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Abstract—The real world is characterised by uncertainty and
risks. When modelling it as a domain for planning systems, this
translates into action outcomes that can not be fully anticipated.
In such environments, automating planning requires not only
sophisticated algorithms but also domain models that adequately
capture such complexity and unpredictability. However, existing
AI planning domains often oversimplify these complexities, either
because they are designed as benchmarks to evaluate planners or
because they were created to test specific methods, frequently at
the cost of broader realism. Autonomous vehicles and satellites are
representative application examples that pose common planning
challenges in dynamic, uncertain environments. Taking these,
current domain models frequently omit critical features, such
as uncertainty, risk, and the wide range of choices available
to agents in achieving their objectives. Here, we contribute
towards bringing these domains closer to reality by following
a systematic approach to knowledge engineering and domain
modelling that better captures these neglected aspects. Our
models are implemented within the risk-aware Hierarchical
Task Network (HTN) planning framework, which aligns with
human-like reasoning and accommodates uncertainty and risk.
By enhancing the realism of these two domains, our work increases
their relevance for practical applications. Also, this work aims to
drive the development of more capable AI planners and encourage
the creation of more realistic domain models.

Keywords-Autonomous Vehicles; Satellites; HTN planning;
Knowledge Engineering; Domain Models; Risk; Uncertainty

I. INTRODUCTION

Autonomous systems such as satellites and autonomous
vehicles are increasingly relied upon to perform complex tasks
with minimal human intervention [1], [2]. Most satellite and
driving operations often take the form of complex planning
problems that go beyond familiar and straightforward tasks in
everyday life, where planning is typically implicit. Whether
navigating dynamic traffic scenarios or coordinating satellite
activities, effective planning must account for the complexities
and inherent characteristics of real-world environments, such as
uncertainty, risk, and the facing of a broad range of available
options for achieving goals. Failing to incorporate these factors
can lead to plans that are impractical, unrealistic, and often
incapable of accomplishing the intended tasks.

Accounting for these complexities is equally important when
automating the planning process, which is of primary concern
in Artificial Intelligence (AI) planning. In its simplest form,
AI planning involves generating a course of action that, when
executed in a given initial state of the world, will achieve a
specified user objective [3]. The set of possible actions from
which the planning system constructs this course of action is
derived from knowledge about the application domain. These

actions are encoded in a structured, templated representation
known as a domain model. The domain model encapsulates the
relevant domain knowledge in terms of action templates with
preconditions and effects, and interactions among actions. The
domain model becomes even more intricate when incorporating
more features, such as uncertainty, or defining different levels
of abstraction, such as in the case of Hierarchical Task Network
(HTN) planning [4]. As a consequence, the practical utility of
AI planning is tightly coupled with the precision, completeness,
and correctness of the engineered domain model, as it directly
affects the AI planning system’s capabilities to produce and
execute valid plans [5].

Engineering adequate domain models remains one of the
major barriers to the wider adoption of planning technologies
[6], [7]. This challenge stems from three key issues: (1) the lack
of standard methodologies, tools, and frameworks to support the
knowledge-engineering process [5], [8], (2) the prevalence of
domain models designed for benchmarking and evaluating AI
planning systems, rather than real-world applicability, and (3)
the limited focus on capturing realistic domain aspects [9]. As
a consequence of (1), domain models are often developed in an
ad-hoc manner, heavily relying on the expertise of knowledge
engineers and the tools they use [8], [10]. As a consequence
of (2), benchmarks are oversimplified domain models with
features that match the capabilities of the AI planners, e.g., the
Satellite benchmark HTN domain model omits uncertainty [11].
As a consequence of (3), the coverage of relevant application
domains is limited, e.g., the autonomous vehicles domain
remains largely unexplored in the AI planning literature.

To address these challenges, we systematically engineer
and model two planning domains: Satellite and Autonomous
Vehicles (AVs). In response to (1), we follow a systematic
approach for developing the two domain models aligned with
existing knowledge-engineering processes [5], [10], [12], apply
the conceptual framework for capturing realistic aspects in
planning domains [9], and adopt the risk-aware Hierarchical
Task Network (HTN) planning framework [13], which enables
explicit modelling of risk and uncertainty through probability
distributions over action costs, while leveraging the expressive-
ness and performance strengths of HTN planning itself. To
move beyond (2), we extend the benchmark Satellite domain
model featured in the International Planning Competition (IPC)
of 2020 by incorporating the realistic aspects of risk in terms
of action costs, uncertainty, and variety of possible choices.
To address (3), we develop a domain model for AVs, which
captures various realistic driving tasks and conditions. Lastly,
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we not only model both domains using a standard planning
language, but also extend the Hierarchical Domain Definition
Language (HDDL) [14] to allow specifying a probability
distribution of action costs.

The remainder of the paper is organised as follows. Section II
provides the necessary background. Section III presents the
related work. Sections V and IV provide details about the
knowledge engineering and modelling of the Autonomous Ve-
hicles and Satellite domains, respectively. Section VI contains
concluding remarks.

