Institute of Architecture of Application Systems

University of Stuttgart
UniversitatsstraBe 38
D-70569 Stuttgart

Master’s Thesis No. 3744

Architectural Design of an
Abstraction Layer for the Integration
of Heterogeneous Cyber-Physical
Systems

Jasmin Alexandra Guth

Course of Study: Wirtschaftsinformatik
Examiner: Prof. Dr. Dr. h. c. Frank Leymann
Supervisors: Dipl.-Inf. Lukas Reinfurt

M.Sc. Michael Falkenthal

Commenced: October 1, 2015

Completed: March 23, 2016

CR-Classification: C.3,D.2.11,D.4.7,1.2.11,H.3.4

Abstract

Recently Cyber-Physical Systems (CPS) gained increasing attention and popularity in
the field of information technology (IT). The definite aim of CPS is the integration of
physical processes with computation. CPS depend on multiple disciplines and arise of
a complex interaction of embedded systems, application systems, and infrastructures,
with the interaction of humans and technology, where this complex overall interaction
is based on their interconnection and integration. Embedded computers and networks
monitor and control the physical processes, usually using feedback-loops, where physical
processes affect computations and vice versa. The abstraction layer consists of a reference
architecture, and an abstract class model. The aim of the abstraction layer is to provide
an architectural basis for the design and the integration of heterogeneous CPS. To
derive a reference architecture diverse open-source, as well as proprietary CPS platform
architectures are analyzed and compared. Subsequently the reference architecture is
validated, by mapping it onto the architectures of the considered CPS platforms. The
aim of the reference architecture is to provide an universal basis for the architectural
design of CPS. Following this, the features of the considered CPS platforms are analyzed
and compared, and subsequently an abstract class model is derived. The abstract class
model is also validated, by verifying if the operations of the abstract class model are
existent within the considered CPS platforms. The aim of the abstract class model is to
provide a basis for the essential functionality, and interconnection of the components of
a CPS platform.

Contents

1

4

Introduction
Problem Domain and Motivation« v v v v v v v v ..
Research Issues and Contributions

1.1
1.2
1.3
1.4

Research Method

Structure of the Document

Fundamentals and Related Work

2.1

2.2

Cyber-Physical Systems .

2.1.1 State-of-the-Art Research

2.1.2 Protocols
2.1.3 Standards

...........................

State-of-the-Art Technologies

2.2.1 OpenMTC
2.2.2 FIWARE
2.2.3 SiteWhere
2.2.4 SmartThings . .
225 AWSIoT.

...........................

2.2.6 Microsoft AzureIoTHub
2.2.7 IBM Watson IoT Platform

Design of the Reference Architecture
3.1 Analysis of the State-of-the-Art Technologies
3.2 Requirements of the Reference Architecture

3.3

Reference Architecture .

Validation of the Reference Architecture

4.1
4.2
4.3
4.4
4.5
4.6

OpenMTC
FIWARE
SiteWhere
SmartThings
AWSIoT
Microsoft Azure IoT Hub

...........................

...........................

11
11
12
12
13

15
15
15
15
17
19
19
21
24
27
28
29
31

33
33
36
36

43
43
45
47
49
51
53

4.7 IBM Watson IoT Platform i i i i i s i
4.8 Conclusion e s,

5 Design of the Abstract Class Model
5.1 Analysisofthe Features
5.2 Requirements of the Features and the Abstract Class Model
5.3 AbstractClassModel L

6 Validation of the Abstract Class Model
6.1 Validation of the Operations of the Classes
6.2 Conclusion e

7 Discussion and Further Research
7.1 Résumé e e e
7.2 DISCUSSION v v i i e
7.3 FurtherResearch e

Bibliography

A Appendix

57
57
79
81

95
95
103

105
105
106
107

109

117

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3.1
3.2

3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

oneM2M Architecture
OpenMTC Architecture i ittt e
FIWARE Overall Architecture
FIWARE Architecture e
SiteWhere Architecture e
SmartThings Architecture
AWS IoT Architecture e
Azure IoT Hub Architecture
IBM Watson IoT Platform Architecture

Reference Architecture
Reference Architecture with Multiple Components Comprised within One
Component i e e e e e e e
Reference Architecture with Corresponding Protocols and Standards

OpenMTC Validation of the Reference Architecture
FIWARE Validation of the Reference Architecture
SiteWhere Validation of the Reference Architecture
SmartThings Validation of the Reference Architecture
AWS IoT Validation of the Reference Architecture
Azure IoT Hub Validation of the Reference Architecture
IBM Watson IoT Platform Validation of the Reference Architecture

Abstract ClassModel o
Abstract Class Model Excerpt Platform
Abstract Class Model Excerpt Tenant
Abstract Class Model Excerpt Device
Abstract Class Model Excerpt Gatewayo ...
Abstract Class Model Excerpt Group v v v v v v v i v v oo
Abstract Class Model Excerpt Zone
Abstract Class Model Excerpt User
Abstract Class Model ExcerptEvent

List of Tables

3.1 Correlation Matrix of the Considered Technology Architectures

5.1 Correlation Matrix to Compare the Features within SiteWhere Category
Asset Managementt e e e e e e e
5.2 Correlation Matrix to Compare the Features within SiteWhere Category
Batch Operations i i ittt et e e
5.3 Correlation Matrix to Compare the Features within SiteWhere Category
Device ASSIgNMENtS v v v v vt e e e e e e e
5.4 Correlation Matrix to Compare the Features within SiteWhere Category
Device Command Invocationso v v v v ...
5.5 Correlation Matrix to Compare the Features within SiteWhere Category
Device Commands e
5.6 Correlation Matrix to Compare the Features within SiteWhere Category
Device GIoUPS v v v v v e e e e e e e e e e e e e e e e e
5.7 Correlation Matrix to Compare the Features within SiteWhere Category
Device Specifications
5.8 Correlation Matrix to Compare the Features within SiteWhere Category
Devices e e e e e
5.9 Correlation Matrix to Compare the Features within SiteWhere Category
Events L e
5.10 Correlation Matrix to Compare the Features within SiteWhere Category
External Search Providers
5.11 Correlation Matrix to Compare the Features within SiteWhere Category
Granted Authorities L
5.12 Correlation Matrix to Compare the Features within SiteWhere Category
ScheduledJobs L
5.13 Correlation Matrix to Compare the Features within SiteWhere Category
Schedules
5.14 Correlation Matrix to Compare the Features within SiteWhere Category
Sites L e e e e e
5.15 Correlation Matrix to Compare the Features within SiteWhere Category
System Information

List of Tables

10

5.16 Correlation Matrix to Compare the Features within SiteWhere Category

Tenants L e e e e 76
5.17 Correlation Matrix to Compare the Features within SiteWhere Category

USers o o e e e e e e e e 77
5.18 Correlation Matrix to Compare the Features within SiteWhere Category

ZOMES . . v v it e e e e e e e e e e e e e e e e e 78
6.1 Correlation Matrix to Validate the Abstract Class Model Device 96
6.2 Correlation Matrix to Validate the Abstract Class Model DeviceManager . 97
6.3 Correlation Matrix to Validate the Abstract Class Model Group 98
6.4 Correlation Matrix to Validate the Abstract Class Model GroupManager . 99
6.5 Correlation Matrix to Validate the Abstract Class Model Zone 100

