Institute of Architecture of Application Systems
University of Stuttgart

UniversitatsstraBe 38
D-70569 Stuttgart

Master’s Thesis No. 3747

Modeling Approaches to Enable
Data Shipping and Function
Shipping by Means of TOSCA

Karoline Saatkamp

Course of Study: Wirtschaftsinformatik
Examiner: Prof. Dr. Dr. h. c. Frank Leymann
Supervisor: Michael Falkenthal, M. Sc.,

Michael Zimmermann, M. Sc.

Commenced: February 1, 2016

Completed: July 29, 2016

CR-Classification: C.2.4, E.O, 1.6.5

Abstract

The Cloud Computing paradigm requires standardized mechanisms to enable the porta-
bility of applications and data in and between clouds to avoid vendor lock-in and to
enable the automated deployment to reduce the management effort. With the standard
Topology and Orchestration Specification for Cloud Applications (TOSCA) language,
application topologies representing the components of an application and their relations
can be defined. By means of a self-contained and portable archive the application can
be moved between different environments and can be automatically deployed. However,
data management aspects in terms of data provisioning and wiring with the application
are not considered by TOSCA. Due to the increasing amount of captured data in context
of the Internet of Things, for example, and new data analysis opportunities, the portabil-
ity of data and the connection between the data and the functions processing these data
are getting more important. Thereby, either the data can be shipped to the function site
(data shipping) or the function can be shipped and executed at the data site (function
shipping).

In this thesis various modeling concepts are developed to enable data shipping and
function shipping. Different approaches for modeling the assignment between data
and function and for the integration of data extraction and transformation mechanisms
are formulated. Each concept is applicable under different environmental conditions
and is described in an abstract manner. How these abstract modeling concepts can be
implemented by means of TOSCA is shown by the TOSCA realization options, which
are discussed in this thesis. Furthermore, the expressiveness of TOSCA and extension
options for TOSCA to implement the modeling concepts are analyzed.

Contents

1 Introduction 11

2 Fundamentals 15

2.1 Topology and Orchestration Specification for Cloud Applications 15

2.2 Terminology: Data Shipping versus Function Shipping 21

3 Related Work 23

3.1 Function Shipping Conceptso v i v vt 23

3.2 Data Shipping Concepts o v it 26

4 Data Shipping and Function Shipping Use Cases 33

4.1 Modeling Scenario for Data Shipping and Function Shipping 33

4.2 Use Cases for Data Shipping 34

4.3 Use Cases for Function Shipping 35

5 Modeling Concepts for Data Shipping and Function Shipping 37

5.1 Concept 1: Uniquely Addressable Data Resource 40
5.2 Concept 2: Uniquely Addressable Data Resource with Assigned Processing

Logic Identifier 47

5.3 Concept 3: Uniquely Addressable Processing Logic 54
5.4 Concept 4: Uniquely Addressable Processing Logic with Assigned Data

Identifier e 58

5.5 Concept 5: Data Connector between Processing Logic and Data Resource 68

5.6 Concept 6: Data Connector with Transformation Capability 73

5.7 Concept 7: Data Connector between Processing Logic and Data Collection 84
5.8 Concept 8: Data Connector with Operations Applied to Multiple Data

Resources e 92

5.9 Modeling Concepts Summaryo v v v v v v v .. 100

6 Analysis of Extension Options for TOSCA 103

7 Conclusion and Future Work 105

Bibliography 107

List of Figures

2.1 General elements of a TOSCA Service Template with the Application

Interface extension 16
2.2 Structurof aCSAR e e 20
3.1 Examplary architecture with AWS Lambda 26
3.2 SIMPL Metadataclasses, 30
4.1 Modeling scenario e 33
4.2 Use cases for data shipping 35
4.3 Use cases for function shipping 36

5.1 Overview of the modeling concepts and the related TOSCA realization

OPLIONS o v i e e e e e e e e e e e e e e e e 38
5.2 Concept 1: Uniquely addressable data resource 40
5.3 Option 1.1: Data location assignment via deployment artifact 42
5.4 Exemplary structure of an CSAR containingdata 43
5.5 Option 1.2: Data location assignment via property 45
5.6 Concept 2: Uniquely addressable data resource with assigned processing

logicidentifier. 47
5.7 Option 2.1: Processing logic assignment via property 48
5.8 Option 2.2: Processing logic input parameter assignment via property . . 51
5.9 Concept 3: Uniquely addressable processing logic 54
5.10 Option 3.1: Processing logic Node Type definition 56
5.11 Exemplary structure of a CSAR containing the processing logic 57
5.12 Concept 4: Uniquely addressable processing logic with assigned data

identifier. L L 58
5.13 Option 4.1: Data assignment via property 60
5.14 Option 4.2: Data assignment via input parameter 63

5.15 Option 4.3: Data assignment via property and input parameter matching 65
5.16 Concept 5: Data connector between processing logic and data resource . 68

5.17 Option 5.1: Data connector with input parameter matching 70
5.18 Concept 6: Data connector with transformation capability 73
5.19 Option 6.1: Transformation assignment via property 75

5.20 Option 6.2: Transformation assignment via transformation interface
5.21 Option 6.3: Explicitly modeled dataquery
5.22 Concept 7: Data connector between processing logic and data collection
5.23 Option 7.1: Separated dataresources v v v v v v v v u .
5.24 Exemplary structure of an CSAR containing two different files
5.25 Option 7.2: Single data collection
5.26 Concept 8: Data connector with operations applied to multiple data
TESOUICES . . v v v e
5.27 Option 8.1: Join operation assignment via join interface
5.28 Option 8.2: Implicit join operation
5.29 Overview of all concepts and the related realizable use cases

List of Listings

5.1 Option 1.1: Node Type definition DataResource and Node Template

DataResourceFile i e e e e
5.2 Option 1.1: Artifact Type definition FileArtifact and Artifact Template

FileContent v i v v i it i e e e e e e e
5.3 Node Type definition DataResource with properties
5.4 Location property definition for Node Type DataResource
5.5 Node Template DataResourceFile with property Location
5.6 Option 2.1: Properties definition for Node Type DataResource
5.7 Option 2.1: Node Template DataResourceFile
5.8 Option 2.2: Properties definition for Node Type DataResource
5.9 Option 2.2: Node Template DataResourceFile
5.10 Option 3.1: Node Type definition ProcessingLogic
5.11 Option 3.1 and 4.2: Node Template Calculator
5.12 Artifact Type definition JARArtifact and Artifact Template CalculatorIn-

stallable e e e e
5.13 Option 4.1: Node Type definition ProcessingLogic
5.14 Option 4.1: Properties definition for Node Type Processinglogic
5.15 Option 4.1: Node Template Calculator
5.16 Option 4.2: Node Type definition ProcessingLogic
5.17 Node Type definition ProcessingLogic with application interface.
5.18 Option 4.3: Properties definition for Node Type ProcessinglLogic
5.19 Option 4.3: Node Template Calculator
5.20 Relationship Type definition DataConnector with properties
5.21 Properties definition for Relationship Type DataConnector
5.22 Option 5.1: Relationship Template DataConnectorFile
5.23 Extended properties definition for Node Type DataResource
5.24 Option 6.1: Properties definition for Relationship Type DataConnector . .
5.25 Option 6.2: Relationship Type definition DataConnector
5.26 Node Type definition DataCollection
5.27 Properties definition for Node Type DataCollection
5.28 Node Template DataCollectionFileSystem

1 Introduction

Cloud Computing changes the way enterprises use IT. Large investments into own IT
infrastructures, applications, and costly IT maintenance become obsolete as software,
platform, and infrastructure services can be used on demand [Arm+10]. The automated
management of the offered enterprise applications in terms of deployment and configu-
ration as well as the portability between different environments is of great importance
to ensure efficient cloud services. Often parts of the application have to be redesigned
and reimplemented when the cloud provider changes [Bin+14; Pet+14].

The standard Topology and Orchestration Specification for Cloud Applications (TOSCA)
addresses three problems of Cloud Computing: (1) automated application deployment
and management, (2) portability between different environments, and (3) interoper-
ability and reusability of application components. TOSCA enables the full-automated
management of the application through the combination of two main concepts: ap-
plication topologies and management plans. An application topology describes an
application’s structure and the management capabilities of the components. Manage-
ment plans define process flows that have to be executed to deploy, configure, manage,
and operate the application. All relevant files are packaged into a self-contained and
portable archive, called Cloud Service Archive (CSAR) to move the application between
different environments [Bin+14; OAS13b].

Thus, TOSCA focuses on application structures and their management but does not
consider how data can be moved in and between clouds and how they can be associated
with the business logic. This affects all aspects of the data management in terms of data
provisioning and wiring with the application.

New trends like Internet of Things or Cyber-Physical System-based manufacturing
in the manufacturing industries increase the volume of data captured by multiple
sensors [Atz+10; Lee+14]. Especially in the industrial environment as part of the
fourth industrial revolution (called Industrie 4.0 in Germany) and Industrial Internet
initiatives, intelligent interconntected machines and products capture data during the
production process, e.g., about machine performance or health which can be used to
increase reliability, availability and performance [For+13; Con16]. Often the situation
arises that “ [...] Who owns the data is often not capable of analyzing it” [Bud+15].
This means, the processing logic which is required to analyze for example the machine

11

1 Introduction

data is often provided by the machine manufacturer or a data scientist, whereas the data
are captured and owned by the respective production company [Lee+14; Bud+15].

For the processing of data that resist at another location than the processing logic, two
approaches can be differentiated in terms of the provisioning of data and processing
logic: data shipping and function shipping. In case of data shipping, the data are shipped
to the location where the processing logic is executed. In case of function shipping,
the processing logic is shipped to and executed at the location where the data resist.
For each approach, two use cases can be distinguished: shipping of the actual data or
processing logic and shipping of a reference to a remote location of the data or the
processing logic. In the first case, the data or processing logic, respectively, are packaged
in an archive and sent to the target runtime environment. In the second case, only a
reference to the data or processing logic is packaged in an archive and transmitted. The
data or processing logic can then be retrieved from the remote location at a later time.

The data are often stored in various heterogeneous data sources by the different compa-
nies. Due to the fact the processing logic is not only developed for one specific company
and data source, methods are required to enable the integration and processing of
heterogeneous data sources. Extraction, transformation, and load (ETL) mechanisms
are already known for data provisioning in different areas, such as business intelligence
solutions [Kem+04] and data flows in workflow modelling [Sad+04]. Especially ex-
traction and transformation mechanisms are also required in other areas to enable the
data integration for example in web service compositions [Lé+08] and the Internet of
Things [Bar+12]. These are key aspects in terms of data provisioning to enable data
processing of heterogeneous data.

Due to the capability of TOSCA to enable the automated deployment of applications and
the portability between different environments by means of a specific archive format,
TOSCA is a good basis for modeling data shipping and function shipping. So far, data
management aspects are not considered in TOSCA. For this, approaches to model data,
extraction and transformation mechanisms, and the assignment between data and
processing logic have to be developed.

The first goal of this master’s thesis is the development and evaluation of modeling
concepts to enable (1) data shipping as well as function shipping between different
environments and (2) the association between the processing logic and the data. With the
concepts various modeling approaches for the assignment between data and processing
logic as well as for extraction and transformation mechanisms have to be formulated.
Each concept is applicable under different environmental conditions. The second goal is
to specify options which implement these modeling concepts by means of TOSCA. In
particular, the usage of existing TOSCA language elements and required extensions of
TOSCA are analyzed.

12

This thesis is structured in the following way:

Chapter 2 - Fundamentals explains the fundamentals this thesis bases on. This in-
cludes the benefits and syntax of TOSCA as well as the approach of data shipping
and function shipping and their usage in different research areas.

Chapter 3 — Related Work discusses the work related to this thesis in terms of data
shipping and function shipping concepts and evaluates the adaptability for the
modeling concepts.

Chapter 4 - Data Shipping and Function Shipping Use Cases presents the modeling
scenario, which serves as an example for the concepts and options. Additionally,
the data shipping as well as function shipping use cases, which should be realized
by the modeling concepts, are described in detail.

Chapter 5 - Modeling Concepts for Data Shipping and Function Shipping covers all
developed modeling concepts and the corresponding TOSCA realization options.
The concepts and TOSCA realization options are described and the applicability
of each concept and option for data shipping and function shipping use cases are
evaluated. The required TOSCA extensions for each option are discussed.

Chapter 6 — Analysis of Extension Options for TOSCA analyzes the different possibil-
ities available to extend TOSCA. Advantages and Disadvantages are discussed and
the extensions used for the TOSCA realization options are evaluated.

Chapter 7 — Conclusion and Future Work summarizes the contributions of this thesis
and suggests related topics for future research.

13

2 Fundamentals

2.1 Topology and Orchestration Specification for Cloud
Applications

The OASIS standard TOSCA introduces an XML-based language to describe the structure
of composite cloud applications and their management during their life cycle [OAS13b].
The three main goals of TOSCA are (1) automated management, (2) portability of
applications, and (3) definition of interoperable and reusable application compo-
nents [Bin+14]. TOSCA allows the application creator that has deep knowledge about
the application to specify management plans to fulfill management tasks. They are
used to deploy, configure, and manage the application. Therefore, users do not have
to obtain additional knowledge to manage the application. These management plans
are just required in case of a imperative provisioning approach, i.e., all management
tasks are explicitly defined [Bre+16]. Another approach is the declarative provisioning.
Simple management tasks such as the provisioning of an application can be fullfilled
without user-defined management plans [Bre+16]. To enable the portability, TOSCA
formalizes application topologies and management plans in a self-contained way. Each
environment supporting TOSCA can deploy and manage the application. The third goal
is achieved by defining the components in a reusable manner. Different parties can
define components which can be composed in several applications.

The two main concepts of TOSCA are (1) application topologies and (2) management
plans [Bin+14]. An application topology describes the structure of the application’s
components, the relations between them, and the management capabilities of each
component. Management capabilities are operations offered by a component to manage
this component. Such management operations are used to, e.g., install, configure, or
uninstall the component. The management plans combine these management operations
to define process flows for different management tasks. To define these plans, existing
workflow languages like BPMN or BPEL are used.

15

2 Fundamentals

Service Template

(" Node Type Relationship Type
.ﬁ ;Application a = §
e nterface P -2
@ 9] %o
Q Q & 3
o Management o 2
a Interface o =
4 4
type of : : type of
4 ! ! N
1
|
1
° Node i -~ Node
g >
%’_ Template Relationship Template Template
IS J
2
%>D Relationship
_8. ! Template
L
Node
Template
N
4 N
(%]
c
©
o

Figure 2.1: General elements of a TOSCA Service Template with the Application Inter-
face extension adopted from [OAS13b]

2.1.1 TOSCA Syntax

In this section the most important elements of TOSCA are described, in particular the
elements that define application’s components and the relationship among them. It is
based on the latest published version of the TOSCA specification [OAS13b].

The TOSCA specification provides a metamodel to define IT services. A Service Template,
depicted in Fig. 2.1, contains the application topology as well as the management plans
and therefore describes the complete service. The structure of the application is defined
by a Topology Template and the management plans by means of Plans.

The Topology Template comprises a set of Node Templates and Relationship Templates.
The Node Templates represent the components the application consists of and can be
instantiated. That means a Node Template indicates only the occurrence of a component

16

2.1 Topology and Orchestration Specification for Cloud Applications

and not a concrete instance of the component. The Node Types define reusable entities
and their Properties and Interfaces. Node Templates of these types can be specified.

A service can for example consist of an application server and an application. To describe
this service in a Topology Template, a Node Template of type Application Server and
a Node Template of type Application is included. The Application Node Type defines
properties such as the owner of the application and interfaces with operations to install,
configure, and shutdown the application.

Besides the Node Templates, Relationship Templates are essential elements of the Topol-
ogy Template. A Relationship Template specifies the relationship between two compo-
nents of an application. The source element and target element determine the Node
Templates for which this relationship exists. Relationship Types define reusable entities,
which are types for the Relationship Templates. A Relationship Template between an
Application Node Template and an Application Server Node Template is for example of
type Hosted On. Other examples for relationships between Node Templates, i.e., cloud
service components, are Installed On, Deployed On, or Connected To.

Plans combine the management operations of the components to fulfill management
tasks. The specification of the Plans relies on existing workflow languages like BPMN or
BPEL. Due to the fact Plans are not covered in this thesis, they are not further discussed.
The Application Interface, which represents an extension of TOSCA is covered later in
Section 2.1.3.

The elements of TOSCA used in the modeling concepts in Chapter 5 are explained in the
following, whereby only those elements are described that are required to understand
the modeling concepts. Elements which are not required in this thesis are omitted.

Node Type and Node Template

As mentioned above, Node Types define reusable entities for Node Templates. The Node
Templates form the concrete application. The TOSCA specification does not contain
concrete Node Types. They have to be standardized by domain experts and can then be
used by an application architect to specify an application’s structure [OAS13a]. Only the
metamodel language elements are contained in the specification.

A Node Type is identified by the attribute name which has to be unique. The optional
attribute abstract is used to specify if instances of a Node Template using this type can
be created. Via the PropertiesDefinition element the structure of properties, i.e., names,
datatypes, and allowed values of the properties, is defined. The properties are defined
in form of a XML schema and referenced by the Node Type [W3C12]. A Node Template
of this type assigns values to the defined properties.

The Node Templates use the Node Types to specify the components an application
consists of. The attribute id identifies a particular Node Template and has to be unique.

17

2 Fundamentals

Optionally, an attribute name can be specified. The attribute type refers to the Node Type
the Node Template based on. Furthermore, initial values for the Properties defined by
the Node Type are specified for the Node Template. An instance document of the XML
schema defining the Node Type properties is provided. For the instantiation of the Node
Template all properties must be valid according to the properties definition. In case the
Node Type does not define properties, no properties are assigned to the Node Template.
Constraints for the values of the Properties can be specified by the PropertyConstraints. A
PropertyConstraint element points to the property the constraint applies on and indicates
the constraintType, i.e., the semantic and the format of the constraint, by means of an
URI.

Two further optional elements of a Node Template are Policies and DeploymentArtifacts.
The first one specifies policies associated with the Node Template. Policies are non-
functional requirements and quality-of-service (QoS) aspects valid for the Node Template.
Such policies are for example high availability or a specific power consumption. The sec-
ond one, Deployment Artifacts, specifies the artifacts required for the instantiation and
implementation of the Node Template. These are software files such as installables or ex-
ecutables. For example an image containing all files of an Tomcat! application server can
be a deployment artifact of a Node Template Application Server. A DeploymentArtifact
element has a name and specifies the Artifact Type by the attribute artifactType. With the
attribute artifactRef the concrete Artifact Template, which serves as a deployment artifact
for the Node Template is identified. An Artifact Type "EAR file" (Enterprise Application
Archive)? might be defined to describe java archive files. An Artifact Template of this type
represents a concrete EAR file, which is the deployment artifact for a Node Template.

Relationship Type and Relationship Template

Similar to Node Types, Relationship Types define reusable entities for Relationship
Templates. They specify the relation between application’s components. Like Node Types,
concrete Relationship Types have to be standardized by domain experts to make them
available for the application architects to wire the set of Node Templates [OAS13a].

A Relationship Type is uniquely identified by the attribute name and can optionally
be declared as abstract. The PropertiesDefinition element specifies the properties in
form of an XML schema. The properties can be defined externally and referred by the
Relationship Type. With the two optional elements ValidSource and ValidTarget the type
of elements allowed as source or target of the relationship can be specified. If these
elements are not determined, any Node Type can serve as source or target.

Thttp://tomcat.apache.org/index.html
2http://docs.oracle.com/javaee/6/tutorial/doc/bnaby.html

18

2.1 Topology and Orchestration Specification for Cloud Applications

A Relationship Template bases on a Relationship Type and specifies the relation between
two Node Templates. For each Relationship Template the source and target of the
relationship have to be determined. The attribute id is the identifier of the Relationship
Template. Additionally, a name can be specified. The Relationship Type providing the
type of the Relationship Template is specified by the attribute type. In case properties
are defined by this type, initial values for these properties can be assigned to the Node
Template by the Properties element. For this, an instance of the XML schema defining the
properties is created. In the same way as described above, PropertyConstraints can be
defined for each property. The elements SourceElement and TargetElement are provided
to determine the origin and target of the relationship by referencing the ID of a Node
Template comprised in the same Service Template.

Node Types, Relationship Types, and properties are often defined in separate TOSCA
Definitions or XML schema documents because they are specified by different experts.
These external documents can be imported to Definitions documents containing the
Service Template. All used types in a Topology Template have to be part of the same
Definitions document or have to be imported. This supports a modular design of Service
Templates.

To enable the deployment and management of an application in a certain environment,
all relevant definitions and artifacts have to be available in the environment. This
includes the Service Template and type definitions as well as the required software
files.

2.1.2 TOSCA Cloud Service Archive

A standardized archive format to package the Service Template and the associated
files is the Cloud Service Archive (CSAR) [OAS13b]. Besides the TOSCA Definitions
documents, Plans, deployment artifacts as well as implementation artifacts representing
the executables of the management operations are included. Thus, the application can
be packaged in a fully self-contained manner [Bin+14].

A CSAR is a zip file organized in subdirectories with several different files. It can be
structured as required for a specific application, but two subdirectories are fixed: the
TOSCA-Metadata and the Definitions subdirectory. The TOSCA-Metadata directory con-
tains a TOSCA meta file with metadata about the CSAR itself such as the version and
the creator of the CSAR and metadata describing the other files a CSAR is comprised of.
The other mandatory one is the Definitions directory. It includes all TOSCA Definitions
documents specifying for example the Service Template, related Node Types, and Rela-
tionship Types required for the application. Further subdirectories required to package a
specific application can be defined by the creator [OAS13b].

19

2 Fundamentals

[C1/TOSCA-Metadata
(1 /Definitions

(1 /Types

(1 /Plans

/..

[C1/Images

(1/EARs

Figure 2.2: Structur of a CSAR adopted from [OAS13b]

In Fig. 2.2 an example of the structure of a CSAR is presented. In this example an extra
folder for the types and a folder containing the plans in the form of, for example, BPMN
files are created. Additionally, two subdirectories Images and EARs are defined containing
deployment artifacts, for example an image for the installation of an application server
and an EAR for an application hosted on the application server.

This standardized format is required to make the application portable between different
TOSCA runtime environments. A TOSCA runtime environment can process the CSAR
and can deploy and instantiate the application described by the contained Service
Template.

2.1.3 TOSCA Application Interface Extension

The existing TOSCA standard allows to specify management operations offered by a Node
Type to manage itself in terms of the installation, configuration, and other management
tasks via standardized interface descriptions [Bin+14]. However, application operations
cannot be modeled with the elements provided by the TOSCA standard [OAS13b]. In
contrast to management operations, application operations provide the actual func-
tionality of the application. They are installed by the management operations and are
available when the deployment and configuration of the application is finished [Zim16].
Therefore, the operations can be made available for invocations by other applications.

Zimmermann [Zim16] introduced an ApplicationInterfaces element as an extension of
TOSCA to differ between management operations and application operations. Several
interfaces can be defined in the ApplicationInterfaces element. For one Interface the
same rules apply as for the management interfaces defined for Node Types, which are
set in the TOSCA specification [OAS13b].