II. BACKGROUND

A. Knowledge Engineering and Modelling in AI Planning

AI planning is a knowledge-based technique, meaning that
to compute plans, an AI planning system requires relevant and
adequate knowledge about the domain in which it is supposed
to act [8], [12]. Engineering and modelling such knowledge
constitute the first phases of the design and development of
a deployable AI planning system [12]. In the first phase,
relevant requirements should be identified and defined. Having
such requirements is of utmost importance as it affects the
adequacy of the intended domain model and the suitability
of the planning system to address the challenges of the
application domain. Thus, this phase is crucial as it provides
the ingredients necessary to select a suitable planning type,
design a planning domain model, and design or select the
planning system. The main concern of the second phase
is the selection of a suitable planning type; in our case,
this is risk-aware HTN planning. In the third phase, the
knowledge-engineering process focuses on formulating the
domain knowledge to construct a domain model [8]. The
domain model is an abstract conceptual description of the
application domain of interest used to represent knowledge
within a planning application. This conceptual description
comes from the requirement specification obtained in the first
phase and covers the dynamics of the domain, the kind of
problems the planning engine will have to solve, and the kind
of plans (solutions) that need to be provided as output [10].
Then, an explicit formal representation or encoding is created.

The domain model formally describes the persistent knowl-
edge and represents entities invariant over every planning
problem [10], [15]. These include objects with their relations
and properties, actions that can change the state of the
environment, and other constructs, such as tasks in HTN
planning. A corresponding problem instance is needed to
formally describe particular planning scenarios, which include
the initial world state and the goal to be achieved. Domain
models and problem instances are encoded in a de-facto
standard syntax, such as HDDL and Hierarchical Planning
Definition Language (HPDL) [16].

B. Realistic Aspects in Planning Domains

Accurate knowledge encoding and management in the
third phase is crucial, as poor or incomplete knowledge can
result in domain models that misrepresent the application
domain [17], ultimately producing plans that fail in real-world

execution [18]. Thus, a crucial step in the requirement analysis
is the identification of relevant aspects characterising the
application domain. We therefore apply an existing conceptual
framework for identifying and categorising aspects of real-
world planning domains, enabling the requirements analysis
and aiding the knowledge-engineering process [9].

In this conceptual framework, one important aspect is the
hierarchical relationship between tasks, where higher-level tasks
are abstractions that can be decomposed into subtasks. The
hierarchy naturally introduces structured causality, enabling
reasoning across different abstraction levels. Additionally,
multiple refinement options to achieve the same high-level
task must be considered, where certain refinements may only
be valid under specific constraints [11].

Other realistic aspects include the inherent uncertainty in
real-world planning domains. It is especially important to
study the sources of this uncertainty. When considering the
executing agents, whether systems, humans, or a combination,
uncertainty can originate internally, from the agent itself (e.g.,
system reliability, human limitations, irrational behaviour),
or externally, from environmental factors beyond the agent’s
control. Both internal and external sources can be classified as
either random (stochastic, rare, and unpredictable) or regular
(pattern-driven and consistent).

Executing actions alters the environment and incurs costs, i.e.,
consumes resources, such as money, time, fuel, or effort, which
are predictable in a certain world. Under uncertainty, however,
action costs become variable, i.e., they are not always the
same each time an action is performed. This variability stems
from different sources of uncertainty: if the source is random,
cost variability is unpredictable and cannot be addressed in
offline planning. If the source is regular, the variability can be
better defined. When cost distributions of actions are known
or statistically inferable, actions are considered risk-inducing.
When distributions instead reflect the decision maker’s beliefs,
the actions are uncertainty-inducing.

C. Risk-Aware HTN Planning

In [13], we developed risk-aware HTN planning, a framework
that extends classical HTN planning with constructs that
consider the uncertainty of real-world environments. It enables
modelling of risk- and uncertainty-inducing actions through
probability distributions over their costs and effects, where costs
are defined as unbounded negative functions. The framework
can be tailored for planning problems where actions have
deterministic effects but variable costs. In our domain models,
we adopt this variation as an initial step toward incorporating
risk and uncertainty into HTN planning domain models.

The cost functions of actions can be of different types
depending on the factors/sources of the costs. The cost function
can be (1) external (cie(a)), i.e., it depends on external factors
not explicitly modelled in the domain, such as market electricity
prices or taxes, (2) state-dependent (cis(a)), i.e., it is based
on the system’s current state, like the vehicle’s charging level
or position, (3) constant (cic(a)), i.e., it remains the same for
every execution of an action, such as a fixed charging price,



or (4) external and state-dependent, i.e., a hybrid function
(cies(a)), which depends on both current state and external
factors, where a denotes an action.

III. RELATED WORK

Existing Satellite and AVs domains exhibit the discussed
issues, that is, the limited realism. A version of the Satellite
domain is modelled for the HTN planning track in the IPC
2020 [19], which, unfortunately, like most benchmark domains,
tends to oversimplify several real-world aspects, such as risk
and uncertainty, to enable planners to find valid solutions
and evaluate their performance. In our proposed model, we
build on this version by analysing sources of uncertainty
and their effects on action costs, allowing us to incorporate
risk. We also expand the range of tasks and increase the
number of alternative methods for completing space missions.
In our previous work, we focused particularly on extending the
Satellite domain by providing alternatives for how captured
images of spatial phenomena are sent to Earth, but did
not consider uncertainty and risk [11]. In [20], the authors
model a Satellite domain for onboard and online planning
using a language based on an extended HTN representation.
While their model captures several real-world aspects, such
as unexpected events and resource consumption, it does not
incorporate risk modelling, as planning is assumed to occur
online. Another line of work on the Satellite domain focuses on
modelling TV and communication satellites (e.g., [21]), which
is semantically different from the space exploration satellite
domain we propose.

Existing works that model the domain of autonomous
vehicles for AI planning are rather scarce. In [11], we
model an HTN planning domain for autonomous vehicles,
taking into account various autonomous driving tasks, but
do not consider realistic aspects such as uncertainty and
risk. Several studies have explored traffic control problems in
classical planning and extensions of it, focusing on automating
multi-vehicle navigation to manage traffic [22]–[26]. Route
planning research in AI planning is also relevant to the AV
domain, with many works addressing marine environments and
incorporating uncertainty (e.g.,[27]). Although autonomous
underwater vehicles share some route planning tasks with
autonomous vehicles, their environments and other tasks differ
significantly.