6.6 Correlation Matrix to Validate the Abstract Class Model ZoneManager . . 101
6.7 Correlation Matrix to Validate the Abstract Class Model UserManager . . 102
6.8 Correlation Matrix to Validate the Abstract Class Model EventManager . 102
6.9 Correlation Matrix to Validate the Abstract Class Model TenantManager . 102
6.10 Correlation Matrix to Validate the Abstract Class Model AuthorityManager103
6.11 Correlation Matrix to Validate the Abstract Class Model Pluggable Service,

Platform Information, and Gateway 103
A.1 Index Declaration of the Comparison Correlation Matrix: FIWARE 117
A.2 Index Declaration of the Comparison Correlation Matrix: IBM Watson IoT

Platform 118

1 Introduction

The Internet of Things (IoT) paradigm gained increasing attention and popularity in the
field of information technology (IT) in the last quarter-century [Chal3]. Recently the
term Cyber-Physical Systems (CPS) is mentioned coincidentally. IoT describes the vision
of a completely interconnected world, where the physical world is connected to the inter-
net with the aid of computing devices [Dom+09] [Kha+12]. CPS elaborate this with the
purpose to enable monitoring, interpretation and a possible reaction to physical activi-
ties [Sal+15]. To achieve that, the physical world has to be perceived by physical devices,
which are usually connected to the internet in an autonomous and secure way [Che+12].
Those devices can send the perceived data through the internet to their defined target,
and can possibly be controlled remotely [Zhe+11] [Fan+10] [Che+12] [Kha+12].

Nowadays you can find different software approaches of connected ecosystems for
various target audiences [Pos16]. There are CPS available for companies, which enable
interconnected production processes, just as the approach of Smart Cities or CPS for
consumers. Smart Home and Connected Cars are some collective terms for different
solutions provided for consumers. Since the idea and the core logic of CPS are the same,
independent of the target audiences, and the scope of the CPS, they can be compared
and either expanded or curtailed.

1.1 Problem Domain and Motivation

At the current state of research there is a wide range of open-source and proprietary
software solutions available to establish and operate CPS. Within the Postscapes [oT
Awards 2014/2015 around 160 approaches participated in 13 categories [Pos16]. The
consequence of a missing standard for the design of CPS is, that the software solutions
may differ strongly, and hence cannot be combined or integrated. The intention of
integrating heterogeneous CPS is, to enable the communication, and especially the data
exchange between different CPS platforms. This enables the provision of consistent
data [Cha+94]. This Thesis’ aim is to develop the basis, i.e., an universal abstraction
layer, for the design, and the integration of heterogeneous CPS. The abstraction layer
comprises a reference architecture, which represents the basis for the architectural

11

1 Introduction

design of CPS, as well as an abstract class model, providing a reference for the essential
functionality, and interconnection of the components of a CPS platform.

1.2 Research Issues and Contributions

To accomplish the abstraction layer, different open-source and proprietary software
solutions are considered and precisely analyzed. By selecting different providers, an
overall impression is ensured. Subsequently the components, the architecture, and
the various features are focused. Conspicuous during the initial research is, that the
naming of the components, and crucial fundamentals differ strongly. For instance one
platform uses the device in terms of a hardware entity, where sensors and actuators
can be connected, and which can send and receive messages via a gateway to/of the
platform. Another platform uses the device in terms of a smart device, which has
integrated sensors and actuators, which already pre-processes the data gathered, and
can directly communicate with the platform. Accordingly this circumstance is considered
during the research and elaboration.

1.3 Research Method

Within this Thesis seven different CPS solutions are analyzed and compared. They
are determined accordingly the following aspects: Considered within the selection of
the CPS solutions are software products listed in [Kop15], which represents similar
approaches to an IoT solution introduced in [Gil16]. Since there are not enough detailed
information about this solution available, it is not further considered. Additionally
considered within the selection of the CPS platforms are the nominated CPS solutions
of the Postscape’s IoT Awards [Pos16]. Initially the determining factor is the public
availability of detailed information about the architecture, and the provided features.

The research of the seven CPS solutions is composed as follows: The architecture of
the CPS solutions are described and compared. The conclusion of the comparison is
consolidated within a correlation matrix, where the correlation of the diverse concepts
of the components, and the abstraction levels are consolidated [Zim+13]. Subsequently
the reference architecture is derived. To verify the reference architecture it is mapped
to the analyzed CPS solutions. Within the next step, the features of the different CPS
solutions are compared with a correlation matrix, as well. Thereby the correlation of
the provided operations are consolidated, so the intersection of the functions become
apparent [Zim+13]. Based on those results, the abstract class model is designed. To
validate the abstract class model, the operations of the classes are mapped to the

12

1.4 Structure of the Document

considered CPS solutions within a correlation matrix. Therein the applicability of the
abstract class model is derivable.

1.4 Structure of the Document

This Thesis is segmented into seven chapters. A short introduction to CPS and the
motivation, the research issues, the research method and the structure of the document
are outlined in Chapter 1. The fundamentals of CPS and the analyzed CPS solutions are
characterized within Chapter 2. The precise analysis of the considered CPS solutions
and the derived reference architecture is the content of Chapter 3. The validation of the
reference architecture of Chapter 3 with the considered CPS solutions is described in
Chapter 4. The features of the considered CPS solutions are analyzed more precisely to
derive the abstract class model within Chapter 5. The abstract class model is validated
with the analyzed CPS solutions in Chapter 6. Ultimately a summary of the outcome of
this Thesis, a critical discussion of the results, and a perspective on further research are
given within Chapter 7.

13

2 Fundamentals and Related Work

The following Chapter defines the scope of CPS, and introduces the seven considered
CPS platforms. The first section deals with the definition of CPS, and then describes the
state-of-the-art research, related protocols, and standards in this area. In the second
section each CPS solution is introduced in detail, which creates the basis for the analysis,
and the derivation of the abstraction layer.

2.1 Cyber-Physical Systems

The definite aim of CPS is the integration of physical processes with computation [Lee08].
CPS depend on multiple disciplines, and arise of a complex interaction of embedded
systems, application systems, and infrastructures with the interaction of humans and
technology, where this complex overall interaction is based on their interconnection
and integration [Tal08]. Physical Processes are monitored and controlled by embedded
computers and networks, where the physical processes can affect computations, and
vice versa, using feedback-loops [Lee08] [Rag15].

2.1.1 State-of-the-Art Research

As CPS are gaining increasing attention on the market, as well as in research, many
different angles have been evaluated. Beside the research about the economical, process-
related and social effects, you can separate the technical researches into the following
categories: architecture, security, protocol, and standards issues. Security issues are
excluded from this Thesis, as they would exceed the boundary of this work.

2.1.2 Protocols

To interconnect the components of CPS through the internet, different protocols are
used. The following list highlights the protocols, which are supported by the considered

15

2 Fundamentals and Related Work

CPS platforms, and therefor are described to provide the basis for the analysis of the
CPS platforms. Tough the list has no claim of completeness.

The Hypertext Transfer Protocol version 1.1 (HTTP/1.1) [Fie+99] defines a standard
for a stateless request/response data transfer protocol [Woj16]. As it is based on
TCP, HTTP/1.1 is reliable and connection oriented [Gou+02]. HTTP/2 [Bel+15b] is a
standard extending HTTP/1.1, which enables an improved performance. HTTP/2 allows
concurrent exchanges on the same connection, and it can establish unsolicited push of
representation from servers to clients [Bel+15a]. HTTPS [Res+00] is a secure version of
HTTP. Before the HTTP messages get sent to TCP, they are first sent to a security layer,
where the message gets encrypted. As a result HTTPS is secure, coincidentally flexible,
and easy to administer. [Gou+02]

The Constrained Application Protocol (CoAP) [She+14] is a document transfer protocol,
especially drafted for resource-limited devices and networks [Tob14]. It implements
the Representational State Transfer (REST) [FilOO] architectural style and enables a
transparent mapping onto HTTP, but extends it with native push notifications, and
many-to-many communications [Diol4]. Clients communicate with servers through
connectionless datagrams, following a client/server model [Tob14]. Most commonly
UDP is used as the underlying protocol, but CoAP can also be used on top of SMS
or other packet-based communication protocols [Fri13] [Dio14]. Furthermore there
are approaches, which enable the usage of TCP and TLS as the transport protocol for
CoAP [Lem+14] [ARM11].