An Interface is identified by a name which has to be unique for the Node Type. Within
the Interface multiple Operation elements can be defined. One Operation element
defines an operation that an instance of this Node Type provides to others. An Operation

20

2.2 Terminology: Data Shipping versus Function Shipping

has an unique name within the Interface. For the Operation multiple InputParameters
and OutputParameters can be defined depending on the operation it represents. An
InputParameter as well as an OutputParameter are identified by an unique name and
specify what type of input parameter are expected. Therefore, the application function-
ality can be modeled in TOSCA.

2.2 Terminology: Data Shipping versus Function Shipping

Two approaches for data processing can be distinguished: data shipping and function
shipping. In general, data shipping means that the data are retrieved from the data
location and processed where the computation resides, whereas in case of function
shipping the computation is executed at the data site. These principles are applied in
different research fields in various manifestations, which range from microcomputers
and microprocessor systems to database systems and distributed computing. Especially
function shipping is a much-discussed approach because in many areas function shipping
replaces data shipping to deal with a large amount of data.

In the area of microcomputers and microprocessor systems function shipping is a
rich area of research known as processing-in-memory (PIM) and near-data processing
(NDP) [Bal+14]. With the increasing amount of data the system model shifted from
a data shipping approach to a function shipping one. The goal of a system model
that is based on function shipping is to place the computation resources as close as
possible to the location of the data. The research in the field of PIM started in the 1990s
with integrating RAM and processing units on a single PIM chip [Pat+97; Ell4+99].
The main purpose was to minimize the data movement which has an impact on the
memory latency and energy efficiency. The NDP concept applies also to other levels of
the memory hierachy like hard disk drives and solid-state devices [Bal+14; Rie+98;
Tiw+13]. In this research field the microstructure of a single system or computer device
are considered.

On a different level the approaches are applied to database systems in terms of query
executions. For client-server database architectures data shipping and query shipping
(function shipping) are distinguished. In case of data shipping, required data are retrieved
from the server and processed on the client, while in case of query shipping the query is
shipped to and executed on the server and only the result is sent to the client. On the
one hand query shipping reduces the communication costs because only the query result
instead of the raw data has to be sent. On the other hand data shipping better utilizes
the resources available at the client machine and enables client caching in which data
can be prefetched for the processing at a later time. Because neither data shipping nor
query shipping is applicable in every situation, a hybrid shipping approach is considered.

21

2 Fundamentals

Each operation of a query is executed either at the server or on the client side [Fra+96;
Vor+04].

Not only queries or parts of queries can be shipped to and executed on the server
through query shipping and hybrid shipping, but also parts of the application code.
The database middleware system MOCHA (Middleware Based On a Code Shipping
Architecture) provides a possibility to ship application code to the data site and to
automatically deploy it [RM+00]. MOCHA integrates distributed data sources and
extends the query shipping approach by the capability to deploy Java code on the remote
sites to manipulate the data. This is called code shipping. The Java classes containing
application-specific functionality are shipped, deployed and executed for a given data
resource.

Another approach is not to ship the function, but to define and to store them at the
data site. One possibility are stored procedures or stored functions which are defined
and stored on the server [Har+06]. Thus, database-centric logic used by different
applications can be isolated. The stored procedure or stored function can be invoked by
an application with the respective parameters and the result is sent back to it. This is also
called function shipping or function request shipping, respectively [Cor+86]. It differs
from the above described function shipping approach in terms of the content shipped
to the data site: in this case only a function call is shipped. This does not correspond
with the definition of function shipping used in this thesis. Sending a request containing
the function identifier with the corresponding parameters which should be used is also
called operation shipping [Sel+98].

The function request shipping or operation shipping approach is also used in distributed
computing environments in which for example remote procedure calls are used. The
client sends a request, which identifies the required function and contains the parameters
required for the server to fulfill the request. After processing, the result is sent back to the
client. In addition to the mentioned research areas, many others use the data shipping
or function shipping principles. A simple example for the data shipping approach is also
the retrieval of files from a file server.

Although data shipping and function shipping are used in different areas, the underlying
approach is always the same. In the context of this thesis the data shipping and function
shipping approaches are considered in relation to data analysis. The initial situation
is that processing logics, which are required to analyze data resources are stored at
a different location than the data. Either the data are transferred to the processing
logic (data shipping) or the processing logic is packaged, transferred to, deployed, and
executed as close as possible to the data (function shipping). Compared to the areas of
function shipping described before, the whole processing logic is deployed and executed
near the data and not only parts of the computation logic. The execution can then be
triggered for example by a workflow or manually.

22

3 Related Work

As already mentioned, the function shipping and data shipping approaches are used
in various research areas. In this chapter existing concepts in the area of function
shipping as well as data shipping are presented in detail. It is evaluated which aspects
of these concepts are useful to derive modeling concepts for data shipping and function
shipping.

3.1 Function Shipping Concepts

TOSCA is introduced, among other things, to enable portability of applications between
different cloud environments by means of a CSAR as described in Section 2.1. Applica-
tions can be modeled, packaged, transferred, and deployed in another cloud provider’s
environment supporting TOSCA. This includes the whole application topology but does
not consider the connection with the data. Other concepts exist to run processing logic
close to the data. In the following the concept of code shipping and serverless archi-
tecture are described in detail and their usefulness in terms of the modeling concepts
are evaluated. For both concepts just the code is shipped without the whole topology
stack.

3.1.1 Middleware Based On a Code Shipping Architecture

As already mentioned in Section 2.2, in context with database systems different mecha-
nisms in terms of function shipping are used such as stored procedures, stored functions,
query shipping, or code shipping. In particular aspects of the code shipping mechanism
provided by the database middleware system MOCHA for distributed data sources are
useful for the development of the modeling concepts for function shipping [RM+00].

The main principle of MOCHA is to ship the code used for operations on a data source
to the corresponding data site and to deploy the code in an automated manner. The
goal is to minimize the data movement over the network. For this in MOCHA Java code
containing application-specific functionality to manipulate data at a remote site can be
shipped and deployed at the remote data site automatically. This refers to functionality

23

3 Related Work

which are not provided by the data source management systems. Compared to the
described query shipping and hybrid shipping approach which are restricted to the
execution of operations already implemented at the data site, new functionality to
process a query can be implemented on demand and becomes available automatically.

MOCHA consists of four main components: the Client Application, the Query Processing
Coordinator (QPC), the Data Access Provider (DAP), and the Data Server. The Client
Applications are in the most cases clients used as GUI to visualize the query results.
Different kinds of clients are supported by MOCHA. The queries from the clients are
handled by the QPC. The QPC is responsible for the deployment of the functionality
required to execute the query at the remote data sources. A query execution plan
is created. It indicates the distribution of the query to data sources as well as the
functionality which has to be dynamically deployed at each data site. The required
code is stored in a code repository and can be retrieved and provided by the QPC for
the deployment. The DAP is located at the data site and provides an uniform access
mechanism for the QPC as well as an query execution engine to run the application-
specific code at the data site. The code is delivered by the QPC and executed by the DAP.
The last component is the Data Server where the data are stored.

The code shipping works as follows. The QPC receives a request from a client, creates an
execution plan, and prepares the code for the distribution to each DAP which includes
the retrieval of the code from the code repository. Before the actual query are executed
the Java classes are shipped to the DAPs. After the DAP is ready the data processing
starts and the results are sent back to the client. Thus, functionality required for the
data processing can be dynamically deployed at the data site.

The principle to ship code to the data site and to deploy it automatically is useful for
the development of modeling concepts for function shipping. Just the required code
is shipped and at the data site a runtime environment or processing component exists
able to deploy the code and to process the data. MOCHA is limited to the shipping of
Java code and code which is stored in a central code repository. Additionally, a network
connection between the central QPC and the DAPs at the remote data site are required
to distribute the code. The modeling concepts to be developed should facilitate the
function shipping also in cases where the data site is not directly accessible over the
internet.

3.1.2 Serverless Architecture
A new upcomming trend in Cloud Computing is the concept of serverless architec-

tures [Rob16]. This term was also used before in a different context. In earlier works not
related to cloud computing, serverless architectures refer to peer-to-peer architectures

24

3.1 Function Shipping Concepts

without a central server. Server functions or files are distributed on several clients which
communicate with each other [Bol+00; Lee+02].

In the context of Cloud Computing, serverless architectures refer to compute services
provided by cloud providers which abstract all server, operation systems, and runtime en-
vironment aspects. It runs the developer’s piece of code (function) and full-automatically
managed the compute resources. The developer just writes the code, but does not deal
with the underlying environment which is completely managed by the cloud provider.
Obviously, servers are still required but not considered by the developer. The execution of
the code is triggered by an event and the customer just have to pay the execution time of
the code. This kind of cloud service is also called function as a service (FaaS) [Rob16].

Faa$ differs from the already established service model platform as a service (PaaS).
PaaS refers to the offer of a runtime environment including hardware, middleware and
partially software for a customer’s application which used programming languages and
tools supported by the cloud provider [Mel+11]. In contrast to FaaS the control of
scaling and provisioning instances of the application remains with the customer such as
the PaaS AWS Elastic Beanstalk provided by Amazon [Rob16; AWS16b]. FaaS is geared
to event-based execution of functions which are automatically scaled to the amount of
incoming events.

Several cloud providers provide FaaS such as AWS Lambda [AWS15], Google Cloud
Functions [Pla16], Microsoft Azure Functions [Azul6], and IBM Bluemix Open-
Whisk [IBM16]. The most popular and one of the first on the market is AWS Lamdba
with Amazon API Gateway [AWS15]. The logic tier of a traditional three-tier architecture
consisting of the presentation tier, e.g., a web client, the logic tier, e.g., a web server and
the data tier, e.g., a database can be formed as a serverless logic tier. AWS Lambda is the
compute service running the customer’s piece of code, so called Lambda function which
cover the required business logic. The function can be uploaded and executed when it is
triggered by an event. An event can be for example an incoming HTTP request from the
web client. AWS Lambda automatically scales to handle an arbitrary number of incoming
request. The Amazon API Gateway is a service to define and manage APIs which deals
with HTTP request by web clients. The API Gateway serves as bridge between the
presentation tier and the Lambda function.

One of the key features of AWS Lambda in relation to function shipping is the ability
to extend other AWS Services with business logic. As shown in Fig. 3.1 AWS Lambda
and the Amazon API Gateway can be used for an Amazon Virtual Private Cloud (VPC)
integration. The Lambda Function is directly integrated with the data-tier, e.g., a
database storage service. The Amazon VPC facilitates to locally separate an area which
serves as a private network and is not accessible over the internet [AWS16a]. Especially
in case the data contains sensible business information the data have to be secured and

25

3 Related Work

Virtual Privat Cloud

API
Gateway

AWS Lambda
Function

Database

Figure 3.1: Examplary architecture with AWS Lambda adopted from [AWS15]

not accessible outside the private network. The data in the database are only accessible
through the API Gateway and the Lambda Function.

Two aspects of the above described characteristics of serverless architectures in the
context of cloud computing are useful for the development of modeling concepts for
function shipping: (1) abstraction of the IT environment and (2) integration with storage
services. If a serverless architecture is provided to run the processing logic required
for the data, only the function has to be modeled instead of the complete application
topology. It can be focused on the main purpose of the modeling concept: the processing
logic, the data, and the relationship between them. The integration of the Lambda
Function with storage services as provided by Amazon enables function shipping in
terms of the execution close to the data. The code has to be uploaded and can run close
to the data location. A similar approach is useful in case sensible business data which
should be processed must not leave the private network of the company which owns
the data. The processing logic has to run in the private network close to the data. To
enable the shipping, deployment, and execution of a processing logic near to the data, a
general cloud provider independent method is required.

3.2 Data Shipping Concepts

In various areas external data are required for data processing. In the following sections
different approaches to access or migrate external data are described and evaluated
in terms of their usefulness for the modeling concepts. These range from data access
patterns in distributed applications to data portability in clouds and concrete mechanism
to retrieve external data for business analytics or simulations.

26

3.2 Data Shipping Concepts

3.2.1 Data Access Patterns

Fehling et al. [Feh+14] present patterns for cloud computing. Best practices solutions for
cloud application designs are described in a cloud provider- and technology-independent
manner. Cloud runtime modules as well as architecture styles and cloud application
components are covered. In case of a distributed application the application components
can be pooled in multiple tiers. In two-tier and three-tier applications, data can be
stored in a separate data tier, which provides data for the business tier. The data access
component provides a unified data access to different data sources. Data sources can be
for example relational databases. It hides the complexity of data access and is responsible
for creating, reading, updating, and deleting data elements. Only this component has to
be adjusted in case of changes in the data source.

A similar concept is introduced by Fowler [Fow03] for enterprise applications. Like the
data access component, a gateway encapsulates the access to a external data resource.
The gateway serves as wrapper for the API of the data resource. It translates the method
calls by the application logic into API specific calls. The same applies for the proxy
pattern presented by Buschmann et al. [Bus+96]. The proxy is a representation of the
component the client wants to communicate with. Hard-coded changes of the client are
not required because access control, access optimization, and other additional processing
steps are wrapped by the proxy. Such a component is required to enable the assignment
of arbitrary data sources to the processing logic, which is not build to access different
data sources. It can connect the processing logic to the respective data source.

3.2.2 Data Portability in Clouds

A rich research area in terms of cloud computing is portability of applications, services
and data in or between clouds [Pet+14]. AWS [AWS16c] provides data shipping via
hard drives to the AWS cloud. The hard drive can be ordered, the local data can be
transferred, and after completion it is sent back to the data center. This can result in
delays and service downtimes, which is often not manageable because of continuous
data collection and analysis.

According to Petcu et al. [Pet+14] data portability is achieved if data can be exported
from a cloud provider and imported to another. On short term platform-independent
data representations are required, but on the long term standardized import and export
functionality should be provided to reach data portability. The research effort in terms of
data portability is focused on data management of data stored in the cloud environment
and the development of abstraction layers and uniform APIs for cloud storage. The
migration into cloud storage and between cloud storage of different providers are the

27

3 Related Work

main purpose of standards and services. The connection between applications and data
are not considered.

The modeling concepts for data shipping focus more on the data provisioning for the
data processing and less on data migration. However, one option for data shipping is to
package the data in an archive and to send them to the environment the processing logic
is located. This can be realized either by shipping hard drives similar to the AWS service
or by transferring the data over the internet. Thus, the data are migrated or copied but
specific requirements for data migration and compatibility aspects between different
data storage services are not considered in this thesis.

3.2.3 Accessing External Data for Business Analytics

There are several providers of business intelligence and analytics cloud platforms,
which provide mechanisms to access external data sources for the data analysis. The
two business analytics solution Birst [Birl6] and Logic Analytics [Anal6a], which
are described in this section just serve as examples to demonstrate the data access
functionality. Both provide ETL mechanisms to ship the data to the cloud to facilitate
data processing.

Birst [Bir16] provides an Infinite Connectivity Framework to specify connectors to access
any data source. Pre-defined connectors to connect data source types that are often used
are available, which can be configured and used to extract data. Additionally, real-time
queries can be executed on on-premise data sources. A detailed documentation about
the Infinite Connectivity Framework is not available.

A similar mechanism is used by Logic Analytics [Anal6a]. Logic Analytics offers a
platform for analytic applications, dashboards and reports used to support business
decisions. To analyze data from different data sources Connection elements are defined
to communicate with the data sources to retrieve the data. For this purpose different
Connection elements are pre-defined, which can be used. Three Connection elements
are distinguished: vendor-specific Connection, generic Connection, and special-purpose
Connection. The vendor-specific Connection elements make it simple to configure a
connection for example with DB2, MySQL or Google Docs data sources, whereby the
necessary drivers are already available. In case of a MySQL Connection element the
following attributes have to be specified: server name, database name, access credentials,
and a unique ID which identifies the Connection element. With this information the
connection string required to establish a connection with the database is automatically
created. Generic connection elements are defined for connections for example using

28

3.2 Data Shipping Concepts

a JDBC driver or ODBC driver. The last category of Connection elements covers con-
nections to web services and pre-defined elements for HTTP, REST, or SOAP-based
communications.

To retrieve the data, a temporary data container called Datalayer is defined [Anal6b].
After the data are retrieved they are cached in memory or in XML files on the web
server. For different kinds of data sources different Datalayers are defined, which often
match with the Connection element. Datalayers to retrieve data from CSV, XML, JSON,
and Excel files as well as from SQL databases and further more are defined. For a SQL
Datalayer the used Connection element can be referenced and a SQL query is defined
retrieving the required data from the data source. The different Datalayers can be
assigned for example to parts of a report.

A modeling element to define the connection requirements and the scope of the retrieved
data is one approach to specify data that should be processed. Additionally, the linking
of retrieved data to an element using this data is also required for the development of the
modeling concepts to assign the processing logic and the data sources. This procedure
is suitable if data should be retrieved from a remote location. It does not cover the
shipping of data that are packaged in an archive and the provisioning of the data close
to the processing logic.

3.2.4 Accessing External Data in Simulation Workflows

Simulation workflows often require data provided by different data sources. The SIMPL
(SimTech - Information Management, Processes, and Languages) Framework introduced
by Reimann et al. [Rei+11] provides an abstraction for data provisioning activities
in simulation workflows and an extension for workflow management systems. They
defined a set of generic extraction, transformation, and load operations (ETL) as an
extension of the Business Process Execution Language (BPEL) to access arbitrary external
data sources through unified logical interfaces. SIMPL defines three main operation:
IssueCommand to manipulate data, RetrieveData to query data from a data source, and
WriteDataBack to write data from the workflow to a data source.

However, since the external data sources are heterogeneous with respect to access,
authentication, and query mechanisms, the unified logical interfaces have to be mapped
to the concrete data source and the corresponding mechanisms. Therefore, SIMPL
defines four metadata classes to describe this mapping as shown in Fig. 3.2.

A Data Source is a system to store and manage data like a file system or a database.
Each Data Source contains several Data Containers, which represent identifiable datasets
within the associated data source, e.g., a file in a file system or a table in a database. A
Data Source has a unique Logical Source Name and an Interface Description containing

29

3 Related Work

LoglcaISource " Interface ‘
Name . ™. Description .
1 1
Description of Further Fct. - O T T
__or Non-Fct. Properties : \\\Secunty Ent|ty e
,,,,,,,,,,,,,,, e L Loglcal |
0.1 1 1 1 Container Name .-
; 1.m | et -
,,,,,,,,,,,,,,,,,,,,,,,,,,,, 1 Data Source 1 Dat.a
_— . Container
Connector Propertles Object "
P — Object
B Description 01
A o.n ~Local Container
1 e |dentifier
Matching
T o Data S Dat T -
Source Properties "~ 1 1 atasource | g_m 0..n ata ln 1.7 Data Format for
_ Description - . Workflow

Connector Converter
Object Object

ln: l.n
§ Unique Identification
0.1 § 1
“Data Format for Matching " "Data Format for
. Converter Connector

Figure 3.2: SIMPL Metadata classes adopted from [Rei+11]

information especially about the data source endpoint. Additionally, further functional
and non-functional properties like the expected response time and security entities such
as usernames and passwords can be defined for a data source. A Data Container is
uniquely identified within the data source by the Local Container Identifier. The Logical
Container Name is used in the workflow to address the data container and is mapped to
the Local Container Identifier.

A Data Source Connector implements the generic operations for a concrete data source
or a collection of data sources, e.g., one connector for all databases using JDBC. The
connector establishes a connection to the data source, loads the driver, if necessary, and
performs the operation on the data source. For instance, in case of the RetrieveData
operation the query will be executed and the result returned. The Source Properties
Description describes the properties a data source must have to be able to use this
connector. These properties have to match with the Connector Properties Description
associated with a Data Source to find the appropriate connector for a certain data
source.

Furthermore, a Data Format for Converter description is associated to a Data Source
Connector. It specifies the data output format or data input format the connector expects
and indicates which Data Converter matches. Besides the Data Format for Connector
description the Data Converter has a Data Format for Workflow description. This is the

30

3.2 Data Shipping Concepts

format in which a workflow delivers data and expects the result back. Both format
descriptions together describe the transformation capability of the data converter and
uniquely identify the converter.

If an external data source has to execute an operation a Logical Data Source Descriptor
is passed to the operation as input. This is either a Logical Source Name of a Data
Source or a requirement description of functional or non-functional properties, which
can be used to find and bind an appropriate Data Source at runtime. The operations
IssueCommand and WriteDataBack deliver a notification of success or failure to the
workflow, whereas the RetrieveData operation returns the requested data. These data
may be stored in a variable specified by the workflow engine.

The focus of SIMPL is on extending the workflow activities with abstract and generic
data management operations. Reimann et al. [Rei+14] presents a solution for the
data management in the cloud which integrates the SIMPL operations in TOSCA. With
TOSCA the simulation software can be defined and deployed in the cloud. For the
data provisioning, i.e., the data shipping to the simulation software, the SIMPL data
management operations are integrated in a TOSCA Plan to transfer the data to the
simulation software. In the same way the data are written back after the simulation.
Thus, the TOSCA Plans are used to fulfill the data shipping to the application by means
of workflow operations based on SIMPL. For this, the workflow engine of the TOSCA
runtime environment is extended by the operations and the SIMPL framework is plugged
in.

Although this approach enables data shipping, the data are not part of the Topology
Template in TOSCA. In terms of the data provisioning the operations and not the data
itself are modeled. However, the SIMPL metadata classes shown in Fig. 3.2 presents
components to define the data as well as the connection to a data source, which serve as
basis for the modeling concepts in Chapter 5.

3.2.5 Decoupling of Data Flow and Control Flow in Service
Compositions

Hahn et al. [Hah+16] introduce the vision of a novel Transparent Data Exchange
(TraDE) middleware to support the data exchange between choreographed services.
Thereby, the data flow is decoupled from the control flow to avoid unnecessary data
exchange between the participating services of the choreography. The data should be
passed only to the participants which require the data.

Based on the traditional business process management life cycle phases a data-aware
service choreography management life cycle is introduced in which new TraDE methods

31

3 Related Work

are applied. An explicit data model and data flow is created in the Modeling phase.
It defines the data exchange between the participants. The data model and data flow
are transformed in abstract workflow models for each participant. In the following
Refinement phase the abstract workflow models are refined into executable models
which are packaged and deployed to the workflow middleware in the Deployment
phase. After that the choreography is executed and monitored. During the execution
the participants communicate to exchange data or to trigger the functions of other
participants. When the vision of the TraDE Middelware is realized, it will among others
integrate data shipping mechanism and enable the use of heterogeneous data sources
realized by a plugin of the mentioned-above SIMPL framework.

It is shown that the efficient data exchange is getting more important in the industry,
especially in context of Big Data and the Internet of Things [Hah+16]. The capabilities
described for the TraDE middleware are also required to implement the data shipping
modeling concepts developed in this work, although service compositions are not
considered. The control flow in terms of the trigger for the execution of a specific
processing logic is independent of the definition of the data flow. The data flow defines
the assignment between processing logic and data resources which are required in case
the processing logic is invoked. Instead of workflow models defining the data model,
abstract concepts independent of their implementation as well as options to realize them
in TOSCA are the main subject of this thesis.

32

4 Data Shipping and Function Shipping
Use Cases

A concrete modeling scenario with different data shipping and function shipping use
cases is used to illustrate the problem and the motivation for the modeling concepts. It
should serve as example for the developed modeling concepts and TOSCA realization
options. This supports the understanding of the applicability of each concept and
option.

