSManagementService and SCE-MT Manager).

The Global ODE Management Queue is provided by the SCE-MT Manager as a static endpoint
to send ODE management messages to a set of SWfMS instances without the requirement to
know the endpoints of their Management Queues. The SCE-MT Manager uses the powerful
message routing functionality of the ESB to reroute all messages send to this queue to the
correct set of SWfMSMT Management Queues. This is an important feature in terms of
scalability because a process model can be deployed to a set of SCE instances and the dynamic
routing of the messages realizes the distribution of one management message to all required
Management Queues. Section 5.3.8 provides some further descriptions how this is realized.

74

5.3 Interaction of JBIMulti2, ESBMT, SCE-MT Manager and SWfMSMT

The Global Event Topic and all its sub-topics are also used to decouple external tools (e.g.
monitoring software) from the SWfMSMT Event Queues and will provide a more flexible
approach. The SCE-MT Manager again installs corresponding message routes to the ESB
which realize the dynamic routing of event messages from a Event Queue to one or maybe a
collection of Tenant or User Event Topics like shown in Figure 5.5. Section 5.3.7 provides some
more details how the routing of event messages is realized. The topic hierarchy and the Global
ODE Management Queue provide the communication between a set of SWfMSMT instances
and any external tools.

The communication between the SCE-MT Manager and a SWfMSMT instance is realized
over the SCE-MT Management Queue, the Global ODE Management Queue and the SWfMS
Management Queue. A SWfMSMT instance registers itself at the SCE-MT Manager by sending
a corresponding message to the SCE-MT Manager Queue (see Sect. 5.3.2). The SCE-MT
Manager uses the existing SWfMS Management Queue to respond to a registration request
message. After a SWfMSMT instance is registered correctly, the SCE-MT Manager can use the
Global ODE Management Queue to send management message to the correct set of SWfMSMT

instance. For example to register configuration data for a process model or the SCE. This is
further described in Section 5.3.4.

5.3.2 Registration of SWfMSMT instances at SCE-MT Manager

Figure 5.6 shows the registration process of SWfMSMT. This process is initalized when a
new SWfMSMT instance is installed to the ESB. Apache ServiceMix provides some different
possibilities to install a new component. Since in the scope of this thesis only a single
SWfMSMT instance is used, it is installed over the ServiceMix console by hand. In a future
version the installation can be realized by using an internal ServiceMix API, similar to the
JBIMulti2 approach which uses the JMSManagementService to deploy SAs to the ESB over the
org.apache.servicemix.jbi.deployer.AdminCommandsService class. The SCE-MT Manager could
use the ServiceMix JMX interface or the class org.apache.karaf.features.FeaturesService of the
OSGi implementation Apache Karaf1, on which ServiceMix is build on, to install SWfMSMT.
This enables the installation of SWfMSMT directly from a corresponding Maven repository
without the need to store or transfer the installation data. The SCE-MT Manager has only to
register the Maven repository which contains the SWfMSMT installation files and can then
initiate the installation of all necessary features to ServiceMix.

In case the installation of SWfMSMT is executed by hand or by the SCE-MT Manager
in the future, SWfMSMT registers itself at the SCE-MT Manager to avoid any additional
administration effort. How the registration is realized is shown in Figure 5.6. First of all a new
SWfMSMT instance is installed. This new instance automatically connects to the SCE-MT
Management Queue and sends a corresponding registration message to it (see Fig. 5.6, Point
1). If the SWfMSMT instance was already registered at the SCE-MT Manager and is just
started again after a shutdown, the SWfMSMT instance sends only an event message to the

1The Apache Software Foundation, Apache Karaf: http://karaf.apache.org/

75

http://karaf.apache.org/

5 Implementation

Management Queue

Event Queue
SWfMSMT

SCE-MT Manager

(Re-)Register
SCE instance

1

3 Registration response
(unique SCE instance
UUID + tenant-based
Config. Data)

Message-based communication
QueueQueue

Topic

Point-to-point
channel

Publish-subscribe
channel

Message
Sender

Queue
Message
Receiver

Request
Message

Response
Message

Authentication

Message transport direction

Global ODE Management Queue

Global
Event
Topic

Tenant A

...

User 1

...
Dynamic Recipient List

Install Dynamic Recipient Lists to ESB, if required.

SCE-MT Management Queue
5

4

Dynamic Recipient List

Register SCE
instance

Config.Registry

2

6

Figure 5.6: Registration of a new SWfMSMT instance at the SCE-MT Manager

queue. This event message signals the SCE-MT Manager that the engine instance is available
again and can be used to serve new requests. If a registration message or an event message
should be send by SWfMSMT is evaluated by checking if an sceInstanceId is assigned already to
the engine instance. The registration message contains all required data of the SCE instance,
like the endpoint addresses of its queues and services. The SCE-MT Manager consumes the
registration message, generates a Universally Unique Identifier (UUID) for the SCE instance
and registers the data of the new SCE instance with the UUID at the ConfigurationRegistry
(see Fig. 5.6, Point 2). After the SCE instance is registered, the SCE-MT Manager sends a
response message to the Management Queue of the SWfMSMT (Point 3). This message contains
at least the sceInstanceId and an optional set of SCE configuration data in the case that the
SWfMSMT instance is just re-registered. Subsequently, SWfMSMT consumes this response
message, persists the sceInstanceId into its internal database and uses the private sceInstanceId
as a credential to secure its messaging channels (see Fig. 5.6, Point 4). In the context of this
thesis the messaging channels are secured with simple username/password security provided
by the Apache ActiveMQ2 messaging server which hosts all required messaging channels. The
sceInstanceId is therefore used as the password and the username is just a constant value like
“ode”. At the end of the registration process the SCE-MT Manager installs a message route
for the Event Queue and the Management Queue. The event messages published over the

2The Apache Software Foundation, Apache ActiveMQ: http://activemq.apache.org/

76

http://activemq.apache.org/

5.3 Interaction of JBIMulti2, ESBMT, SCE-MT Manager and SWfMSMT

SCE-MT Manager SCE-MT Management Queue

Global
Event
Topic

Tenant A

Tenant B

User 1

...

Register new
sub-topic for
Tenant B

Web UI Web Service API

JBIMulti2JBIMulti2

User
Interface

Business
Logic

JBIContainerManager ServiceAssemblyManager

ServiceRegistryManager Config.RegistryManager

TenantRegistry
Manager

Register new

Tenant B

1

SCE-MT Manager Client

Serve new

Tenant B

Tenant B

4

6

Message-based communication
QueueQueue

Topic

Point-to-point
channel

Publish-subscribe
channel

Message
Sender

Queue
Message
Receiver

Message Authentication

Message transport direction

System Admin.

Register new
Topic endpoint
for Tenant B

PostgreSQLPostgreSQL

TenantRegistry Config.Registry

ServiceRegistryEventRegistry

New created
entities

2

3

5

Figure 5.7: Example of status forwarding if a new tenant is registered at JBIMulti2

Event Queue are routed with the help of a Dynamic Recipient List to the correct subset of all
registered topics. Another Dynamic Recipient List is installed to route the messages send to
the Global ODE Management Queue to all Management Queues of the correct subset of all
registered SWfMSMT instances. As a result, the SCE-MT Manager can also use the Global
ODE Management Queue to send management messages to any registered SWfMSMT instance
(see Fig. 5.6, Point 6). The routing of SWfMSMT management messages is described in detail
in Section 5.3.8 and the routing of event messages is further described in Section 5.3.7.

5.3.3 Tenant-aware Administration over JBIMulti2 and Status Forwarding

In this section we take a closer look how JBIMulti2 is used as an administration and management
layer for the SCE-MT Manager. As already mentioned, the authentication and authorization
functionality of JBIMulti2 is reused to provide a secure connection to the management
functionality of the SCE-MT Manager. Figure 5.7 shows therefore an example scenario where

77

5 Implementation

a new tenant is registered at JBIMulti2 and the SCE-MT Manager is informed about that
with a status message. First of all, at Point 1 an authenticated System Administrator registers
a new Tenant over a call to the corresponding Web Service API operation. The JBIMulti2
application creates a new tenant entity and inserts all provided data of Tenant B in the
TenantRegistry at Point 2. Next the JBIMulti2 application should forward the change of the
TenantRegistry to the SCE-MT Manager. In Point 3 therefore the SCE-MT Manager Client
sends a corresponding status message to the SCE-MT Management Queue of the SCE-MT
Manager. The SCE-MT Manager Client is created in the scope of this thesis to enable sending
messages from JBIMulti2 to a SCE-MT Manager. The status message only contains the
tenantId of the new tenant. With the help of the tenantId the SCE-MT Manager is able to
query some additional information from the database, like the name of the tenant. In Point 4
the SCE-MT Manager registers a new event topic for Tenant B. Subsequently the SCE-MT
Manager stores the JMS endpoint address of this new topic in the ConfigurationRegistry
(Point 5). At the end, Tenant B is now able to connect to its event topic and receive event
messages. The required extensions to the JBIMulti2 application are described in detail in
Section 5.7. All other SCE-MT Manager related management tasks are handled in the same
way as the example scenario described above. The registration of configuration data is such
another management task which is described in detail in Section 5.3.4.

5.3.4 Tenant-based Configuration of SCE Instances and Process Models over JBIMulti2

Figure 5.8 shows how configuration data for registered SCE instances or process models
can be registered over the JBIMulti2 application. An authorized user – an authenticated
user with the corresponding access permissions to specify configuration data – registers new
configuration data at JBIMulti2 over its Web Service API. JBIMulti2 inserts this data in the
ConfigurationRegistry and associates it with the specified target SCE instance or process model.
Subsequently a status message is created and send to the SCE-MT Management Queue to
inform the SCE-MT Manager that new configuration data is registered. The SCE-MT Manager
queries the new configuration data from the ConfigurationRegistry and creates management
messages out of it. Each of these messages contains the tenantId and an optional userId of
the tenant or user which has registered the configuration data at JBIMulti2. Furthermore
the modelId of the target process model is added to all messages which contain configuration
data for a process model. Those management messages are then send to the Global ODE
Management Queue by the SCE-MT Manager. The installed Dynamic Recipient List uses the
inserted ids to take care that the management messages are forwarded to all required SWfMSMT

instances. If a management message has to be forwarded to an engine instance or not is decided
by the Dynamic Recipient List with the help of the data stored in the EventRegistry. Process
configuration data has to be forwarded to all SCE instance on which the model is deployed
and SCE configuration data has to be forwarded to all SCE instances on which one or more
process models of a tenant and its users are deployed. How the detailed routing of management
messages is realized is described in Section 5.3.8. After the management messages are routed
to the Management Queue of the correct SWfMSMT instance, the contained configuration data
is process by SWfMSMT as described in Section 5.5. Each SWfMSMT instance has its own
subset of all available configuration data stored in an engine internal database. The reason

78

5.3 Interaction of JBIMulti2, ESBMT, SCE-MT Manager and SWfMSMT

SCE-MT Manager SCE-MT Management Queue

Register

configuration data

1

New

configuration

data registered

Message-based communicationQueue

Queue
Point-to-point

channel

Message
Sender

Queue
Message
Receiver

Message

Message transport direction

Authorized user

Query registered
configuration data

PostgreSQLPostgreSQL

TenantRegistry Config.Registry

ServiceRegistryEventRegistry

2

3

4

JBIMulti2

Global ODE Management Queue

Dynamic Recipient List

5

SWfMSMT

SWfMSMT

Dynamic Recipient List

...