IV. SATELLITE

The Satellite domain involves space applications with
autonomous orbiting spacecraft that perform tasks such as
imaging, data collection, navigation, or scientific research. The
domain we extend originates from the partial-order track of
the IPC-2020 benchmark for HTN planning, based on a NASA
application where satellites conduct stellar observations by
capturing images of spatial phenomena [19].

We chose this domain because it exemplifies real-world
complexities and challenges for planning, including multiple
satellite missions under strict resource constraints, namely, lim-
ited power, restricted target access, constrained time windows

for downlinking data to ground stations, and high operational
costs [28], [29].

A. Relevant Real-World Aspects

Following the vision presented in [11], the original domain
is enhanced. We begin by identifying and gathering relevant
aspects using the conceptual framework we proposed in [9],
with particular emphasis on unaddressed factors in the original
domain, such as additional stellar observation tasks and their
associated complexities and interdependencies; sources of
uncertainty; domain-specific quantities such as resources and
variable action costs; and the objectives pursued by autonomous
satellites.

Satellites perform multiple tasks to make stellar observations.
These tasks are of multiple abstraction levels and have
structured causality, where complex tasks are achieved by
performing multiple subtasks [9]. Basically, the satellites are
equipped with several observation instruments, each of which
has specific modes like infrared, spectrograph, X-ray, and
thermography, and has defined calibration targets (directions).
Performing a space mission is a complex task that involves
preparing a satellite and then taking an image. Preparing the
satellite requires routing energy to an instrument, properly
calibrating the instrument, and turning the satellite in the
direction of the phenomenon to be captured. Finally, the satellite
can capture an image of the targeted phenomenon. In actual
operations, it is often necessary to activate multiple instruments
simultaneously due to limitations in time and resources [30].
Therefore, the satellite must be capable of powering on several
instruments at once and should be able to choose how many
instruments to activate, taking into account, for example, the
possibility of power failure.

Satellite mission complexity arises from the inherent uncer-
tainty of space environments and the technologies used for
the satellite operations and its instruments. Planning stellar
observations requires accounting for uncertainties and their
inherent randomness—specifically, what is known during the
planning phase versus what becomes known only at execution
time. Key sources of uncertainty, and their impact on resource
consumption (e.g., time and power) include: (1) Internal
sources, such as limitations of physical sensors that affect
data quality (e.g., resolution, accuracy, noise), introducing
uncertainty into action costs when these are tied to data
quality [31]. Other internal uncertainties arise from the potential
for power system failures (e.g., battery or solar array malfunc-
tions [32]), which can result in power loss during the execution
of actions like powering multiple instruments on the same
satellite platform [33], ultimately increasing execution time. (2)
External sources stem from the satellite’s environment. Space
weather events can induce anomalies such as temporary outages,
power failures, and solar cell degradation [34]. Additionally,
solar energetic particles or protons can penetrate satellite
electronics and cause electrical failures [35].

The satellite’s goal is to perform stellar observations that
optimise factors like mission time and power consumption,



while considering several aspects (e.g., risk and uncertainty),
and the satellite and its instruments’ states.

B. Domain Model Formulation

Next, we formulate the gathered knowledge as a prerequisite
to model the Satellite domain.

1) Stellar Observation Tasks – Complexities and Relations:
Knowledge about stellar observation tasks is represented as
compound and primitive tasks. Compound tasks capture abstrac-
tion levels, causality, recursion, conditions, and alternatives,
and can be decomposed by various methods into subtasks.

An abstract (or general) graphical overview of this HTN
domain model is shown in Figure 1, where blue nodes represent
compound tasks, orange nodes represent primitive tasks, and
grey nodes vm0 , vm1 , . . . , vm11 represent methods. Nodes encir-
cled by green are our extensions. The domain includes a single
top-level task, do_observation, which achieves a stellar
observation mission by preparing the instrument and taking
an image. This task can be decomposed using four methods,
vm0 to vm3 , which represent different situational contexts
rather than alternative strategies of performing the observation
task. Their main differences lie in the preparation phase.
Specifically, vm0

includes activate_instrument, turn_to,
and take_image; vm1

omits instrument activation, assuming
it is pre-calibrated, possibly from previous observations; vm2

skips turning; and vm3 performs only take_image.
Each satellite can have multiple instruments onboard. In

the original domain, only one instrument can be powered
per satellite. This is governed by switching off any active
instrument before powering on another, and making the power
unavailable after switching on an instrument. This behaviour is
modelled through the methods vm4

and vm7
. vm4

decomposes
activate_instrument into switch_off, switch_on to
switch off an already powered instrument and switch on the
instrument corresponding to the required mode, respectively,
and auto_calibrate. The latter is further decomposed
by vm10

and vm11
, where vm10

decomposes the task into
turn_to to slew the satellite into the calibration direction
and calibrate to calibrate the instrument, while vm11

skips
turning, assuming the satellite is already aligned. vm7 is
applicable when there is no powered-on instrument, thus it
skips switching off.

Real-world satellite missions often require activating
multiple instruments simultaneously due to time and re-
source constraints [30], a capability missing from the orig-
inal domain. This calls for additional methods for the
activate_instrument task, allowing satellites to power
multiple instruments concurrently and incorporating permissive
decomposition into the domain model.