4.1 Modeling Scenario for Data Shipping and Function
Shipping

The problem and the motivation of this thesis are illustrated by the scenario shown in
Fig. 4.1. The modeling scenario presents a possible situation, which should be solved by
data shipping or function shipping. Two main roles are distinguished in this scenario:
processing logic owner and data owner. The roles can be fulfilled by a single person, a
group of people, or an organization. At the processing logic owner’s site a processing
logic is available, which is required for a specific data processing task. The data, which
should be processed are stored at the data owner’s site. Either the data owner or the
processing logic owner has a runtime environment to deploy and run the processing logic

Processing logic owner Data owner

Calculator ‘

Calculation Interface : Filel

00 » calculate (inputl, input2) File2

Figure 4.1: Modeling scenario

33

4 Data Shipping and Function Shipping Use Cases

as well as to store and query the data. This depends on the shipping use case. A further
assumption for this modeling scenario is that they are connected via the internet.

In this modeling scenario, the processing logic owner owns a processing logic Cal-
culator. The processing logic provides the operation calculate via the interface
CalculationInterface. To execute this operation two input parameters of type "string" are
required. On the side of the data owner data are available, which have to be processed
by the operation calculate. For instance, the operation calculate could compare sensor
values like temperature and vibration of a production machine to analyze the optimal
maintenance time. Processing logic and data should be brought together for the data
processing either on the processing logic owner’s site or the data owner’s site depending
on the shipping scenario.

The process of data shipping as well as function shipping is divided in modeling time,
provisioning time and runtime. The modeling time is the point in time the model
as well as other artifacts are defined and packaged in an archive. After the archive is
transmitted to the target runtime environment the data are provisioned or the processing
logic is deployed and instantiated during the provisioning time. Thus, it is ready for
the execution during runtime. Such distinction is important to make clear which data
shipping or, respectively, function shipping use case is suitable in a specific situation
and at what point in time the data or processing logic is available at the target runtime
environment. It is described more precisely for the data shipping and function shipping
use cases in the following sections.

4.2 Use Cases for Data Shipping

There are two alternative ways of linking data and processing logic. First, data shipping
and second, function shipping. As defined in Section 2.2, in case of data shipping the
data are packaged, transmitted, and provided for the processing logic already deployed
in the target runtime environment. Fig. 4.2 illustrates the two main data shipping use
cases: (a) data are packaged in an archive and (b) reference to remote data location is
packaged in an archive.

In case (a), the actual data are stored in the archive containing the whole service model
and are shipped to the processing logic owner at provisioning time. In the target runtime
environment the processing logic required for the data processing is already available
and the data are deployed for the processing and assigned to the processing logic. For
this use case the data have to be already available. For instance, historical production
data over the last two years have to be analyzed. In this case all relevant data for

34

4.3 Use Cases for Function Shipping

Processing logic

owner '
Data

Data owner

Target runtime environment

(a) Data packaged in an archive

Processing logic
owner

Data owner

Ref

— bata
1
1
!

Target runtime environment

(b) Reference to the remote data location packaged in an archive

Figure 4.2: Use cases for data shipping

the processing are already available at modeling time. The data can be packaged and
shipped together with the topology and other artifacts to the processing logic owner.

In case (b), a reference to the remote data location is shipped in an archive together
with the topology and artifacts to retrieve the data at a later time. That means, the
data remain at a remote location chosen by the data owner or the data are available at
the remote location as soon as they are captured. At provisioning time the connection
between the processing logic and the data location is established. At latest during
runtime the data have to be retrieved. For instance, current weather data are required
continuously, but future weather data are not available at modeling time. Thus, the
data can not be packaged in an archive and shipped to the processing logic owner. In
this case only a reference to the location at the data owner’s site, where the data will
be made available can be shipped. During the runtime up-to-date weather data can be
retrieved and processed at the processing logic owner’s site.

4.3 Use Cases for Function Shipping

The other alternative to link processing logic and data is function shipping. Instead of
the data, the processing logic for the data processing is shipped to the data owner’s site.
Function shipping is an alternative approach to data shipping which is useful in different

35

4 Data Shipping and Function Shipping Use Cases

Processing logic

owner
)

Data owner

Target runtime environment

(a) Function packaged in an archive

Processing logic

owner j

Data owner

Target runtime environment

(b) Reference to the remote function location packaged in an archive

Figure 4.3: Use cases for function shipping

situations. For instance, in case a large amount of data should be processed and data
shipping takes too much time or is too expensive or in case the data contain sensitive
data which are not allowed to leave the company or data center, function shipping can
be used.

The two main function shipping use cases are the shipping of the actual function in an
archive and the shipping of a reference to the remote function location, illustrated in
Fig. 4.3. In case (a) the processing logic is stored in an archive containing the whole
service model and shipped to the data owner. In the target runtime environment the
processing logic can be deployed and linked to the data, which are already available
at provisioning time. In case (b) the processing logic remains at a remote location and
just a reference to the actual processing logic is shipped. For the instantiation in the
target runtime environment the processing logic can be retrieved. If the processing logic
artifact is not available at modeling time, a reference to the remote location can be
shipped and the processing logic can be retrieved as soon as they are available.

All modeling concepts, discussed in Chapter 5, relate to the modeling scenario illustrated
in Fig. 4.1. It serves as example for the modeling to make clear how each modeling
concept or TOSCA realization option can be used for a concrete scenario.

36

5 Modeling Concepts for Data Shipping
and Function Shipping

The following chapter discusses eight modeling concepts enabling data and function
shipping as well as options to realize the concepts in TOSCA. Some of these concepts are
exclusively applicable for data shipping, or function shipping respectively, some of them
for both. Applicability is indicated with each concept. The decision which modeling
concept fits best mainly depends on

* the use case and the granularity of modeled information in particular
* the modeler’s knowledge about the processing logic and the data

* and the runtime environment’s capabilities.

The runtime environment’s capabilities include for example the automated determination
of the right data resource or processing logic required for the data processing, the
establishment of a connection between the processing logic and the data resources, and
the determination and execution of transformation operations on data to make them
compatible with the processing logic. The granularity of explicitly modeled information
determines the requirements for the modeler’s knowledge and runtime capabilities. The
finer the granularity, the higher the knowledge and the lower the runtime capabilities
must be. For instance, a topology that describes a data resource is used for data shipping
but the required processing logic is not explicit modeled. In this case the modeler does
not require knowledge about the processing logic, but the runtime environment must be
able to determine the right processing logic, to establish a connection, and to possibly
execute data transformations. Thus, the requirements for the modeler’s knowledge are
low but for the runtime environment’s capabilities are high.

An overview of the different modeling concepts and TOSCA realization options is shown
in Fig. 5.1. Eight different concepts are considered, each representing an abstract
modeling approach, which can be used for data shipping, function shipping, or both.
The various options show how the abstract concepts can be realized with TOSCA. In
some cases more than one option exists to implement the concept in TOSCA, depending
on the utilized TOSCA language elements.

37

5 Modeling Concepts for Data Shipping and Function Shipping

Option 1.1
Concept 1 Data location assignment via deployment artifact
Uniquely addressable data resource Option 1.2

Data location assignment via property

Option 2.1
Concept 2 Processing logic assignment via property
— Uniquely addressable data resource
with assigned processing logic identifier Option 2.2
Processing logic input assignment via property
Concept 3 Option 3.1
Uniquely addressable processing logic Processing logic Node Type definition
Option 4.1
Data assignment via property
Concept 4

Option 4.2

— Uniquely addressable processing logic . L
quely P glog Data assignment via input parameter

with assigned data identifier

Modeli Option 4.3
odeling Data assignment via property and input parameter matching
concepts

Concept 5
— Data connector between processing
logic and data resource

Option 5.1
Data connector with input parameter matching

Option 6.1
Transformation assignment via property
Conce .
. pt 6 . Option 6.2
— Data connector with transformation . . . I
L Transformation assignment via transformation interface
capability
Option 6.3
Explicitly modeled data query
Option 7.1
Concept 7 Separated data resources
— Data connector between processing
logic and data collection Option 7.2
Single data collection
Option 8.1
Concept 8 Join operation assignment via join interface
‘— Data connector with operations applied
to multiple data resources Option 8.2

Implicit join operation

Figure 5.1: Overview of the modeling concepts and the related TOSCA realization
options

38

Each modeling concept is described following a common structure. First, the concept is
described in its four main characteristics, secondly, one or more sections describe the
TOSCA realization option(s) related to the concept.

The first part, the concept description, is structured as follows:

* Context — Explanation of the circumstances and environment leading to the prob-
lem. Other concepts from the eight concepts may be referenced here to differentiate
them.

* Problem — Short description of the problem which should be solved by this concept.
It is expressed as a question.

* Solution — Description of the concept and how it solves the problem. Additionally,
this part refers to the data and function shipping use cases the concept is suitable
for.

» Implications — Explanation of the impacts of the usage of this concept.

In the second part, each of the TOSCA realization options of the respective concept is
introduced in a separate section structured in four parts: Firstly, a detailed description
of the TOSCA Service Template is given. The description is independent of the data
and function shipping use cases. Secondly, the result part describes how the given data
and function shipping use cases can be realized by this option in TOSCA. Thirdly, the
assumptions made with regard to the modeler’s knowledge and runtime environment’s
capabilities, as well as the restrictions of this option are explained. Finally, the extensions
part addresses required TOSCA language extensions to enable the modeling and model
processing and summarizes the domain specific elements used within this option. The
illustrated TOSCA Service Template of each option bases on the assumption that the
processing logic runs in the TOSCA runtime environment. As seen in Section 3.1.2,
serverless architectures enable to abstract the complete topology stack and to focus only
on the function used to apply the required business logic. It is assumed that this concept
applies for the environment which runs the processing logic.

The abstract modeling concepts are not TOSCA-based. The basic elements the model-
ing concepts consist of are Processing Logic, Data Resource, Data Collection, and Data
Connector. For a better understanding of the eight abstract modeling concepts the used
elements in these models are defined in the following:

Processing Logic: The Processing Logic element represents an algorithm, function, or
any other logic, which is used for data processing and requires data as input. A
processing logic is owned by the processing logic owner.

39

5 Modeling Concepts for Data Shipping and Function Shipping

Data Resource and Data Collection: A Data Resource represents data, which has an
unique identifier and a location. This can be for example a file or table. A
Data Collection can contain several Data Resources. The Data Resources are
subelements of the Data Collection and can be addressed within the Data Collec-
tion. The Data Collection itself is also an addressable entity. Examples for a Data
Collection are file directories or relational databases.

Data Connector: The Data Connector represents the connection between a Processing
Logic and a Data Resource or Data Collection. Only 1:1 relationships can be
modeled. Properties defining the connection between the processing logic and the
data are encapsulated by the Data Connector.

Not all basic elements are used in every concept. Depending on the concept only a subset
of basic elements are used. Additionally, attributes are assigned to the basic elements,
which specify the properties of the elements. The used attributes are explained for each
concept.

5.1 Concept 1: Uniquely Addressable Data Resource

The focus of this concept is on modeling the data resource, which should be processed.
Context

A data resource is available, which should be processed by a processing logic. This data
resource has a location where it is physically stored. The required processing logic is
either not known in advance or just one processing logic is available. In the first case
the appropriate processing logic is determined by an external mechanism or person, in
the second case the allocation is implicitly given because only one processing logic is
available.

4 N

Data Resource

Figure 5.2: Concept 1: Uniquely addressable data resource

40

5.1 Concept 1: Uniquely Addressable Data Resource

Problem

How can a data resource, which should be processed by a processing logic, be uniquely
addressed?

Solution

Fig. 5.2 shows how a data resource can be modeled. A Data Resource entity is uniquely
addressable by an Identifier and the physical location of the represented data resource
is indicated by the Location. The Location can refer to local as well as remote data.
Therefore, this concept can be used for shipping the actual data packaged in an archive
as well as shipping of a reference to a remote location. As the processing logic is not
part of this model, the concept is not suitable for function shipping.

Implications

Using this modeling concept, the location where the data are physically stored can be
referenced. However, an allocation between the data resource and the processing logic
cannot be specified. If it is necessary to integrate the allocation into the model, one of
the other concepts, except of Concept 3 and Concept 4, can be used. Furthermore, other
characteristics of the data such as the data format are not added to the Data Resource.
Concept 6 demonstrates how such information can be associated to a Data Resource.

5.1.1 Option 1.1: TOSCA Realization with Data Location Assignment via
Deployment Artifact

In this TOSCA option, illustrated in Fig. 5.3, the Data Resource entity of the concept is
defined by a Node Type DataResource. The ID attribute of a Node Template serves as the
Identifier and by means of a Deployment Artifact, the actual data storage location can be
referenced.

Description

Listing 5.1 depicts the part of the Service Template specifying the Node Type and Node
Template in pseudo-XML. A Node Type DataResource is defined (lines 1 to 3) and a
Node Template DataResourceFile of this type is specified (lines 5 to 10). The Deployment
Artifact Data references an Artifact Type FileArtifact and an Artifact Template FileContent,
which is of type FileArtifact. The Artifact Template, shown in Listing 5.2, is required to
indicate the location of the data. The placeholder address in line 8 can be replaced by an
relative URI, in case it points to data in the CSAR containing the Service Template, or
any other address if the data has to be retrieved from a remote location.

41

5 Modeling Concepts for Data Shipping and Function Shipping

4 - - ™~
Data Resource Node Type
\ /
3
1
type of :
|
g |)
o
o
& Resource . DeploymentArtifact = address
& File : :
i)
o
o
AN Node Template J

-

Figure 5.3: Option 1.1: TOSCA realization with data location assignment via deploy-
ment artifact

Listing 5.1 Option 1.1: Node Type definition DataResource and Node Template
DataResourceFile

1 <NodeType name="DataResource">

2 ...

3 </NodeType>

4 ...

5 <NodeTemplate id="DataResourceFile" type="DataResource">

6 ...

7 <DeploymentArtifacts>

8 <DeployomentArtifact name="Data" artifactType="FileArtifact"

artifactRef="FileContent"/>

9 </DeploymentArtifacts>
10 </NodeTemplate>

42

5.1 Concept 1: Uniquely Addressable Data Resource

Listing 5.2 Option 1.1: Artifact Type definition FileArtifact and Artifact Template
FileContent

1 <ArtifactType name="FileArtifact">

2

3 </ArtifactType>

4 ...

5 <ArtifactTemplate id="FileContent" type="FileArtifact">

6

7 <ArtifactReferences>

8

<ArtifactReference reference="address"/>

9 </ArtifactReferences>
10 </ArtifactTemplate>

[1/TOSCA-Metadata
[C1/Definitions
(1 /Types
C1/Plans
/..
(C1/Data
File.csv

Figure 5.4: Exemplary structure of an CSAR containing data

Result

This TOSCA realization can be applied for both data shipping use cases illustrated in
Fig. 4.2:

(@)

(b)

Data packaged in an archive: the data are stored in the CSAR file containing
the Service Template. The CSAR is transferred to the target TOSCA runtime
environment where the processing logic is already deployed. In this case the
Artifact Template FileContent references an relative URI, which is interpreted
relative to the root directory of the CSAR. An exemplary structure of a CSAR is
shown in Fig. 5.4. The data, represented by the Node Template DataResourceFile,
are stored in the subdirectory Data of the CSAR. The corresponding relative URI
in the Artifact Template is "Data/File.csv". That way the data are shipped in an
archive.

Reference to the remote data location packaged in an archive: the data remain on
a remote data location and the Artifact Template FileContent references the address
of the remote location. If the data are stored on an FTP-server, the address could
be for example “ftp://ftp.example.com/File.csv”. The TOSCA Service Template is
sent within a CSAR to the target runtime environment where the processing logic
is deployed. The data can be retrieved at a later time when they are needed.

43

ftp://ftp.example.com/File.csv

5 Modeling Concepts for Data Shipping and Function Shipping

Assumptions and Restrictions

This option is restricted to the data shipping use cases. An explicit modeling of the
relationship between the data and the processing logic is not intended. Concept 2 shows
an extension to specify the required processing logic. In order to model the data shipping
as shown for this option three assumptions are made:

* The processing logic is already deployed in the target runtime environment.

* Either an external mechanism or a person can determine the right processing logic,
in case several processing logics run in the target runtime environment, or the
allocation is implicitly given because just one processing logic is available.

* There is no need for further information about data format, data semantic, or
data transformation operations to enable the mapping between data and pro-
cessing logic and the accurate processing of the data. Either the TOSCA runtime
environment or the processing logic can handle potential adaptations.

Extensions

The above-proposed option can be realized without any extensions of the TOSCA meta-
model. However, in order to process this model, the target runtime environment has to
be able to interpret the domain specific elements. A Node Template of type DataResource
has a Deployment Artifact, which references data contained in the subdirectory Data in
the CSAR or a remote data location. The target runtime environment has to know how
to connect the referenced data to the processing logic appropriately.

5.1.2 Option 1.2: TOSCA Realization with Data Location Assignment via
Property

As in Option 1.1, the data resource is defined by a Node Type DataResource. Instead
of a Deployment Artifact the property Location is defined by the Node Type to address
the location of the data. The model of this TOSCA realization option is depicted in
Fig. 5.5.

Description

The Node Type DataResource, shown in Listing 5.3 in pseudo-XML, has a property
Location defined in Listing 5.4. The property Location refers to the address where
the data are physically stored. Listing 5.5 depicts in pseudo-XML the Node Template
DataResourceFile of type DataResource. In this example address (line 5) is used as
placeholder and can be replaced by an relative URI or any other address. For each Node
Template of type DataResource one Location property is declared.

44

5.1 Concept 1: Uniquely Addressable Data Resource

N

4 ™
4 Data Resource Node Type D
Location
. %
7'y
I
type of :
1
o (:
©
=3
£
P Resource
& File
o)
©
Q.
2 L Node Template)

Figure 5.5: Option 1.2: TOSCA realization with data location assignment via property

Listing 5.3 Node Type definition DataResource with properties

1 <NodeType name="DataResource">

2

3 <PropertiesDefinition element="DataResourceProperties"/>
4 </NodeType>

Result

As well as Option 1.1, this TOSCA realization option can be used for both, the shipping

of the data contained in an archive and the shipping of a reference to a remote data
location.

(@

(b)

Data packaged in an archive: Fig. 5.4 illustrates an exemplary structure of the
CSAR containing the actual data and the Service Template. In this case the
property Location of the Node Template DataResourceFile references the relative
URI "Data/File.csv". That way the data are packaged in an archive and shipped.

Reference to the remote data location packaged in an archive: the data are not
packaged in the CSAR and the property Location references the address of the
remote location. The remote location could be for example an FTP-server with the
address “urlftp://ftp.example.com/File.csv”. The CSAR without the data is sent to
the target runtime environment and the data can be retrieved later.

45

5 Modeling Concepts for Data Shipping and Function Shipping

Listing 5.4 Location property definition for Node Type DataResource

1 <xs:element name="DataResourceProperties">
2 <xs:complexType>
3 <Xs:sequence>
<xs:element name="Location">
<xs:complexType>
<xs:attribute name="ref" type="xs:string"/>
</xs:complexType>
</xs:element>
9 </Xs:sequence>
10 </xs:complexType>
11 </xs:element>

el e NNV

Listing 5.5 Node Template DataResourceFile with property Location

1 <NodeTemplate id="DataResourceFile" name="Data Resource File" type="DataResource">
2

3 <Properties>

4 <DataResourceProperties>

5 <Location ref="address"/>
6 </DataResourceProperties>
7 </Properties>

8 </NodeTemplate>

Assumptions and Restrictions

This TOSCA realization option is based on the same assumptions and restrictions made
for Option 1.1. The processing logic is already available in the target runtime environ-
ment, but is not part of the model. The assignment of data and processing logic is done
by the runtime environment or an external mechanism, in case more than one process-
ing logic is available. Further adaptations, e.g., data format or data transformation
operations are also made by the runtime environment or the processing logic itself.

Extensions

For this option a TOSCA metamodel extension is not required. However, the defined
Node Type DataResource with the related property Location has to be correctly inter-
preted by the target runtime environment, i.e., the Node Template of type DataResource
represents data that can be retrieved from the address specified by the property Location.
The target runtime environment has to connect the data to the right processing logic.

46

5.2 Concept 2: Uniquely Addressable Data Resource with Assigned Processing Logic Identifier

4 N

”Processing Logic“ Identifier

) Identifier e S
------------------------ 1 Data Resource

Figure 5.6: Concept 2: Uniquely addressable data resource with assigned processing
logic identifier

5.2 Concept 2: Uniquely Addressable Data Resource with
Assigned Processing Logic Identifier

The focus of this concept is on modeling the data resource, which should be processed,
similar to Concept 1. Additionally, the assignment of the necessary processing logic to
the data resource is considered.

Context

The data resource owned by the data owner has to be processed by a specific processing
logic of the processing logic owner. In case that more than one processing logic is
available and the runtime environment cannot determine the right processing logic
for the data processing, the modeler has to specify the mapping between data and
processing logic. Concept 1 does not facilitate to explicitly determine which processing
logic should be used to process the data resource.

Problem
How can the modeler specify which processing logic should process the data resource?
Solution

Fig. 5.6 shows how the assignment of a processing logic to a data resource can be
modeled. A Data Resource is uniquely addressable by an Identifier and the physical
location of the represented data is indicated by the Location attribute. The Processing
Logic Identifier associated with the Data Resource indicates the mapping between the
data resource and the processing logic, which should be invoked with the data. The
Processing Logic Identifier refers to the ID of the respective processing logic. This solves
the problem on how the modeler can specify which processing logic should be used for
a data resource. The Location can reference a local or a remote data location. Thus, the
concept can be used for both data shipping use cases. Since the Processing Logic Identifier

47

5 Modeling Concepts for Data Shipping and Function Shipping

contains the ID of the processing logic and not the location of the actual deployment
artifact, this concept is not suitable for function shipping. The ID of the processing

logic can be processed by the runtime environment in which this processing logic is
available.

Implications

This concept enables the mapping of a processing logic to a data resource and the
determination of the data storage location. The concept is not applicable for function
shipping, for which one of the other concepts (except Concept 1) can be used. How
additional information can be added to the data resource is elucidated in Concept 6.

5.2.1 Option 2.1: TOSCA Realization with Processing Logic Assignment
via Property

In this option, depicted in Fig. 5.7, a data resource is defined by a Node Type
DataResource with a property Location referencing the actual data location. The property
ProcLogicID determines the ID of a Node Template representing the processing logic

which should process the data and which is deployed in the target runtime environ-
ment.