6

7
Configuration

Data

Figure 5.8: Complete process of the registration of configuration data over JBIMulti2

for this realization approach is that the configuration data is less often changed as it is used
by SWfMSMT. For example, registered process configuration data is required during each
instantiation of the process model. Therefore forwarding and buffering the configuration data
inside the SCE provides a better performance and less messaging effort in contrast to querying
the configuration data from the shared ConfigurationRegistry on demand. Furthermore the
SWfMSMT instances are decoupled from the shared registries and the SCE-MT Manager and
can therefore run isolated which is a huge advantage in case of an outage of the registries or
the SCE-MT Manager.

5.3.5 Tenant-based Deployment of Process Models over JBIMulti2

Before we have a look how the deployment of process models to SWfMSMT looks like in a JBI
environment, the structure and contents of a Process Service Assembly (PSA) shown in Figure

79

5 Implementation

Process Service Assembly (PSA)

Process Service Unit

HTTP Service Unit

jbi.xml

Process.wsdl xbean.xml

deploy.xml Process.bpel Process.wsdl

Figure 5.9: Example of a Process Service Assembly and its contents

5.9 are introduced. As described in Chapter 2 to deploy new components to a JBI environment
they have to be packaged as Service Units (SU) and multiple service units have to be packaged
as Service Assemblies (SA). As shown in Figure 5.9 we need a Process Service Unit to bundle
the resources which should be deployed to the SWfMSMT SE and another HTTP Service Unit
to bundle the resources which should be deployed to the multi-tenant HTTP BC of ESBMT.
The jbi.xml file shown in Figure 5.9 is used by the JBI deployment mechanism to deploy
each SU to the correct target JBI component. In the case of a PSA, the Process SU has
to be deployed to the OdeBpelEngine which then handles the engine-internal deployment of
the process models contained in the Process SU. The HTTP SU has to be deployed to the
multi-tenant HTTP BC (servicemix-http-mt) which will provide the Web Service interface
of a process model to the outside by the registration of a corresponding multi-tenant HTTP
consumer endpoint for the process model WS. Listing 5.1 shows the contents of such a jbi.xml
file. All values surrounded by ${. . . } mark properties which have to be changed for each
PSA.

The Process SU just packages all process model related files which are required by ODE
as shown in Figure 5.9. The deploy.xml file is a ODE Deployment Descriptor document
which contains some deployment related information used by ODE to deploy and execute the
referenced process models. The Process.bpel file is the BPEL process model XML document
which should be deployed, compiled and later executed by ODE. A Process SU can contain
more than one BPEL model file. The Process.wsdl file is a WSDL document which provides
the service interface the BPEL process implements. A Process SU should contain the WSDL
file for each service interface implemented or invoked by any contained BPEL process model.

The HTTP SU contains a copy of all WSDL files contained in the Process SU which provide a
service interface of a BPEL process model. In the example HTTP SU shown in Figure 5.9,

80

5.3 Interaction of JBIMulti2, ESBMT, SCE-MT Manager and SWfMSMT

Listing 5.1 Example JBI descriptor XML document of a PSA
<?xml version="1.0" encoding="UTF-8"?>
<jbi xmlns="http://java.sun.com/xml/ns/jbi" version="1.0">

<service-assembly>
<identification>

<name>${SA-Name}</name>
<description>${SA-Description}</description>

</identification>
<service-unit>

<identification>
<name>${ProcessSU-Name}</name>
<description>${ProcessSU-Description}</description>

</identification>
<target>

<artifacts-zip>${processSUfilename}.zip</artifacts-zip>
<component-name>OdeBpelEngine</component-name>

</target>
</service-unit>
<service-unit>

<identification>
<name>${HttpSU-Name}</name>
<description>${HttpSU-Description}</description>

</identification>
<target>

<artifacts-zip>${httpSUfilename}.zip</artifacts-zip>
<component-name>servicemix-http-mt</component-name>

</target>
</service-unit>

</service-assembly>
</jbi>

the HTTP SU therefore contains a copy of the Process.wsdl file. The xbean.xml file is used
during the deployment of the HTTP SU at the multi-tenant HTTP BC. Listing 5.2 shows the
contents of the xbean.xml file. The defined HTTP SOAP Consumer endpoint is registered
at the ESB and enables the message exchange with the BPEL process model by specifying
its service interface and the target service and endpoint name. Furthermore, a specialized
HTTP marshaler is referenced over the http:marshaler element. The marshaler class provides
the authentication functionality for the multi-tenant HTTP endpoint as described in [Sáe13].
In the context of this diploma thesis an extended ProcessHttpSoapConsumerMarshaller is
implemented which supports the different deployment styles introduced in Chapter 4.5. Now
that the structure and contents of a PSA are clear, we want to have a look at the deployment
of these SA over JBIMulti2.

Figure 5.10 shows how a PSA is deployed over JBIMulti2 to ESBMT and an installed SWfMSMT

SE. The deployment process itself is nearly identical as for any other type of SA as described
in the work of Muhler and Gómez [Muh12, Sáe13]. To enable the specification of a de-
ployment style constant under which a PSA should be deployed, the JBIMulti2 WS API is
extended with a new deployProcessServiceAssembly() operation. This operation extends the
existing deployServiceAssembly() operation with an additional parameter to specify a deploy-

81

5 Implementation

Listing 5.2 Contents of a xbean XML file to provide a HTTP consumer endpoint over the
ESB
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns:http="http://jbimulti2.iaas.uni-stuttgart.de/http/1.0"

xmlns:${prefix}="${targetNamespace of Process.wsdl}">

<http:soap-consumer targetService="${prefix}:${ProcessServiceName}"
targetEndpoint="${ProcessEndpointName}"
wsdl="classpath:Process.wsdl">

<http:marshaler>
<bean class="de.unistuttgart.iaas.simtech.

httpSoapMarshaller.ProcessHttpSoapConsumerMarshaller" />
</http:marshaler>

</http:soap-consumer>
</beans>

Apache ServiceMix

OSGi

SCE Multi-tenancy Manager (OSGi Bundle)

JBI Environment

HTTP-MT JMS-MT ...

Camel-MT

Normalized Message RouterNormalized Message Router

Standardised Interfaces for Binding Components

Standardised Interfaces for Service Engines

SWfMSMT

JMSManagementService OSGi Bundle
(ESBMT)

ActiveMQActiveMQ

Management
Messages.topic

Management
Messages.topic

Unprocessable
Messages.queue

Unprocessable
Messages.queue

Web UI Web Service API

JBIMulti2JBIMulti2

User
Interface

Business
Logic

JBIContainerManager ServiceAssemblyManager

ServiceRegistryManager Config.RegistryManager

TenantRegistry
Manager

SCE-MT Manager Client

Process SA 1

2

WS

HTTP

4

Database Connection

JBIMulti2 Message Communication
WS

HTTP

HTTP
Consumer
Endpoint

HTTP
Consumer
Endpoint

Process
Model

ESB-internal Binding

3a

Presentation Layer

Data Access Layer

Messaging API

Data Access Objects

Application Layer

Configuration
Manager

EventManagerProcessManager

3b

PostgreSQLPostgreSQL

TenantRegistry Config.Registry

ServiceRegistryEventRegistry

Tenant Operator

Figure 5.10: Deployment of Process Service Assemblies to ESBMT with installed SWfMSMT

over JBIMulti2

82

5.3 Interaction of JBIMulti2, ESBMT, SCE-MT Manager and SWfMSMT

Listing 5.3 Tenant context with an optional entry to specify the deployment style of a PSA
<ctxjmu2:TenantContext xmlns:ctxjmu2="http://jbimulti2.iaas.uni-stuttgart.de/tenant-context">

<ctxjmu2:TenantId>tenantId</ctxjmu2:TenantId>
<ctxjmu2:UserId>userId</ctxjmu2:UserId>
<ctxjmu2:OptionalEntry>

<ctxjmu2:Key>deploymentStyle</ctxjmu2:Key>
<ctxjmu2:Value>{Public|Tenant-private|User-private}</ctxjmu2:Value>

</ctxjmu2:OptionalEntry>
</ctxjmu2:TenantContext>

ment style (see Chapter 4.5). The deployment of a PSA is started by a call to the new
deployProcessServiceAssembly() WS API operation by an authenticated and authorized user,
like a Tenant Operator as shown in Figure 5.10. The PSA has to be provided as a zip file which
is then transfered to JBIMulti2. This zip file is immediately stored associated to the tenantId
and userId of the deploying tenant user into the ServiceRegistry. Furthermore, JBIMulti2
marks the registered SA as a PSA over the type attribute of the corresponding ServiceAssembly
entity and persists the specified deployment style constant into the deploymentStyle attribute
of the ServiceRegistry (see database schemas in Sect. 5.2). After everything is stored to the
ServiceRegistry, JBIMulti2 creates a DeployServiceAssemblyCommand message to deploy the
PSA to ESBMT. This message contains the binary data of the PSA and a tenant context.
The tenant context contains the tenantId and userId of the user to which the PSA belongs
to. Furthermore, it contains the specified deployment style constant as an optional entry as
shown in Listing 5.3. This message is then published to the Management Messages.topic as
shown in Figure 5.10. A subscribed JMSManagementService consumes the command message
and uses the tenant context to realize the tenant-aware deployment of all Service Units of
the PSA. Therefore the JMSManagementService adds the tenantId and userId to the service
assembly name, all service unit names and updates all JBI deployment descriptors. This makes
it possible that different tenant users can deploy equally named service assemblies and service
units. The JMSManagementService also adds the tenant context send with the command
message as an XML file to each of the service units contained in the PSA. This is important
because the tenant context XML file is later used to authenticate process instantiation requests
as described in Section 5.3.6. After all modifications are finished, the JMSManagementService
uses the org.apache.servicemix.jbi.deployer.AdminCommandsService to deploy the PSA to the JBI
environment. If any exception occurs during the deployment, the JMSManagementService
sends a corresponding fault message to the Unprocessable Messages.queue (see Fig. 5.10, 3b).
The AdminCommandsService deploys each SU contained in the PSA to the correct JBI target
component with the help of the JBI descriptor document contained in the PSA. In case of
a PSA, this means the HTTP endpoint is registered at the multi-tenant HTTP BC and the
Process SU is deployed to the SWfMSMT SE. After that the deployed process models are ready
to be instantiated by sending a request message to their HTTP endpoint.