Message Queuing Telemetry Transport (MQTT) [OAS14] is an open standard of an publish-
subscribe-messaging protocol for machine-to-machine (M2M) communication. Specif-
ically designed for resource-constrained devices and low bandwidth, MQTT can be
used efficiently in embedded systems [And13] [Gaz+15]. The sender and receiver
communicate via an MQTT-based broker over TCP. Using the publish-subscribe ar-
chitecture pattern, it enables to connect hundreds of thousands clients with a single
broker [Luz+15] [Tob14]. Following this, MQTT enables a one-to-many communica-
tion [Dio14]. MQTT-based brokers support three Quality of Service (QoS) levels for
message delivery: QoS O reliable (fire-and-forget), QoS 1 at-least-once, and QoS 2
exactly once [And13] [Ban+13].

WebSocket [Fet+11] is a network protocol to establish a full-duplex communication
channel over a single TCP connection. Following this, WebSocket enables a low latency
delivery in both directions, where the messages consist of text and binary application
data. [Gril3]

Diameter [Faj+12] is a connection oriented and extendable protocol for authentication,
authorization and accounting of communication partners in a network [Gos12].

16

2.1 Cyber-Physical Systems

The Advanced Message Queuing Protocol (AMQP) [OAS12] is an open standard application
layer protocol for message-oriented middleware [Gaz+15]. It comprises both, a network
protocol, and a protocol model. The network protocol specifies the entities, i.e., the
producer, consumer, and the broker, which interoperate with each other. The protocol
model defines the representation of messages, and the commands to interoperate among
the entities [Luz+15]. It provides reliable, guaranteed, in-order, point-to-point, and
store-and-forward message delivery [Sub+08] [Luz+15]. Furthermore the data content
of an AMQP message is opaque and immutable, the messages are self-contained, and
additionally the size of a message is not limited [Luz+15].

The Simple or Streaming Text Oriented Messaging Protocol (STOMP) [Stol6] is an inter-
operable protocol designed for asynchronous message exchange between clients via
mediating servers. STOMP messages are defined as text based wire-format [Sto16].

2.1.3 Standards

To support the communication of the CPS components, standards are established. The
following list describes those supported by the analyzed CPS platforms, and like the
protocol list it has no claim of completeness.

The European Telecommunications Standards Institute’s Machine-to-Machine (ETSI
M2M) [ETS13] standard provides specifications for M2M services and applications,
where it focuses on aspects of the IoT. ETSI M2M defines a functional architecture and
the interfaces required to support end-to-end services. The Service Capability Layer (SCL)
is formed by a set of functionalities within the M2M core, and can be utilized by M2M
applications through a REST API. The SCL sits on top of the connectivity layers, and
the API for applications is based on REST principles allowing scalability, unreliable
connections, and binding to, e.g., HTTP or CoAP. However ETSI M2M does not specify
how to support transport protocols [Che+14]. Within the functional architecture each
physical equipment is represented as an instance of an SCL. Hence each device, gateway,
and the network will find a corresponding entity within the SCL, so the abstract model
will be a collection of Device SCL, Gateway SCL, and Network SCL. Furthermore each
SCL instance is responsible for a subset of resources modeled and named according a
recursive hierarchical tree [Gri+14].

The European Telecommunications Standards Institute’s oneM2M (oneM2M) [ETS15]
standard is a technical specification of the requirements of a generic distributed M2M
software service layer. It provides standardized interfaces, so they are applicable to the
entire ecosystem. oneM2M provides common service functions, which are exposed to
applications via RESTful APIs. Even oneM2M is designed IP-based, it interworks with
specific IP and non-IP technologies in the M2M area networks [Onel5]. Figure 2.1

17

2 Fundamentals and Related Work

Application
Layer AE AE

Mca Mca
Service CSE CSE CSE
Layer
Mecen Mcg Men "\\

Network
Layer

Underlying Underlying
Network Network

Application Service Node Middle Node Infrastructure Node Inf. Node

Figure 2.1: oneM2M Architecture based on [Ell14]

shows the architecture, which contains different nodes, i.e., an Application Service Node,
a Middle Node, and an Infrastructure Node, where a node is the logical equivalent of a
physical, or possibly virtualized device. Each node has one or more Network Services
Entity (NSE) on the Network Layer, which are connected with each other through the
Underlying Network. Besides the pure data transport, they provide services to the
Common Services Entities (CSEs). A CSE provides the set of service functions that are
common to the M2M environments, and each node has a CSE on the Service Layer.
Additionally each node has multiple Application Entities (AEs) on the Application Layer,
which provide application logic for the end-to-end M2M solutions. A Reference Point
describes one or more interfaces between two service providers. There are four interfaces
described[Ell14]:

1. The Mca which is the reference point between an AE and a CSE of the same node.
2. The Mcn describes the interface between a CSE and a NSE of the same node.

3. The Mcc is a reference point between two CSEs of a different node.

4. The Mcc’ which describes the interface of two CSEs of the same node.

Open Mobile Alliance’s Lightweight M2M (OMA LWM2M) [Opel5] is an industry standard
for the device management of M2M or IoT devices, which was approved and published
in December 2013. OMA LWM2M provides an efficient device-server interface, based on
open IETF standards. Based on CoAP and Datagram Transport Layer Security (DTLS)
with bindings to UDP and SMS, it is optimized for the communication over sensors- and
cellular networks. OMA LWM2M provides an extensible object and resource model for
application semantics, which allows to enable application data exchanges, in addition
to the core device management features, such as firmware upgrade or connecitivity
monitoring [Shel4] [Der+15].

18

2.2 State-of-the-Art Technologies

The Open Mobile Alliance’s Next Generation Service Interfaces (OMA NGSI) [Opel2b]
are context management function specifications of the NGSI Enabler, which provides
access to information about Context Entities through interfaces. NGSI defines two
abstract interfaces with the following operations: NGSI-9, the Context Entity Discovery
Interface, and NGSI-10, the Context Information Interface. NGSI-9 comprises the
Register Context Entity Operation, which enables the context management component
to allow registering and updating context entities, their attributes, and availability.
Furthermore NGSI-9 embraces the Discover Context Entity Operation, enabling an
actor to discover available context entities, and their attributes. NGSI-10 comprises the
Update Context Operation, which enables an application acting as a context producer
to provide or update context information to the context management component, and
the Query Operation, enabling applications to act as context consumers to query for
context information. Additionally both NGSI-9 and NGSI-10 comprise the Subscribe
and Notify based Context Entity Discovery Operation, which enables an application
to issue a subscription to the context management component on behalf of another
application, such that the second application receives the respective notification upon
the availability of new context entities, or changes to available context entities, and their
attributes [Opel2b] [Opel2a].

2.2 State-of-the-Art Technologies

This Section describes the considered CPS platforms. The first four platforms are
open-source solutions and the following three are proprietary solutions. As it prepares
the basis for the following analysis, an overall insight is given, and the architectural
components are described.