/ p N N
Data Resource Node Type
Location
ProcLogiclD
o X J
|
type of :
1
p 1
] 1
3
Y
=70 [N B i L r——
g Data Jimm
(] ; Location= address
= Resource .
- ~ ... ProclLogiclD= Calculator
a0 File | | e
2
o
Q
2 Node Template)
\ J

Figure 5.7: Option 2.1: TOSCA realization with processing logic assignment via property

48

5.2 Concept 2: Uniquely Addressable Data Resource with Assigned Processing Logic Identifier

Listing 5.6 Option 2.1: Properties definition for Node Type DataResource

1 <xs:element name="DataResourceProperties">
2 <xs:complexType>
3 <Xs:sequence>
<xs:element name="Location">

<xs:complexType>

<xs:attribute name="ref" type="xs:string"/>

</xs:complexType>
</xs:element>

9 <xs:element name="ProcLogicID" type="xs:string" maxOccurs="unbounded"/>
10 </xs:sequence>
11 </xs:complexType>
12 </xs:element>

(el e NNVJ N

Listing 5.7 Option 2.1: Node Template DataResourceFile

1 <NodeTemplate id="DataResourceFile" name="Data Resource File" type="DataResource">
2

3 <Properties>

4 <DataResourceProperties>

5 <Location ref="address"/>

6 <ProcLogicID>Calculator</ProcLogicID>
7 </DataResourceProperties>

8 </Properties>

9 </NodeTemplate>

Description

Listing 5.3 illustrates the Node Type DataResource definition in pseudo-XML. The Node
Type references an externally defined set of properties shown in Listing 5.6. For the
property Location an attribute of type "string" is defined and should be utilized to
identify the location of the data. The property ProcLogicID of type "string" should be
used to determine the processing logic required for this data resource. This property
can appear multiple times because the attribute maxOccurs is set to "unbounded" (line
9). Due to this setting, as much processing logics as required can be assigned to one
data resource. In this example the ProcLogicID of the Node Template DataResourceFile,
defined in Listing 5.7, refers to the processing logic Calculator, which has to process
the data. The placeholder address (line 5) is replaced by a concrete relative URI or any
other address depending on whether it is used for the shipping of the actual data or a
reference to a remote data location in an archive.

Result

This TOSCA realization can be applied for both data shipping use cases illustrated in
Fig. 4.2:

49

5 Modeling Concepts for Data Shipping and Function Shipping

(a) Data packaged in an archive: the data are stored in the CSAR file, which is trans-
ferred to the target runtime environment where the processing logic is deployed.
Therefore, the Location property contains the data path in the CSAR. An example is
shown in Fig. 5.4. In this case the value of the Location property is "Data/File.csv".
That way, the actual data are shipped in an archive and can be processed by the
referenced processing logic.

(b) Reference to the remote data location packaged in an archive: the data remain
at a remote data location and the property Location references the address of the
remote location. The TOSCA Service Template is packaged in a CSAR and sent to
the target runtime environment where the processing logic is already deployed.
The data can be retrieved at the latest during runtime.

Assumptions and restrictions

As mentioned above, a data resource can be linked with certain processing logics but
it cannot address a certain interface, operation, or input parameter of the processing
logic. If the assigned processing logic provides several interfaces, operations, or input
parameters it is not possible to distinguish between them when assigning a processing
logic to a data resource. Either this modeling variant can just be used in case each
processing logic only provides one interface with one operation requiring one input
parameter or the runtime environment respectively the processing logic can handle it.
In case the precise addressing of the input parameter is necessary, Option 2.2 can be
used. In the example shown in Fig. 5.7 just one processing logic is associated with the
data resource. Due to the properties definition in Listing 5.6 it is possible to associate
more than one processing logic with one data resource, but the semantic of multiple
links is not defined. For instance, it could imply either the assigned processing logics
should process the data simultaneously or sequentially.

In order to model the data shipping in this way, three assumptions are made:

* The referenced processing logic(s) is/are already deployed in the target runtime
environment and the ID(s) of the Node Template(s) representing the processing
logic(s) is/are unique in this environment.

* The ID of the Node Template(s) representing the processing logic(s) in the target
runtime environment is/are known. This is needed to specify the right processing
logic(s) for the data resource.

e There is no need for further information about data format, data semantic, or
data transformation operations to enable the mapping between data and pro-
cessing logic and the accurate processing of the data. Either the TOSCA runtime
environment or the indicated processing logic can handle potential adaptations.

50

5.2 Concept 2: Uniquely Addressable Data Resource with Assigned Processing Logic Identifier

Extensions

To realize this option no extensions of the TOSCA metamodel are required. However,
the target environment has to be able to interpret the domain specific elements. A
Node Type Data Resource has a property Location, which refers to the actual data
contained in the subdirectory Data in the CSAR or available at a remote data location.
The property ProcLogicID indicates the already deployed processing logic in the target
runtime environment. The target runtime environment has to know how to connect
the data resource to the concrete input parameter of the operation provided by the
processing logic. In case the data remains at a remote location, they have to be retrieved
at the latest during runtime.

5.2.2 Option 2.2: TOSCA Realization with Processing Logic Input
Parameter Assignment via Property

As in Option 2.1, the data resource is defined by a Node Type DataResource with a
property ProcLogicID referencing the processing logic deployed in the target runtime
environment, which should process the data. In addition to the processing logic ID the
exact interface, operation, and the input parameter of the operation, which should use

s N
4 Data Resource Node Type h

Location

ProclLogic

- J

type of

1---->

) Location= address
Data ProcLogic

i * ProclogiclD= Calculator
* Interface= Calculationinterface
. * Operation= calculate
' InputParameter=inputl .-

Resource
File

! jj

Topology Template

_ Node Template

Figure 5.8: Option 2.2: TOSCA realization with processing logic input parameter as-
signment via property

51

5 Modeling Concepts for Data Shipping and Function Shipping

Listing 5.8 Option 2.2: Properties definition for Node Type DataResource

1 <xs:element name="DataResourceProperties">

2 <xs:complexType>

3 <Xs:sequence>

4 <xs:element name="Location">

5 <xs:complexType>

6 <xs:attribute name="ref" type="xs:string"/>
7

8

</xs:complexType>
</xs:element>

9 <xs:element name="ProcLogic" maxOccurs="unbounded">
10 <xs:complexType>

11 <Xs:sequence>

12 <xs:element name="ProcLogicID" type="xs:string"/>
13 <xs:element name="Interface" type="xs:string"/>
14 <xs:element name="Operation" type="xs:string"/>
15 <xs:element name="InputParameter" type="xs:string"/>
16 </xs:sequence>
17 </xs:complexType>
18 </xs:element>
19 </Xs:sequence>

20 </xs:complexeType>
21 </xs:element>

this data resource as input is specified. Fig. 5.8 illustrates how a corresponding Service
Template can look like.

Description

The Node Type DataResource is depicted in Listing 5.3. Compared to Option 2.1, addi-
tional properties are defined to specify the interface, operation and input parameter,
the data resource is used for (lines 12 to 15 in Listing 5.8). As many processing logics
as required can be attached to one data resource, because the attribute maxOccurs is
set to "unbounded". A Node Template DataResourceFile of type DataResource is specified
in Listing 5.9. For the property Location the placeholder address is used, which can
be replaced by a relative URI in case of a shipping of the actual data, or any other
address if a reference to a remote data location is shipped. In this example the prop-
erty ProcLogicID of the Node Template DataResourceFile refers to the processing logic
Calculator, specifically to the interface CalculationInterface and its operation calculate,
which should process the data. The data serve as the input for the input parameter
inputl. In case the data resource should be processed by more than one processing logic,
additional processing logics can be assigned because the ProcLogic element can occur
multiple times.

52

5.2 Concept 2: Uniquely Addressable Data Resource with Assigned Processing Logic Identifier

Listing 5.9 Option 2.2: Node Template DataResourceFile

1 <NodeTemplate id="DataResourceFile" name="Data Resource File" type="DataResource">
2

3 <Properties>

4 <DataResourceProperties>

5 <Location ref="address"/>

6 <ProcLogic>

7 <ProcLogicID>Calculator</ProcLogicID>

8 <Interface>CalculationInterface</Interface>
9 <Operation>calculate</Operation>
10 <InputParameter>inputl</InputParameter>
11 </ProcLogic>
12 </DataResourceProperties>

13 </Properties>
14 </NodeTemplate>

Result

This TOSCA realization option can be used for both data shipping use cases, the shipping
of the actual data as well as the shipping of the reference to a remote data location,
similar to Option 2.1. Either the property Location references a data resource in a
subdirectory of the CSAR, which also contains the Service Template or it references a
remote location.

Assumptions and restrictions

In contrast to Option 2.1, a more detailed addressing of the processing logic used for the
data resource is possible. The interface, operation and input parameter of the processing
logic is modeled. In this Option, the semantic of multiple links is also not defined.

In order to model the data shipping in this way four assumptions are made:

* The Node Template representing the processing logic refers to a Node Type which
uses the Application Interface extension for TOSCA [Zim16]. This is required in
order to explicitly address the input parameter.

* The referenced processing logic(s) is/are already deployed in the target runtime
environment and the ID(s) of the Node Template(s) representing the processing
logic(s) is/are unique in this environment.

* The modeler knows the exact name and the details of the Application Interface
of the Node Template representing the processing logic in the target runtime
environment.

53

5 Modeling Concepts for Data Shipping and Function Shipping

e There is no need for further information about data format, data semantics, or
data transformation operations to enable the mapping between data and pro-
cessing logic and the accurate processing of the data. Either the TOSCA runtime
environment or the indicated processing logic can handle potential adaptations.

Extensions

For modeling the Service Template as shown in Fig. 5.8 no extension is required, but for
the modeling of the processing logic, which is not part of this model, the Application
Interface extension have to be used. To process this model the Location has to be
interpreted as the data storage location. The defined properties of the Node Template,
which indicates the required processing logic have to be mapped to a Node Template
with the corresponding ID and interface, operation, and input parameter name. If the
data are stored at a remote location, they have to be retrieved at the latest during
runtime.

5.3 Concept 3: Uniquely Addressable Processing Logic

In contrast to Concept 1 and Concept 2, the main subject of this concept is the modeling
of the processing logic.

Context

A processing logic which should be used for data processing is provided by the processing
logic owner. The required data resources are either not known or just one data resource
is available. In the first case, an external mechanism or a person has to map the
processing logic with the right data resource. In the second case, the assignment can be
implied because only one data resource exists.

4)

Processing |~ e
Logic N e

Figure 5.9: Concept 3: Uniquely addressable processing logic

54

5.3 Concept 3: Uniquely Addressable Processing Logic

Problem
How can a processing logic, which is used for data processing, be specified?
Solution

The modeling concept is shown in Fig. 5.9. A Processing Logic entity is defined, which is
uniquely addressable by an Identifier and requires a Deployment Artifact to install and
run the actual processing logic. The deployment artifact can be stored locally or at a
remote location. Therefore, this concept is applicable for both function shipping use
cases, illustrated in Fig. 4.3: shipping of the actual function as well as shipping of a
reference to the remote location. Due to missing modeling elements representing the
data, this concept is not suitable for data shipping.

Implications

This concept enables the specification of a processing logic with the storage location of
the actual deployment artifact. It can not integrate the data, which should be processed
by this processing logic. If it is necessary to additionally model the mapping of the data
to the respective processing logic, Concept 4 or Concept 5 should be used.

5.3.1 Option 3.1: TOSCA Realization with Processing Logic Node Type
Definition

In this TOSCA option, illustrated in Fig. 5.10, a Node Type ProcessingLogic is defined,
which is used to specify a Node Template representing a concrete processing logic. A
Deployment Artifact references the actual artifact that contains the processing logic.

Description

The parts of the Service Template defining the Node Type ProcessingLogic and speci-
fying the Node Template Calculator of type ProcessinglLogic are shown in Listing 5.10
and Listing 5.11 in pseudo-XML. The Node Template contains a Deployment Artifact
MyCalculatorArtifact, referencing the Artifact Template Calculatorinstallable, which is
exemplarily of type JARArtifact. This Artifact Type as well as the Artifact Template is
shown in Listing 5.12. The Artifact Template CalculatorInstallable references the location
of the actual deployment artifact. The placeholder anyURI should underline that the
location depends on the function shipping use case this TOSCA realization option is
used for. The actual deployment artifact is either contained in the CSAR with the Service
Template or available at a remote location. The placeholder is replaced accordingly.

55

5 Modeling Concepts for Data Shipping and Function Shipping

4 P R
Processing Logic Node Type h
N J
3
I
type of :
1
g (|)
©
a :
£
K Calculator [{ DeploymentArtifact
& :
©]
©
Q.
=N Node Template J

-

Figure 5.10: Option 3.1: TOSCA realization with processing logic Node Type definition

Listing 5.10 Option 3.1: Node Type definition ProcessingLogic

1 <NodeType name="ProcessingLogic">
2

3 </NodeType>

Listing 5.11 Option 3.1 and 4.2: Node Template Calculator

1 <NodeTemplate id="Calculator" type="ProcessinglLogic">

2 ...

3 <DeploymentArtifacts>

4 <DeplyomentArtifact name="MyCalculatorArtifact" artifactType="JARArtifact"
artifactRef="CalculatorInstallable"/>

5 </DeploymentArtifacts>

6 </NodeTemplate>

56

5.3 Concept 3: Uniquely Addressable Processing Logic

Listing 5.12 Artifact Type definition JARArtifact and Artifact Template

CalculatorInstallable
1 <ArtifactType name="JARArtifact">

2 ...

3 </ArtifactType>

4 ...

5 <ArtifactTemplate id="CalculatorInstallable" type="JARArtifact">
6

7 <ArtifactReferences>

8 <ArtifactReference reference="anyURI"/>

9 </ArtifactReferences>
10 </ArtifactTemplate>

[1/TOSCA-Metadata

[C1/Definitions

(1 /Types

C1/Plans

/..

(C1/JARs
Calculator.jar

Figure 5.11: Exemplary structure of a CSAR containing the processing logic

Result

This TOSCA realization can be applied for both function shipping use cases illustrated in
Fig. 4.3:

(a) Function packaged in an archive: the actual deployment artifact is contained in
the CSAR together with the overall Service Template. The CSAR is transferred to
the target runtime environment where the data are already available. Therefore,
the Artifact Template references the location in the CSAR, for example "JARs/Cal-
culator.jar" with the corresponding CSAR shown in Fig. 5.11. That way, the actual
processing logic is shipped and can be deployed in the target runtime environment
for the data processing.

(b) Reference to the remote function location packaged in an archive: the deployment
artifact of the processing logic is available at a remote location. This could be
for example an FTP-server. The TOSCA Service Template containing a reference
to the location is sent within a CSAR to the target runtime environment. For the
instantiation the deployment artifact can be retrieved from the remote location.

57

5 Modeling Concepts for Data Shipping and Function Shipping

Assumptions and restrictions

This option is only applicable in situations where the data are not considered. The
relationship between processing logic and data is not part of the model. If an explicit
assignment is required, Concept 4 or Concept 5 should be chosen. In order to model the
function shipping in this way three assumptions are made:

* The data which should be processed are already available in the target runtime
environment.

* Either an external mechanism or a person can map the processing logic to the data
in case several data resources are available, or the allocation is implicitly given
because just one data resource is available.

* The runtime environment or the processing logic itself can perform required
transformation operations or other adaptations.

Extensions

This option can be realized without any extensions of the TOSCA metamodel. In this
case the TOSCA language is used as it is initially intended without considering data
resources. However, the target environment has to be able to assign the data to the
processing logic.

5.4 Concept 4: Uniquely Addressable Processing Logic with
Assigned Data Identifier

As well as Concept 3, this concept focuses on the processing logic. In addition, the
assignment of data resources to the processing logic is modeled.

T e Processing e
Logic M

Figure 5.12: Concept 4: Uniquely addressable processing logic with assigned data
identifier

58

5.4 Concept 4: Uniquely Addressable Processing Logic with Assigned Data Identifier

Context

A processing logic owned by a processing logic owner should be used to process a specific
data resource. In case that more than one data resource is available and the target
runtime environment cannot map the right data resource to the processing logic, the
modeler has to specify the assignment. The required data resource is known by the
modeler. Concept 3 does not allow to determine the assignment. The mapping between
processing logic and data resource is also considered by Concept 2, but it is from the data
owner’s point of view and concentrates on the modeling of the data resource instead of
the processing logic.

Problem

How can the modeler specify which data resource should be processed by the processing
logic?

Solution

Fig. 5.12 shows how the data resource can be attached to the processing logic. The pro-
cessing logic is represented by the Processing Logic entity, which is uniquely addressable
by its Identifier and requires an Deployment Artifact to deploy and run the processing
logic. The Data Identifier indicates the data resource, which should be processed by this
processing logic. The Data Identifier refers to the ID of the respective data resource. The
actual deployment artifact referenced by the Deployment Artifact attribute can be stored
locally or at a remote location. Thus, the concept can be used for both function shipping
use cases. Since the Data Identifier refers to the ID of the data resource and not to the
data storage location, this concept is not suitable for data shipping.

Implications

This concept enables the mapping of a data resource to a processing logic based on the
processing logic owner’s perspective. The processing logic is the main subject of this
concept and thus it is applicable for function shipping. To realize data shipping one of
the other concepts, except Concept 3, can be used.

5.4.1 Option 4.1: TOSCA Realization with Data Assignment via
Property

Fig. 5.13 depicts a realization option in TOSCA to attach a data identifier to a processing
logic. Just like in Option 3.1, a Node Type ProcessingLogic is defined and a Deployment
Artifact is attached to a Node Template of type ProcessingLogic. Additionally, a property
DataResID for the Node Type is defined to reference the data resource.

59

5 Modeling Concepts for Data Shipping and Function Shipping

4 N
4 Processing Logic Node Type R
DataResID
N)
A
[}
type of :
|
e |)
©
= ¢
=
& Calculator | i DeploymentArtifact
&
o) “
©
Q.
2 L : Node Template - J J
S : i

Figure 5.13: Option 4.1: TOSCA realization with data assignment via property

Listing 5.13 Option 4.1: Node Type definition ProcessingLogic

1 <NodeType name="ProcessinglLogic">

2

3 <PropertiesDefinition element="ProcessingLogicProperties"/>
4 </NodeType>

Description

Listing 5.13 illustrates the Node Type ProcessingLogic definition in pseudo-XML. The
Node Type definition includes properties defined in Listing 5.14. The property DataResID
of type "string" should be used to reference the Node Template representing the data
resource, which is already available in the target runtime environment. This property
can appear multiple times because the attribute maxOccurs is set to "unbounded". In this
example the property DataResID of the Node Template Calculator, defined in Listing 5.15,
refers to the data resource named File (line 5). The attached Deployment Artifact refers
to the Artifact Template CalculatorInstallable specified in Listing 5.12. The placeholder
anyURI in line 8 can be replaced by a relative URI in case the actual deployment artifact
is contained in the CSAR containing the Service Template, or an absolute URI in case it
is available at a remote location.

60

5.4 Concept 4: Uniquely Addressable Processing Logic with Assigned Data Identifier

Listing 5.14 Option 4.1: Properties definition for Node Type ProcessingLogic

1 <xs:element name="ProcessinglLogicProperties">

2 <xs:complexType>

3 <Xs:sequence>

4 <xs:element name="DataResID" type="xs:string" maxOccurs="unbounded"/>
5 </Xs:sequence>
6
7

</xs:complexeType>
</xs:element>

Listing 5.15 Option 4.1: Node Template Calculator

1 <NodeTemplate id="Calculator" name="Calculator" type="ProcessingLogic">
2

3 <Properties>

4 <ProcessinglLogicProperties>

5 <DataResID>File</DataResID>

6 </ProcessingLogicProperties>

7 </Properties>

8 <DeploymentArtifacts>

9 <DeplyomentArtifact name="MyCalculatorArtifact" artifactType="JARArtifact"
artifactRef="CalculatorInstallable"/>

10 </DeploymentArtifacts>

11 </NodeTemplate>

Result

This TOSCA realization can be applied for both function shipping use cases in the same
way as Option 3.1:

(a) Function packaged in an archive: the actual deployment artifact is contained
in a subdirectory of the CSAR containing the Service Template and the Artifact
Template that references the path in the CSAR. An exemplary structure of a
respective CSAR is shown in Fig. 5.11. In this example the artifact is referenced by
"JARs/Calculator.jar".

(b) Reference to the remote function location packaged in an archive: the deployment
artifact of the processing logic is available at a remote location and can be retrieved
when needed. The Service Template contains a reference to the remote location
and is shipped within the CSAR. At the latest during provisioning time the actual
artifact is retrieved.

Assumptions and restrictions

This option enables to link a data resource to a processing logic, but a specific input
parameter for which the data should be used cannot be specified. If a more accurate
allocation is required, one of the other two TOSCA realization options of this concept,

61

5 Modeling Concepts for Data Shipping and Function Shipping

Option 4.2 or Option 4.3, can be used. In the example shown in Fig. 5.13 just one data
resource is associated with the processing logic. According to the property definition
as seen in Listing 5.14, several data resources can be linked to one processing logic.
However, the semantics of multiple links is not defined. Either the assigned data
resources should be joined and serve as a single input or each data resource is used for
different invocations of the processing logic.

In order to model the function shipping in this way three assumptions are made:

* The referenced data resource(s) is/are already available in the target runtime envi-
ronment and the ID(s) of the Node Template(s) representing the data resource(s)
is/are unique in this environment.

* The modeler knows the exact name of the Node Template representing the data
resource(s) in the target runtime environment.

* The runtime environment or processing logic, respectively, assigns the data to
the concrete input parameter of the processing logic and can apply required
transformation operations and further adaptations.

Extensions

A TOSCA metamodel extension is not required for this option. However, the value of
the property DataResID has to be mapped to the ID of a Node Template representing a
data resource already available in the target runtime environment. This data have to be
linked to the processing logic.

5.4.2 Option 4.2: TOSCA Realization with Data Assignment via Input
Parameter

Similar to Option 4.1, a Node Type ProcessingLogic is defined and a Node Template
of this type is specified. However, this option differs from Option 4.1 in terms of the
assignment of data resources to the processing logic. The data resources are directly
assigned to the input parameter, as seen in Fig. 5.14.

Description

In this option the data resources used for this processing logic are directly associated with
the respective input parameter. Listing 5.16 illustrates the Node Type ProcessingLogic.
Lines 4 to 12 define an Application Interface CalculationInterface with an operation
calculate. This operation requires two input parameters inputl and input2, both of
type "string". The attribute value (lines 8 and 9) indicates that a data resource with
the ID Filel is linked to the input parameter inputl and the data resource File2 to

62

5.4 Concept 4: Uniquely Addressable Processing Logic with Assigned Data Identifier

-
4 Processing Logic Node Type \\] --
Cal It """" l=""Operation calculate
Iatcufa 'on ~ — InputParameter: string inputl=,Filel”
nter ace _________ — InputParameter: string input2= ,,Filegl‘_’,“.-»""
- J
7'y
1
type of :
1
e :)
-
o
o g
E H
2 Calculator DeploymentArtifact
&
o
o
o
2 L Node Template J

.

Figure 5.14: Option 4.2: TOSCA realization with data assignment via input parameter

Listing 5.16 Option 4.2: Node Type definition ProcessingLogic

1 <NodeType name="ProcessinglLogic">

3 <opentosca:ApplicationInterfaces
xmlns:opentosca="http//www.uni-stuttgart.de/opentosca">

4 <Interface name="CalculationInterface">
5 <Operation name="calculate">
6 <documentation>calculates a result from two input values</documentation>
7 <InputParameters>
8 <InputParameter name="inputl" type="xs:string" value="Filel"/>
9 <InputParameter name="input2" type="xs:string" value="File2"/>
10 </InputParameters>
11 </Operation>

12 </Interface>
13 </opentosca:ApplicationInterfaces>
14 </NodeType>

input parameter input2. The attribute value is a new extension and is explained later.
The specification of Node Template Calculator corresponds to the specification seen in
Listing 5.11 with the associated Deployment Artifact referencing the actual deployment
artifact of the processing logic, illustrated in Listing 5.12.