83

5 Implementation

ProcessHttpSoapConsumerMarshaler

HttpConsumerEndpoint

setMarshaler

process()

createExchange()

readTenantContextFile()

authenticateTenantUser()

alt [deployment style == Public,
accept all requests]

[deployment style == Tenant-private]

[deployment style == User-private
or no deployment style is specified]

setTenantPropertiesToNM()Message Exchange

alt [accept request if
tenantContext.tenantId == request.tenantId]

[else, reject request]

setTenantPropertiesToNM()Message Exchange

setAuthFaultPropertyToNM()Message Exchange with Fault property

alt [accept request if
tenantContext.tenantId == request.tenantId
and tenantContext.userId == request.userId]

[else, reject request]

setTenantPropertiesToNMMessage Exchange

createNMwithFaultPropertyMessage Exchange with Fault property

Figure 5.11: Sequence diagram of the authentication of incoming requests at a multi-tenant
HTTP endpoint

5.3.6 Tenant-aware Process Instantiation with ESBMT

As already described, the authentication of requests send to the WS interface of a process
model is realized over ESBMT with the endpoint-based authentication functionality introduced
by Gómez [Sáe13]. Figure 5.11 is a Unified Modeling Language (UML) Sequence diagram
which shows how the authentication process looks like. The HttpConsumerEndpoint class
represents a deployed HTTP consumer endpoint and is therefore responsible to process any
requests send to the endpoint address. If a PSA is deployed an instance of this class is
created during the deployment of the process WS HTTP consumer endpoint based on the
provided xbean.xml file (see Sect. 5.3.5). All values specified in the xbean.xml file are set to

84

5.3 Interaction of JBIMulti2, ESBMT, SCE-MT Manager and SWfMSMT

the created HttpConsumerEndpoint instance, like the target service name or the location of
the WSDL file. Furthermore, the marshaler class which is referenced in the http:marshaler
element of the xbean.xml document is set to the HttpConsumerEndpoint instance over its
setMarshaler() method. The HTTP SU of a PSA will contain a specialized ProcessHttpSoap-
ConsumerMarshaler which extends the multi-tenant aware HttpSoapConsumerMarshaler base
class. As described above, the ProcessHttpSoapConsumerMarshaler provides an extended
authentication functionality by supporting the introduced deployment styles. If a new re-
quest message is send to the deployed HTTP consumer endpoint, the process() method of
the HttpConsumerEndpoint instance is invoked as shown in Figure 5.11. Subsequently, the
HttpConsumerEndpoint starts the authentication of the incoming requests by a call to the
createExchange() method of the ProcessHttpSoapConsumerMarshaler. Next the marshaler
retrieves the tenant context information stored in the tenant context file of the deployed HTTP
SU (readTenantContextFile()) and compares it with the tenant context information contained
in the incoming request message (authenticateTenantUser()). How the tenant context and the
tenant data contained in the incoming SOAP request are compared is based on the deployment
style specified in the tenant context file. Before we have a look at the different authentication
cases based on the deployment styles, the general response of the createExchange() operation is
described. In any case a new MessageExchange object is created which contains a Normalized
Message (NM) representation of the incoming SOAP request. This NM is created with the data
contained in the SOAP request. When the request is successful authenticated and therefore
accepted the tenant context information is added in form of a set of property maps to the
NM. If the authentication is not successful and therefore the request should be rejected a
corresponding fault property is set to the NM. This enables the HttpConsumerEndpoint
to decide if an incoming request should be forwarded to the Normalized Message Router
(NMR) and therefore be processed by SWfMSMT or a fault message should be responded
immediately.

Now we want to have a closer look at the different authentication cases shown in Figure
5.11. The following descriptions are based on the definition of the three deployment styles
provided by Chapter 4.5. The Public deployment style accepts any incoming requests whether
they contain a tenant context or not. If the Tenant-private deployment style is specified, all
incoming requests which contain the same tenantId as the one stored in the tenant context
file are accepted. All other requests are rejected, like requests without any tenant data or a
different tenantId. The User-private deployment style is the most restrictive one and is used as
the default behavior if no deployment style is specified. It accepts only requests which contain
the same tenantId and userId as specified in the tenant context file of the HTTP SU. All other
requests are rejected.

5.3.7 Tenant-aware Event Messaging and Event Message Routing

As introduced above the event messages will be routed to the correct collection of event topics
with the help of the routing functionality of the ESB. Therefore, a corresponding message route

85

5 Implementation

ESBMT

Message-based communication
QueueQueue

Topic

Point-to-point
channel

Publish-subscribe
channel

Message
Sender

Queue
Message
Receiver

Message Authentication

Message transport direction

SCE-MT Manager

Management Queue

Event Queue
SWfMSMT

Config.Registry

SWfMS

EventMessage

Global
Event
Topic

Tenant A

...

User 1

...
Dynamic Recipient List

EventRegistry

Persist Event data

1

5
Topic URLTopic URLTopic URL2

3

processID
+instanceID

4

Dynamic Recipient List

EventRegistry

Figure 5.12: Routing of event messages with the ESB

is deployed to the Apache Camel 3 SE of the ESB. Apache Camel provides the implementation
for a set of Enterprise Integration Patterns (EIP)4 which can be used to process messages.
Figure 5.12 shows how the routing of event messages is realized by deploying a so called
Dynamic Recipient List (DRL). This special kind of message router enables the routing of
incoming messages to a dynamically calculated list of recipients like a collection of queues or
topics. The calculation of the recipients is based on some data contained in the message and
can use also some external data which is maybe stored in a database. The main advantage
is that one message can be routed to more than one endpoint and therefore a copy of the
event message can be provided to each tenant user which is authorized to receive it. For
each installed SWfMSMT instance one corresponding DRL is deployed. This DRL consumes
all event messages from the Event Queue of the SWfMSMT instance and reroutes them to
the correct target destination. Figure 5.12 shows the message path each event message flows
through. First of all, SWfMSMT puts the event message on its Event Queue. The listening
DRL consumes this message and starts to calculate the recipient list. Therefore, it extracts
the processId and instanceId value of the event message and uses the EventRegistry to find

3The Apache Software Foundation, Apache Camel: http://camel.apache.org/
4Apache Camel, Enterprise Integration Patterns: http://camel.apache.org/

enterprise-integration-patterns.html

86

http://camel.apache.org/
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/enterprise-integration-patterns.html

5.3 Interaction of JBIMulti2, ESBMT, SCE-MT Manager and SWfMSMT

out to which tenant users the corresponding process instance belongs. This is important to
realize process instance based collaboration in the future because the shared registries contain
the required data which tenant users collaborate on a specific process instance and therefore
should get the event messages. The prototype realized in the context of this thesis does
not support collaboration on the process instance level and therefore each process instance
belongs to one single tenant user. After the DLR calculates the list of all tenant users to
which the event message should be send, it uses the ConfigurationRegistry to get their event
topic endpoint addresses. If a process instance belongs to no tenant users it is published to
the Global Event Topic. In case that one process instance emits a maybe huge number of
event messages at frequent intervals, the DRL provides some caching mechanism. The cache is
a map between instanceIds and a collection of topic endpoints. Therefore the DRL has only
calculate the recipient list for the first event message of a process instance, saves the data to
the cache and can then use the cached values for all succeeding event messages of the process
instance. After the list of recipients is clear the event messages are copied and published to
the corresponding set of event topics as shown in Figure 5.12. An additional copy of each
event message routed by any deployed DRL is send to the SCE-MT Manager. The SCE-MT
Manager is responsible to persistently store all emitted event messages to the EventRegistry
and extracts some required data out of them. This is really useful because the event messages
provide some important information like the status of all process instances of one tenant
users. Therefore the SCE-MT Manager consumes them, processes some of them and stores
all contained data in the EventRegistry. One case where the event data is processed by the
SCE-MT Manager to get some required information is the deployment of a new process model.
The data contained in the corresponding Process_Deployed event message is used to associate
the referenced process model with the SCE instance it is deployed to. This information is
stored in the EventRegistry and can later be used for example to find out where the process
models of a tenant user are deployed.

5.3.8 Routing of SWfMSMT Management Messages

SWfMS provides two distinct management endpoints. The Process&InstanceManagement Web
Service provides an interface for the engine-internal Process ManagementAPI and Instance
Management API (see Fig. 2.1). It enables the management of process models and process
instances like suspending an instance or changing the state of a process model. In contrast
to that, the Management Queue provides an interface for the PGF and enables therefore the
use of its functionality from the outside. For example, the debugging of the execution of a
process instance or setting variable or partner link values of a process instance during its
execution. In this section the routing of messages send to both of these interfaces is described.
The underlying idea is to provide one static endpoint for each of the interfaces and then route
the messages to the corresponding endpoints of the correct SWfMSMT instance. As a result
that one process model is maybe deployed to a set of SWfMSMT instances to enable scalability
in future versions, the corresponding received management messages have to be sent to all of
those engine instances. Another difference in contrast to the routing of event messages is that
for most of the management messages SWfMSMT produces a corresponding response message.
In the case a request message is maybe send to a number of recipients, the returned response

87

5 Implementation

JBI Environment

Normalized Message RouterNormalized Message Router

Standardised Interfaces for Binding Components

Standardised Interfaces for Service Engines

SWfMSMT

Process&InstanceManagement
Web Service

HTTP-BC

WS

HTTP

Camel SE

Bidirectional Communication WS

HTTP

HTTP
Consumer
Endpoint

HTTP
Consumer
EndpointESB-internal routing

Figure 5.13: Routing of message exchanges for the Process&InstanceManagement Web Ser-
vice with Apache Camel

messages have to be aggregated into a single message and returned to the initial sender of
the request. This routing pattern is known as Dynamic Scatter-Gather EIP and consists of a
Dynamic Recipient List and an Aggregator. The DRL is used to route a request message to a
dynamically calculated set of SWfMSMT instances to which the request should be forwarded
based on the contents of the request message. The Aggregator is used to re-aggregate all
response messages back into a single message which can then be returned to the initial sender.
This pattern is used to decouple the tenant users from the set of installed SWfMSMT instances
and therefore enables scalability. A tenant user does not have to know the list of SWfMSMT

instances to which its management messages should be send and also does not have to care
about the aggregation of the multiple response messages and the data they contain. In the
following the used Dynamic Scatter-Gather EIPs are described for both of the management
interfaces.