2.2.1 OpenMTC

The Open Machine Type Communications (OpenMTC)' platform implements an open,
cloud-enabled CPS solution, provided by Fraunhofer FOKUS and Technische Unversitét
Berlin. OpenMTC is designed to act as a horizontal convergence layer in terms of an M2M
middleware for machine type communication, supporting multiple vertical domains, i.e.,
market segments like automotive, and eHealth. They can be deployed independently, or
as part of a common platform. As it is designed to act as an M2M middleware, the aim
is to provide a standard-compliant platform for M2M services. The purpose of OpenMTC
is to interconnect various sensors and actuators from different vertical domains with a

Thttp://www.open-mtc.org

19

2 Fundamentals and Related Work

cloud-enabled, open platform, which aggregates the collected data, forwards the data
to the target applications, and mediates instructions to end devices for an event-based
control.

Figure 2.2 shows the architecture of OpenMTC. It consists of two common M2M capability
layers: the OpenMTC Front-End in the field domain and the OpenMTC Back-End in the
infrastructure domain, i.e., a cloud-based platform. The OpenMTC Front-End enables
the connection of sensors and actuators to the platform, and therefor it communicates
with the Connectivity component of the OpenMTC Back-End. This communication is
enabled either by a direct, managed or un-managed access and transport via HTTP,
CoAP, WebSocket or MQTT, or by a managed connectivity via the OpenEPC components.
OpenEPC provides a network layer mobility concept, which forwards the data traffic,
and ensures the access control, and which provides the Policy and Charging Rules
Function (PCRF), the Acess Network Discovery and Selection Function (ANDSF), as
well as the Home Subscriber Server (HSS) [Corl6b]. The PCRF and the ANDSF are
part of the OpenEPC Policy Engine and Control Entities, which make policy based
decisions for the connectivity, the access control and the resources allocated for mobile
devices [Corl6a]. The HSS is part of the OpenEPC Subscription Data Entities, which
store update, and transmit notifications on the users’ subscription profile towards the
other EPC authorization entities, and which supply information and mechanisms for
the authentication of mobile devices [Corl6a]. Furthermore the OpenMTC Front-End
provides an access point for the connection of further applications. The OpenMTC
Back-End provides the core funcitonality of the platform, and the connection of further
applications and other M2M platforms. It supports different capabilities, which are
defined by the ETSI M2M and oneM2M specification, namely the Device SCL, Gateway
SCL, and Network SCL. Additionally OpenMTC supports the OMA NGSI 9 and 10
interfaces for context management on the gateway and the back-end server.

By supporting the transport protocols HTTP, CoAP, Diameter, and WebSocket, OpenMTC
allows to support different type of domain-specific applications with various interaction
models, i.e., push/pull and subscribe/notify. Furthermore this enables applications and
end-devices to interact in real-time over the web, or any other IP-based network, even
via multicast [Fral5].

20

2.2 State-of-the-Art Technologies

'd N\
' . Intelligent)
E g Environment eHealth Tra:sicftef‘;ion Smart Grid
o
<% e App App Systems App App
\ L
Mla/Mca
'd N\ (\\ .\
< || [pevicearr] [pataar] [Networkar] o
'-ﬁ Application Enablement %
ﬁ & - J =
3 ' Mcc E
© Core Features <
T ©
% s : N g
< Connectivity S
© 3
Transport Protocols Network Exposure /
. Wi N \ J
Mid/Mcc
p
Managed or [PCRF] [ANDSF HSS
Un-managed Managed Connect‘lwty
access and
L transport [Acess and Core - OpenEPC
() 4 \
E Connectivity
o Transport Protocols] [Network Exposure m >
o . ke]]
= i S =3
S T g
e Core Features 13 o =
= - 2 3 S
8
o [FS20] [WiFi] [ZigBee Bluetooth]
) J
. L

Sensors & Actuators

Figure 2.2: OpenMTC Architecture based on [Fral5]

2.2.2 FIWARE

FIWARE? is an open, cloud-based infrastructure for CPS, funded by the European Union
and the European Commission. It is an enhanced OpenStack-based cloud, which hosts
capabilities and the FIWARE Catalogue, containing a rich library of components, called
Generic Enablers (GE). Figure 2.3 depicts the overall architecture, i.e., the GEs of
FIWARE. The dottet boxes represent external entities. Beside the rich library of GEs,
the Catalogue also contains tools and best practices. The GEs of the IoT component
are spread over two different domains: the IoT Back-End and the IoT Edge, which

2https://www.fiware.org

21

2 Fundamentals and Related Work

are depicted within Figure 2.4. The IoT Back-End is hosted in a cloud datacenter,
and comprises a set of functions, logical resources, and services, i.e., the IoT Device
Management, the IoT Discovery, and the IoT Broker. It is connected to the Data Context
Broker via an API, which ensures that the IoT resources are translated into NGSI
Context Entities. The Data Context Broker enables to publish and subscribe to context
information, i.e., it provides the required functionality for the communication between
the devices, users, and applications. The IoT Device Management is the central enabler
at the IoT Back-End for most common scenarios. It is responsible for connecting physical
devices to a FIWARE platform, managing loT-related NGSI Context Entities, and the IoT
Edge Management.

The IoT Broker GE takes care of communicating with the different IoT Devices and
Gateways to retrieve the needed information on behalf of the applications, using the
NGSI protocol. It is an IoT Back-End enabler, interacting with the whole IoT deployment
to satisfy the requests, and foreseen to run on a machine in a data center, where it
serves as a middleware, which enables fast and easy access to IoT data. It is a stateless
component, neither it stores context information, nor context availability information.
The IoT Discovery is responsible for the context availability registrations from IoT Agents,
i.e., making it the access point for information about entities and their attributes. The
role of IoT Agents can be played by the Data Handling GE (IoT Edge), the Device
Management, or other [oT Back-End Systems.

The IoT Edge comprises all elements of the physical IoT infrastructure, i.e., IoT end-
nodes (Devices), IoT gateways, and IoT networks. It is made of all on-field IoT infras-
tructure elements needed to connect physical devices to FIWARE Apps. The IoT Edge
and its related APIs will facilitate the integration of new types of gateways and devices.
An IoT end-node or Device is a hardware entity, component or system, which either
measures or influences the property of a thing, or a group of things, or performs both
activities. Sensors and actuators are devices, while complex physical devices with several
sensors and actuators are named IoT end-nodes. Devices might use standard or propri-
etary protocols, which can be translated into any other protocol at the IoT Gateways.
Part of the IoT Gateway is the GW Logic, which is responsible for the communication
with the Back-End, and IoT and non-IoT devices. It includes functional components to
handle registration or connection phases towards the Back-End or Platform, to translate
incoming data and messages in an internal format, and to send the outgoing data or
messages in ETSI M2M format. Furthermore it manages the communication with IoT
resources. The Protocol Adapter GE, which is part of the IoT NGSI Gateway, deals
with the incoming and outgoing traffic and messages between the IoT Gateway and
registered devices, to be served by either the Gateway Device Management GE or the
Data Handling GE. The Data Handing GE, also part of the IoT NGSI Gateway, addresses
the need of filtering, aggregating, and merging real-time data form different sources. It
can be operated stand-alone, but typically the Data Handling GE receives events from the