63

5 Modeling Concepts for Data Shipping and Function Shipping

Result

This TOSCA realization option can be used for both function shipping use cases: the
actual processing logic is shipped with the CSAR or is available at a remote location.
Both use cases can be realized in the same way as described for Option 4.1. Either the
Deployment Artifact references the artifact in a subdirectory of the CSAR or at a remote
location.

Assumptions and restrictions

In contrast to Option 4.1, the data resource can be assigned to a particular input
parameter. However, the number of data resources assigned to an input parameter
is limited to one. The assignment of Node Template IDs representing the data to an
Application Interface of a Node Type restricts the reusability of the Node Type. The
assigned Node Template IDs to the attribute value are the same for each Node Template
of this Node Type.

In order to model the function shipping in this way three assumptions are made:

* The referenced data resources are already available in the target runtime envi-
ronment and the IDs of the Node Templates representing the data resources are
unique in this environment.

* The modeler knows the exact name of the Node Template representing the data
resources in the target runtime environment.

* The runtime environment or processing logic can perform required transformation
operations.

Extensions

In this case the TOSCA Application Interface extension introduced by Zimmermann
[Zim16] is required. This extension enables the definition of the application interface,
operations, and the input parameters in TOSCA. It does not provide the possibility to
assign a fixed value to the parameter. Therefore, an additional extension is required to
enable the assignment of a fixed value to an input parameter. The attribute value defined
for the input parameter extends the Application Interface definition. The ID given by
the attribute value has to be mapped to a Node Template with the same ID representing
a data resource. This specific data resource has to be linked to the input parameter.

64

5.4 Concept 4: Uniquely Addressable Processing Logic with Assigned Data Identifier

s
/ Processing LOgiC Node Type \W ...
Cal It """ Operation calculate
Inputl alcutation i — InputParameter: string inputl
Interface -
_______________ T InputParameter string |nput2,A.~~
Input2
- J
7y
I
type of :
|
e |)
-
o
% s
£
& Ca/cu/ator ... , DeploymentArtifaCt
%
9 .
o)
o
R L . Node Template J J
. ;
 Inputl= Filel
Input2= File2

Figure 5.15: Option 4.3: TOSCA realization with data assignment via property and
input parameter matching

5.4.3 Option 4.3: TOSCA Realization with Data Assignment via Property
and Input Parameter matching

This option combines elements from Option 4.1 and Option 4.2. As depicted in Fig. 5.15,
an Application Interface with an operation and input parameters is modeled. Contrary
to Option 4.2, the data resources are not assigned directly to the parameter, but attached
to the Node Template as properties. Therefore this option is more flexible in terms of the
allocation of data resources to the input parameters. A data resource can be assigned
to a Node Template representing a processing logic and not to the Node Type like it is
shown in Option 4.2.

Description

In this option, a Node Type ProcessingLogic with an Application Interface and properties
is defined. Listing 5.17 illustrates the definition of Node Type ProcessingLogic. Line 3
refers to the properties, which are declared in Listing 5.18. Lines 5 to 13 define an
Application Interface CalculationInterface with the operation calculate and the two input

65

5 Modeling Concepts for Data Shipping and Function Shipping

Listing 5.17 Node Type definition ProcessingLogic with application interface

1 <NodeType name="ProcessingLogic">

3 <PropertiesDefinition element="ProcessingLogicProperties"/>
4 <opentosca:ApplicationInterfaces
xmlns:opentosca="http//www.uni-stuttgart.de/opentosca">

5 <Interface name="CalculationInterface">

6 <Operation name="calculate">

7 <documentation>calculates a result from two input values</documentation>
8 <InputParameters>

9 <InputParameter name="inputl" type="xs:string"/>

10 <InputParameter name="input2" type="xs:string"/>

11 </InputParameters>

12 </Operation>

13 </Interface>
14 </opentosca:ApplicationInterfaces>
15 </NodeType>

Listing 5.18 Option 4.3: Properties definition for Node Type ProcessingLogic

1 <xs:element name="ProcessinglLogicProperties">
2 <xs:complexType>

3 <Xs:sequence>
4 <xs:element name="Inputl" type="xs:string" maxOccurs="unbounded"/>
5 <xs:element name="Input2" type="xs:string" maxOccurs="unbounded"/>
6 </xs:sequence>

7 </xs:complexeType>

8 </xs:element>

parameters inputl and input2. Listing 5.18 defines the two properties Inputl and Input2
of type "string" for the Node Type ProcessingLogic. Both elements can occur multiple
times. The semantics of multiple properties with the same name is explained later. A
Node Template Calculator is specified in Listing 5.19. The properties get the values Filel
and File2, which reference the data resource IDs. These IDs relate to Node Templates
representing the data resources. Furthermore, a Deployment Artifact referencing the
actual deployment artifact is specified. The refered Artifact Type and Artifact Template
is already seen in Listing 5.12. To achieve the mapping between input parameter and
data resource, a naming convention is introduced: the name of the input parameter
and the name of the property referencing the required data resource are equal. In this
example, the data resource referenced by the the property Inputl serves as input for the
input parameter with the name input1I.

66

5.4 Concept 4: Uniquely Addressable Processing Logic with Assigned Data Identifier

Listing 5.19 Option 4.3: Node Template Calculator

1 <NodeTemplate id="Calculator" type="ProcessinglLogic">
2

<Properties>
<ProcessingLogicProperties>
<Inputl>Filel</Inputl>
<Input2>File2</Input2>
</ProcessinglLogicProperties>
</Properties>
<DeploymentArtifacts>
<DeplyomentArtifact name="MyCalculatorArtifact" artifactType="JARArtifact"
artifactRef="CalculatorInstallable"/>
11 </DeploymentArtifacts>
12 </NodeTemplate>

—_
SOV OOV~ W

Result

In the same way as Option 4.1, both function shipping use cases can be realized by this
option. Either the actual deployment artifact is shipped with the CSAR containing the
Service Template or it remains at a remote location.

Assumptions and restrictions

This option combines the benefits of Option 4.1 and Option 4.2. The data resource can
be assigned to a specific input parameter and as much data resources as required can be
associated with one parameter. The fact remains, that the semantics of multiple data
resources assigned to one input parameter is not defined. It could imply either a join
of the associated data resources or separate invocations, each with one associated data
resource.

In order to model the function shipping in this way three assumptions are made:

* The referenced data resources are already available in the target runtime environ-
ment and are known by the modeler.

* The modeler knows the exact name of the Node Template representing the data
resources in the target runtime environment and the IDs of these Node Templates
are unique.

* The runtime environment or processing logic can perform required transformation
operations.

Extensions

For modeling the application interface the extension introduced by Zimmermann
[Zim16] is required, but no further metamodel extensions are required. However,
the domain specific elements have to be processed by the runtime environment. The

67

5 Modeling Concepts for Data Shipping and Function Shipping

defined properties have to be mapped to the input parameter with the same name, by
convention. The data resource IDs declared for the properties have to be aligned with
the existing data resources in the runtime environment. The corresponding data have
to be linked to the input parameter. As depicted in Fig. 5.15, the property Inputl are
assigned to the data resource ID Filel. Therefore, this data resource is used as input for
the input parameter inputl.

5.5 Concept 5: Data Connector between Processing Logic
and Data Resource

This concept pursues another approach than the first four concepts. Instead of consider-
ing the scenario either from the data owner’s or the processing logic owner’s perspective,
it focuses on the connection between processing logic and data resource.

Context

Either the data owner or the processing logic owner wants to ship the data to the
processing logic, or the processing logic to the data, respectively. The relationship
between them is important. All concepts explained before are applicable only for data
shipping or function shipping. Therefore, a flexible model is required, which does not
differ whether it is used for data shipping or function shipping.

Problem

How can the modeler specify the relationship between the processing logic and the data
resource?

‘ Identlfler

Identifier Identifier
T Processing Data Tt
| Data Resource |
B Logic Connector N
Deployment "\)
: ¢ L n ;
Artlfact ® SO

Legend: Only used for data shipping ® Only used for function shipping

Figure 5.16: Concept 5: Data connector between processing logic and data resource

68

5.5 Concept 5: Data Connector between Processing Logic and Data Resource

Solution

Fig. 5.16 illustrates the abstract modeling concept. The Processing Logic entity on the
left side is uniquely addressable by an Identifier. The same applies to the Data Resource
entity on the right side. The Data Connector represents an 1:1 relationship between a
Processing Logic and a Data Resource. It can also be identified by an unique Identifier.
The gray-shaded elements with the icon mark the attributes, which usage depends on
the shipping use case the concept is used for. Two cases can be distinguished: Either the
Deployment Artifact or the Location element is part of the model. The first case occurs if
the model is applied for function shipping, the second case if data shipping is realized.
Therefore, this modeling concept is applicable for all four shipping use cases, both data
shipping as well as both function shipping use cases, presented in Fig. 4.2 and Fig. 4.3.

Implications

This concept enables the modeler to specify the relationship between a processing logic
and a data resource. The location of the deployment artifact, in case of function shipping,
or the actual data location, in case of data shipping, can be referenced. Thus, one single
modeling concept covers all use cases and can be adapted flexibly according to the
underlying situation. Contrary to the Concept 1 to Concept 4, this concept promotes a
common understanding of the scenario, which should be modeled, independent of the
use case. It can be used either for the data shipping or the function shipping use cases.
The subsequent concepts Concept 6 and Concept 8 demonstrate how additional details
such as transformation operations can be added to the Data Connector.

5.5.1 Option 5.1: TOSCA Realization with an Data Connector with Input
Parameter Matching

Fig. 5.17 illustrates how the Data Connector can be realized with TOSCA. A Node Type
ProcessingLogic, representing the processing logic, as well as a Node Type DataResource,
representing the data, are defined. In addition a Relationship Type DataConnector is
defined, which can be used to specify Relationship Templates connecting Node Templates
of type ProcessingLogic and DataResource.

Description

Both Node Type definitions are presented above. Listing 5.17 shows the definition
of the Node Type ProcessingLogic with the Application Interface CalculationInterface
(the properties are not used in this case). Listing 5.3 shows the definition of the
Node Type DataResource with the associated properties definition in Listing 5.4. The
property Location is utilized to specify the actual storage location. The Relationship
Type DataConnector is defined in Listing 5.20 with the respective properties shown in

69

5 Modeling Concepts for Data Shipping and Function Shipping

_— InputParameter: String inputl
— InputParameter: String in ut2

s e ~
Processing Logic Node"Type Data Resource Node Type
. Calculation
Interface Location -_D
L A
: Data Connector Relationship Type '
' Source '
! Interface !
: " Source X . :
: type o Operation ypeo :
: Source :
: InputPar :
1 4 1
' | type of '
T 1 T
o !
2
E 1
a
g Data Connector File Data
= Calculator g Resource
> . . .
& Relationship File
3 _ . Template "
s Node Template : Node Template :
\ i : § T ", . :_: : /
] _,.-"":"“Sourcelnterface= CalculationInterface o A
O i SourceOperation= calculate E O

“..._SourcelnputPar= input1 R

Legend: O Only used for data shipping O Only used for function shipping

Figure 5.17: Option 5.1: TOSCA realization with data connector with input parameter
matching

Listing 5.21. Since the properties SourceElement and TargetElement of a Relationship
Template can only reference Node Templates, further properties to specify the exact
interface, operation, and input parameter the data relates to are required. Due to the
fact that the indicator of an input parameter is only unique within an operation element
and an operation is only unique within the interface element, the interface name as
well as the operation name have to be declared. Listing 5.22 shows the Relationship
Template DataConnectorFile of type DataConnector. The Node Template with the ID
Calculator is defined as the SourceElement (line 10) and the Node Template with the ID
DataResourceFile as TargetElement (line 11). The properties are used to specify the exact
input parameter the data are used for. In this case the data represented by the Node
Template DataResourceFile serve as input for the input parameter inputl required by the

70

5.5 Concept 5: Data Connector between Processing Logic and Data Resource

Listing 5.20 Relationship Type definition DataConnector with properties

1 <RelationshipType name="DataConnector">

2

3 <RelationshipTypeProperties element="DataConnectorProperties"/>
4 </RelationshipType>

Listing 5.21 Properties definition for Relationship Type DataConnector

1 <xs:element name="DataConnectorProperties">

2 <xs:complexType>

3 <Xs:sequence>

4 <xs:element name="Sourcelnterface" type="xs:string"/>
5 <xs:element name="SourceOperation" type="xs:string"/>
6 <xs:element name="SourceInputPar" type="xs:string"/>
7

8

9

</Xs:sequence>
</xs:complexType>
</xs:element>

operation calculate. Furthermore, two variations of this option can be distinguished:
either a Deployment Artifact is assigned to the Node Template Calculator or the property
Location is specified for the Node Template DataResourceFile. The first variation is used
in case the TOSCA realization option is used for function shipping, the second one in
case of data shipping.

Result

Data shipping and function shipping can be realized by this option, in each case the
shipping of the actual data or function as well as the shipping of a reference to a remote
location. The following differences for the realization have to be considered:

Listing 5.22 Option 5.1: Relationship Template DataConnectorFile

1 <RelationshipTemplate id="DataConnctorFile" name="Data Connector File"
type="DataConncetor">

<Properties>
<DataConncectorProperties>
<SourcelInterface>CalculationInterface</SourceInterface>
<SourceOperation>calculate</SourceOperation>
<SourcelInputPar>inputl</SourceInputPar>
</DataConncetorProperties>
</Properties>
<SourceElement ref="Calculator"/>
<TargetElement ref="DataResourceFile"/>
12 </RelationshipTemplate>

[Er—
— OV oo WDN

71

5 Modeling Concepts for Data Shipping and Function Shipping

1. Data shipping: in this case the Node Template Calculator is abstract, i.e., neither
implementation artifacts nor deployment artifacts are assigned and no instances of
this Node Template can be created. The Node Template has to be substituted with
another one having a specialized, derived Node Type. The one substituting the
Node Template Calculator is already available in the target runtime environment.
The property Location of the Node Template DataResourceFile references the loca-
tion of the data. In case the data are contained in the CSAR, which contains the
whole Service Template the actual data are shipped in the archive. Fig. 5.4 shows
an example of a CSAR. In this case the placeholder address of the property Location
is replaced by "Data/File.csv". For the second data shipping use case, at which the
data remain at a remote location, the address identifies a file for example on an
FTP-server.

2. Function shipping: the processing logic instead of the data resource is shipped. In
this case the Deployment Artifact of the processing logic is assigned to the Node
Template Calculator. The actual deployment artifact is either contained in the CSAR
or available at a remote location. The Node Template DataResourceFile is abstract
and the property Location is not defined. The Node Template DataResourceFile is
substituted by a Node Template representing data already available in the target
runtime environement.

Assumptions and restrictions

The Relationship Template DataConnectorFile can only connect two Node Templates.
How multiple data resources can be connected to one processing logic is shown in
Concept 7 and Concept 8. The following assumptions are made to realize data shipping
or function shipping:

* The data and the processing logic have to be known by the modeler.

* The data, which should be processed, or the processing logic, which should process
the data, are already available in the target runtime environment.

* A mechanism for the substitution either of the abstract Node Template Calculator or
the Node Template DataResourceFile with the appropriate Node Template available
in the target runtime environment exists.

* The runtime environment can perform required transformation operations for
example data conversion, or data selection operations.

Extensions

An additional TOSCA metamodel extension beside the TOSCA Application Interface
extension is not required for this option. However, the domain specific defined Node
Types has to be interpreted correctly. The Relationship Type DataConnector maps the

72

5.6 Concept 6: Data Connector with Transformation Capability

processing logic with the data. The data serve as input for a specific input parameter
of the processing logic. Accordingly, the Node Type Processinglogic represents the
processing logic and the Node Type DataResource the data. Furthermore, the substitution
of the Node Template Calculator, or Node Template DataResourceFile respectively, has to
be executed.

5.6 Concept 6: Data Connector with Transformation
Capability

Similarly to Concept 5, this concept focuses on the connection between the processing
logic and the data resource. Additionally, transformation capabilities are added to the
connection and can be modeled explicitly.

Context

The data owner or the processing logic owner possesses a data resource or a processing
logic, respectively, which should be shipped. The processing logic cannot process the
original data resource, i.e., either the format of the data cannot be processed or just
a subset of the data contained in the data resource should be processed. Required
transformation operations like format conversion, data conversion, or data selection
are not provided by the target runtime environment or the processing logic. Format
conversion means that the data format, for example XML or CSV, has to be changed.
In case of data conversion the measuring unit or representation of the data has to be
converted, for example from Celsius to Fahrenheit or from a "float" to an "integer" data
type. The modeler has to specify the required transformation operations, which cannot
be realized by Concept 5.

4 B e)

Identifier . Operation .~ . Identifier
) Resource
" . o Type
Processing Data 1 Tt
Logi C " Data Resource | -
ogic onnector " Resource
L Format

Legend: Only used for data shipping ® Only used for function shipping

Figure 5.18: Concept 6: Data connector with transformation capability

73

5 Modeling Concepts for Data Shipping and Function Shipping

Problem

How can the modeler specify the relationship between the processing logic and the data
resource, and how can transformation operations be added to the model?

Solution

The modeling concept is shown in Fig. 5.18. The Processing Logic entity on the left
side is identified by an unique Identifier. The Data Resource is also addressed by an
Identifier. Additionally, further characteristics of the data are attached to the Data
Resource: Resource Type and Resource Format. The first attribute identifies what kind
of data resource it is, for example a flat file or a table. The second one determines the
storage format of the data resource, e.g, CSV or JSON. The relationship between the
processing logic and the data resource is represented by the Data Connector, which has
a Transformation Operation attached in addition to the Identifier. The Transformation
Operation references programs, which can perform the required transformation. Both
use cases, data shipping and function shipping, are covered by this modeling concept.
The grey-shaded elements Deployment Artifact and Location with the icon FS or DS are
only required either in case of function shipping or data shipping. In case of function
shipping solely the Deployment Artifact is needed, in case of data shipping the Location
attribute is needed.

Implications

In addition to Concept 5, transformation operations can be added to the relationship
between the processing logic and the data resource. Instead of external mechanisms,
which automatically perform required transformations, the modeler explicitly specifies
the transformation operations. For any other concept described before, these transforma-
tions are not explicitly modeled. The transformation operations can also be combined
with data collections, introduced in Concept 7. For instance, the operation can be
applied not only to single files or tables but also to multiple tables of one database. In
Concept 8 operations in terms of joining data from different data resources are described
in detail.

5.6.1 Option 6.1: TOSCA Realization with Transformation Assignment
via Property

As shown in Fig. 5.19, two Node Types are defined: ProcessinglLogic, representing
the processing logic, and DataResource, representing the data. The Relationship Type
DataConnector represents the connection between the two Node Types. Compared to
Option 5.1, a TransformOp property is added to the Relationship Type.

74

5.6 Concept 6: Data Connector with Transformation Capability

'A..-""b-peration calculate
. — InputParameter: String inputl
— InputParameter: String input_2___‘_..--"'

Ve T ., ~
Processing Logic Node Type Data Resource Node Type
, Calculation Resource
Interface Type
Resource
Format
Location

Data Connector Relationship Type

Sourcelnterface
SourceOperation

type of type of
SourcelnputPar
TransformOp

B T T
e R

3
: type of
o i
® 1
B— 1
g Data Connector File Data
= Calculator Resource
& Relationship ™ File
S _) Template 5
2 Node Template - Node Template -
\ : . T — " .I ‘ /
... 5 '__,.z'?‘-"'éourcelnterface= caIcuIationInterfaceh"”v"”«.,
DeploymentArtifa £ SourceOperation= calculate » #7 ResourceType= File
. SourcelnputPar= inputl RgsgqrceFQrmatf a3

R ..""‘--I_ransformOpz Artifact Template

Legend: Only used for data shipping Only used for function shipping

Figure 5.19: Option 6.1: TOSCA realization with transformation assignment via prop-
erty

Description

The Node Type ProcessingLogic is defined as in Option 5.1, illustrated in Listing 5.17
without the properties in line 4. The processing logic provides an Application Interface
CalculationInterface with the operation calculate that exposes two input parameters.
The Node Type DataResource is defined in Listing 5.3 with the properties defined in
Listing 5.23. Three properties are defined: ResourceType, ResourceFormat, and Location.
The first two properties characterize the data. ResourceType indicates what kind of
resource it is, e.g., a file or a database table. ResourceFormat specifies the storage format.
Both properties could be used to enable an automated identification of a required
format transformation operation by a modeling tool which proposes transformation

75

5 Modeling Concepts for Data Shipping and Function Shipping

Listing 5.23 Extended properties definition for Node Type DataResource
1 <xs:element name="DataResourceProperties">

2 <xs:complexType>

3 <Xs:sequence>

4 <xs:element name="ResourceType" type="string"/>

5 <xs:element name="ResourceFormat" type="string"/>
6 <xs:element name="Location">

7 <xs:complexType>

8 <xs:attribute name="ref" type="xs:string"/>

9 </xs:complexType>
10 </xs:element>
11 </xs:sequence>

12 </xs:complexeType>
13 </xs:element>

operations to the the modeler or by the runtime environment. The Location references the
actual data, as seen in almost all other options. The Relationship Type DataConnector
(Listing 5.20) has four properties assigned. The properties definition is shown in
Listing 5.24. The three properties Sourcelnterface, SourceOperation, and SourcelnputPar
specify the concrete input parameter the data should be used for. All three properties are
required to uniquely address a specific input parameter. The property TransformOp is
used to refer to an Artifact Template, representing the actual transformation operation.
The actual transformation operation is assigned to a specific Relationship Template.
Only the property definition is done on the level of types. In this example the Node
Template Calculator of type Processinglogic and the Node Template DataResourceFile
of type DataResource are connected by the Relationship Template DataConnectorFile
defined by the Relationship Type DataConnector. In case the model is used for function
shipping the Deployment Artifact is assigned to the Node Template Calculator and the
property Location is not used. If it is used for data shipping, the property Location
to address the data is used and the Deployment Artifact is not assigned to the Node
Template Calculator.

Result

This TOSCA realization option can be applied for data shipping as well as function
shipping. How the data shipping and function shipping use cases can be realized is
shown below:

1. Data shipping: the property Location defined for the Node Type DataResource
is used to reference the actual data. The data can either be contained in the
CSAR itself or are available at a remote location, for example an FTP-server. The
processing logic is already available in the target runtime environment. Therefore,
the Node Template Calculator in the Topology Template contained in the CSAR is

76

5.6 Concept 6: Data Connector with Transformation Capability

Listing 5.24 Option 6.1: Properties definition for Relationship Type DataConnector
1 <xs:element name="DataConnectorProperties">

2 <xs:complexType>

3 <Xs:sequence>

4 <xs:element name="Sourcelnterface" type="xs:string"/>
5 <xs:element name="SourceOperation" type="xs:string"/>
6 <xs:element name="SourceInputPar" type="xs:string"/>
7 <xs:element name="TransformOp">

8 <xs:complexType>

9 <xs:attribute name="artifactType" type="xs:QName"/>
10 <xs:attribute name="artifactRef" type="xs:QName"/>
11 </xs:complexType>
12 </xs:element>
13 </Xs:sequence>

14 </xs:complexType>
15 </xs:element>

declared as abstract. It is substituted by the Node Template in the target runtime
environement representing the concrete processing logic, which should process
the data.

2. Function shipping: the actual processing logic instead of the data is shipped, either
contained in the CSAR or available at a remote location. The Deployment Artifact
references the actual deployment artifact. The Node Template of type DataResource
represents the data, which are already available in the target runtime environment,
abstractly. The Node Template is substituted in the target runtime environment by
a concrete Node Template at the latest during provisioning time.