88

5.3 Interaction of JBIMulti2, ESBMT, SCE-MT Manager and SWfMSMT

ESBMT

Message-based communication
QueueQueue

Topic

Point-to-point
channel

Publish-subscribe
channel

Message
Sender

Queue
Message
Receiver

Authentication

Message transport direction

Config.Registry Global ODE Management Queue

Dynamic Recipient List

1

Topic URLTopic URLQueue URL 2

3

processID
+instanceID

Dynamic Recipient List

EventRegistry

Management Queue

Event Queue
SWfMSMT

Management Queue

Event Queue
SWfMSMT

...

Tenant User Response Queue

Tenant User

Message
with Return
Address

Aggregator

Aggregator

Figure 5.14: Routing of SWfMS management messages with Apache Camel

Figure 5.13 shows the routing of message exchanges with the Process&InstanceManagement
Web Service. This service interface is used to deploy a static HTTP consumer endpoint which
is provided to the outside. The WSDL file of the Process&InstanceManagement Web Service
and an xbean.xml file which contains the HTTP consumer endpoint definition are therefore
packaged as a SU and deployed to the HTTP BC. The Process&InstanceManagement service
interfaces of all installed SWfMSMT instances are not provided to the outside and therefore are
only accessible inside the ESB as JBI endpoints. The internal endpoints are stored together
with other SCE instance related data in the ConfigurationRegistry (see Fig. 5.3). They are
used as the target endpoints to reroute the incoming messages send to the HTTP consumer
endpoint by the DRL. Since in the context of this diploma thesis only a single SWfMSMT

instance is used, the Aggregator just reroutes the original return message of the SWfMSMT

instance back to the HTTP consumer endpoint. This single internal return message becomes
therefore the response message of the initial HTTP request.

Figure 5.14 shows the routing of PGF management messages. This is realized quite similar to
the routing of the HTTP requests but through the asynchronous nature of messaging each
message requires a Return Address to send the response to. This return address has to be
specified by the sender of the request. For example, a tenant user specifies the address of its
queue (Tenant User Response Queue, see Fig. 5.14) to asynchronously receive the responses
for its requests. A request message with a specified return address can then be send to the

89

5 Implementation

Global ODE Management Queue which provides the static endpoint for the PGF management
functionality. The DRL of the deployed Dynamic Scatter-Gather EIP consumes all messages
send to this queue and reroutes them to the correct target destination. Therefore, it uses
the data contained in the request message like a processId or instanceId to find out which
SWfMSMT instances are associated with the referenced process model or process instance. For
example, if a breakpoint registration message should be routed, the DRL uses the contained
processId to query all sceInstanceIds from the EventRegistry. Each of these sceInstanceId
identifies a SWfMSMT instance to which the process model referenced in the request message
is deployed to (see Fig. 5.4). The list of sceInstanceIds is then used by the DRL to query
the required list of Management Queue endpoints from the ConfigurationRegistry (see Fig.
5.3). After the recipient list is calculated the DRL routes the management message to all
referenced Management Queues. Finally the Aggregator re-aggregates all response messages of
the SWfMSMT instances and sends the final response message to the Tenant User Response
Queue. Since in the context of this diploma thesis only a single SWfMSMT instance is used,
the Aggregator just reroutes the original return message of the SWfMSMT instance to the
Tenant User Response Queue.

5.4 Multi-tenant SWfMS Architecture

Figure 5.15 shows the extended SWfMS (SWfMSMT) architecture based on the general SCEMT

architecture described in Chapter 4.7. The architecture of the SCE-MT Manager will be
described separately in Section 5.6. The figure shows only an abstracted version of the SWfMS
architecture on a module basis because a detailed diagram which contains all classes would
be to complex. In case of that, only some details of the most important modules and their
internal communication are shown in the figure. Since SWfMSMT should be integrated into
an ESB as JBI Service Engine, only the extensions of the existing JBI Integration Layer are
described. An extension of the Axis2 Integration Layer is out of the scope of this diploma
thesis. All extended or adapted components are marked green and all new components are
marked yellow in Figure 5.15. In the following the architecture and the connections between
the different modules are described from top to bottom.

The JBI Integration Layer contains all modules to integrate SWfMS into a JBI environment.
The OdeSUManager class provides some management functionality (e.g. deploy, start or
init) for OdeServiceUnits and connects the JBI management functionality with the ODE-
internal deployment mechanisms. If a new Process Service Unit (SU) is deployed to the JBI
Environment, the OdeSUManager creates a new OdeServiceUnit instance and then triggers
the ODE-internal deployment process over the Process Deployment API with the help of
the ProcessStore. This internal deployment process should be extended to associate the
deployed process models with the teant data contained in the tenant-context.xml file of
the underlying Process SU (see Sect. 5.3.5). The DynamicMessageExchangeProcesser class
handles the message exchange for the Process Management API and the Instance Management
API. The Process&InstanceManagement Web Service interface is therefore provided by the
ESB which then reroutes all incoming messages to SWfMS as described in Section 5.3.8.
The DynamicMessageExchangeProcesser consumes these messages and forwards them to

90

5.4 Multi-tenant SWfMS Architecture

Multi-tenant Simulation Workflow Management System (SWfMSMT)

Integration Layer

JBI Integration Layer

Process&InstanceManagement
Web Service

Workflow Engine API

Process Management
API

Instance Management
API

Process Deployment
API

Engine Interface
API

Runtime Layer

Persistence Layer

ODE
Engine DB

BPEL RuntimeBPEL Engine

Pluggable Framework

Flexibility:
Migration

Flexibility:
Iteration, Re-execution

...

BPEL CompilerProcess Store
ODE

Data Access Objects

BPEL Process
Web Services

Message Broker
(Apache ActiveMQ)

Management Queue

OdeService OdeConsumerDynamicMessageExchangeProcessorOdeSUManager OdeServiceUnit ...

Invoked external
Web Services

Web Service Call
(Request Message)

Message-based Communication

Response
Message

Configuration
API

...

Configuration
DB

Event Queue

Process&Instance
Management

...

Configuration
Manager

Internal Communication

Java Concurrent Objects
(JaCOb)

New
component

Adapted or
extended
component

Figure 5.15: Multi-tenant aware SWfMS Architecture

the correct Management API. To enable tenant-aware communication for the Management
APIs the DynamicMessageExchangeProcesser should be extended to forward the tenant data
contained in the incoming request messages to the Management APIs. Each instance of the
OdeService class provides one JBI provider endpoint for a specific Process Model to the JBI
environment. This provider endpoint is used by the ESB to reroute the messages send to
the HTTP consumer endpoint of a process model to SWfMSMT. The consumer endpoint is
provided over the HTTP-MT BC to the outside as described in Section 5.3.5. The OdeService
class should also be extended to forward the tenant data contained in incoming requests to
the engine internal logic. This forwarded tenant data is used to realize “invocation under
tenant context”) which means that the created process instance is immediately associated to
the tenant user specified by the incoming request message (see Chapt. 4.4.2). An instance of

91

5 Implementation

the OdeConsumer class defines a JBI consumer endpoint for an external Web Service which
is invoked during the execution of a Process Model. This consumer endpoint is used by the
ESB to reroute all messages to the correct HTTP provider endpoint which may provide a Web
Service hosted inside the ESB (e.g. another Process Web Service) or an external hosted Web
Service to the JBI environment. The OdeConsumer class should also be extended to forward
the tenant data associated to the process instance which invokes the external service. This is
important if the external service is also multi-tenant aware, for example if another process
model is invoked by a process instance.

The Workflow Engine API and its components should be extended to forward the tenant
information of incoming requests to the components of the Runtime and Persistence Layer as
already described. Furthermore, to enable engine and process model configurations, a new
Configuration API should be provided.

The Runtime Layer should be extended to provide some new multi-tenant functionality, like
authentication of management requests or the configuration of the engine on a per-tenant basis.
The Pluggable Framework should be adapted to provide two secure messaging queues with
at least simple username&password authentication (see Sect. 5.3.1). All event messages are
enriched with additional data (e.g. a tenantID and userID) to enable tenant-based isolation of
event data. The event messages are not any longer directly published to a topic since the SCE-
MT Manager handles with the help of the message routing capabilities of the ESB the correct
distribution of event messages now. The details of the new event publishing mechanism are
described in Section 5.3.7. The Pluggable Framework is also used to handle the communication
between a SWfMS instance and the SCE-MT Manager, for example to register a new SWfMS
instance at the SCE-MT Manager. It also provides a Messaging Interface for the Configuration
API over the Management Queue. A new messaging listener consumes all configuration
messages send to the Management Queue and calls the corresponding Configuration API
methods. The Process&Instance Management must be extended to provide Administration
Isolation and the authentication of incoming management requests. This is implemented inside
the Runtime Layer to avoid the implementation of the authentication and isolation functionality
for each Integration Layer. The extension of the Process&Instance Management class provides
also a more extensible and powerful approach because it will be possible to provide the ability
to specify fine-grained access permissions in the future. For example, that a user is only able to
manage his process models and instances but is not able to use the flexibility functionality. The
authentication of incoming management requests is realized by the comparison of the tenant
data contained in the request message and the tenant data associated to the process model
or process instance which is referenced in the management request. The new Configuration
Manager class implements the Configuration API and handles the management of configuration
data. Therefore some new Data Access Objects (DAO) are created which are used to persist
the configuration data in the new engine-internal Configuration Database. Furthermore, the
Configuration Manager is responsible to execute the configuration of the engine and the process
models based on the stored tenants’ configuration data. For example, if a tenant has specified
some configuration data for a process model, the Configuration Manager must assign the
configuration data on process instantiation to any created instance of the process model which
belongs to this tenant. The provided configuration options are described in Section 5.5 and how
these options can be registered is described in Section 5.3.4. The BPEL Runtime component

92

5.5 Configurability of SWfMSMT

should be extended to associate the tenant context referenced by an instance to each message
of any message exchange between the instance and another service like for the (a)synchronous
invocation of an external Web Service.