22

2.2 State-of-the-Art Technologies

[ESTMIA] UO Paseq 2INIddNYDIY [[BISAQ TYVMIL €'¢ 9m31]

g N\ ataaa——— T —————— O\
i I (1eniA '8'9) ! I sylomisN ¥
TR0 [[LT i saulyoe iy ! $S920y : l01pad
D1 WISPIO g siikeq 1 | Sumoyuow 1L SuiSsey b SOUWEN posadled L < P
AR G I I S I S S B i =7 =R | Jsesnpuz G T spompen i || 190
fi1 uopeayddy | s < ! podsuest “
(swaisAs pu3-yoeg Sunsixa) asiwaid ainnasenu] M_%Hm
... o F&D
\ j (AV 4 A
Suuspuay Ayjeay pa aJem Axoud Iu0)RD [3uD734u] 921A9Q pa
pnojy -juswsny -3|PPIN pnop) “3"g JJomiaN -}93Uu0) anzi 93e4015 34ndas L®N>_mc<
¢) 2oed|
Japinodd eyd) Jausisag = ~ /A ~ uoRoe3aQ aeMiEN
eleq |0d [enMIA CRIINEMNI]| 28e101 199100 (anz1) ‘|pueH Jaxoug
. Axoidpnopd ered(mo) Loi(g) vSOYd
Japinoid ainmde) uopoe Anaag Andag
ase ase
elegsio as/ae -191UI A/Y Sunoy SuiBuoisia J3|npayds 'y 1020} JwWsuN .uwmucwu -awmycmu
-lUo -04d A qor -04d(Mm9) | ["8guod(g)
uoneziu 023d0S
IN-ag IN-ac
-0Jyauhs JWSuN “JWSuN qwSu JWSuN JwsuN MOJ4 ploJpuy
n $13[98p3 0INIBS "Jeleq "a(mo) 201r2Q(q)
Y g3 '3 31eM3|ppIN _08._2_2\ S pno| JAN ho_\ Butioy-1uop mmmmwm
/F =\ \ wAuouy gq
‘ddng ddy wuope|d 439 uon Aloy soy AnsiSoy dwo) suignid
JpuewWsas uopedo -elpan -1soday : ERIISEIS 5 1l
uljpueH eieq
' 09PIA Jouuy Jj04g 2oe|d Sanag ‘dwo) dnyse
‘dwo) opueWSS Aanp SENFLIY] wasyisn ERIISELS JwSuw Aauspy angojezes
204d-a4d sisAjeuy Jx0.9 21015 dnysep 135
elepedn eeqgsig gnsqgnd "|ddy |0J3U0D S92y
Jageue
eleq y1omauwel ssauisng / sddy Anoag -
- AN 2N J
......................... _m.l..l.h.|..|.|||||||||||||||_ _-||||||H|#M||||||||||||_]
! auJalu| aining ! !
| S92NSS “ | SuoRedlitde IatImul simnd ! S22IA13S pue suopediddy : sjoo]

—

23

2 Fundamentals and Related Work

M)
Data Context Broker -
NGSI 10
e Y
' loT Back-End NGSI 9 :
l NGSI 10 |
1 1
1 L 1
1 1
! | loT Device Management O loT Discovery (—(O—{ loT Broker |
L NGSI 9 NGSI9 L
i |
1 1
L S S A A]
UL 2.0/HTTP,
mart, O edge APl () —0 Onesi 10
LWM2M/CoAP, etc. NGsI'9

P gy s s ooy | SN || S

1
 loT Edge !
1 1
i i
' | l1oT Gateway 1oT|NGSI Gateway ;
1 1
1 1

1
i GW Logic O GW Logic Protocol Adapter —(—{ Data Handling !
! GW2GW API NGSI 10 g
; i
1 1
1 1
N O N A 1

(l)Device API (I) Device API (I)NGSI 10

Device Device NGSI Device

Figure 2.4: FIWARE Architecture based on [FTIW15b]

Gateway protocol Adapter GE, and propagates the processed data towards the IoT Broker
GE. Additionally it handles data streams from IoT devices that cannot continuously be
online. FIWARE is based on OMA NGSI 9 and 10, and OMA IWM2M. It supports the
transport protocols HTTP, MQTT, and COAP [FIW16a] [FIW16c] [FIW16b].

2.2.3 SiteWhere

SiteWhere?® is an open CPS platform developed by SiteWhere LLC. It supplies a server,
based on proven technologies, which acts as a controller for the processing of device
data. The server can be installed on a local machine or it can run in the cloud. It is
designed to scale up to billions of device events per day. SiteWhere uses a pluggable
framework approach, which allows third parties to extend and customize the system.

3http://www.sitewhere.org

24

2.2 State-of-the-Art Technologies

By providing REST services, SiteWhere allows external applications to interact with all
facets of the system. Additionally it provides out of the box integration support for many
popular frameworks and services.

As Figure 2.5 shows, SiteWhere is designed as a multitenant system. Multiple IoT appli-
cations (tenants) can be served from a single SiteWhere instance. To assure that, no data
is intermingled between tenants, each system tenant has a separate data store. Addition-
ally each tenant has a separate processing pipeline, which can be customized without
affecting the processing of other tenants. Each SiteWhere Tenant Engine comprises a
Device Management and a Communication Engine. The Communication Engine handles
all functionality related to interacting with devices over “almost any transport protocol”,
explicitly named are MQTT, AMQP, Stomp, and WebSocket. This functionality includes
the registration of new or existing devices, the receiving of events from connected
devices, and the delivery of commands to connected devices.

SiteWhere never deals directly with a database. The system defines SPIs for the data op-
erations, and expects datastore implementations to comply with the required interfaces.
There are two core interfaces the datastore needs to implement: the IDeviceManagement
and the IUserManagement. The IDeviceManagement contains all core device manage-
ment calls including CRUD methods for sites, specifications, devices, events, etc. The
IUserManagement contains all core user management calls including CRUD methods for
users, authorities, etc. SiteWhere offers two highly tuned and very scalable persistence
implementations: MongoDB [Mon16], where the implementation is optimized by the
MongoDB team, to push in excess of 10,000 events per second on medium power cloud
instance, and Apache HBase [Thel6], where the implementation is based on a cus-
tomized schema, designed to scale linearly across a cluster that can be expanded if more
capacity is needed. Both implementations conform to SiteWhere device management
APIs, which provide a consistent view of the data independently of where it is stored.

SiteWhere defines SPIs for general asset types, and allows asset modules to be plugged in
to provide asset definitions. SiteWhere assets represent objects in the physical world, i.e.,
people, places, and things, where Device specification assets are used to describe the
hardware information or configuration for a type of device, and the device assignment
assets are used to describe an entity associated with a device. It uses asset modules in a
read-only manner, and only ever references entities based on a unique ID understood by
the underlying asset module. SiteWhere enables integration by offering asset information
via a pluggable asset management framework, which allows external systems to drive
information. Tracking is enabled by providing an assignment history by capturing device
assignments over time [Sit16a] [Sit16b].

25

2 Fundamentals and Related Work

SiteWhere Admin Appl.

SiteWhere

SiteWhere Tenant Engine

Device Management

Communication Engine

Inbound Pipeline

2]
a
] <
Third Party Appl. —
wn
L
o
SiteWhere Java Client
MuleSoft AnyPoint P.
c
(@]
MS Azure EventHub =]
o
Qo
Twilio Cloud Comm. m
c

Apache Solr

Outbound Pipeline

S|dS 28eJ01s eyeq [

Big Data Storage

Apache HBase

MongoDB

Event Sources

Command
Destinations

S1dS 19SSy

Asset Modules

Identity Mngmt.

Asset Mngmt.

Location Mngmt.

MQTT, AMQP,
Stomp, etc.

MQTT, AMQP,
Stomp, etc.