Assumptions and restrictions

The Relationship Template can only connect two Node Templates, i.e., only one data
resource can be assigned with one Relationship Template to the processing logic. How
multiple data resources can be aggregated to a data collection can be seen in Concept 7
and Concept 8. The following assumptions are made to realize data shipping or function
shipping:

* The modeler requires additional knowledge about the data, in case of function
shipping, and about the processing logic, in case of data shipping. Furthermore,
the appropriate transformation operation has to be assigned to the DataConnector.

* The assigned Artifact Template representing the transformation operation provides
only one operation. For each operation a separate Artifact Template is required.

* The data, which should be processed, or the processing logic, which should process
the data, are already available in the target runtime environment.

77

5 Modeling Concepts for Data Shipping and Function Shipping

* A mechanism for the substitution either of the Node Template representing the
processing logic or the Node Template representing the data resource with the
appropriate Node Template available in the target runtime environment is required.

Extensions

The above-mentioned option can be realized with the TOSCA Application Interface
extension. Furthermore, the domain specific elements have to be correctly processed.
The DataConnector connects a specific input parameter of the processing logic to the
data and for each processing logic invocation the transformation operation has to be
executed. Furthermore, the substitution of either the Node Template representing the
processing logic, or the Node Template representing the data, is required and executed
by the target runtime environment.

Further properties assigned to the Node Type DataResource enable to provide more
details about the represented data, so the properties shown in Fig. 5.19 are just exam-
ples.

5.6.2 Option 6.2: TOSCA Realization with Transformation Assignment
via Transformation Interface

This TOSCA realization option is similar to Option 6.1. Fig. 5.20 illustrates the Service
Template. Two Node Types are defined representing the processing logic and the
data. The Relationship Type DataConnector defines the connection between them. In
contrast to Option 5.1, an Application Interface instead of a property represents the
transformation operation. Thus, the actual transformation operation is assigned to the
Relationship Type and effects all Relationship Templates of this type.

Description

The Node Type ProcessingLogic shown in Listing 5.17, provides an Application Interface
CalculationInterface with one operation calculate and two input parameters. Three prop-
erties are attached to the other Node Type DataResource as can be seen in Listing 5.23.
The properties ResourceType and ResourceFormat indicate what kind of data resource
is represented by this Node Type and in which format the data are stored. The last
property Location references the actual data. The relationship between the two Node
Types is defined by the Relationship Type DataConnector, depicted in Listing 5.25 with
the attached properties definition in Listing 5.21. Three properties are added to the
Relationship Type to identify the precise input parameter the data should be used for. In-
stead of a fourth parameter that references the transformation operation, an Application
Interface TransformationInterface, which exposes the operation transform is attached to
the Relationship Type. The ID of the Node Template representing the data serve as input

78

5.6 Concept 6: Data Connector with Transformation Capability

_.v""bperation calculate
. — InputParameter: String inputl |
= InputParameter: String input2 . :

4 . T N
Processing Logic Node Type P ’ Data Resource Node Type
, Calculation Resource
Interface Type
Resource
Format
Location
L) A
. Data Connector Relationship Type R
H Source Transformation | ~“Operation transform :
! Interface Interface | .= InputParameter: String ResourcelD.
. ¢ Source R t.”é of..:._._ e e
| typeo Operation s 1
1 1
H Source H
1 InputPar 1
1 1
1 4 1
| | type of |
T 1 T
[V 1
3
© 1
= i
£ Data Connector File Data
= Calculator 7 - Resource
& E Relationship File
e i Template 5,
2 Node Template Node Template

: " Sourcelnterface= Calculationinterface £ o _| e,
© i SourceOperation= calculate gesourcel’ype- F_' <
*.... SourcelnputPar= input1 R = cés

Legend: © Only used for data shipping O Only used for function shipping

Figure 5.20: Option 6.2: TOSCA realization with transformation assignment via trans-
formation interface

parameter. Contrary to an Implementation Interface defined for a Relationship Type,
the Application Interface provides an operation, which is invoked for each processing
logic execution. The actual implementation of the Application Interface is referenced
by a Deployment Artifact which is part of the Relationship Type Implementation. It
follows the same principles as described for Application Interfaces exposed by Node
Types [Zim16]. However, the implementation are not further discussed in this thesis.
In this example, a Topology Template containing a Node Template Calculator, speci-
fied in Listing 5.11, defined by the Node Type ProcessingLogic and a Node Template
DataResourceFile of type DataResource, is defined. The Node Template DataResourceFile
represents a file with the file format CSV. The two Node Templates are connected by
the Relationship Template DataConnectorFile of type DataConnector. More precisely, it
connects the input parameter inputl of the processing logic to the data. The usage of
the elements, shown grayed-out and marked with an icon, depends on the use case the
option is used for. In case of function shipping, a Deployment Artifact is required to

79

5 Modeling Concepts for Data Shipping and Function Shipping

Listing 5.25 Option 6.2: Relationship Type definition DataConnector

1 <RelationshipType name="DataConnector">

3 <PropertiesDefinition element="DataConnectorProperties"/>
4 <opentosca:ApplicationInterfaces
xmlns:opentosca="http//www.uni-stuttgart.de/opentosca">

5 <Interface name="TransformationInterface">

6 <Operation name="transform">

7 <InputParameters>

8 <InputParameter name="ResourceID" type="xs:string"/>
9 </InputParameters>
10 </Operation>

11 </Interface>
12 </opentosca:ApplicationInterfaces>
13 </NodeType>

reference the actual deployment artifact of the processing logic. In case of data shipping,
the property Location is used instead of the Deployment Artifact to refer to the actual
data. Thus, this option can be applied for all data and function shipping use cases.

Result

This TOSCA realization option can be used for data and function shipping in the same
way as Option 6.1. It can be used flexibly for all data and function shipping use cases
illustrated in Fig. 4.2 and Fig. 4.3.

Assumptions and restrictions

Due to the definition of the transformation operation as Application Interface for the
Relationship Type, the operation is the same for all Relationship Templates of this
type. In case different transformation operations are required for different connections
multiple Relationship Types have to be defined. Option 6.1 enables assigning the
transformation operation on the level of Relationship Templates instead of Relationship
Types. Furthermore, the connection between processing logic and data resource is
restricted to a 1:1 relationship due to the TOSCA specification. In Concept 7 and Concept
8 is shown, how aggregated data collection and multiple Relationship Templates can be
used. The following assumptions are made in order to apply this option for data and
function shipping:

* Knowledge about the processing logic as well as the data is required. In addition,
transformation requirements have to be known.

* The processing logic in case of data shipping, or the data in case of function
shipping, are already available in the target runtime environment.

80

5.6 Concept 6: Data Connector with Transformation Capability

* The target runtime environment provides substitution mapping capabilities for
the mapping of the abstract Node Template with the respective concrete Node
Template already available in the target runtime environment.

Extensions

The above-mentioned option can be realized with the TOSCA Application Interface
extension. Besides the Node Type representing the processing logic the Relationship
Type is extended by an Application Interface. Originally, the Application Interface
extension is made for Node Types to model the provided operations in TOSCA. In this
case the Relationship Type DataConnector requires operations, which are executed in
case of an processing logic invocation. Management Interfaces are not suitable for this
because they are used to manage the relationship in terms of for example establishing
the relationship, whereas transformation operations are functionality executed for each
invocation. Therefore, an Application Interface is attached to a Relationship Type. The
data have to be linked to the specific input parameter specified by the Relationship
Template and for each processing logic invocation the transformation operation is
executed. Furthermore, the runtime environment has to perform the substitution
mapping of the Node Templates.

5.6.3 Option 6.3: TOSCA Realization with Explicitly Modeled Data
Query

In contrast to Option 6.1 and Concept 6.2, this option focuses solely on data queries.
The Service Template is illustrated in Fig. 5.21. The Node Types ProcessingLogic
and DataResource are defined as described for Option 6.1. The Relationship Type
DataConnector gets a new property DataQuery to integrate a data query in the model.

Description

Two Node Types are defined: ProcessinglLogic and DataResource. The Node Type
ProcessingLogic, defined in Listing 5.17, provides an operation calculate, which ex-
poses two input parameters via the Application Interface CalculationInterface. For the
Node Type DataResource three properties are defined in Listing 5.23. The properties
ResourceType and ResourceFormat identify what kind of data are represented by the corre-
sponding Node Template and in which format the resource is available. The actual data
are referenced by the property Location. The Relationship Type DataConnector defines
four properties (Listing 5.21). Sourcelnterface, SourceOperation, and SourcelnputPar
specify the concrete input parameter of the processing logic the data are used for. The
values of these properties have to correspond with the name of the interface, operation

81

5 Modeling Concepts for Data Shipping and Function Shipping

_— InputParameter: String inputl
— InputParameter: String input_2’_:,.~"'

/ TR \
Processing Logic Node Type Data Resource Node Type
, Calculation Resource
Interface Type
Resource
Format
Location

Data Connector Relationship Type

Sourcelnterface
SourceOperation

type of type of
SourcelnputPar
DataQuery

e
e

Y
: type of
o :
® |
Q_ 1
£ Data Connector Table Data
2 Calculator . Resource
g>° Relationship Table
S : . Template A
2 Node Template - Node Template -

;f:"'““Sourcelnterface= CalculationInterface

. # ResourceType= Table

O H SourceOperation= calculate b :

SourcelnputPar=inputl
"'--.,_“DataQuery= ,SELECT Person1

FROM Person” .- R

Legend: O Only used for data shipping O Only used for function shipping

Figure 5.21: Option 6.3: TOSCA realization with explicitly modeled data query

and input parameter defined for the Node Type Processing Logic by an Application Inter-
face element. In this modeling scenario the data serve as input for the input parameter
inputl, which is exposed by the operation calculate. An additional property DataQuery
of type "string" is added to these properties. The property enables the modeler to specify
a query directly in the Topology Template. In this example a database table is repre-
sented by the Node Template DataResourceTable and the property DataQuery contains
a SQL statement, which should be executed on the data resource. A SQL statement
constitutes just one example to express a query. Several other data query languages,

82

5.6 Concept 6: Data Connector with Transformation Capability

such as XQuery! for XML documents, Contextual Query Language? for search engines
and bibliographic catalogs, or NoSQL database specific methods, are conceivable. The el-
ements DeploymentArtifact and Location, which are grayed-out and marked with an icon,
are used either in case of data shipping or in case of function shipping. A Deployment
Artifact is only contained in case of function shipping and not in case of data shipping.
For the property Location it is exactly the other way around, it is only used in case of
data shipping.

Result

Data shipping as well as function shipping can be realized by this option. The differences,
which have to be taken into account are described in detail for Concept 6.1 and apply
also to this option.

In case of data shipping use case (b) in which a reference to a remote data location is
shipped, the query language which can be used depends on the data resource capability
the query should be applied to. For instance, SQL can just be used in case the remote data
resource can process SQL statements. Thus, the query is shipped to the data resource
location and the result data are transferred to the processing logic. Data shipping in
terms of shipping the model with the reference to the data resource location and the
later retrieval of the data are realized. However, selection logic and business logic are
separated and the selection logic are shipped to the data resource. This corresponds
with the query shipping approach explained in Section 2.2. In case of data shipping
use case (a) in which the data are stored and shipped in the archive, it depends on the
target runtime environment and the data management system which may contained in
the archive if queries can be executed on the data resource.

Assumptions and restrictions

As seen before, a Relationship Template can just connect two Node Templates to each
other. How multiple data resources can be connected to a processing logic and visa versa
is shown in Concept 7 and Concept 8. The usage of this option is strongly influenced
by the possibility to use data queries for a specific data resource. An explicit SQL
statement, as presented in Fig. 5.21, is limited to database systems, which can process
SQL statements. Other query languages are already mentioned above. To enable data
shipping and function shipping the following general assumptions are made:

* A modeler with knowledge about the processing logic as well as the data is required.
Additionally, the modeler has to know how to write data queries and which data
query language can be used in each situation.

Thttps://www.w3.org/TR/xquery/
2http://www.loc.gov/standards/sru/cql/spec.html

83

5 Modeling Concepts for Data Shipping and Function Shipping

* The processing logic in case of data shipping, or the data in case of function
shipping, are already available in the target runtime environment.

* The target runtime environment provides substitution mapping capabilities for
the mapping of the abstract Node Template representing the processing logic or
data resource with the respective concrete Node Template already available in the
target runtime environment.

* Either an external system or the target runtime environment has to be able to
process the data query.

Extensions

The TOSCA metamodel has to be extended by the Application Interface extension
introduced by Zimmermann [Zim16] to explicitly model the operation of the Node Type
ProcessingLogic. Furthermore, it is important to note the domain specific usage of the
existing elements. The Node Type DataResource represents data and is connected by
the Relationship Type DataConnector to a determined input parameter of the Node Type
ProcessingLogic. In addition, a data query is written and attached to the DataConnector.
The data query has to be executed for every processing logic invocation with these data.
Thereby, a caching mechanism is possible to cache frequently requested data close to the
processing logic location. Caching mechanism are not further discussed in this thesis.
The target runtime environment has to be able to process the Service Template and to
execute the substitution mapping between an abstract Node Template representing the
processing logic, or the data, respectively, and a concrete Node Template.

5.7 Concept 7: Data Connector between Processing Logic
and Data Collection

This concept is an advancement of Concept 5. The main subject of this concept is the
integration of a data collection consisting of several data resources in the model. Instead
of connecting single data resources with the processing logic, a set of data resources can
be linked.

Context

Either the data owner wants to ship his or her data or the processing logic owner his
or her function. The data resources are part of the same data collection. The data
collection itself is just a structuring element, which is used to organize and structure
multiple data resources. A data collection can be for example a database with several
tables or a directory with several files. For the processing logic several data resources

84

5.7

Concept 7: Data Connector between Processing Logic and Data Collection

‘ Identifier
B Data Collection
Y T
L Identifier
Data f T
f Connector " Collection
] Identifier A . Type
e | Processing — o T
Logic b
/ Deplo.yment®>, g / \ i\ Resource
Artifact L T
B s o - Data “, . ‘ype
Connector | gy
'C\ Location
) N -
Identifier

Legend: Only used for data shipping ® Only used for function shipping

Figure 5.22: Concept 7: Data connector between processing logic and data collection

are required as input for the data processing. These data resources are part of the
same data collection, i.e., different tables of the same database or different files in a
folder. With Concept 5 and Concept 6 only separate data resources can be modeled and
transformation operations as well as queries address just one data resource, e.g., one
table or one file. To reduce the complexity of the model and to reduce the number of
modeled data resources, the required data resources should be modeled as an aggregated
data collection.

Problem

How can the modeler specify the relationship between processing logic and data re-
sources, which are part of the same data collection?

Solution

The modeling concept is outlined in Fig. 5.22. On the left side, the Processing Logic
entity has an attribute Identifier and an attribute Deployment Artifact, which references
the actual processing logic. On the right side, the Data Collection representing a data
collection of several data resources is specified by four attributes. The Identifier uniquely
identifies the Data Collection. Collection Type and Resource Type add further information
about the Data Collection. The Collection Type can be for example a database and the
related Resource Type a table. These attributes can be used by the runtime environment
for automated transformation operations or to identify information required to facilitate
the communication with the data collection or data resource, respectively. The last
attribute Location references the actual data collection containing several data resources.

85

5 Modeling Concepts for Data Shipping and Function Shipping

The icons FS and DS mark the attributes, which are only used in case of function shipping
or data shipping. Concept 5 and Concept 6 demonstrate how a Data Connector connects
the Processing Logic to a single Data Resource. In this concept, the relationship exists
between a single processing logic and a data collection. Thus, several data resources can
be linked to a processing logic without modeling every single data resource. However, for
each Data Resource linked to the Processing Logic a separate Data Connector is required.
An alternative is to model each data resource and to link them to the processing logic
separately. This is not illustrated in Fig. 5.22, but is discussed in detail in Option 7.1.
Concept 7 can be used for data shipping and function shipping, in each case for both use
cases: shipping of the actual data or processing logic and shipping of a reference to a
remote location in an archive.

Implications

The Data Collection represents an addressable set of data resources, which are part of a
common data collection structure. This can be, for instance, a database or file folder.
The Data Collection as shown in Fig. 5.22 replaces several Data Resource elements each
connected to the Processing Logic. If additional transformation operations are required,
they can be added to the Data Connector as shown in Concept 6. In case the required
data resources are contained in different data collection, multiple data collections can
be modeled. How to combine or to apply one operation to multiple data resources, e.g.,
a SQL join operation, is shown in Concept 8.

5.7.1 Option 7.1: TOSCA Realization with Separated Data Resources

This TOSCA realization option with separated data resources, each connected to the
processing logic, is depicted in Fig. 5.23. It is based on the elements of Concept 5 and
demonstrates how multiple individual data resources can be connected to different input
parameters of the same processing logic. This is an alternative to the modeling approach
with a data collection. It is an important alternative in case the data resources are not
part of the same data collection.

Description

Two Node Types ProcessingLogic and DataResource and a Relationship Type DataConnector
are defined. An Application Interface CalculationInterface is provided by the Node Type
ProcessingLogic, as defined in Listing 5.17. An operation calculate, which exposes two
input parameters can be used. The properties of the Node Type DataResource, illus-
trated in Listing 5.3, are defined in Listing 5.23. The two properties ResourceType
and ResourceFormat identify what kind of data are represented. The actual data are
referenced by means of the property Location. The properties of the Relationship Type
DataConnector defined in Listing 5.20 and Listing 5.21 are required to specify the exact

86

5.7 Concept 7: Data Connector between Processing Logic and Data Collection

Operation calculate
— InputParameter: String inputl
K = InputParameter: String inputZl.,.»‘ .

Processing Logic Nodé"‘l’ype Data Resource Node Type
;, Calculation * Resource
Interface Type
Resource
Format
Location
7'y 7'y
. . 1
i Data Connector Relationship Type]
! Source '
: Interface :
! . Source tyoe of '
, typeo Operation ype o :
1
! Source '
: InputPar :
! 4 4 !
: : type of : type of |
e : | i s N ! \
! 1 1 : JUUTION B et e,
1 H H Data ! " ResourceType= File
. H : » Resource -1 ResourceFormat= csv
] . re ocation= add
5 ') i File1 it
a Data Connector Filel ! '
€ Relati ; 1
elationship Template !
e Calculator . P P) ! Node Template !
~ ; . ! !
&0 - Ve N
9o ; ! - .
8 S : Data bR Type= File
S E . . " ResourceType= File
o Node Template . " Data'Conn.ector File2 | Resource - iy - el p—
e . Relationship Template File2 S
~"Sourcelnterface= Calculationinterface . e T
SourceOperation= calculate N
_ \. ~.SourcelnputPar= inputl el —— NOde Template
! o 7 “Sourcelnterface= Calculationinterface
i i SourceOperation= calculate ;
Deg en & O :

., SourcelnputPar= input2

Legend: Only used for data shipping Only used for function shipping

Figure 5.23: Option 7.1: TOSCA realization with separated data resources

input parameter the data should be used for. The Topology Template contains a Node
Template Calculator of type ProcessinglLogic and two Node Templates defined by the
Node Type DataResource, each representing a different file. For each connection between
the Node Template Calculator and the Node Templates representing the data a separate
Relationship Template of type DataConnector is required. In this example, the Node
Template DataResourceFilel is linked to the input parameter inputl of the operation
calculate and the other Node Template is linked to the input parameter input2. The
usage of the elements marked with the icons FS and DS depends on the use case the
option is used for. The Deployment Artifact is required in case of function shipping. It
references the actual deployment artifact of the processing logic. In case of data shipping
the property Location instead of the Deployment Artifact is required to reference the
actual data.

87

5 Modeling Concepts for Data Shipping and Function Shipping

(1 /TOSCA-Metadata

(1 /Definitions

1 /Types

(1/Plans

/..

(1 /Data
Filel.csv
File2.csv

Figure 5.24: Exemplary structure of an CSAR containing two different files

Result

As mentioned above, this option can be used for data shipping and function shipping, in
each case for the shipping of the actual data or function as well as the shipping of the
reference to a remote location. For the realization the following has to be considered:

1. Data shipping: the property Location of each Node Template of type DataResource
points to the actual data. For the shipping of the actual data an exemplary CSAR is
shown in Fig. 5.24. The data are contained in the CSAR. The corresponding values
for the property Location are "Data/Filel.csv" for Node Template DataResourceFilel
and "Data/File2.csv" for Node Template DataResourceFile2. If the data are available
at a remote location, the properties reference these locations. Since the processing
logic is already available in the target runtime environment in the case of data
shipping, the modeled Node Template Calculator is only an abstraction and has
to be mapped to the already existing Node Template in the runtime environment.
The Node Template Calculator has to be declared as abstract and thus no instance
of it can be created. The Node Template has to be substituted in the target runtime
environment by one having a specialized, derived Node Type.

2. Function shipping: this case is exactly the other way around. Instead of the data,
the processing logic is shipped with the CSAR or the remote location, where the
processing logic is stored, is referenced in the Deployment Artifact. An exemplary
CSAR for the shipping of the actual function in an archive is shown in Fig. 5.11. In
this case, the Node Templates representing the data are an abstraction and have
to be substituted in the runtime environment where the actual data are already
available. The substitution method is the same as for data shipping.

Assumptions and restrictions

Each data resource has to be modeled separately. If there is a large number of data
resources required, the model becomes very complex. The aggregation of several data
resources in one data collection is shown in the Optione 7.2. But separately modeled

88

5.7 Concept 7: Data Connector between Processing Logic and Data Collection

data resources can solely be replaced by a DataCollection if the resources belong to the
same data collection. In order to apply this TOSCA realization option the following
assumptions are made:

* The modeler requires additional knowledge about the data in case of function
shipping and about the processing logic in case of data shipping.

* The data or processing logic, depending on the shipping use case, is already
available in the target runtime environement.

* The substitution mapping of the abstract and the concrete Node Templates can be
performed.

* Further transformation operations have to be executed by the target runtime
environment or the processing logic itself.

Extensions

For modeling the Application Interface of the Node Type Processing Logic, the TOSCA
extension introduced by Zimmermann [Zim16] is required. Also the domain specific
elements have to be correctly interpreted. The referenced data by the Node Templates
of type DataResource serve as input for the input parameters specified by Relationship
Templates defined by the Relationship Type DataConnector. For each invocation of the
processing logic’s operation the linked data are used as input for the execution.

5.7.2 Option 7.2: TOSCA Realization with Single Data Collection

In this TOSCA realization option, the data resources which belong to the same data
collection are aggregated. In contrast to Option 7.1, the two Node Templates, each repre-
senting one data resource, are replaced by one Node Template DataCollectionFileSystem,
which represents the entity that contains the data resources. The corresponding Service
Template is shown in Fig. 5.25.