Powering several instruments in parallel risks power fail-
ure/loss if the satellite’s energy source (e.g., solar panels,
Radioisotope Thermoelectric Generators, or helium cells)
cannot meet demand [33], potentially causing delays to
recover. To model this, we add methods vm8

, vm9
, vm5

, and
vm6 . vm8 and vm9 decompose the task into overload or

auto_calibrate

⋮

switch_off_
overload

𝑣𝑚0

turn_to

𝑣𝑚1

𝑣𝑚5
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activate_
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Figure 1. HTN model for the Satellite domain.

superload (to switch on second or third instruments), fol-
lowed by auto_calibrate. vm5

and vm6
decompose the task

into switch_off_overload or switch_off_superload

to switch off two or three instruments at once, respectively,
followed by switch_on and auto_calibrate. Thus, vm4

and vm8 are alternatives: to power a second instrument, the
planner can either switch off the first or overload the satellite.
Likewise, vm5

and vm9
offer a choice between switching off

two instruments or adding a third, resulting in a “superload”
with three active instruments.

2) Non-determinism and Action Costs: To model non-
determinism and action costs, we analyse how internal and
external uncertainty sources affect actions that rely on a stable
satellite power system. We focus on the cost variability of
overload and superload, which place higher demands on
power. Specifically, considering that costs are indicative of the
time required for actions to be completed, activating a second
instrument via the overload action has a 99% probability of
taking 15 units of time and a 1% probability of taking 100
units of time due to power failure. superload is riskier as
the unfavourable outcome incurs more often and has a higher
likelihood of occurrence, with a 95% probability of taking 15
units of time and a 5% probability of taking 400 units of time.
All other actions are assigned a fixed cost of 15 units with 100%
probability, enabling a clear comparison of planner behaviour
under different risk attitudes concerning the simultaneous or
sequential activation and deactivation of instruments. Here, we
use the constant cost function type cic(a). This means that the
action costs are defined within the domain model and remain
consistent across different problem instances. However, other
types of cost functions and alternative cost distributions can
also be considered, as the statistical inferences used to derive
them may vary across different satellite domains.

3) Planning Problems Instances: Knowledge about planning
problems is formulated so that the initial state contains the
knowledge about the static and dynamic environment states.
The static state includes each satellite’s instrument, supported
modes, and the calibration target of each instrument. The



dynamic state includes the available power and current pointing
direction of individual satellites. The initial task network
includes all required observation missions, each targeting a
phenomenon with a specified mode.

C. Domain Model Encoding

We model the planning knowledge formulated earlier directly
into risk-aware HTN planning constructs. Listing 1 shows part
of the domain model, including the switch_on, overload,
and superload actions. switch_on is executed when the
satellite’s power is available and makes it unavailable. In
contrast, overload and superload can be executed when
the power is unavailable, but introduce a risk of power
failure. That is, we assume that the (power_avail) pred-
icate represents a restriction of maximum power for safety
purposes that can be ignored when choosing to overload
or superload the satellite. Recovery time from failure is
modelled using probabilistic cost distributions via the : costdist
construct, followed by the probability distribution in the form
of (or(p1(c1)(p2(c2)) . . . (pn(cn)).

Listing 1. Switch on, overload, and superload actions in the Satellite domain.

(:action switch_on
:parameters (?so_i - instrument ?so_s - satellite)
:precondition (and (on_board ?so_i ?so_s)(power_avail ?

so_s))
:effect (and (power_on ?so_i)(not(calibrated ?so_i))(not(

power_avail ?so_s)))
:costdist (or (1(15))))

(:action overload
:parameters (?so_i - instrument ?so_s - satellite)
:precondition (and (on_board ?so_i ?so_s)(not(overloaded ?

so_s))(not(power_avail ?so_s)))
:effect (and (power_on ?so_i)(overloaded ?so_s)(overloads

?so_i ?so_s)(not(calibrated ?so_i)))
:costdist (or (0.99(15)) (0.01(100))))

(:action superload
:parameters (?so_i - instrument ?so_s - satellite)
:precondition (and (on_board ?so_i ?so_s)(overloaded ?so_s

)(not(power_avail ?so_s))(not(superloaded ?so_s)))
:effect (and (power_on ?so_i)(superloaded ?so_s)(

superloads ?so_i ?so_s)(not(calibrated ?so_i)))
:costdist (or (0.95(15)) (0.05(400))))

V. AUTONOMOUS VEHICLES

Autonomous vehicles are transportation means, typically
for humans or working under human delegation, that can
navigate without or with little human direct control. We choose
this application domain as it exhibits realistic characteristics
commonly found in real-world scenarios, many of which
present significant challenges for both the modelling and
solving of planning problems. These challenges originate from
the domain’s inherent complexity and uncertainty, such as road
incidents and varying road conditions, risk factors, diverse
driving tasks, resource constraints like travel time and fuel or
charge levels, and the critical need to track the vehicle’s state
and its environment.

A. Relevant Real-world Aspects

We start by covering the aspects of driving tasks and their
complexities and relations, the non-determinism in the domain,

including the sources of uncertainty and their randomness,
quantities in this domain, including resources and action costs
and the variability of action costs as a consequence of non-
determinism, and the objectives of an autonomous vehicle.

An autonomous vehicle performs various driving tasks to
navigate routes and reach required destinations successfully.
These driving tasks are of multiple abstraction levels and
have structured causality, where complex tasks are achieved
by performing multiple subtasks, such as route planning,
navigation, and vehicle control [9]. For example, reaching a
destination may require moving between intermediate locations,
stopping, starting the engine, and managing turn signals. The
vehicle must also handle road contingencies (e.g., pedestrians,
construction), which consist of subtasks like stopping, dodging
the incident, or restarting the engine. Environmental factors
such as slippery roads introduce further complexity, requiring
actions like activating the Electronic Stability Program (ESP)
and adjusting speed. As in many real-world domains, these tasks
can be achieved in various ways. For example, a vehicle might
address poor road conditions by decelerating or accelerating
with or without activating the ESP, and it may choose from
various routes to reach a destination.