Data from
Devices

Commands to
Devices

Figure 2.5: SiteWhere Architecture based on [Sit16d]

26

2.2 State-of-the-Art Technologies

2.2.4 SmartThings

SmartThings* is an open smart home platform developed by SmartThings Inc. As it is
designed for smart homes, it depicts only a subarea of CPS. The approach of SmartThings
is to separate the intelligence from devices, where devices are limited to their primitive
capabilities [Sma1l5b].

Figure 2.6 shows the architecture of SmartThings. Each device has capabilities, which de-
fine and standardize available attributes and commands for the device. The SmartThings
Hub Connectivity connects the devices to the platform, and provides communication
between all connected devices, the SmartThings cloud, and mobile application. The
Client Connectivity enables Clients(-Devices) to connect to the platform. Using the
Device Type Handler methods, the event-messages sent by the devices are translated
into a normalized SmartThings event. The Subscription Processing component provides
devices and users to subscribe to events, i.e., it enables the event processing. Within

Web Ul Core APIs

External
System

SmartApp Management & Execution

=
"

Application Management System
Event
Stream

Physical
Graph

Subscription Processing

Device Type Handlers

== =

Hub Connectivity Client Connectivity

I

Clients (-Devices)

-

Sensors & Actuators &
Devices & Users & Things

Figure 2.6: SmartThings Architecture based on [Smal5b]

“https://www.smartthings.com

27

2 Fundamentals and Related Work

the Application Management System, the SmartApp Management & Execution handles
external calls to SmartApp endpoints, the execution of SmartApps, based on triggering
subscriptions, and scheduled methods. Furthermore the Web UI and Core APIs provide
features for monitoring the devices, hubs, locations and other aspects of the system. The
Event Stream, External System, and Physical Graph components are external applica-
tions, which can be connected to the platform over the pictured access points of the
components within the system [Smal6].

2.2.5 AWS IoT

Amagzon Web Services IoT (AWS IoT)> is a managed cloud platform for CPS. It provides
secure, bi-directional communication between internet-connected things, i.e., sensors,
actuators, embedded devices, smart appliances, and the AWS cloud. Features of AWS
IoT are collecting, storing and analyzing data, as well as the creation of applications to
control devices.

Figure 2.7 shows the architecture of AWS IoT. It consists of the following six components:
the Message Broker, the Rules Engine, the Thing Registry, the Thing Shadows Service, the
Thing Shadow, and the Security & Identity Service. Within the figure of the architecture,
the Thing Registry, the Thing Shadows Service, and the Thing Shadow are combined
to the Thing Shadows component. Within the documentation of AWS IoT, the Device
Gateway is mentioned as another component. Since it is used in the same way like
the Message Broker, it is assumed, that the Device Gateway and the Message Broker
are used as synonyms, which provide the same functionality [Amal6c] [Amal6e]. The
Message Broker enables devices to securely and efficiently communicate with AWS IoT. It
supports the publish-subscribe messaging pattern [Mil+10], which enables scalable, low-
latency, and low-overhead communication [Amal6e]. By using the publish-subscribe
model for message exchange, it enables one-to-one and one-to-many communication.
MQTT and WebSockets are supported for publish and subscribe, and HTTPS for publish.
Additionally it is possible to implement the support for proprietary or legacy protocols.
The Message Broker provides a secure mechanism for things and IoT applications to
publish and receive messages from each other. The Rules Engine provides message
processing, and integration with other AWS services. By defining one or more actions to
perform, based on the data in a message, a rule can be created. When a rule matches a
message, the Rules Engine invokes the action using the selected properties. To republish
messages to other subscribers the Message Broker can be used. The Thing Registry
organizes the resources associated with each Thing. The Thing Shadow Service provides
persistent representations of the Things in the AWS cloud. A Thing Shadow is a JSON

>https://aws.amazon.com/iot/

28

2.2 State-of-the-Art Technologies

Amazon
., DynamoDB

A
A 4
N

Things €

Message Rules Amazon Kinesis
Broker Engine
Thing SDK Thing AWS Lambda
Shadows
A A
. Amazon S3
A
v v v

Amazon SNS

Security & Identity

loT Appli-
cations

N

Amazon SQS

A 4

AWS SDK

Figure 2.7: AWS IoT Architecture based on [Amal6c]

document, used to store and retrieve current state information for a Thing. By using the
Thing Shadow, to get and set the state of a Thing, the Thing itself can be offline, and will
synchronize as soon as it reconnects. The Security & Identity Service provides shared
responsibility for security in the AWS cloud. The Message Broker and Rules Engine use
AWS security features to send data securely to devices over the Thing Shadow, or other
AWS services. Additionally the Security & Identity Service grants permissions, which
AWS resources may be used, to perform the corresponding action of a Rule. AWS IoT
provides interfaces to connect further applications to the platform [Amal6a] [Amal6d].

2.2.6 Microsoft Azure IoT Hub

Agzure IoT Hub® is a managed, cloud-based service, which enables reliable and secure
bi-directional communication between millions of IoT devices and a solution back-end,
provided by Microsoft. Likewise Microsoft offers Azure IoT Suite, which is a collection
of preconfigured solutions [Micl6c].

Shttps://azure.microsoft.com/en-us/services/iot-hub/

29

2 Fundamentals and Related Work

Figure 2.8 shows the architecture of a solution including the Azure IoT Hub. In a
typical CPS solution the Azure IoT Hub is a managed service, and responsible for
establishing bi-directional communication between devices and a cloud solution back-
end, by implementing the service-assisted communication pattern [Vas14]. The aim of
service-assisted communication is to establish trustworthy, bi-directional communication
paths between a control system, i.e., the IoT Hub, and devices, which are deployed
in untrusted physical space. Even intermittently connected devices can be used, as
the messages are sent in a durable way . The Azure IoT Hub supports the transport
protocols HTTP/1.1, AMQP, and MQTT, with which a device can communicate directly
with a cloud gateway endpoint within the IoT Hub. If a device cannot use any of those
protocols, it can connect through the Cloud Protocol Gateway, which performs protocol
translation. Another optionally intermediary between the devices and the IoT Hub is a
Field Gateway, which is deployed locally with the device, and provides local management
services for the device by performing an active role in managing access and information
flow.

The IoT Hub is connected to the Event Processing and Insight component, and to the
Device Business Logic, Connectivity Monitoring component, which provides the core
functionality of the platform. Furthermore the IoT Hub is connected to the Application
Device Provisioning and Management component, which represents the access point for
further possibly connected applications.

The REST APIs for the Azure IoT Hub offer acces to the device, messaging services,
and the resource provider, i.e., the IoT Hub. Messaging services can be accessed from
within an IoT service running in Azure, or directly over the internet from any application
that can send HTTP/HTTPS requests, and receive HTTP/HTTPS responses [Micl6a]
[Micl6c] [Micl6b].

30

2.2 State-of-the-Art Technologies

. Device Business Application Device
Event Processing . . .
. Logic, Connectivity Provisioning and
and Insight .
Monitoring Management

| |

N I A
[Cloud Protocol Gateway]
4 cloud
v field
[Field Gateway]
A I

Y \ 2
Device [IP-capable | Device Device |PAN-devices| Device

Figure 2.8: Azure IoT Hub Architecture based on [Bet16]

2.2.7 IBM Watson IoT Platform

IBM Watson IoT Platform’ is a cloud-based platform solution for CPS, provided by IBM.
It can be integrated into the IBM Bluemix cloud, and hence connect to their services.
Since IBM recently released the IBM Watson IoT Platform, the available information, and
documentation is used [Kuf16]. If the information is not updated, the documentation

of the IBM IoT Foundation is considered, since it is the basis of the IBM Watson IoT
Platform.