Description

The Node Type ProcessingLogic is defined in Listing 5.17. It provides an Application
Interface CalculationInterface that exposes the operation calculate and two input pa-
rameters. Instead of a Node Type DataResource, the Node Type DataCollection is used,
which is defined in Listing 5.26 with the attached properties in Listing 5.27. The proper-
ties CollectionType and ResourceType are defined in lines 4 and 5 (Listing 5.27). These
properties characterize the data collection. For a Node Template of type DataCollection
the CollectionType can be for example specified as "directory", while the ResourceType is
determined as "file". This is shown in the example in Listing 5.28. The third property

89

5 Modeling Concepts for Data Shipping and Function Shipping

ébperation calculate
(= InputParameter: String inputl
— InputParameter Strmglnputz

; Data Collection Node Type
Collection
Type

Processing Logic Nodé Type

, Calculation
Interface
Data Connector Relationship Type
Sourcelnterface
SourceOperation
type of type of

SourcelnputPar
ResourcelD

: type of

Resource
Type

Location

i
A

type of

1
Data Connector Filel
Relationship Template,

Data
Collection
File
System

" CollectionType= Directory ™.
ResourceType= File

R e e

Calculator
Data Connector File2

Relationship Template"

. Node Template i T, Node Template J
Sourcelnterface= Calculatlonlnterface T
SourceOperation= calculate SourcelnputPar= input2

Oz .. Source InputPar=inputl ™. ResourcelD= File2.csv .
7~ .. ResourcelD= Filel.csv Ty

Topology Template

Legend: O Only used for data shipping O Only used for function shipping

Figure 5.25: Option 7.2: TOSCA realization with single data collection

Location references the actual data collection, which can be either in the CSAR that con-
tains the Service Template or it is available at a remote location. The Relationship Type
DataConnector shown in Listing 5.20 represents the connection between the processing
logic and the data. With the first three properties Sourcelnterface, SourceOperation and
SourcelnputPar, defined in Listing 5.21, the exact input parameter of the processing
logic can be specified. For this option an additional property ResourcelD of type "string"
is required, which determines a concrete data resource inside the data collection. The
value of this property should map with the name used for this data resource in the
data collection, by convention. In this example two files "Filel.csv" and "File2.csv"
are contained in the data collection and referenced by the property ResourcelD of the
Relationship Templates. In Fig. 5.25 the Topology Template contains a Node Template
Calculator of Node Type ProcessingLogic and a Node Template DataCollectionFileSytem
defined by the Node Type DataCollection. The DataCollectionFileSystem, shown in List-
ing 5.28, represents a directory containing several files. For each relationship between
an input parameter and a file one Relationship Template of type DataConnector is used.
It specifies which specific data resource should be used for a certain input parameter. As

90

5.7 Concept 7: Data Connector between Processing Logic and Data Collection

Listing 5.26 Node Type definition DataCollection

1 <NodeType name="DataCollection">

2

3 <PropertiesDefinition element="DataCollectionProperties"/>
4 </NodeType>

Listing 5.27 Properties definition for Node Type DataCollection
1 <xs:element name="DataCollectionProperties">

2 <xs:complexType>

3 <Xs:sequence>

4 <xs:element name="CollectionType" type="xs:string"/>
5 <xs:element name="ResourceType" type="xs:string"/>
6 <xs:element name="Location">

7 <xs:complexType>

8 <xs:attribute name="ref" type="xs:string"/>

9 </xs:complexType>
10 </xs:element>
11 </Xs:sequence>

12 </xs:complexeType>
13 </xs:element>

mentioned before, the usage of the grayed-out elements marked with the icons depends
on the shipping use case the option is used for.

Result

Both shipping use cases, data shipping and function shipping, can be realized with this
option. The following must be considered:

1. Data shipping: the processing logic is already available in the target runtime
environment. The Node Template Calculator in the Topology Template is only an
abstraction and is substituted in the target runtime environment. The substitution

Listing 5.28 Node Template DataCollectionFileSystem

1 <NodeTemplate id="DataCollectionFileSystem" name="Data Collection File System"
type="DataCollection">

2
3 <Properties>

4 <DataCollectionProperties>

5 <CollectionType>Directory</CollectionType>
6 <ResourceType>File</ResourceFile>
7 <Location ref="address"/>
8 </DataCollectionProperties>
9 </Properties>
10 </NodeTemplate>

91

5 Modeling Concepts for Data Shipping and Function Shipping

mapping is described in detail in Option 7.1. For a shipping of the actual data, an
exemplary CSAR is shown in Fig. 5.24. For this example the property Location has
the value "Data", which is the subdirectory in the CSAR containing all data files.
The property ResourcelD of the Relationship Templates DataConnectorFilel and
DataConnectorFile2 indicates the specific data resource contained in the directory.
In this case "Filel.csv" and "File2.csv".

2. Function shipping: for function shipping the Node Template representing the data
collection is declared as abstract and has to be substituted in the target runtime
environment where the data collection is already available. A Deployment Artifact
for the Node Template Calculator is defined, which references either the actual
artifact contained in the CSAR or the artifact available at a remote location.

Assumptions and restrictions

The aggregation of several data resources to one data collection is restricted to data
resources, which are part of a common addressable collection. Data resources, which are
hierarchically subordinated to the data collection can be linked to the processing logic.
In this option the connection between processing logic and data resource is still limited
to a 1:1 relationship. Concept 8 describes the join of multiple resources for a single input
parameter. This option bases on the same assumption as Option 7.1. The processing
logic as well as the data resources have to be known. The substitution mapping and
further adaptations are performed by the target runtime environment or processing
logic, respectively.

Extensions

The TOSCA extension introduced by Zimmermann [Zim16] is required for the Applica-
tion Interface of the processing logic. The Node Template Data Collection represents the
data collection, which contains the related data resources. The individual data resources
are addressed by the property ResourceID of the Relationship Template. For each oper-
ation invocation the linked data resources have to be used as input for the execution.
Furthermore the substitution mapping has to be done by the runtime environment to
map the abstract Node Templates to the appropriate Node Template available in the
runtime environment.

5.8 Concept 8: Data Connector with Operations Applied to
Multiple Data Resources

This concept combines the elements of Concept 6 and Concept 7. In contrast to Concept
6, operations are applied not only to one data resource, but to multiple data resources,

92

5.8 Concept 8: Data Connector with Operations Applied to Multiple Data Resources

Data Collection
' Identifier ' Identifier
———————————— T " Collection
Identifier Type
T Processing Data | 1~ SF T
Deployment @ Logic Connector AP
_ Artifact Type

N I

Legend: Only used for data shipping @ Only used for function shipping

Figure 5.26: Concept 8: Data connector with operations applied to multiple data re-
sources

which can be modeled as data collection in case they belong to the same collection.
The main purpose is to model operations which apply to multiple data resources and to
connect a set of data resources to a processing logic.

Context

The data required for one execution of a processing logic are spread over several data
resources contained in a common logical entity. Before they can serve as one single
input for the processing logic the data have to be joined. This can be for example a
join operation such as a SQL statement or the union of several flat files to one single
file. Maybe the data resources not only have to be joined, but additional transformation
operations are required. Either the logical entity containing the data resources or the
processing logic should be shipped.

Problem

How can the modeler specify the join of several data resources of the same data
collection?

Solution

Fig. 5.26 illustrates the modeling concept. The Processing Logic on the left side is uniquely
addressable by an Identifier. The Deployment Artifact references the actual processing
logic. The Data Collection on the right side comprise several Data Resource elements. It
is addressable by an unique Identifier and characterized by the attributes Collection Type
and Resource Type. The Collection Type specifies what kind of collection it represents.

93

5 Modeling Concepts for Data Shipping and Function Shipping

This could be for example a database or directory. The Resource Type identifies the type
of data resources contained in the data collection. The Location attribute references
the actual data collection. Processing Logic and Data Collection are linked by the Data
Connector. The Data Connector has an Identifier and a Join Operation assigned. The
Join Operation attribute references a specific operation, which can join different data
resources together to provide a single input for the processing logic. This could be for
example a join of multiple database tables or a join of multiple flat files. The difference
to Concept 6 is that one operation executes several data resources. The join operation is
assigned to the Data Connector and not to the Data Collection on purpose. For instance,
several processing logics require joined data consisting of data resources contained in
the same data collection. However, each processing logic based on an other subset of
data contained in the data collection. Thus, the data collection has to be modeled only
once and different operations to join the data can be assigned to the Data Connector.
The usage of the grey-shaded attributes Deployment Artifact and Location depends on
the shipping use case, which should be realized by the modeling concept. The concept
can be used for function shipping as well as data shipping. In case of function shipping,
the Deployment Artifact is required to reference the actual processing logic. In case of
data shipping, the Location attribute identifies the actual data.

Implications

Multiple data resources contained in a data collection can be joined together by means
of the join operation of the data connector and can serve as input for the processing
logic. The modeling concept as presented in Fig. 5.26 can solely be used in case all
data resources, which should be joined relate to the same logical entity. An alternative
approach to implicitly join data resources not contained in the same data collection is
presented in Option 8.2. This option is not shown in this concept description.

5.8.1 Option 8.1: TOSCA Realization with Join Operation Assignment
via Join Interface

Fig. 5.27 illustrates this TOSCA realization option. A Node Type representing a processing
logic and another Node Type representing a data collection are defined. The join
operation is defined as an Application Interface of the Relationship Type DataConnector.
A Relationship Template of type DataConnector can be specified to connect a processing
logic to a data collection and to join data contained in the data collection.

Description

Two Node Types are defined: Processinglogic and DataCollection. The Node
Type Processinglogic depicted in Listing 5.17 provides an Application Interface

94

5.8 Concept 8: Data Connector with Operations Applied to Multiple Data Resources

_.v""bperation calculate
i — InputParameter: String inputl
- InputParameter: String input2 . :

4 . - N
Processing Logic Node Type ; d Data Collection Node Type
, Calculation Collection
Interface Type
Resource
Type
Location
L A
i Data Connector Relationship Type ...
: Source Dataloin F ‘Operation joinData -
: Interface Interface “.— InputParameter: String[] ResourcelDs
!] Source - R e.df”ll'” U
; typeo Operation s |
1 1
H Source H
1 InputPar 1
1 1
1 A 1
H | type of H
T 1 T
9] 1
® 1
- ' Data
£ Data Connector Join Files Collection
= Calculator - - .
- ; Relationship Template File
[; :
o System
S ; :
s Node Template ' L ; . Node Template -
B § ‘ >‘Sourcelnterfa§e= Calculationnterface & 'CAIIéctionTypez Direct;:ry
SourceOperatlonT calculate ResourceType= File
“~..SourcelnputPar= inputl .
Legend: Only used for data shipping @ Only used for function shipping

Figure 5.27: Option 8.1: TOSCA realization with join operation assignment via join
interface

CalculationInterface. The operation calculate requires two input parameters. The Node
Type DataCollection, shown in Listing 5.26, is characterized by three properties defined
in Listing 5.27. CollectionType and ResourceType are used to identify what kind of data
collection is represented. The last property Location references the actual data collection.
The Relationship Type DataConnector defines the connection between a Node Template
of type ProcessingLogic and a Node Template defined by the Node Type DataCollection.
The three properties attached to the DataConnector, presented in Listing 5.21, are used
to specify the input parameter of the processing logic, the data are used for. The Applica-
tion Interface DataJoinInterface assigned to the Relationship Type provides an operation
joinData with an Array of ResourcelDs as input. In this example, this operation is able to
join an arbitrary number of flat files to one single file and to convert the file formats, if
necessary. The Resource IDs identify the data resources comprised in the data collection,
which should be joined to serve as input for the processing logic. In this example based
on the modeling scenario presented in Chapter 4, the Topology Template contains a Node

95

5 Modeling Concepts for Data Shipping and Function Shipping

Template Calculator and a Node Template DataCollectionFileSystem. The Relationship
Template DataConnectorJoinFiles connects the processing logic and the data collection
and joins "Filel.csv" and "File2.csv" together. The joined file serves as input for the input
parameter inputl. The usage of the grayed-out attribute Location and the Deployment
Artifact depends on the shipping use case the option is used for. The attribute Location
is used in case of data shipping and the Deployment Artifact is required for function
shipping.

Result

This TOSCA realization option enables data shipping as well as function shipping. Some
features have to be taken into account in order to use this option:

1. Data shipping: the processing logic, which should process the data is already
available in the target runtime environment. The data can be contained in the
CSAR or has to be available at a remote location. An exemplary CSAR for the
shipping of the actual data in the archive is shown in Fig. 5.24. The data collection
represents the subdirectory, which contains the data. Therefore, the placeholder
address used for the Location attribute is replaced by "Data". The two files "Filel.csv"
and "File2.csv" are joined and serve as input for the input parameter inputl. The
Node Template Calculator contained in the Topology Template is declared as
abstract. It has to be substituted by an Node Template having a specialized,
derived Node Type in the target runtime environment.

2. Function shipping: in this case the data, which should be processed have to be
already available in the target runtime environment. The Deployment Artifact is
required to ship the actual artifact, which is contained in the CSAR or located at
a remote location. The described substitution has to be executed for the Node
Template DataCollectionFileSystem.

Assumptions and restrictions

The required join operation depends on the type and the structure of the data resources,
which should be joined. For instance, for the join of CSV files another operation is
required than for the join of JSON files or database tables. The use of queries to join
tables in a database are discussed later. The join capability is restricted to data resources
contained in the same logical entity due to the fact that a Relationship Template can
only realize an 1:1 relationship. The Relationship Template can just connect one data
collection to one processing logic. To enable the realization the following assumptions
are made:

* The modeler requires knowledge about the data as well as the processing logic.
Furthermore, the specific data resources and how they can be joined together are
known.

96

5.8 Concept 8: Data Connector with Operations Applied to Multiple Data Resources

* Either the data collection or the processing logic is already available in the target
runtime environment depending on the shipping use case.

* The target runtime environment is able to perform the substitution mapping.

Extensions

The TOSCA extension for Application Interfaces is required to realize this option. Origi-
nally, the extension is introduced for Node Types to define the operation provided by an
application in TOSCA. In this case, this approach is also used to define a join operation
for the Relationship Type. In contrast to the management interfaces, which are already
specified for Relationship Types in TOSCA, the provided join operation is executed for
each processing logic invocation the assigned data are used for. The runtime environ-
ment has to execute the join operation and link the data to a particular input parameter
specified by the Relationship Template. Often requested data can be cached close to the
processing logic and do not have to be retrieved from the original data location each
time. Furthermore, the runtime environment performs the substitution mapping of the
Node Templates.

Option 6.2 follows the same approach as Option 8.1 to assign an operation to the
Relationship Type. An alternative approach to assign an operation is shown in Option
6.1. A property is specified for the Relationship Type to refer to the actual artifact of
the operation. In the same way the join operation can be assigned to a Relationship
Template. The advantage of the alternative approach is a higher flexibility in terms
of the assignment of different join operations. If the join operation is assigned via a
property, different operations can be attached on the level of Relationship Templates.
If the join operation is defined as an Application Interface for a Relationship Type, the
same operation applies for all Relationship Templates of this type.

Also the realization of a data join by an explicit modeled data query as described in
Option 6.3 is possible. For instance, an SQL statement to join data from multiple tables
could be explicit modeled. Especially for the data shipping use case (b) in which a
reference to a remote data location is shipped this variant is suitable. The data owner
ships the reference together with a data query, which can be processed by the remote
data collection to the processing logic owner. If the processing logic is executed, the
query is sent to the data collection and the joined data are returned to the processing
logic.

5.8.2 Option 8.2: TOSCA Realization with Implicit Join Operation

This option does not comply with Concept 8. It is an alternative approach to realize
an implicit join operation, illustrated in Fig. 5.28. The join operation is not part of the

97

5 Modeling Concepts for Data Shipping and Function Shipping

Operation calculate
. — InputParameter: String inputl
* InputParameter: String inputZ,_..--‘

Processing Logic Node Type Data Resource Node Type
,; Calculation Resource
Interface Type
Resource
Format
Location
I 5 5
J . .
! Data Connector Relationship Type ! !
1 Source 1 1
: Interface : :
type of : source type of : type of :
ype ol 1 Operation ype ot ypeot
i Source i i
: InputPar : :
1 1 1
3
: type of T I type of : :
1 1 1 1
/ [o ———— , | | w
[. | 1 N PO S . e,
1 .. SourcelnputPar=inputl [Data ! " ResourceType= Fil
e . o ype= File
) ! s |;§gti’i22i’;e;;zpﬁgf:: » Resource 1! ResourceFormat= csv
B B ' File1 o
5 ! [
g ' Node Termola i
= Calculator : Node Template :
) RN |
] Data | . ResourceType=File
Q. H [
° Node Template Input;l Con.nector File2 » Resource |---'i{ ResourceFormat= csv
. Relationship Template . N -
File2
\ e I ... Node Template
] T —" Sourcelnterface= Calculationinterface "

O i SourceOperation= calculate
..SourcelnputPar= inputl

Legend: O Only used for data shipping ® Only used for function shipping

Figure 5.28: Option 8.2: TOSCA realization with implicit join operation

model but provided by the runtime environment. The data resources are not comprised
in the same logical entity and modeled as individual Data Resources.

Description

A Node Type ProcessingLogic with an Application Interface providing the operation
calculate is defined in Listing 5.17. In contrast to Option 8.1, a Node Type DataResource
is defined presented in Listing 5.3 with the attached properties declared in Listing 5.23.
The property ResourceType specifies what kind of resource is represented by a particular
Node Template of this Node Type. This could be for example a file or a table. The
property ResourceFormat indicates the storage format and the Location references the
actual data. The Relationship Type DataConnector indicates for which input parameter a
data resource should be used for. The definition is shown in Listing 5.20 and Listing 5.21.
In this example, three Node Templates are specified: One representing a processing logic

98

5.8 Concept 8: Data Connector with Operations Applied to Multiple Data Resources

called Calculator and two Node Templates representing different data resources. Both
Node Templates representing the data are linked to the same input parameter inputl
provided by the processing logic. Assigning multiple data resources to the same input
parameter implicitly indicates a join in this scenario. A join can be for example the
union of several flat files or a join of tables in a database. The required join operation is
provided by the runtime environment. The usage of the grayed-out Deployment Artifact
and the property Location assigned to each Node Template of type DataResource depends
on the shipping use case. The Deployment Artifact is only used in case of function
shipping and the properties in case of data shipping.

Result

As mentioned above, both shipping use cases, data shipping and function shipping, can
be realized with this option. The following features of the different use cases have to be
considered:

1. Data shipping: the processing logic is already available in the target runtime
environment. The data can be shipped within the CSAR or has to be available at a
remote location and just a reference is shipped to the target runtime environment.
Fig. 5.24 shows an exemplary CSAR with two files in the subdirectory "Data".
For this case, the values of the corresponding propertyies are "Data/Filel.csv"
for the Node Template DataResourceFilel and "Data/File2.csv" for the other one.
Otherwise, it can reference any remote address. The same kind of substitution
mapping as described for Option 8.1 has to be done for the Node Template
Calculator.

2. Function shipping: for function shipping it is just the other way around than de-
scribed for data shipping. The data are available in the target runtime environment
and the Node Templates representing the data resources in the Topology Template
have to be substituted. The Deployment Artifact is assigned to the Node Template
representing the processing logic and references the actual artifact. It can either
be contained in the CSAR or stored at a remote location.

Assumptions and restrictions

In contrast to Option 8.1, this option is not limited to data resources in the same logical
entity. It is just restricted by the joining capabilities of the runtime environment. To
enable the join in each case for all kinds of data resources, the runtime environment has
to hold for example SQL joins as well as programms to merge CSV, JSON, or XML files.
Additionally, the runtime environment requires a mechanism to determine which join
operation has to be applied in a specific case. Since the join operation is not explicitly
modeled, a common understanding of multiple links with one single input parameter is
important. Furthermore a few assumptions are made to enable this option:

99

5 Modeling Concepts for Data Shipping and Function Shipping

* Knowledge about the processing logic and the data is required for both shipping
use cases.

* The data resources or the processing logic are already available in the target
runtime environment depending on the shipping use case.

* The target runtime environment can execute the substitution mapping as well as
the join operation. The join operation is a capability of the runtime environment
and not part of the Service Template.

Extensions

Besides the already known Application Interface extension of TOSCA, no further exten-
sions are required to realize this option. A processing logic and data resources are linked
via a data connector, which means the data are used as input for the operation. In this
option, multiple links to a single input parameter have to be interpreted by the runtime
environment as an indicator that a join operation has to be applied.

However, multiple data connectors linking several data resources with a single input
parameter can have more than one meaning. In the description above, multiple links are
interpreted as an implicit join of the data. An alternative interpretation could be, that
the data resources are required for different processing logic invocations. That means
for example, for one invocation "Filel.csv" and for another invocation "File2.csv" is used.
This is a different approach and implies that decision variables exist to specify which
data resource should be used in a specific case. This underlines the need of a common
understanding of the semantics of multiple links to a single input parameter.

5.9 Modeling Concepts Summary

In total eight concepts and 16 options are presented, which can be used for data shipping,
function shipping, or both. The main purpose of these concepts is to link processing
logic and data together. For each concept the assignment of processing logic and data
is realized in different ways. Therefore, depending on the situation’s context, the most
appropriate concept can be chosen.

However, not every concept can be used for data shipping and function shipping.
Fig. 5.29 gives an overview of all concepts and shows which shipping use case can be
realized by which specific concept. The first two concepts focus on the modeling of the
data resources and are applicable for both data shipping use cases: the actual data are
packaged together with the model and transferred to the target runtime environment,
or the data remain at a remote location and a reference is shipped. In contrast, the
main subject of Concept 3 and Concept 4 is the processing logic. They are exclusively

100

5.9 Modeling Concepts Summary

usable for the function shipping use cases. The remaining four concepts are suitable for
data shipping as well as function shipping. These concepts share their emphasis on the
connection between the processing logic and data. The processing logic as well as the
data are modeled as separate components of the overall service connected by a data
connector. Therefore, these concepts are flexible and adoptable to the requirements of
different modeling scenarios, but presume modeler’s knowledge about the data as well
as the processing logic.

To reduce the complexity of the concepts and options, each concept introduces only one
aspect, which is important in terms of linking processing logic and data together. The
concepts and options can be combined to a certain extent. An example is the combination
of Concept 6 and Concept 7. Concept 6 presents the transformation operation attached
to the Data Connector. This transformation operation can of course also be used in
Concept 7, which presents the modeling of a data collection instead of separate data
resources. The same applies to various TOSCA realization options. In Option 1.1 the data
are referenced by a Deployment Artifact attached to the Node Template representing the
data resource. This approach can also be chosen for the other options. Due to the large
numbers of options, only the approach introduced by Option 1.2 is adopted in the other
options. This means, a property is used to reference the actual data. However, the other
approach is also a valid solution.

Moreover, non-functional requirements or quality-of-service aspects can be attached
to the Processing Logic, Data Resource, Data Collection, or Data Connector. The TOSCA
spezification provides a Policy Type to specify such requirements, which have to be
considered by the runtime environement [OAS13b]. Availability, network bandwidth,
or data quality are examples for non-functional requirements. In terms of the data
processing an appropriate data quality is important. Pipino et al. [Pip+02] and Batini
et al. [Bat+06] discuss different dimensions of quality like accuracy, completeness, time-
liness, volatility, and consistency. A closer consideration of non-functional requirements
is beyond the scope of this thesis. Also technology specific aspects are not considered.
Further attributes can be added to adapt the concepts to specific modeling scenarios.

The presented concepts outline possibilities to model data and processing logics including
the relationship between them specifically. An adaptation of these concepts is not only
conceivable for TOSCA but also for other situations, such as workflows in which data
deployment and assignment are important.