The components of the Persistence Layer should be extended to provide Data Isolation.
Therefore, the ODE Engine Database and the new Configuration Database must be realized by
using one of the approaches to realize a multi-tenant data architecture described in Chapter
3. We will use the Shared Schema approach to serve a maximum number of tenants with a
single shared SCE instance. As a result each process model, instance context and message
exchange is associated with a tenant context to uniquely identify the tenant to which this
resources belong. The associated tenant contexts can then be used by the Process&Instance
Management to realize the authentication of incoming requests by checking the equality of
the tenant data. The ODE Data Access Objects are extended with new classes to store the
configuration data and the tenant contexts in a persistent manner. To enable referencing
tenant contexts and configuration DAOs in the corresponding process, process instance and
message DAOs, these DAO classes are also extended. The ProcessStore should be extended
to be also tenant-aware and enable the tenant-based deployment of process models which is
described in detail in Section 5.3.5.

5.5 Configurability of SWfMSMT

The SWfMSMT implementation realized in the context of this diploma thesis will provide two of
the configuration possibilities described in Chapters 4.2 and 4.3. To prototypically realize the
tenant-based configuration of engine instances, the registration of BPEL Extension Bundles on
a per-tenant basis is realized. As described in Chapter 2, BPEL provides a language extension
construct which enables the modeling of processes with new custom activities (Extension
Activities). To execute these new Extension Activities a corresponding runtime implementation
has to be registered on the engine side. Therefore, ODE provides the possibility to register so
called Extension Bundles which contain the runtime implementation and an optional validation
implementation of one or more BPEL Extension Activities. These Extension Bundles must be
packaged as Java Archive (JAR) files, copied to the classpath of ODE and are registered in
the ODE configuration file which is shown in Listing 5.4. ODE reads the configuration file and
extracts the qualified name (package and class name) of the main class of all specified Extension
Bundles from the corresponding properties. This main class must extend the abstract class
AbstractExtensionBundle and contains the namespace of the Extension Bundle and a map
of BPEL Extension Activity names and implementations (activity name mapped with the
implementing class). As already mentioned, there are two different types of Extension Bundle
classes. To provide the runtime logic of a BPEL Extension Activity, the ExtensionOperation
interface must be implemented. Additionally ODE provides the possibility to validate the
XML element of an Extension Activity during the compilation of a process model which
contains a corresponding Extension Activity construct. To provide the validation of Extension
Activities to the BPEL Compiler the ExtensionValidator interface must be implemented.
Extension Bundles which contain ExtensionOperation classes are registered over the ode-
jbi.extension.bundles.runtime property and bundles which contain ExtensionValidator classes

93

5 Implementation

Listing 5.4 Extract of a ODE configuration file
[. . .]
Database Mode ("INTERNAL", "EXTERNAL", "EMBEDDED")
What kind of database should ODE use?
* "EMBEDDED" - ODE will create its own embbeded database (Derby)
and connection pool (Minerva).
* "EXTERNAL" - ODE will use an app-server provided database and pool.
The "ode-jbi.db.ext.dataSource" property will need to
be set.
* "INTERNAL" - ODE will create its own connection pool for a user-
specified JDBC URL and driver.
ode-jbi.db.mode=EMBEDDED

BPEL Extension Bundles
Uncomment the following to register extension bundles.
ode-jbi.extension.bundles.runtime = de.ustutt.simtech.extensions.SimTechExtensionBundle
ode-jbi.extension.bundles.validation = de.ustutt.simtech.extensions.SimTechExtensionBundle
[. . .]

are registered over the ode-jbi.extension.bundles.validation property. As shown in Listing 5.4
the SimTechExtensionBundle provides new runtime and validation class and therefore the
same bundle has to be registered over both properties.

The ODE configuration file is only read once at the startup of the engine. Since the configuration
should be also able during runtime and not influence other tenants, it is not applicable to
shutdown the engine, change the configuration file and start the engine again to just register a
new Extension Bundle. Therefore, the Configuration Manager is used to enable the management
of Extension Bundles on a per-tenant basis during the runtime of the engine. Figure 5.16 shows
how the registration of Extension Bundles can be realized with the Configuration Manager
also during runtime. The Configuration Manager provides all registered ExtensionValidator
implementations to the ProcessStore. If a new model is deployed the ProcessStore forwards the
validators registered for the tenant to which the process model belongs to the BpelCompiler and
initiates the compilation of the model by calling the compile() method. If the compiler finds an
Extension Activity element, it uses the list of registered ExtensionValidator implementations
to instantiate the correct class and start the validation by calling its validate() method. After
the model is compiled, the engine-internal representation (a new BpelProcess object) is created.
The Configuration Manager sets all available ExtensionOperation implementations registered
by the same tenant to which the process model belongs to this new BpelProcess object by calling
its setExtensionRegistry() method. If a new request message is send to the process service of
the BpelProcess, a new BpelRuntimeContext object is created over createRuntimeContext()).
The BpelRuntimeContext represents a process instance in ODE and its execution is started by
calling the execute() method. If the underlying process model contains an Extension Activity, a
new instance of the EXTENSIONACTIVITY class is created which provides the runtime logic
to invoke the registered ExtensionOperation implementation based on the qualified name of
the Extension Activity. A call to the createExtensionActivityImplementation() method of the
BpelRuntimeContext class returns a new instance of the corresponding ExtensionOperation
class. The BpelRuntimeContext therefore retrieves the correct Extension Bundle with the help

94

5.5 Configurability of SWfMSMT

ConfigurationManager ProcessStore BpelProcess

setExtensionValidators()

setExtensionRegistry()

BpelRuntimeContext

EXTENSIONACTIVITY

BpelCompiler

compile()

ExtensionValidator

validate()

createExtensionActivityImplementation()

getExtensionBundle()

ExtensionOperation

run()

createRuntimeContext()

execute()

ExtensionBundle

setExtensionValidators()

new

new

Figure 5.16: Sequence diagram of Extension Bundle configuration with the Configuration
Manager

of the namespace of the Extension Activity from the ExtensionRegistry set to the BpelProcess
(getExtensionBundle()). The class of the required ExtensionOperation can then be resolved
over the Extension Bundle with the name of the Extension Activity. This class is then used to
create a new instance by using the newInstance() method of the Java Reflection API. After
that the EXTENSIONACTIVITY executes the functionality of the ExtensionOperation by
invoking the run() method of the created instance. If a tenant registers new Extension Bundles
during runtime, the Configuration Manager only has to update the ExtensionValidators at the
ProcessStore and the ExtensionRegistry of all BpelProcess objects which belong this tenant.

The other configuration option will provide a prototypical realization for the tenant-based
configuration of process models by enabling the registration of runtime data, like values of
variables or partner links. The target elements of the process to specify configuration data
for, are referenced over their XPath based on the underlying BPEL Process XML file. For
example, to specify configuration data for the first variable defined on the process level of a
model, the variable can be referenced with the following XPath expression “/process/vari-
ables[1]/variable[1]”. The Configuration Manager provides a corresponding method which
fetch any registered configuration data for a given XPath out of the Configuration Database.
Figure 5.17 shows how the configuration of a Process Model is realized with the help of the
Configuration Manager. If a new process instance is created by a call of invokeProcess() a new
BpelRuntimeContext object is generated (createRuntimeContext()) and immediately processed
over its execute() method. The configuration data can not be set on process instantiation
because the process model maybe contains a BPEL Assign activity which handles the initializa-
tion of any required constructs (e.g. variables, partner links) with default data and therefore
overwrites the assigned configuration data. This default initialization is required because
if a tenant just want to use a process model as it is without specifying any configuration

95

5 Implementation

data, the model needs the default values to work properly. On the other side, if a tenant
specifies configuration data for a process model, this data must not overwritten with any
default values. Therefore, the writeVariable() and the writeEndpointReference() methods
of the BpelRuntimeContext class are extended. These two methods handle the writing of
variable and partner link values during runtime. The idea is, that the first call of one of these
methods initialize the corresponding variable or partner link. So all we have to do, is to check
if the variable or partner link has already a value and therefore is initialized or not. In case
the variable or partner link is not initialized, their XPath is used to fetch maybe registered
configuration data from the Configuration Manager. If the Configuration Manager returns a
value, the value passed as method parameter is ignored and the returned configuration data is
set as the new value of the variable or partner link. In all other cases, if no configuration data
is registered or if the variable or partner link is initialized already, the value passed as method
parameter is assigned to the variable or partner link. This enables the correct configuration
of instances of a process model with the latest registered configuration data provided by the
Configuration Manager.

The overall process how configuration data is registered for a specific tenant at SWfMSMT

over JBIMulti2 and the SCE-MT Manager is described in detail in Section 5.3.4.

5.6 Architecture of SCE-MT Manager

Figure 5.18 shows the architecture of the SCE-MT Manager implementation. The Messaging
API provides the internal logic to the outside and realizes the communication between the SCE-
MT Manager, the JBIMulti2 application and all registered SWfMSMT instances. Therefore,
a set of javax.jms.MessageConsumer and javax.jms.MessageProducer classes are created to
be able to send and receive messages of all relevant channels of the Messaging Infrastructure
shown in Figure 5.5. The Security component introduced in Chapter 4 is realized by the
authentication functionality of the multi-tenant aware BCs of ESBMT. How the authentication
of requests send to a BPEL Process Web Service is realized by the ESB is described in detail
in Section 5.3.6.