The complexity of AV driving tasks arises mainly from the
dynamic and uncertain environment common to real-world
domains [9]. Planning these tasks must account for uncertainty
sources and their randomness, i.e., the amount of knowledge
that can be defined when planning the driving tasks. Following
our previous work [9], [13], we categorise uncertainty sources
based on the vehicle’s autonomy level: (1) non-autonomous
(human-driven), (2) fully autonomous (no human intervention),
and (3) semi-autonomous (shared control). These uncertainties
may be internal, originating from the agent performing the
tasks, or external, from the environment. (1) For human drivers,
internal regular uncertainties often relate to variations in driving
skills, habits, intentions, tactics, and speed. For instance, travel
time and energy consumption can vary depending on a driver’s
speed preferences, habits, and tactics. Additionally, fatigue
may lead to accidents, such as falling asleep at the wheel.
The consequences caused by driver drowsiness have been
statistically studied [36]. Unlike regular sources that can be
statistically anticipated, some internal sources are random
and rare, such as a driver having a stroke, making them
difficult to predict. (2) For fully autonomous systems, internal
regular uncertainties may result from control variability, such
as the vehicle’s ability to stabilise on a slippery road, leading
to variable driving times and consumed energy. There are
also some random internal sources that lead to unpredictable
outcomes. For example, a flat tire will cause the car to stop.
(3) Finally, semi-autonomous vehicles inherit a mix of these
uncertainties, as both the human driver and the autonomous
system contribute to the vehicle’s operation.

External sources of uncertainty, both regular and random,
can also affect cost variability. For example, a vehicle may fail
to charge due to an unexpected station malfunction or encounter
an unplanned roadblock from an accident. Such rare events are
difficult to predict during planning, making action outcomes



uncertain. Now consider external sources of uncertainty that
are regular, such as weather conditions. Weather conditions,
for instance, change constantly and cannot be predicted with
full certainty. Due to the chaotic nature of the atmosphere
and limitations in observation and modelling, forecasts in-
herently include uncertainty [37]. To express this, weather is
often reported using probabilistic forecasts, where elements
like temperature, wind, and precipitation are probabilistically
quantified [38]. Another regular external source of uncertainty
is traffic, which significantly impacts action cost variability. For
example, when planning a route with Google Maps, the most
used route planning application, estimated travel times for the
same route vary due to regular factors like traffic. As shown
in Figure 2, there is an estimation of the travelling time, i.e., a
range of potential travelling times, for each route the vehicle
can take, and these estimates differ between weekdays and
weekends, with shorter times typically observed on weekends
due to lighter traffic. Similarly, queues at charging stations
represent another regular external uncertainty. To improve the
quality of service at charging stations, studies such as [39]
predict the probability of waiting times, which directly affect
charging duration and overall trip time.

(a) Travelling times on a workday [40].

(b) Travelling times on a weekend [41].

Figure 2. Variability of travelling times in Google Maps.

In addition to the factors discussed, it is crucial to account
for resource consumption, i.e., action costs such as time,
money, energy, effort, or even human lives, which is a common
concern in real-world domains [9]. The presence of uncertainty
makes these costs variable. Therefore, understanding and
modelling cost variability is essential for effective planning.
For instance, uncertainty in weather forecasts affects driving
costs; travelling between two locations in winter may require
more time and energy if it is snowing. How much knowledge
we have about the probability distribution of action costs

depends on how much knowledge we have about the uncertainty
sources. When uncertainty is represented probabilistically,
such as through weather forecasts, associated delays can also
be estimated probabilistically, a concept known as risk (see
Section II-B). Conversely, random uncertainty sources like
unpredictable accidents lead to costs, e.g., delays, injuries,
financial loss, and environmental impact, that are difficult to
quantify probabilistically. Such events can reduce road capacity,
increase congestion and travel time, and potentially cause
further incidents [42].

Given the above knowledge, the goal of the autonomous
driving task is to find routes that optimise some objective (e.g.,
commuting time) while considering several aspects (e.g., risk,
uncertainty, and alternative choices on how to achieve tasks),
the vehicle’s general state (e.g., current location), the states of
its components (e.g., headlights), and the various environmental
factors (e.g., weather and road conditions) to promote better
safety and user experience.

B. Domain Model Formulation

1) Driving Tasks – Complexities and Relations: Tasks
are formulated as compound and primitive tasks, where
the relation between these tasks, i.e., the abstraction levels,
structured causality, recursion, conditions, and alternatives, is
formulated as hierarchical levels, where compound tasks can
be decomposed by various methods, which represent the ways
to achieve these tasks, into subtasks (compound and primitive).
Thus, we can model the various driving tasks performed by
the AV to navigate routes and reach required destinations
successfully as HTN tasks, forming the HTN domain model
for the AV domain. An abstract (or general) graphical overview
of this HTN domain model is shown in Figure 3. The domain
has one task, drive, at the highest level of the hierarchy,
which enables travel between two locations. Three different
methods can decompose this task, denoted as vm1