As the architecture of the Watson IoT Platform within Figure 2.9 depicts, it comprises
four main building blocks: Connect, Information Management, Analytics and Risk
Management. The Watson IoT Platform Connect component easily connects devices

"http://www.ibm.com/internet-of-things/iot-platform.html

31

2 Fundamentals and Related Work

[loT Industry Solutions Third Party Apps]

IBM Watson loT Platform

Analytics Risk Management

Information
Connect
Management

Bluemix Open Standards Based Services
Flexible Deployment

Figure 2.9: IBM Watson IoT Platform Architecture based on [IBM16a]

from chips to intelligent appliances to the platform. It performs device management
functions, and scales through cloud-based services. The Information Management
transforms and stores the data, collected from diverse data sources and platforms. The
Watson IoT Platform Analytics enables to gain insight from huge volumes of IoT data,
to make better decisions and optimize operations. Real-time analytics can be applied
to monitor current conditions and respond accordingly. The Risk Management uses
extensive dashboards and alerts, to manage risk and gather insights across the entire IoT
landscape. It enables to act on notifications, and isolate incidents generated within the
environment. Furthermore the Watson IoT Platform enables the connection of further
third party applications, which are not part of the services provided by Bluemix. The
Watson IoT Platform supports the transport protocols MQTT and HTTP [IBM16c].

32

3 Design of the Reference Architecture

The following Chapter analyses and compares the considered CPS solutions, described in
Chapter 2.2. The architecture components, and the definitions of those components are
explored. On basis of this analysis, the requirements of the reference architecture are
derived, and the reference architecture is designed. Within the reference architecture
every component is defined.

3.1 Analysis of the State-of-the-Art Technologies

Starting point of the analysis of the state-of-the-art technologies is the examination of
the architecture of the considered CPS solutions.

Every platform has an external component “device”, and another internal component for
managing the connection of the devices to the platform. The device component differes
by the degree of abstraction. The device component of the platform FIWARE is used in
terms of a smart device, i.e., it has integrated or connected sensors and/or actuators, and
a low scale of intelligence to perform, e.g., initial filtering of the data, and it can directly
communicate with the core logic of the platform. The platforms FIWARE, SiteWhere,
AWS 10T, Microsoft Azure, and IBM Watson IoT Platform use the device component in
terms of a device with integrated or connected sensors and/or actuators which gathers
and routes the data, but without any intelligence. This means that they can only send
data and receive commands. Contrary to that, the platforms OpenMTC, and Microsoft
Azure use a device component, as well as a sensor and/or actuator component.

Every platform has a component for managing the connection of the devices to the
platform. The level of detail of the representation is dependent of the degree of
abstraction of the device component. Commonly, the connection component manages
the devices and the connection of the devices, translates the messages sent from and to
the devices into the required format, and routes the messages to the defined receiver.

Within every considered platform, the core functionality is found either on top of the
connection component, or the core functionality comprises the connection component.

33

3 Design of the Reference Architecture

The core functionality of the platforms is composed of different smaller components,
differing in the level of detail within the representation.

Every platform enables the connection of further applications, and data sources. No-
ticeable thereby is, that the platforms OpenMTC, SiteWhere, AWS IoT, SmartThings,
as well as partly Microsoft Azure, and IBM Watson IoT Platform enable the whole
representation, analysis, storage, etc. of the data over connected applications. Within
FIWARE, Microsoft Azure, and the IBM Watson IoT Platform it is possible to connect
further applications, and data sources, but the representation, analysis, and storage of
the collected data is part of the platform. Regarding the last two mentioned platforms,
the connected applications depict an extension of the existing functionality.

Based on the above described analysis and comparison of the seven considered CPS
platforms, the following universal architecture components are identified: Device,
connection, core functionality, and further applications and/or further data sources com-
ponents. Following this, a precise mapping of those components to the components of
the considered CPS platforms is possible. Correlation Matrix 3.1 depicts the summarized
comparison of the architecture components. Subject to the universal description of the
above exposed components, the correlation matrix identifies the name of the correspond-
ing components of every platform. Since the analysis of the device component shows,
that three diverse concepts of devices are used, namely sensors/actuators, devices, and
smart devices, each of those concepts is considered. They comprise the first three rows of
the correlation matrix. The last three rows comprise the remaining exposed components,
namely the connection, the core functionality, and a further applications and/or further
data sources components.

34

3.1 Analysis of the State-of-the-Art Technologies

$9INIINYDIY A30[OUYDI], PAISPISUOD) Y3 JO XLIIBJA UOLB[SLIO) :I°E d[qeL

1uawAo|dag
9|qIX3|4 / SIS
paseg spiepueis
uadQ xiwan|g
/ sddy Awned paiyl
/ suonnjos Aisnpuj 10|

juswadeuen
pue 3uluoIsInoId
921A9Q uonedlddy

suoned|ddy
10] / S92IAIBS uozZRWY

ydeuo |eaisAyd
/ Wa1sAs [euss1x3
/ Weans Juang

SIdS 18ssY
/ SIdS @8eJo01s eieq /
SIdV 1S3¥ / uonessaiu|

(24n12911YydJe
ul pajuasasdas jou) A

wJoje|d INZIN
JayyQ / suoliedy|ddy

$324n0S e1eQ J9Yling
/ suonediddy Jayying

juswadeue
uoljew.oyu|

+juawaseueln

sty + sondjeuy

Sulonuon
ANA13d2UU0) 21807
ssauisng adlne(Q +
1y3isu| pue 3uissadold
JUSA] + qNnH 10|

(Aauap) 18 Ayundas +)
Mopeys
3ulyy +auidu3g ss|ny

3uissado.d
uonduoasgng

+ Wa3sAS Juawadeuey
uonedlddy

auidu3
JUBUD] AIYMIMS

19049 1X33U0)
eleq + puayoeg 0|

juawa|qeuy
uonedlddy + saunjeaq
940D puj-yoeg

Ajeuonoung aio)

Aemaien

(Av3uap| 13 Ayunaas

si9|pueH adAL

10] uosie NG

10] 31nzy 1OSOIN

s|dV ANAID9UUO) juauodwo)
199UU0) p|al4 + Aemalen + mopeys 3uiyj +) 221A2Q + AJIAI3DRUUOD [BulSul uonedIuNWWOo)
Sunapuoq +98p3 10| pu3-yoeg +-juoi{ |uoidauuo)
10203044 PNo|D 19y 04g a8essa|n JU3I|D pue gnH

ANA1O2UUO)

pu3-yoeg + $921n0Q
J3UUO! ERINE] s3ul - - ERIIE] ERINE]
¥) 1sa L N30 ISON / 2212a AAI309UUO) + S24N1ed [1ews

940D pu3-juoi4
saulyL
$921A9(Q 0} SpUBWIWO) AAI309UUO)) + S24N1EDH
103UU0) 221n9Q sSulyl 3 SJ9SMN 19 SINQ 92I1A3Q ISON / @21A8Q EERILE]
/ $921n8Q Wouy ereq 940D pu3-juoi4
3 SJ03EeNIIY 19 SIOSUIS
saulyL
s101enoy
103UU0) - sSulyl 3 SIS 19 SIIAIQ - - S0J3}BNIIY 13 SIOSUDS 105D
3 SJ03EeN1IY 19 SIOSUIS / S
wJiojie|d nH
G < 10] SMVY ssulylews 1d3YM3US JHVYMI4 J1uado

35

3 Design of the Reference Architecture

3.2 Requirements of the Reference Architecture

Based on the analysis of the considered platforms, and the comparison of the archi-
tecture components in Table 3.1, the requirement of the components of the reference
architecture can be derived. Initially it is important to distinguish and define the device
component, as it is used in different ways. As the major intersection is the utilization
as a device with integrated or connected sensors and/or actuators, which gathers and
routes the data, but without any intelligence, this constitutes the basis for the further
research.