The Application Layer provides initially four components which contain the business logic
of the SCE-MT Manager. The SCEManager handles the registration of new SCE instances
at the SCE-MT Manager as described in Section 5.3.2 and is responsible for the installation
of any required message routes to the ESB. The ProcessManager realizes the tenant-aware
management of any data related to process models. For example, it associates a process model
with its SWfMSMT instance in the EventRegistry during the deployment of the model (see
Sect. 5.3.7). The ProcessManager is also responsible to associate the SWfMSMT instances with
the process instances they are executing in the EventRegistry. This information is required
by the installed message routers for the routing of management messages as described in
Section 5.3.8. The EventManager realizes the tenant-isolated and persistent storage of all
PGF event messages emitted by any connected SWfMSMT instance as described in Section
5.3.7. The ConfigurationManager handles the distribution of any SCE and process model
configuration data registered by JBIMulti2. As described in Section 5.3.4, JBIMulti2 inserts

96

5.7 Extensions of the JBIMulti2 application

ConfigurationManager

BpelProcess

BpelRuntimeContext

execute()

invokeProcess()

createRuntimeContext()

new

writeVariable()

writeEndpointReference()

alt

fetchConfigurationData()

variable data

[is variable initialized?]

[else, default behavior]

alt

fetchConfigurationData()

partner link data

[is partner link initialized?]

[else, default behavior]

Figure 5.17: Sequence diagram of process model configuration with the Configuration Man-
ager

this data in the ConfigurationRegistry and associates it with the specified target SCE instance
or process model. The ConfigurationManager creates corresponding management messages for
the registered configuration data and forwards them to the correct set of SWfMSMT instances
by sending the messages to the Global ODE Management Queue.

The Data Access Layer contains a set of Data Access Objects (DAO) classes which realize
the communication between the Application Layer components and the external, shared
databases.

97

5 Implementation

SCE Multi-tenancy Manager (OSGi Bundle)
Presentation Layer

Data Access Layer

Application Layer

Process
Manager

Messaging API

Data Access Objects

SCE
Manager

Configuration
Manager

PostgreSQLPostgreSQL

TenantRegistry

Config.Registry

ServiceRegistry

EventRegistry

Event
Manager

Figure 5.18: Architecture of SCE-MT Manager

Web UI Web Service API

JBIMulti2JBIMulti2

User
Interface

Business
Logic

JBIContainerManager ServiceAssemblyManager

ServiceRegistryManager Config.RegistryManager

TenantRegistry
Manager

SCE-MT Manager Client

PostgreSQLPostgreSQL

TenantRegistry Config.Registry

ServiceRegistryEventRegistry

New
component

Adapted or
extended
component

ActiveMQActiveMQ

Management
Messages.topic

Management
Messages.topic

Unprocessable
Messages.queue

Unprocessable
Messages.queue

SCE-MT Management
Queue

SCE-MT Management
Queue

Message-based Communication

Figure 5.19: Extended JBIMulti2 application

5.7 Extensions of the JBIMulti2 application

Figure 5.19 shows the extended architecture of the JBIMulti2 applications. In the context of
this diploma thesis the Web Service API will be extended with some SCE and process model
specific operations as described in Section 5.3. For example, two new operations to register
configuration data for a SCE instance or process models. The use of these new operations
is authorized with the existing user roles and the functionality of JBIMulti2 as described
by Muhler [Muh12]. Additionally a new component is added to JBIMulti2. The already
introduced SCE-MT Manager Client sends status messages to a SCE-MT Manager over its
SCE-MT Management Queue. Therefore, the client is listening to a subset of the existing and
new WS API operations. If one of these operations is called, the SCE-MT Manager Client
sends a corresponding status message to the SCE-MT Manager.

98

6 Conclusion and Future Work

To leverage the full potential of Cloud computing, multi-tenancy awareness is one of the
key requirements for applications. This diploma thesis provides corresponding concepts and
an implementation approach to realize a multi-tenant aware SCE. In Chapter 2 all needed
fundamentals which are used in this diploma thesis are introduced. After that, in Chapter 3
some related works are introduced. Furthermore the different facets of multi-tenancy like the
isolation of tenants or tenant-based configurability are analyzed. The outcomes of Chapter 3
are used as the basis for the following chapters. In Chapter 4 different multi-tenancy aspects
of a SCE and its process models are introduced with the focus on configurability, isolation
and scalability. After that the necessary behavior of SCEs and process models which provide
multi-tenancy support is described. Furthermore some collaboration aspects are introduced
which loosen the isolation of tenants in some areas and therefore enable collaboration between
tenant users. For example the introduced deployment styles enable tenant users to use process
models in a collaborative way. After that, two possible solution approaches to realize a multi-
tenant SCE and the underlying functional and non-functional requirements are defined. At
the end of the chapter one of the introduced solution approaches is chosen and its integration
into an ESB is described. Chapter 5 describes how the abstract SCEMT architecture defined in
Chapter 4 can be implemented. Therefore an overall architecture is introduced which consists
of the SWfMS with multi-tenancy support, the SCE-MT Manager, ESBMT and JBIMulti2.
The usage and possible extensions of each of the components and how they interact with
each other are further described. This contains for example the extension of the SWfMS, how
ESBMT is used to provide tenant-aware services or the reuse of JBIMulti2 as a management
layer for the SCE-MT Manager. The following sections provide some initial ideas for future
work and possible extensions of the defined concepts and the realized SCEMT implementation
provided by this diploma thesis.

Possible SimTech Architecture with SWfMSMT and ESBMT

Figure 6.1 shows a possible SimTech Architecture with SWfMSMT, JBIMulti2 and ESBMT.
First of all a multi-tenant aware JBIMulti2 Management plug-in should be realized for Eclipse.
This plug-in should provide a secure and user-friendly graphical interface for the administration
and management functionality of JBIMulti2. Users should be authenticated over a single-
sign-on mechanism at JBIMulti2 to check their roles and access permissions. In this way the
registration of new tenants, configuration data or the deployment of SAs would be much easier
for the tenants and their users. The registration of configuration data for a SCE or process
models over JBIMulti2 should be possible out of the same tool which is used to define the
process models. This is really important because it would ease the configuration process. For

99

6 Conclusion and Future Work

ESBMT

OSGi JBI Environment

Camel

Normalized Message RouterNormalized Message Router

Standardised Interfaces for Binding Components

Standardised Interfaces for Service Engines

Eclipse JEE (1,*)

 (Multi-tenant)
SimTech BPEL Designer

Multi-tenant
JBIMulti2 Management

SCE-MT Manager
OSGi Bundle

JMSManagementService
OSGi Bundle

PostgreSQLPostgreSQL

TenantRegistry Config.Registry

ServiceRegistryEventRegistry

JBIMulti2

Message-based Communication Database Connection

SWfMSMT

SOAP over HTTP Communication

HTTP-MT JMS-MTHTTP JMS ...

...

Figure 6.1: Possible SimTech Architecture with ESBMT

example all technical details like the XPath of an variable can be removed from the user. He
can just use the SimTech BPEL Designer to point on the variable for which he wants to register
configuration data. Additionally the SimTech BPEL Designer has to be extended to support
the multi-tenant SWfMS and to use the new communication infrastructure provided by the
ESB and SWfMSMT. For example, the deployment of new process models is now handled over
JBIMulti2 and not directly by the SWfMS. Therefore the SimTech BPEL Designer can use
the functionality of the JBIMulti2 plug-in as shown in Figure 6.1. As described in Chapter
5.3.8 the process and process instance management functionality of SWfMS is provided over
a general HTTP endpoint and a JMS queue. The former is deployed to the HTTP BC and
the latter is deployed to the JMS BC of the ESB. The tenant-aware HTTP endpoints of the
process model Web Service are provided over the HTTP-MT BC as described in Chapter 5.3.6.
Therefore the SimTech BPEL Designer should be aware of how the corresponding endpoint
URLs are generated based on the tenant context referencing the tenant to which a process
model belongs. Another solution would be the retrieval of the correct endpoint URLs over
the SCE-MT Manager with the use of messaging. This approach can be also used to get the
dynamically created endpoint URL of the Event Topic of a tenant user as described in Chapter
5.3.7.

100

Furthermore it must be investigated how and if the flexibility functionalities of SWfMS can
be used in the new environment. For example the Process Instance Migration functionality
is build on top of the Axis2 Integration Layer of Apache ODE. But SWfMSMT uses the JBI
Integration Layer and as a result of that, the migration of process instances is not possible
with the provided prototype.

Advanced Process Model Configuration

The configuration of process models described in Chapter 4.3 should be extended by separating
the specification of possible configurable process elements from the underlying process model.
Instead of marking some process elements during modeling time for later configuration,
an authorized user should be able to specify the configurable elements of a process model
over JBIMulti2 during runtime without the need to change the underlying process model.
Therefore the database schema of the ConfigurationRegistry has to be enriched with a new
ConfigurableElements entity type which will be referenced by a ProcessModel entity. Each
process element which should be marked as configurable is specified over its XPath expressions
and an optional default value. The registered default values are used during runtime if a
tenant user has not specified any configuration data for a configurable process element. The
collection of all XPath expressions identifies then all elements of a process model which could
be configured by a user. During the registration of process model configuration data over
JBIMulti2, this collection of XPath expressions can be provided to the user as a list of possible
target elements he can register configuration data for. The user only has to select an XPath
expression and register a corresponding value for it.

The registration of process fragments described in Chapter 4.3 should also be realized in a
future version. Process fragments would enable a more flexible and powerful configuration of
process models for tenant users. As a result that a process fragment directly influences the
control flow of a process model by adding new activities, the process modeler should be able to
define the valid insertion points for fragments inside the model. This can be realized with a new
BPEL Extension Activity which extends the original BPEL Empty activity with the ability
to mark the activity as valid insertion point. The resulting process model becomes therefore
some kind of process model template which can be refined and extended by any tenant user.
The tenant users are able to register their customized logic modeled in process fragments
with one of the BPEL Empty activities marked as insertion point. Therefore the registration
can be realized again over the corresponding XPath expressions of the target BPEL Empty
activity. The BPEL Empty activities are used to mark insertion points because if no process
fragment is registered for an insertion point the workflow engine just does nothing. This makes
it also possible that tenant users are able to register process fragments for only a subset of the
defined insertion points of a process model. Furthermore the SCE implementation has to be
extended to dynamically weave in all registered process fragments into the process model by
re-compiling the composed process model before it is instantiated.