, vm2
, and

vm3
. The first method vm1

is applicable when the vehicle
does not have enough power to travel to the next location.
To recharge, the vehicle must drive to a charging station
(drive), recharge (recharge), and from there to its original
destination (drive). The second method vm2

is applicable
when the vehicle is charged and has not reached its destination.
In this case, the vehicle’s engine should be cranked if it was
not before (start), the lights are turned on if they were
off and it is nighttime (turnon), and the vehicle moves one
step to the next location (move_step). Then, the drive task
is recursively decomposed again to move the vehicle to the
next intermediate location until reaching the destination. The
third method vm3

becomes applicable if the vehicle is at the
destination. This method decomposes the drive task to a single
compound task stop_vehilce to stop the vehicle, which in
turn is decomposed by two methods vm4

and vm5
. The former

decomposes the task into a single primitive task to stop the
engine. The latter is applicable when the engine is already
off, and it decomposes the stop_vehicle into an empty task
network, symbolised by the nop primitive task. These methods



drive

𝑣𝑚1

drive recharge drive

𝑣𝑚2

start

start nop

𝑣𝑚6
𝑣𝑚7

turnon

turnon nop

𝑣𝑚8
𝑣𝑚9

move_step

𝑣𝑚10
𝑣𝑚11

drive

𝑣𝑚3

stop

stop_vehicle

𝑣𝑚4
𝑣𝑚5

accelerate 
handle_incidents handle_road_conditions

𝑣𝑚12
𝑣𝑚13

𝑣𝑚14

acceleratebrakedecelerate decelerate dodge_incident decelerate decelerate activate_esp activate_esp accelerate

𝑣𝑚16
𝑣𝑚17

𝑣𝑚18

𝑣𝑚19

nop nop

...

...

nop

accelerate

𝑣𝑚15

accelerate

Figure 3. HTN model for the domain of Autonomous Vehicles. Blue nodes
represent compound tasks, orange nodes represent primitive tasks, and grey
nodes vm1 , vm2 , . . . , vm19 represent methods.

implement a form of phantomisation that can be encountered
in HTNs [43].

The move_step compound task is decomposed by two
different methods v_m10 and v_m11, based on whether the
road is free from any complexity or not, respectively. In the
first case, the move_step task is decomposed by vm10 into
a single primitive task accelerate. In the second case, the
task is decomposed by vm11

into two consecutive compound
tasks handle_incidents and handle_road_conditions.
The handle_incidents task can be decomposed by two
different methods vm13 and vm12 , based on whether the
incident is still (e.g., rocks and construction work), or moving
(e.g., pedestrians crossing the street). In the first case, the
vehicle must decelerate, dodge the incident, and then accelerate
again. In the second case, the vehicle should decelerate,
brake to allow the moving incident to cross the road, and
accelerate again. The handle_road_conditions task can
be decomposed by four different methods vm15

, vm16
, vm17

and vm18
. All these four methods are applicable when the road

is, for example, icy, slippery, under construction, or has loose
gravel, and they result in accelerating without caring about
the road condition, only decelerating, activating the ESP and
decelerating, activating the ESP but accelerating, respectively.
These methods have the same preconditions which relate to
road conditions being abnormal. This makes all four methods
applicable at the same time during planning, and the planning
agent always has the choice between these methods. We refer
to this concept as permissive decomposition or non-exclusive
decomposition. Note that both the handle_incidents and
handle_road_conditions have an additional method each
(vm14

and vm19
) that decomposes the corresponding tasks into

an empty task network when there are no incidents or road
conditions, respectively. These methods constitute another form
of phantomisation [43]. This modelling choice allows us to
handle situations where there are road conditions and incidents
at the same time between two connected locations.

2) Non-determinism: Uncertainty Sources and their Ran-
domness: Here, we formulate the knowledge related to the

non-determinism of the domain and the quantities. While
we do not explicitly formulate the knowledge related to the
various uncertainty sources encountered in the AV domain, we
formulate the direct effects they have on the cost of driving
actions performed in this domain, making them variable. In
this domain model, we consider the effects of three sources
of uncertainty, namely (1) the speed at which the pedestrians
walk the pedestrian crossing, which is considered a regular
external source of uncertainty, (2) the traffic on roads, which
is also considered an external regular source of uncertainty,
and (3) the ability of the autonomous vehicle to stabilise on
slippery roads, which is considered an internal regular source
of uncertainty.

3) Quantities: Resources and Action Costs: When this
variability of costs comes from regular uncertainty sources,
such as traffic jams, it can be described by a probability
distribution that can be either known or statistically inferred
(see Section II-B). Actions here are risk-inducing. In the present
treatment, we define driving costs as the time needed to drive
through the roads and deal with the various road complexities.
That is, the existence of uncertain traffic jams during planning
makes the estimation of travelling times variable (as shown in
Figure 2). While we use risk-inducing actions and travelling
times as costs to exemplify a possible formulation of the domain
knowledge, uncertainty-inducing actions and other types of
costs, such as fuel/power consumption, comfort of the ride,
and road windingness, could be used.

Since in the AVs domain, the travelling costs can depend on
the traffic jams and on the particular road itself, e.g., its length
and conditions, we use a hybrid, external and state-dependent
cost function cies(a) to compute the costs (see Section II-C).
In particular, the estimation of uncertain traffic jams comes
from an external function, and each road’s length and other
properties represent a state-dependent cost function that is
defined with respect to the ground planning problem. These
two functions can be combined into one hybrid function that
computes the probability distribution of travelling times.

4) Planning Problems Instances: Knowledge about planning
problems is formulated such that the initial state contains the
knowledge about the static and the dynamic states of the
environment. The static state includes the road network, i.e.,
locations and routes connecting them, the location of still and
moving incidents (e.g., construction works and pedestrians), the
conditions of roads (e.g., slippery roads, roads with gravel, and
normal roads), and the length of the roads. The dynamic states
include the location of the vehicle. The initial task network in
the planning problem is to move the vehicle from one location
to another. The objects are the locations that the vehicle can
navigate to and the various incidents.