101

5 Modeling Concepts for Data Shipping and Function Shipping

Scenarios

Concepts

Data shipping
Data

Data shipping
Reference to
remote data
location

Function shipping
Function

Function shipping
Reference to
remote function
location

Uniquely addressable data
resource

Uniquely addressable data
2 | resource with assigned
processing logic identifier

Uniquely addressable
processing logic

Uniquely addressable
4 | processing logic with
assigned data identifier

Data connector between
5 | processing logic and data
resource

Data connector with
transformation capability

Data Connector between
7 | processing logic and data
collection

Data connector with
8 | operations applied to
multiple data resources

Figure 5.29: Overview of all concepts and the related realizable use cases

102

6 Analysis of Extension Options for
TOSCA

One of the goals of this thesis is to enable data shipping as well as function shipping with
TOSCA. Currently, data are not considered in the specification of TOSCA and cannot be
explicitly modeled. Thus, for the integration of data resources in the Service Template
the TOSCA language has to be extended. For the development of the TOSCA realization
options presented in Chapter 5 three alternative methods are analyzed. These are
extension options for TOSCA to enable data shipping and function shipping. In the
following these three methods are explained and discussed based on the developed
TOSCA realization options.

The following three extension methods for TOSCA are considered:

1. TOSCA metamodel extension by means of new language elements
2. Extension of existing TOSCA metamodel elements

3. Use of existing metamodel elements

The first method bases on an extension on the type level of TOSCA. A new type, e.g., Data
Type is added to the two existing types, Node Type and Relationship Type. Additionally,
a corresponding Template and the relation between the existing Templates and the
new one have to be defined. The advantages are that data specific properties can be
defined for the new type and on the metamodel level it can already be distinguished
between data and application components. The disadvantages are a complex extension
and redundancy between the Node Type definition and the Data Type definition, since
the not optional element of a Node Type name to identify the Node Type are likewise
needed to specify Data Types appropriately.

The second method based on an extension of the existing types to integrate data specific
elements to the type and template definitions. In contrast to the first method just data
specific elements are added to the metamodel of the existing types. But in this case,
all added elements required for data are available for every specified type or template.
Additional extension elements, which are not declared as optional have to be set also
for types that do not represent data. The Application Interface extension introduced by

103

6 Analysis of Extension Options for TOSCA

Zimmermann [Zim16] is an example for this second method. The Node Type element is
extended by means of new elements defining application interfaces, which differ from
the already existing management interfaces as described in Section 2.1.3.

With the last method the existing metamodel elements and definitions are used. Espe-
cially the PropertiesDefinition element of Node Types and Relationship Types can be used
to define node specific properties, i.e., data specific characteristics. On the one hand
the advantages are that the metamodel does not have to be extended and data specific
properties still can be added, on the other hand the disadvantage is that the data can
not be distinguished from the application components on the metamodel level.

The main characteristics to describe data appropriately regardless to the semantics
of the data include the data location and storage format. These are properties not
covered by the existing elements defined for Node Types. However, the not optional
element of a Node Type is the attribute name to identify the Node Type which is likewise
needed to uniquely identify a data resource. Furthermore data specific properties can
be defined by means of the PropertiesDefinition element. For the options presented in
Chapter 5 properties are used, such as Location to reference the physical data location,
ResourceFormat to indicate the format in which the data are stored, or ProcLogic to
reference the required processing logic for a given data resource (Option 2.2). The same
applies for the Relationship Type, which specifies the relation between two Nodes. It
can be used to specify the link between processing logic and data with properties like
Sourcelnterface, SourceOperation, and SourcelnputPar. That shows how versatile the
PropertiesDefinition element is.

Considering the data as a component of a composite application it is not contradictory
to the actual semantic of Node Types if data are specified as Node Types. Due to the
pros and cons of the different methods mentioned above the third method is used in
the TOSCA realization options, described in Chapter 5. Only for Option 4.2 the second
method is used and a new attribute is defined for the Application Interface element. For
Concept 4 to Concept 8 the already existing Application Interface extension, introduced
by Zimmermann [Zim16] is used.

104

7 Conclusion and Future Work

The goal of this thesis is to develop and evaluate modeling concepts and the corre-
sponding realizations in TOSCA to enable data shipping and function shipping. Thereby;,
the modeling of data resources and processing logic, extraction and transformation
mechanisms as well as the assignment between data and processing logic are the main
aspects. In total, eight modeling concepts and 16 TOSCA realization options, which are
applicable for data shipping, function shipping, or both are presented. They include two
different shipping use cases for data shipping and function shipping: shipping of the
actual data or function and shipping of a reference to a remote location. In the first case,
the data or the processing logic are packaged together with the model and transferred
to the target environment. In the second case, the data or processing logic remain at
their location and a reference to the remote location, where they can be retrieved at a
later time, is transmitted.

The eight concepts illustrate an abstract modeling approach and the TOSCA realization
options present the implementations of the abstract models in TOSCA. Each concept
introduces an assignment method and/or a transformation and extraction mechanism.
The first two concepts focus on the data. In Concept 1 the assignment between data
and processing logic is not explicit modeled, whereas Concept 2 facilitate a mapping
between data resource and the required processing logic. The main object of Concept 3
and Concept 4 is the processing logic, which show different possibilities to model the
assignment of data resources to a given processing logic. The last four concepts introduce
a modeling element for the explicit modeling of the relationship between processing
logic and data. That gives a high flexibility in terms of the use for data shipping and
function shipping. Additionally, extraction and transformation operations to retrieve
just a subset of data or to execute syntactic or semantic transformations are shown in
Concept 6 and Concept 8. For each concept it is shown in which context the concept is
applicable and which impact the usage has.

For the TOSCA realization options different extension options for TOSCA were analyzed.
Apart from the TOSCA Application Interface extension no further extensions of the
TOSCA metamodel are required. in almost all options only existing elements, which
are already part of the specification are used. The data resource specific attributes
and assignment characteristics are realized by the definition of Node Type specific
properties.

105

7 Conclusion and Future Work

Thus, with the developed modeling concepts and TOSCA realization options different
possibilities for the modeling of the assignment between data and processing logic as
well as the integration of extraction and transformation operations in the model are
presented. The presented modeling concepts are evaluated in the current research
project SePiA.Pro (01MD16013F). In case the modeling concepts turn out to be proven
solution, they can serve as basis for modeling patterns for data shipping and function
shipping. Deciding on which modeling concept fits best mainly depends on the modeling
scenario, the use case, the modeler’s knowledge about the processing logic and data,
and the capabilities of the used runtime environment.

Further work is required in terms of the development of a runtime environment, which
is able to process the presented concepts. With OpenTOSCA a ecosystem is available
for modeling application topology models and for the automated provisioning and
management of these applications [Bin+13; Bre+16]. It can process CSARs and can
deploy and instantiate the contained applications. This runtime environment could be
used and extended to deploy and assign data to the respective processing logic and to
enable the invocation of application operations with the data. Hahn et al. [Hah+16]
introduce an approach to support the data-related aspects in service compositions and
choreographies and to decouple the data flow from the control flow based on a new
Transparent Data Exchange (TraDE) middleware layer. This could supplement the
OpenTOSCA environment to cover the data-related aspects.

Another field of work is the extension of the presented modeling concepts and options
by non-functional requirements, such as data quality, availability, or security. TOSCA
provides Policy elements to define and attach non-functional requirements to the ap-
plication components. Which requirements apply especially in terms of the data, how
Policy elements can be used, and if further extensions are required, should be exam-
ined. Further research in these areas will help facilitating data shipping and function
shipping.

106

Bibliography

[Anal6a]

[Anal6b]

[Arm+10]

[Atz+10]

[AWS15]

[AWS16a]

[AWS16Db]

[AWS16c]

[Azul6]

[Bal+14]

[Bar+12]

Logi Analytics. Introduce Datasource Connections. http : / / devnet .
logianalytics.com/rdPage.aspx?rdReport=Article&dnDocID=2101. 2016.
(Visited on 06/24/2016).

Logi Analytics. Introducing Datalayers. http://devnet.logianalytics.com/
rdPage . aspx ? rdReport = Article & dnDocID = 2040. 2016. (Visited on
06/24/2016).

M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica, et al. “A View of Cloud Computing.” In:
Communications of the ACM 53.4 (2010), pp. 50-58.

L. Atzori, A. Iera, G. Morabito. “The Internet of Things: A Survey.” In:
Computer Networks 54.15 (2010), pp. 2787 —-2805.

AWS. AWS Serverless Multi-Tier Architectures: Using Amazon API Gateway
and AWS Lambda. https://d0.awsstatic.com/whitepapers/AWS_Serverless
Multi-Tier Architectures.pdf. 2015. (Visited on 07/06/2016).

AWS. Amagzon Virtual Private Cloud. https://aws.amazon.com/vpc/?ncl=
h 1s. 2016. (Visited on 07/07/2016).

AWS. AWS Elastic Beanstalk. https://aws.amazon.com/elasticbeanstalk/
?ncl=h ls. 2016. (Visited on 07/07/2016).

AWS. AWS Import/Export Snowball. https : / / aws . amazon . com /
importexport/?ncl=h Is. 2016. (Visited on 06/22/2016).

Microsoft Azure. Azure Functions. https://azure.microsoft.com/en-us/
services/functions/. 2016. (Visited on 07/06/2016).

R. Balasubramonian, J. Chang, T. Manning, J.H. Moreno, R. Murrphy,
R. Nair, S. Swanson. “Near-Data Processing: Insights From a Micro-46
Workshop.” In: IEEE Micro 34.4 (2014), pp. 36—42.

P. Barnaghi, W. Wang, C. Henson, K. Taylor. “Semantics for the Internet of
Things: early progress and back to the future.” In: International Journal on
Semantic Web and Information Systems (IJSWIS) 8.1 (2012), pp. 1-21.

107

http://devnet.logianalytics.com/rdPage.aspx?rdReport=Article&dnDocID=2101
http://devnet.logianalytics.com/rdPage.aspx?rdReport=Article&dnDocID=2101
http://devnet.logianalytics.com/rdPage.aspx?rdReport=Article&dnDocID=2040
http://devnet.logianalytics.com/rdPage.aspx?rdReport=Article&dnDocID=2040
https://d0.awsstatic.com/whitepapers/AWS_Serverless_Multi-Tier_Architectures.pdf
https://d0.awsstatic.com/whitepapers/AWS_Serverless_Multi-Tier_Architectures.pdf
https://aws.amazon.com/vpc/?nc1=h_ls
https://aws.amazon.com/vpc/?nc1=h_ls
https://aws.amazon.com/elasticbeanstalk/?nc1=h_ls
https://aws.amazon.com/elasticbeanstalk/?nc1=h_ls
https://aws.amazon.com/importexport/?nc1=h_ls
https://aws.amazon.com/importexport/?nc1=h_ls
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/

Bibliography

[Bat+06]

[Bin+13]

[Bin+14]

[Bir16]

[Bol+00]

[Bre+16]

[Bud+15]

[Bus+96]

[Conl6]

[Cor+86]

[Ell+99]

[Feh+14]

108

C. Batini, M. Scannapieco. Data Quality: Concepts, Methodologies and Tech-
niques. Springer, 2006.

T. Binz, U. Breitenbiicher, F. Haupt, O. Kopp, F. Leymann, A. Nowak, S. Wag-
ner. “OpenTOSCA — A Runtime for TOSCA-Based Cloud Applications.” In:
11th International Conference on Service-Oriented Computing. Springer,
2013, pp. 692-695.

T. Binz, U. Breitenbiicher, O. Kopp, F. Leymann. “TOSCA: Portable Auto-
mated Deployment and Management of Cloud Applications.” In: Advanced
Web Services. Springer, 2014, pp. 527-549.

Birst. Birst: User Data Tier. https://www.birst.com/product/analytics-
technology/. 2016. (Visited on 06/22/2016).

W.J. Bolosky, J.R. Douceur, D. Ely, M. Theimer. “Feasibility of a Serverless
Distributed File System Deployed on an Existing Set of Desktop PCs.” In:
ACM SIGMETRICS Performance Evaluation Review 28.1 (2000), pp. 34-43.

U. Breitenbiicher, C. Endres, K. K epes, O. Kopp, F. Leymann, S. Wagner,
J. Wettinger, M. Zimmermann. The OpenTOSCA Ecosystem — Concepts &
Tools. University of Stuttgart, 2016.

A. Buda, K. Framling, J. Borgman, M. Madhikermi, S. Mirzaeifar, S. Kubler.
“Data Supply Chain in Industrial Internet.” In: 2015 IEEE World Conference
on Factory Communication Systems (WFCS). IEEE, 2015, pp. 1-7.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal. Pattern-
Oriented Software Architecture: A System of Patterns. Wiley, 1996.

The Industrial Internet Consortium. What is the Industrial Internet? http:
//www.iiconsortium.org/about-industrial-internet.htm. 2016. (Visited on
06/25/2016).

D.W. Cornell, D.M. Dias, S.Y. Philip. “On Multisystem Coupling Through
Function Request Shipping.” In: IEEE Transactions on Software Engineering
SE-12.10 (1986), pp- 1006-1017.

D.G. Elliott, M. Stumm, W.M. Snelgrove, C. Cojocaru, R. Mckenzie. “Com-
putational RAM: Implementing Processors in Memory.” In: IEEE Design and
Test of Computers 16.1 (1999), pp. 32-41.

C. Fehling, F. Leymann, R. Retter, W. Schupeck, P. Arbitter. Cloud Computing
Patterns: Fundamentals to Design, Build, and Manage Cloud Applications.
Springer, 2014.

https://www.birst.com/product/analytics-technology/
https://www.birst.com/product/analytics-technology/
http://www.iiconsortium.org/about-industrial-internet.htm
http://www.iiconsortium.org/about-industrial-internet.htm

Bibliography

[For+13]

[Fow03]

[Fra+96]

[Hah+16]

[Har+06]

[IBM16]

[Kem+04]

[Lé+08]

[Lee+14]

[Lee+02]

[Mel+11]

[OAS13a]

Forschungsunion, acatech. Umsetzungsempfehlungen fiir das Zukunftsprojekt
Industrie 4.0: Abschlussbericht des Arbeitskreis Industrie 4.0 [Recommenda-
tions for the Realization of Industrie 4.0: Final Report of the Working Group
Industrie 4.0]. https://www.bmbf.de/files/Umsetzungsempfehlungen
Industrie4 0.pdf. 2013. (Visited on 06/24/2016).

M. Fowler. Patterns fiir Enterprise Application-Architekturen [Patterns of
Enterprise Application Architecture]. MITP, 2003.

M.J. Franklin, B.T. Jénsson, D. Kossmann. “Performance Tradeoffs for
Client-Server Query Processing.” In: Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data (SIGMOD 96). ACM, 1996,
pp. 149-160.

M. Hahn, D. Karastoyanova, F. Leymann. “Data-Aware Service Choreogra-
phies through Transparent Data Exchange.” In: Web Engineering: 16th
International Conference, ICWE 2016. Springer, 2016, pp. 357-364.

G. Harrison, S. Feuerstein. MySQL Stored Procedure Programming. O’Reilly,
2006.

IBM. IBM Bluemix OpenWhisk. http://www.ibm.com/cloud-computing/
bluemix/openwhisk/. 2016. (Visited on 07/06/2016).

H.-G. Kemper, W. Mehanna, C. Unger. Business Intelligence: Grundlagen und
praktische Anwendungen [Business Intelligence: Fundamentals and practical
applications]. Springer, 2004.

F. Lécue, S. Salibi, P. Bron, A. Moreau. “Semantic and Syntactic Data Flow
in Web Service Composition.” In: ICWS: 2008 IEEE International Conference
on Web Services. IEEE, 2008, pp. 211-218.

J. Lee, H.-A. Kao, S. Yang. “Service Innovation and Smart Analytics for
Industry 4.0 and Big Data Environment.” In: Procedia CIRP 16 (2014),
pp. 3-8.

J.Y.B. Lee, R.W.T. Leung. “Study of a Server-less Architecture for Video-on-

Demand Applications.” In: Proceedings: 2002 IEEE International Conference
on Multimedia and Expo (ICME 02). IEEE, 2002, pp. 233-236.

P. Mell, T. Grance. The NIST Definition of Cloud Computing. National Insti-
tute of Standards and Technology, 2011.

OASIS. Topology and Orchestration Specification for Cloud Applications
(TOSCA) Primer Version 1.0 - Committee Note Draft 01. http://docs.oasis-
open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-v1.0-cndO1.html.
2013. (Visited on 06/14/2016).

109

https://www.bmbf.de/files/Umsetzungsempfehlungen_Industrie4_0.pdf
https://www.bmbf.de/files/Umsetzungsempfehlungen_Industrie4_0.pdf
http://www.ibm.com/cloud-computing/bluemix/openwhisk/
http://www.ibm.com/cloud-computing/bluemix/openwhisk/
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-v1.0-cnd01.html
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-v1.0-cnd01.html

Bibliography

[OAS13b]

[Pat+97]

[Pet+14]

[Pip+02]

[Pla16]

[Rei+11]

[Rei+14]

[Rie+98]

[Rob16]

[RM+00]

[Sad+04]

110

OASIS. Topology and Orchestration Specification for Cloud Applications Ver-
sion 1.0. http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-
v1.0-csO1.html. 2013. (Visited on 06/09/2016).

D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis,
R. Thomas, K. Yelick. “A Case for Intelligent Ram.” In: IEEE Micro 17.2
(1997), pp. 34-43.

D. Petcu, A.V. Vasilakos. “Portability in Clouds: Approaches and Research
Opportunities.” In: Scalable Computing: Practice and Experience 15.3 (2014),
pp- 251-271.

L.L. Pipino, Y.W. Lee, R.Y. Wang. “Data Quality Assessment.” In: Communi-
cations of the ACM 45.4 (2002), pp. 211-218.

Google Cloud Platform. Cloud Functions. https://cloud. google.com /
functions/. 2016. (Visited on 07/06/2016).

P. Reimann, M. Reiter, H. Schwarz, D. Karastoyanova, F. Leymann. “SIMPL
— A Framework for Accessing External Data in Simulation Workflows.”
In: Datenbanksysteme fiir Business, Technologie und Web (BTW 2011): 14.
Fachtagung des GI-Fachbereichs ,,Datenbanken und Informationssysteme*
(DBIS). Gesellschaft fiir Informatik (GI), 2011, pp. 534-553.

P. Reimann, T. Waizenegger, M. Wieland, H. Schwarz. “Datenmanagement
in der Cloud fiir den Bereich Simulationen und Wissenschaftliches Rechnen
[Data Management in the Cloud for the Domain Simulations and Scientific
Computing].” In: Proceedings des 2. Workshop Data Management in the
Cloud auf der 44. Jahrestagung der Gesellschaft fiir Informatik. Gesellschaft
fiir Informatik (GI), 2014, pp. 735-746.

E. Riedel, G. Gibson, C. Faloutsos. “Active Storage for Large-Scale Data
Mining and Multimedia Applications.” In: Proceedings of the 24th Conference
on Very Large Databases. Citeseer, 1998, pp. 62-73.

M. Roberts. Serverless Architectures. http://martinfowler.com/ articles/
serverless.html. 2016. (Visited on 07/06/2016).

M. Rodriguez-Martinez, N. Roussopoulos. “MOCHA: a Self-Extensible
Database Middleware System for Distributed Data Sources.” In: Proceedings
of the 2000 ACM SIGMOD International Conference on Management of Data
(SIGMOD 00). ACM, 2000, pp. 213-224.

S. Sadiq, M. Orlowska, W. Sadiq, C. Foulger. “Data Flow and Validation
in Workflow Modelling.” In: Proceedings of the 15th Australasian Database
Conference-Volume 27. Australian Computer Society, Inc., 2004, pp. 207-
214.

http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html
https://cloud.google.com/functions/
https://cloud.google.com/functions/
http://martinfowler.com/articles/serverless.html
http://martinfowler.com/articles/serverless.html

Bibliography

[Sel+98]

[Tiw+13]

[Vor+04]

[W3C12]

[Zim16]

J. Sellentin, B. Mitschang. “Data-Intensive Intra- and Internet Applications-
Experiences Using Java and CORBA in the World Wide Web.” In: Proceed-
ings of the 14th International Conference on Data Engineering. IEEE, 1998,
pp- 302-311.

D. Tiwari, S. Boboila, S. Vazhkudai, Y. Kim, X. Ma, P. Desnoyers, Y. Solihin.
“Active Flash: Towards Energy-Efficient, In-Situ Data Analytics on Extreme-
Scale Machines.” In: Proceedings of the 11th USENIX Conference on File and
Storage Technologies (FAST 13). USENIX, 2013, pp. 119-132.

K. Voruganti, M.T. Ozsu, R.C. Unrau. “An Adaptive Data-Shipping Archi-
tecture for Client Caching Data Management Systems.” In: Distributed and
Parallel Databases 15.2 (2004), pp. 137-177.

W3C. W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes.
https : / / www. w3 . org / TR / xmlschemall - 2/. 2012. (Visited on
06/20/2016).

M. Zimmermann. “Konzept und Implementierung einer Komponente zur
Kommunikation TOSCA-basierter Anwendungen [Concept and Impplemen-
tation of a Component to Enable Communication Between TOSCA-based
Applications].” MA thesis. University of Stuttgart, 2016.

111

https://www.w3.org/TR/xmlschema11-2/

Erkldrung

Hiermit erkldre ich, dass ich die Masterarbeit selb-
standig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt habe. Alle Stellen
der Arbeit, die wortlich oder sinngemald aus Verof-
fentlichungen oder aus anderen fremden AufRerungen
entnommen wurden, sind als solche einzeln kenntlich
gemacht.

Die Masterarbeit habe ich noch nicht in einem anderen
Studiengang als Priifungsleistung verwendet.

Des Weiteren erklare ich, dass mir weder an den Uni-
versititen Hohenheim und Stuttgart noch an einer an-
deren wissenschaftlichen Hochschule bereits ein Thema
zur Bearbeitung als Masterarbeit oder als vergleichbare
Arbeit in einem gleichwertigen Studiengang vergeben
worden ist.

Stuttgart-Hohenheim, den 29. Juli 2016

Unterschrift

	1 Introduction
	2 Fundamentals
	2.1 Topology and Orchestration Specification for Cloud Applications
	2.2 Terminology: Data Shipping versus Function Shipping

	3 Related Work
	3.1 Function Shipping Concepts
	3.2 Data Shipping Concepts

	4 Data Shipping and Function Shipping Use Cases
	4.1 Modeling Scenario for Data Shipping and Function Shipping
	4.2 Use Cases for Data Shipping
	4.3 Use Cases for Function Shipping

	5 Modeling Concepts for Data Shipping and Function Shipping
	5.1 Concept 1: Uniquely Addressable Data Resource
	5.2 Concept 2: Uniquely Addressable Data Resource with Assigned Processing Logic Identifier
	5.3 Concept 3: Uniquely Addressable Processing Logic
	5.4 Concept 4: Uniquely Addressable Processing Logic with Assigned Data Identifier
	5.5 Concept 5: Data Connector between Processing Logic and Data Resource
	5.6 Concept 6: Data Connector with Transformation Capability
	5.7 Concept 7: Data Connector between Processing Logic and Data Collection
	5.8 Concept 8: Data Connector with Operations Applied to Multiple Data Resources
	5.9 Modeling Concepts Summary

	6 Analysis of Extension Options for TOSCA
	7 Conclusion and Future Work
	Bibliography