101

6 Conclusion and Future Work

Providing Dynamic Collaborative Multi-tenancy and Fine-Grained Access Permissions

As introduced in Chapter 4.5, the possibility to dynamically define access permissions on a
process model and process instance level would make the collaboration between tenant users
more flexible. Therefore tenant users should be able to specify and change access permissions
during the runtime of the SCE and its process instances.

The defined deployment styles already enable the static specification of different collaboration
possibilities on a process model level during the deployment time. The owner of the process
model is not aware of who actually uses his model. Therefore tenant users should be able
to dynamically define tenant-based access permission for process models over JBIMulti2
during the whole lifecycle of a model. The registered access permissions are stored in the
ConfigurationRegistry and can then be used for the authentication of tenant requests during
process instantiation. Since the authentication of incoming requests is handled in the multi-
tenant aware endpoints of the services, the corresponding ProcessHttpSoapConsumerMarshaler
implementations have to be adapted (see Chapter 5.3.6). For each incoming request the
associated tenant context has first to be compared with the one in the tenant context XML
file of the HTTP SU. If the tenant contexts do not match, all registered tenants with access
permissions for the process model must be queried from the ConfigurationRegistry over the
unique processId of the model. After that, the responded list of tenant contexts can be
compared to the tenant context of the incoming request. If the list contains a matching tenant
context the request is forwarded to the SCE. In any other case the request must be rejected
by the endpoint.

To enable the dynamic collaboration between tenant users on a process instance level, the
definition of fine-grained access permissions should be possible. An example scenario how the
collaboration on a process instance level looks like is described in Chapter 4.5. The fact that
all management messages are authenticated by the SCE itself makes it possible to support
fine-grained access permissions on a method level. This means tenant users are able to specify
which method of the Management Interface a tenant user can invoke. The registration of
access permissions for process instances should also be possible over JBIMulti2. Therefore the
same mechanism as introduced for the forwarding of configuration data in Chapter 5.3.4 can
be used to register fine-grained access permissions over JBIMulti2. These access permissions
are then forwarded over the SCE-MT Manager to the engine-internal ConfigurationDB of the
SCE instance. The engine could then use this data to authenticate and authorize incoming
management requests based on the data stored in the ConfigurationDB. Furthermore JBIMulti2
should provide some predefined user roles which can be used by tenant users to define access
permissions for a process instance. For example an “Instance Administrator” role which
combines all available access permissions and is allowed to assign access permissions for a
process instance to other tenant users. As a result each tenant user which has the Instance
Administrator role can execute all methods of the Management Interface of the SCE.

102

Bibliography

[Abr74] J.-R. Abrial. Data Semantics. In IFIP Working Conference Data Base Manage-
ment, pp. 1–60. 1974. (Cited on page 69)

[ALMS09] T. Anstett, F. Leymann, R. Mietzner, S. Strauch. Towards BPEL in the Cloud:
Exploiting Different Delivery Models for the Execution of Business Processes.
In Proceedings of the International Workshop on Cloud Services (IWCS 2009)
in conjunction with the 7th IEEE International Conference on Web Services
(ICWS 2009), Los Angeles, CA, USA, July 10, 2009, pp. 670–677. IEEE, 2009.
URL http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_
view.pl?id=INPROC-2009-41&engl=0. (Cited on pages 29, 31 and 32)

[BPE07] Organization for the Advancement of Structured Information Standards (OASIS).
Web Services Business Process Execution Language Version 2.0. OASIS Standard,
2007. URL http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.
html. (Cited on pages 18 and 19)

[CC06] F. Chong, G. Carraro. Architecture Strategies for Catching the Long Tail, 2006.
URL http://msdn.microsoft.com/en-us/library/aa479069.aspx. (Cited on
pages 29, 30, 31, 32 and 107)

[CCW06] F. Chong, G. Carraro, R. Wolter. Multi-Tenant Data Architecture, 2006.
URL http://msdn.microsoft.com/en-us/library/aa479086.aspx. (Cited on
pages 32 and 33)

[Cha04] D. A. Chappell. Enterprise service bus. Theory in practice. O’Reilly, Beijing and
Cambridge, 2004. (Cited on pages 15 and 16)

[EB09] M. Eckert, F. Bry. Complex event processing (CEP). Informatik-Spektrum,
32(2):163–167, 2009. (Cited on page 67)

[Ess11] S. Essl. Extending an Open Source Enterprise Service Bus for Multi-Tenancy
Support. Masterarbeit, Universität Stuttgart, Fakultät Informatik, Elektrotechnik
und Informationstechnik, Germany, 2011. URL http://www2.informatik.
uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=MSTR-3166&engl=0.
(Cited on pages 9 and 24)

[GSH+07] C. J. Guo, W. Sun, Y. Huang, Z. H. Wang, B. Gao. A Framework for Native
Multi-Tenancy Application Development and Management. In E-Commerce
Technology and the 4th IEEE International Conference on Enterprise Computing,
E-Commerce, and E-Services, 2007. CEC/EEE 2007. The 9th IEEE International

103

http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2009-41&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2009-41&engl=0
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://msdn.microsoft.com/en-us/library/aa479069.aspx
http://msdn.microsoft.com/en-us/library/aa479086.aspx
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=MSTR-3166&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=MSTR-3166&engl=0

Bibliography

Conference on, pp. 551–558. 2007. doi:10.1109/CEC-EEE.2007.4. (Cited on
pages 29, 31, 32 and 34)

[Hol95] D. Hollingsworth. Workflow Management Coalition: The Workflow Reference
Model. The Workflow Management Coalition, 1995. (Cited on pages 17, 18 and 37)

[Hot10] S. Hotta. Ausführung von Festkörpersimulationen auf Basis der Workflow Tech-
nologie. Diplomarbeit, Universität Stuttgart, Fakultät Informatik, Elektrotechnik
und Informationstechnik, Germany, 2010. URL http://www2.informatik.
uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3029&engl=0.
(Cited on page 10)

[HW04] G. Hohpe, B. Woolf. Enterprise integration patterns: Designing, building, and
deploying messaging solutions. Addison-Wesley Professional, 2004. (Cited on
page 26)

[JBI05] JavaTMBusiness Integration (JBI) 1.0, Final Release, 2005. URL http://
jcp.org/aboutJava/communityprocess/final/jsr208/index.html. (Cited on
pages 22, 23 and 107)

[KDS+12] D. Karastoyanova, D. Dentsas, D. Schumm, M. Sonntag, L. Sun, K. Vuko-
jevic. Service-based Integration of Human Users in Workflow-driven Scien-
tific Experiments. In Proceedings of the 8th IEEE International Conference
on eScience (eScience 2012), pp. 1–8. IEEE Computer Society Press, 2012.
URL http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_
view.pl?id=INPROC-2012-39&engl=0. (Cited on page 10)

[KMK12] R. Krebs, C. Momm, S. Kounev. Architectural Concerns in Multi-tenant SaaS
Applications. In Proceedings of the 2nd International Conference on Cloud
Computing and Service Science (CLOSER’12), pp. 426–431. 2012. (Cited on
pages 29, 31 and 32)

[LR00] F. Leymann, D. Roller. Production workflow: concepts and techniques. Prentice
Hall PTR, 2000. (Cited on pages 17 and 37)

[MG11] P. Mell, T. Grance. The NIST Definition of Cloud Computing. Technical
report, National Institute of Standards and Technology (NIST), 2011. URL http:
//csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf. (Cited
on pages 16 and 17)

[Muh12] D. Muhler. Extending an Open Source Enterprise Service Bus for Multi-Tenancy
Support Focusing on Administration and Management. Diplomarbeit, Univer-
sität Stuttgart, Fakultät Informatik, Elektrotechnik und Informationstechnik,
Germany, 2012. URL http://www2.informatik.uni-stuttgart.de/cgi-bin/
NCSTRL/NCSTRL_view.pl?id=DIP-3226&engl=0. (Cited on pages 9, 25, 26, 27,
28, 67, 69, 70, 71, 73, 81, 98 and 107)

104

http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3029&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3029&engl=0
http://jcp.org/aboutJava/communityprocess/final/jsr208/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr208/index.html
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2012-39&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2012-39&engl=0
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3226&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3226&engl=0

Bibliography

[Nin11] B. Ning. Iteration und wiederholte Ausführung von Aktivitäten in Workflows.
Diplomarbeit, Universität Stuttgart, Fakultät Informatik, Elektrotechnik
und Informationstechnik, Germany, 2011. URL http://www2.informatik.
uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3096&engl=0.
(Cited on pages 10 and 21)

[OSG12] The OSGi Alliance. OSGi Core Release 5, 2012. URL http://www.osgi.org/
download/r5/osgi.core-5.0.0.pdf. (Cited on page 24)

[Por08] JavaTMPortlet Specification 2.0, 2008. URL http://jcp.org/aboutJava/
communityprocess/final/jsr286/index.html. (Cited on page 40)

[PPKW11] M. Pathirage, S. Perera, I. Kumara, S. Weerawarana. A Multi-tenant Architecture
for Business Process Executions. In Web Services (ICWS), 2011 IEEE Interna-
tional Conference on, pp. 121–128. 2011. doi:10.1109/ICWS.2011.99. (Cited on
page 34)

[RBKK12] M. Reiter, U. Breitenbücher, O. Kopp, D. Karastoyanova. Quality
of Data Driven Simulation Workflows. In IEEE, editor, 2012 8th
IEEE International Conference on eScience. IEEE Computer Society, 2012.
URL http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_
view.pl?id=INPROC-2012-42&engl=0. (Cited on page 10)

[Rut09] J. Rutschmann. Generisches Web Service Interface um Simulationsanwen-
dungen in BPEL-Prozesse einzubinden. Diplomarbeit, Universität Stuttgart,
Fakultät Informatik, Elektrotechnik und Informationstechnik, Germany, 2009.
URL http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_
view.pl?id=DIP-2895&engl=0. (Cited on page 10)

[Sáe13] S. G. Sáez. Integration of Different Aspects of Multi-Tenancy in
an Open Source Enterprise Service Bus. Studienarbeit: Univer-
sität Stuttgart, Institut für Architektur von Anwendungssystemen, 2013.
URL http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_
view.pl?id=STUD-2394&engl=0. (Cited on pages 9, 25, 28, 73, 81 and 84)