5) Example of a Problem Instance: Let us consider an
example of a planning problem with seven different locations
denoted as S, l1, l2, l3, l4, l5, and E, depicted in Figure 4.
The vehicle is initially at S and should navigate to E while
handling the various road complexities. We assume that the
vehicle has enough power to navigate all the roads, and it is
nighttime, so the vehicle has to turn on the lights. The roads
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Figure 4. A problem instance in the AVs domain with seven locations S, l1,
l2, l3, l4, l5, and E, and various road complexities.

between S and l1 and between S and l3 are complexity-free.
However, the first road is longer than the second. The road
between l1 and l4 has constructions at location l2. The road
between l3 and l4 has a school area that is very crowded with
pedestrians and traffic jams, i.e., moving incidents, at location
l5. The road between l1 and l3 is a highway free from any
complexities, but has a variable level of traffic congestion.
Finally, the road between l4 and E is icy and slippery.

Figure 5 shows some possible bindings of the actions with
the corresponding probability distribution of costs with respect
to the ground planning problem and external traffic as sources
of uncertainty. Note that we only show feasible bindings and
ground actions that can be part of the computed plans. For
example, the action of accelerating has a probability distribution
of costs when the vehicle is accelerating on the road between S
and l1, different from the probability distribution of costs when
accelerating on the road between S and l3, since the length
and traffic jams of these roads are different. The logic behind
our assignments of the action variable costs is as follows. The
road between S and l1 is complexity-free and free of traffic
jams. Thus, the time needed to drive through this road is
certain, i.e., driving through this road takes four hours with
100% probability. On the other hand, although shorter, the
road between S and l3 has a variable traffic jam throughout
the day. Driving through this road can take six hours with
20% probability, or two hours, in the best case, with 80%
probability. Thus, taking the short road is riskier than taking
the long road. The road between l1 and l4 has construction
work at location l2. Since the construction is considered a still
incident, passing through this road, i.e., decelerating, dodging
the constructions, and accelerating again, is done in a certain
time under the assumption that this road does not include any
traffic jam. In particular, cumulative deceleration on the road
between l1 and l2 requires four hours, dodging the incident
requires 0.4 hours, and accelerating on the road between l2
and l4 takes one hour. Unlike the road between l1 and l4, the
road between l3 and l4 has multiple schools and heavy traffic
at location l5, which can lead to long waiting times. This is an
external source of uncertainty since pedestrians have uncertain
times and speeds at which they cross the road, which can make
this area congested. Additionally, the roads between l3 and
l5, and l5 and l4 have an uncertain level of traffic congestion.
Thus, driving from l3 to l4, i.e., decelerating, braking, and
accelerating, requires a variable amount of time, as shown in
Figure 5. In particular, decelerating on the road between l3 and

l5 takes one hour with 10% probability and three hours with
90% probability. Consider the school area is very crowded,
and the vehicle might need to brake for a long time, waiting
for the pedestrians to walk. Thus, braking before this area can
take half an hour with a high probability of 90% and can, in
the worst case, take three hours with a probability of 10%.

The road between l1 and l3 is a highway that is complexity-
free. However, it has an uncertain level of traffic congestion.
Thus, although the vehicle can accelerate on this road, with a
small probability of 10%, it can take eight hours to reach l3
when there is a high traffic congestion. With a high probability
of 90%, the vehicle can travel from l1 to l3 within two hours
since the highway is mostly free of traffic jams. Lastly, the road
between l4 and E is icy and slippery. If the agent chooses to
decelerate without activating the ESP, the time needed to reach
E will be variable and is based on the ability of the vehicle
to stabilise on this slippery road. This choice can lead to six
hours of driving with 20% probability and eleven hours of
driving with 80% probability. If the agent chooses to decelerate
after activating the ESP, it will need 10 hours, i.e., a known
and certain amount of time, to reach E since this is the safest
and most guaranteed option to choose. However, suppose the
agent accelerates after activating the ESP. In that case, it will
need an uncertain amount of time, depending on the vehicle’s
stability. This option is very risky since it might require 12
hours in the worst case with an 80% probability as the vehicle
will probably lose stability. At the same time, there is a 20%
probability that the vehicle will have good stability and reach
its destination in two hours since it is accelerating. An even
riskier option is to accelerate on this road without activating
the ESP. In that case, the vehicle might need sixteen hours
to reach location E with a probability of 90%, and, in the
best case, it needs half an hour with a probability of 10%.
Comparing the option of decelerating after activating the ESP
with the option of decelerating without activating the ESP, the
first option has a more guaranteed outcome, i.e., execution time,
although both options have the same expected value, which
is 10 hours. We can also see that the option of accelerating
after activating the ESP is riskier than decelerating without
activating the ESP, since, with an 80% probability, it might
lead to a higher time than the outcome of only decelerating.
Lastly, when comparing the options of decelerating without
activating the ESP and only decelerating, we see that both
options involve risk. However, unless the agent is highly risk-
seeking, it is less likely that the first option is preferable since
it has the probability of 20% of costing six hours compared to
the second option, which has the probability of costing four
hours less with the same 20% probability. At the same time,
the first option has an 80% probability of costing eleven hours
compared to twelve hours for the second option, with the same
probability, which means a one-hour difference only. Note that,
despite the differences in the risk level, all three options have
the same expected value, which is ten hours. The only option
that has a higher expected travelling time compared to all other
options is accelerating without activating the ESP. That is why
this option is the riskiest one and is only chosen if the agent
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Figure 5. Actions with the corresponding possible bindings and probability
distribution of costs (time).

is extremely risk-seeking. Additionally, we extend the possible
roads that the vehicle can take by adding the possibility of
taking a shortcut road that has a 90% probability of taking
two hours and a 10% probability of taking eight hours. This
extension increases the number of choices the agent should
make according to its risk attitude, since taking the shortcut
road can have a high risk of incurring long travelling times
compared to taking several longer roads.

C. Domain Model Encoding

We encode the domain and problem instances using our
extension of HDDL [14]. Compound tasks are modelled by
providing the name of the task with the parameter list, as
shown in Listing 2 for the handle_incidents compound
task. Methods are modelled by providing the parameter list, the
corresponding compound task, preconditions, and task network.
For example, the handle_incidents compound task can be
decomposed by three methods, where the first two are based
on whether the incident is still or moving, which is ensured in
the preconditions, and the third method constitutes a form of
phantomisation.

Listing 2. Methods for handling incidents in the AVs domain model
(:method handle_incidents_0
:parameters(?v - vehicle ?l1 ?l2 ?l3 - loc ?movinc -

movingobs)
:task(handle_incidents ?v ?l1 ?l2)
:precondition(and (connected ?l1 ?l3)(connected ?l3 ?l2)(

in-inc ?movinc ?l3))
:ordered-subtasks(and (decelerate_incident ?v ?l1 ?l3)(

brake ?v ?l3)(accelerate_incident ?v ?l3 ?l2)))

(:method handle_incidents_1
:parameters(?v - vehicle ?l1 ?l2 ?l3 - loc ?stillinc -

stillobs)
:task(handle_incidents ?v ?l1 ?l2)
:precondition(and(connected ?l1 ?l3)(connected ?l3 ?l2)(

in-inc ?stillinc ?l3))
:ordered-subtasks(and(decelerate_still_incident ?v ?l1 ?l3

)(dodge_incident ?v ?l3 ?l2)(accelerate_still_incident
?v ?l3 ?l2)))

(:method handle_incidents_2
:parameters(?v - vehicle ?l1 ?l2 - loc)
:task(handle_incidents ?v ?l1 ?l2)
:precondition(clearroad ?l1 ?l2)
:ordered-subtasks())

Actions are modelled, as in HDDL, with a parameter list,
preconditions, and effects, where risk is modelled via the
construct :costdist. Listing 3 shows four decelerating and
accelerating actions that can be performed to handle bad road

conditions, each with cost distributions shown in Figure 5. Since
the cost functions in this domain are hybrid, we preprocess
these actions by expanding them into multiple variants based on
road conditions, and directly assign the corresponding hybrid
cost functions within the domain model.

Listing 3. Accelerating and decelerating actions of the AVs domain model
that deal with bad road conditions.

(:action accelerate_bad_road
:parameters (?v - vehicle ?l1 ?l2 - loc)
:precondition (and (not (in ?v ?l2))(not(activated_esp ?v

)))
:effect (and (in ?v ?l2)(highspeed ?v))
:costdist (or (0.9(16)) (0.1(0.5))))

(:action accelerate_after_esp
:parameters (?v - vehicle ?l1 ?l2 - loc)
:precondition (and (not(in ?v ?l2))(activated_esp ?v))
:effect (and (in ?v ?l2)(highspeed ?v))
:costdist (or (0.8(12)) (0.2(2))))

(:action decelerate_after_esp
:parameters (?v - vehicle ?l1 ?l2 - loc)
:precondition (and (not(in ?v ?l2))(activated_esp ?v))
:effect (and (in ?v ?l2) (not(highspeed ?v)))
:costdist (or (1(10))))

(:action decelerate_bad_road
:parameters (?v - vehicle ?l1 ?l2 - loc)
:precondition (and (not(in ?v ?l2))(not(activated_esp ?v)

))
:effect (and (in ?v ?l2)(not(highspeed ?v)))
:costdist (or (0.2(6)) (0.8(11))))

We model the objects existing in the planning problem, the
initial task network is to drive to a destination, and the initial
state is a list of predicates. Listing 4 shows the initial state of
the problem instance illustrated in Figure 4.

Listing 4. Initial state of the problem instance illustrated in Figure 5.
(:init (connected s l1)(connected s l3)(connected l1 l4)(

connected l3 l4)(connected l4 e)(connected l1 l2)(
connected l2 l4)(connected l3 l5) (connected l5 l4)(
clearroadlong s l1)(clearroad s l1)(clearroadshort s l3
)(clearroad s l3)(in-inc construction l2)(in-inc
bottleneck l5)(clearroad l4 e)(badroad l4 e)(in v0 s))

VI. CONCLUSIONS

Generating valid, capable, and executable plans for real-
world scenarios requires domain models that accurately reflect
the complexities of the target environments. We showed how
to systematically engineer domain knowledge and model two
representative domains, Satellite and Autonomous Vehicles,
that embody common planning challenges in complex and
dynamic environments. For the Satellite domain, we build upon
existing models by explicitly incorporating elements of risk
and uncertainty, and by expanding the set of methods available
to achieve tasks. For the AV domain, we address a notable
gap in the literature, namely, the fact that many existing works
focus on traffic-level control or underwater vehicles, while few
address the planning needs of individual AVs. Our approach
and model fill this gap by capturing realistic driving tasks
alongside key aspects such as uncertainty, risk, and the wide
range of methods for tasks. Together, these contributions not
only enrich the Satellite and AV domains but also provide a
concrete path toward making AI planning more applicable to
real-world deployment. By showing how realistic aspects can



be systematically identified, incorporated, and formalised, our
work lays the foundation for improving other domains and
advancing planners that can operate effectively under real-world
conditions.
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