[SALM12] S. Strauch, V. Andrikopoulos, F. Leymann, D. Muhler. ESBMT: En-
abling Multi-Tenancy in Enterprise Service Buses. In Proceedings of the
4th IEEE International Conference on Cloud Computing Technology and
Science (CloudCom’12), pp. 456–463. IEEE Computer Society Press, 2012.
URL http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_
view.pl?id=INPROC-2012-46&engl=0. (Cited on pages 9, 11, 12, 13, 29, 32, 33
and 107)

[Sch11] T. Schliemann. Unterstützung des “Model-as-you-go”-Ansatzes durch Modell-
Versionierung und Instanzmigration. Diplomarbeit, Universität Stuttgart,
Fakultät Informatik, Elektrotechnik und Informationstechnik, Germany, 2011.
URL http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_
view.pl?id=DIP-3121&engl=0. (Cited on pages 10 and 21)

105

http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3096&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3096&engl=0
http://www.osgi.org/download/r5/osgi.core-5.0.0.pdf
http://www.osgi.org/download/r5/osgi.core-5.0.0.pdf
http://jcp.org/aboutJava/communityprocess/final/jsr286/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr286/index.html
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2012-42&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2012-42&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-2895&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-2895&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=STUD-2394&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=STUD-2394&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2012-46&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2012-46&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3121&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3121&engl=0

Bibliography

[SCLGK10] M. Sonntag, N. Currle-Linde, K. Görlach, D. Karastoyanova. Towards Simulation
Workflows With BPEL: Deriving Missing Features From GriCoL. In R. Alhajj,
V. Leung, M. Saif, R. Thring, editors, Proceedings of the 21st IASTED Interna-
tional Conference on Modelling and Simulation (MS 2010), 2010. ACTA Press,
2010. URL http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/
NCSTRL_view.pl?id=INPROC-2010-26&engl=0. (Cited on page 10)

[SOA13] The Open Group. Service-Oriented Architecture, 2013. URL http://www.
opengroup.org/subjectareas/soa. (Cited on page 15)

[Ste08] T. Steinmetz. Ein Event-Modell für WS-BPEL 2.0 und dessen Real-
isierung in Apache ODE. Diplomarbeit, Universität Stuttgart, Fakultät
Informatik, Elektrotechnik und Informationstechnik, Germany, 2008. URL
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.
pl?id=DIP-2729&engl=0. (Cited on pages 21 and 73)

[Tol11] A. Tolev. Aufruf und visuelle Korrelation von wissenschaftlichen Workflows in
einem Workflow Modellierungswerkzeug. Diplomarbeit, Universität Stuttgart,
Fakultät Informatik, Elektrotechnik und Informationstechnik, Germany, 2011.
URL http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_
view.pl?id=DIP-3227&engl=0. (Cited on page 10)

[WCL+05] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, D. Ferguson. Web services
platform architecture: SOAP, WSDL, WS-policy, WS-addressing, WS-BPEL,
WS-reliable messaging and more. Prentice Hall, 2005. (Cited on page 15)

[WMTJ12] S. Walraven, T. Monheim, E. Truyen, W. Joosen. Towards performance isolation in
multi-tenant SaaS applications. In Proceedings of the 7th Workshop on Middleware
for Next Generation Internet Computing, p. 6. ACM, 2012. (Cited on page 34)

[WTJ11] S. Walraven, E. Truyen, W. Joosen. A Middleware Layer for Flexible and
Cost-Efficient Multi-tenant Applications. In F. Kon, A.-M. Kermarrec, editors,
Middleware 2011, volume 7049 of Lecture Notes in Computer Science, pp. 370–389.
Springer Berlin Heidelberg, 2011. doi:10.1007/978-3-642-25821-3_19. URL http:
//dx.doi.org/10.1007/978-3-642-25821-3_19. (Cited on pages 29 and 31)

All links were last followed on November 7, 2013.

106

http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2010-26&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2010-26&engl=0
http://www.opengroup.org/subjectareas/soa
http://www.opengroup.org/subjectareas/soa
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-2729&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-2729&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3227&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3227&engl=0
http://dx.doi.org/10.1007/978-3-642-25821-3_19
http://dx.doi.org/10.1007/978-3-642-25821-3_19

List of Figures

1.1 Architecture of the SimTech prototype . 11
1.2 Architecture of the 4CaaSt Taxi Scenario [SALM12] 12

2.1 Architecture of the extended BPEL Engine Apache ODE 20
2.2 Architecture of the Java Business Integration, cf. [JBI05] 23
2.3 JBIMulti2 System Overview, [Muh12] . 27

3.1 Four-level SaaS maturity model defined by [CC06] 30

4.1 General architecture of a SCE . 39
4.2 Some examples for the configurability of a SCE 40
4.3 Some examples for the configurability of a process model 43
4.4 Process Deployment with a multi-tenant SCE 45
4.5 Process Instantiation with a multi-tenant SCE 47
4.6 (External) Service invocation with a multi-tenant SCE 48
4.7 Correlation of process instances with a multi-tenant SCE 49
4.8 Example for a simple collaborative multi-tenancy scenario with a multi-tenant

SCE . 52
4.9 Example for a complex collaborative multi-tenancy scenario with a multi-tenant

SCE . 53
4.10 Possible architecture of a multi-tenant SCE with an integrated multi-tenancy

enablement layer (Architecture A) . 56
4.11 Possible architecture of a multi-tenant SCE with an outsourced multi-tenancy

enablement layer (Architecture B) . 57
4.12 Integration of a SCE over Binding Components 61
4.13 Integration of SCEMT over Binding Components 62
4.14 Integration of a SCE as Service Engine . 63
4.15 Integration of SCEMT as Service Engine . 64

5.1 Overall architecture of ESBMT, JBIMulti2 and the SCEMT realization 68
5.2 Extended entity-relationship diagram of the Service Registry using (Min,Max)

Notation, cf. [Muh12] . 70
5.3 Extended entity-relationship diagram of the Configuration Registry using

(Min,Max) Notation, cf. [Muh12] . 71
5.4 New entity-relationship diagram of the Event Registry using (Min,Max) Notation 72
5.5 Messaging infrastructure of ESBMT with installed SCE-MT Manager 74
5.6 Registration of a new SWfMSMT instance at the SCE-MT Manager 76

107

List of Figures

5.7 Example of status forwarding if a new tenant is registered at JBIMulti2 77
5.8 Complete process of the registration of configuration data over JBIMulti2 . . . 79
5.9 Example of a Process Service Assembly and its contents 80
5.10 Deployment of Process Service Assemblies to ESBMT with installed SWfMSMT

over JBIMulti2 . 82
5.11 Sequence diagram of the authentication of incoming requests at a multi-tenant

HTTP endpoint . 84
5.12 Routing of event messages with the ESB . 86
5.13 Routing of message exchanges for the Process&InstanceManagement Web Ser-

vice with Apache Camel . 88
5.14 Routing of SWfMS management messages with Apache Camel 89
5.15 Multi-tenant aware SWfMS Architecture . 91
5.16 Sequence diagram of Extension Bundle configuration with the Configuration

Manager . 95
5.17 Sequence diagram of process model configuration with the Configuration Manager 97
5.18 Architecture of SCE-MT Manager . 98
5.19 Extended JBIMulti2 application . 98

6.1 Possible SimTech Architecture with ESBMT . 100

108

List of Listings

5.1 Example JBI descriptor XML document of a PSA 81
5.2 Contents of a xbean XML file to provide a HTTP consumer endpoint over the

ESB . 82
5.3 Tenant context with an optional entry to specify the deployment style of a PSA 83
5.4 Extract of a ODE configuration file . 94

109

Decleration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

	1 Introduction
	1.1 Background
	1.1.1 SimTech
	1.1.2 4CaaSt

	1.2 Motivation
	1.3 Outline

	2 Fundamentals
	2.1 Service-Oriented Architecture
	2.2 Enterprise Service Bus
	2.3 Cloud Computing
	2.4 Workflow Technology
	2.5 Extentend Apache ODE
	2.6 Java Business Integration
	2.7 OSGi Framework
	2.8 Multi-tenant aware Apache ServiceMix
	2.8.1 Multi-tenant HTTP Binding Component
	2.8.2 Apache Camel

	2.9 JBIMulti2

	3 Related Works
	3.1 Configurability
	3.2 Scalability
	3.3 Isolation of Tenants
	3.3.1 Data Isolation
	3.3.2 Communication Isolation
	3.3.3 Administration Isolation
	3.3.4 Performance Isolation

	3.4 Existing Multi-tenant SCE Approach

	4 Requirements and Concepts
	4.1 General SCE Architecture
	4.2 Multi-tenancy aspects of a Service Composition Engine
	4.2.1 Configurability
	4.2.2 Isolation
	4.2.3 Scalability

	4.3 Multi-tenancy aspects of a Process Model
	4.3.1 Configurability
	4.3.2 Isolation
	4.3.3 Scalability

	4.4 Behavior of a Multi-tenant aware SCE and Process Models
	4.4.1 Process Deployment
	4.4.2 Process Instantiation
	4.4.3 Service Invocation
	4.4.4 Correlation of Process Instances

	4.5 Collaboration Aspects of a Multi-tenant SCE
	4.6 Multi-tenancy Requirements
	4.6.1 Functional Requirements
	4.6.2 Non-functional Requirements

	4.7 Multi-tenant SCE Architectures
	4.8 Integration of SCEMT into an ESB
	4.8.1 Integration of SCEMT over Binding Components
	4.8.2 Integration of SCEMT as Service Engine

	5 Implementation
	5.1 Overall Architecture of the Realization Approach
	5.2 Database Schemas
	5.3 Interaction of JBIMulti2, ESBMT, SCE-MT Manager and SWfMSMT
	5.3.1 Overall Messaging Infrastructure
	5.3.2 Registration of SWfMSMT instances at SCE-MT Manager
	5.3.3 Tenant-aware Administration over JBIMulti2 and Status Forwarding
	5.3.4 Tenant-based Configuration of SCE Instances and Process Models over JBIMulti2
	5.3.5 Tenant-based Deployment of Process Models over JBIMulti2
	5.3.6 Tenant-aware Process Instantiation with ESBMT
	5.3.7 Tenant-aware Event Messaging and Event Message Routing
	5.3.8 Routing of SWfMSMT Management Messages

	5.4 Multi-tenant SWfMS Architecture
	5.5 Configurability of SWfMSMT
	5.6 Architecture of SCE-MT Manager
	5.7 Extensions of the JBIMulti2 application

	6 Conclusion and Future Work
	Bibliography