The connection component should be able to manage the connection between the devices
and the platform. Additionally it should be able to route and translate the messages.
Therefor, the messages sent by the devices to the platform have to be translated into
the required format of messages inside of the platform, and vice versa. The connection
component should be extendable, so that even devices with a transport protocol or
standard, different from the ones supported by the platform, can be used.

The core functionality component should comprise features to manage the devices,
users, and possibly grouped entities, and to aggregate and utilize the messages re-
ceived and sent. Since this component represents the logic of a platform, the features
are precisely analyzed, and an abstract class model is designed and discussed within
Chapter 5 and 6.

Furthermore the application component should enable the connection and usage of
further applications, and that messages can be exchanged in the required form. Hence
the application component should support the access through various messaging formats.
Likewise the further data source component should enable to connect external data
sources, and to retrieve and use their data.

3.3 Reference Architecture

Following the requirements of the reference architecture, Figure 3.1 shows the derived
reference architecture of a CPS. The components are defined as follows:

Sensor & Actuator

A sensor is a hardware component gathering the physical space around it, e.g., by
measuring the temperature, and sending the gathered data to the connected device,
without any further logic. They are used to translate changes within the physical
environment into electrical signals [Anj+02]. An actuator is a hardware component,
which can perform a command, e.g., by turning up the heater. Actuators only receive

36

3.3 Reference Architecture

[Application } [Further Data Source}

()
> loTIM

(. J
N
\ 4

(N\

Gateway

(. J

N
Device

[Driver J
N

4

[Sensor/Actuator 1

Figure 3.1: Reference Architecture

commands from their connected device, without any additional logic, they possibly send
an acknowledgement, that they have received or even performed the command. They
are used to act on the physical environment by translating electrical signals into some
kind of physical action [Anj+02]. A Sensor or an actuator is always physically connected
to a device, which then communicates with the platform, they never communicate
directly with the platform.

Device

A device is likewise a hardware component, which has sensors/actuators physically
connected or even integrated, and which can communicate with the platform. Devices
forward the data received from the sensors to the platform, just as they forward the
commands from the platform to the actuators. A device can communicate directly with
the platform, if it supports the corresponding transport protocol, like HTTP, MQTT, or
CoAP, and a compatible payload format, like JSON, or XML. Mostly they are connected
to a gateway, which can translate the messages accordingly. The device comprises the
device driver, which enables the communication of the device with the connected sensors
and actuators.

37

3 Design of the Reference Architecture

Gateway

The gateway ensures the connection, and enables the communication between the
devices and the platform. It manages the device connections, by supporting the re-
quired communication technologies, and transport protocols. Additionally the gateway
translates the received messages into the payload format required by the platform, and
likewise it translates the commands into a payload format supported by the devices.
The required payload format can be based on a standard, like oneM2M, or any other
self-defined payload format.

IoTIM

The core functionality of the platform is represented as the Internet of Things Integration
Middleware (IoTIM) component. It comprises all functionality like, e.g., managing the
devices, users, etc., or aggregating and utilizing the data. The features of the IoTIM are
discussed in Chapter 5. The IoTIM receives the data from the devices mostly via the
gateway, a direct communication with the devices is also possible. Likewise it can send
the commands via the gateway, or directly to the devices. Furthermore the IoTIM is
access point for APIs.

Application

The Application component represents further applications connected to the IoTIM
through a common interface. Further applications can either be internal in terms of
applications provided by the same provider as the IoT platform, where the integration is
already designated, or they can be external in terms of third party applications.

Further Data Source

The Further Data Source component represents possibly connected external data sources,
which can be connected to the IoTIM. Likewise within the applications, the further data
sources can be internal in terms of data sources provided by the same provider as the
IoT platform, or they can be external in terms of third party data sources.

The communication between the components is asynchronous, which enables non-
blocking communication, as different parties do not have to wait for a response, and can
process other tasks in the meantime. Within the reference architecture one component
can play multiple roles, e.g., a device can be a gateway, sensor and actuator simultane-
ously. Furthermore Figure 3.2 illustrates three cases of multiple components comprised
within one component, which are described in the following.

As described within the definition above, a device can have integrated sensors and
actuators, depicted in Figure 3.2(a). A Smartwatch is a device with integrated light
and movement sensors, hence it is a device with integrated sensors. But it needs, e.g.,
a Smartphone to act as a gateway, so that the Smartwatch can communicate with the

38

3.3 Reference Architecture

IoTIM. Likewise it is possible, that a device comprises a gateway, sensors and actuators,
illustrated in Figure 3.2(b). A Smartphone can constitute a device comprising sensors,
as well as comprising a gateway, as it can communicate directly with the IoTIM. If the
Smartphone supports the required transport protocol and payload format, no translation
of the gateway is needed. Additionally it can perform further functionality of a gateway;,
like managing the connection of devices, e.g., of a Smartwatch. Furthermore it is
possible, that the IoTIM comprises the gateway, like, e.g., within the platform Microsoft
Azure, depicted in the right Figure 3.2(c). This means that the platform integrates the
functionality of a gateway, hence it cannot be separated.

Figure 3.3 shows the reference architecture with the corresponding transport proto-
cols (a), which are defined in Section 2.1.2, and the reference architecture with the
corresponding standards (b), which are defined in Section 2.1.3. Represented are only
the transport protocols and standards used by the considered platforms. It illustrates
which transport protocols and standards are used between the individual components.
The transport protocols, MQTT, HTTP, CoAP, and WebSocket are used through every
component of the reference architecture. AMQP and Diameter are used between the
[oTIM, Gateway, and Device component, while STOMP is only used between the Device
and the Gateway component. The connection of the IoTIM to the Application and
Further Data Source component describes, that the platforms offer APIs to connect
further applications and data sources, supporting the transport protocols MQTT, HTTP,
CoAP, and WebSocket. The standards ETSI M2M, oneM2M, and NGSI 9/10 are used
between the APIs, the IoTIM, and the Gateway component. Additionally between the
IoTIM, and the Gateway component the LIWM2M is used. Between the Gateway and the
Device component the standards ETSI M2M, oneM2M, NGSI 10, and LWM2M are used.
Between the IoTIM, and the Device component ETSI M2M, oneM2M, and IWM2M can
be used to accomplish a direct communication. Likewise within the transport protocols,
the connection of the IoTIM to the Application and Further Data Source components
means, that the platforms provide APIs supporting the ETSI M2M, oneM2M, NGSI 9,
and NGSI 10 standards, to connect further applications and data sources.

39

3 Design of the Reference Architecture

Application g ﬁ Further Data moSnL ﬁ Application w ﬁ Further Data moc_‘nmw ﬁ Application w ﬁ Further Data mocﬂnL

< <

Lﬁ loTIM _ IA loTIM _
! e —

ﬁ Gateway _ i ﬁ Gateway _ ;
Device Device : Device
Driver m ; Driver m Driver
m 1 m m L m K
w m w v m N
| ﬁ Sensor/Actuator w ; ﬁ Sensor/Actuator w \., ﬁ Sensor/Actuator w
(a) Smartwatch (b) Smartphone (¢) Microsoft Azure

Figure 3.2: Reference Architecture with Multiple Components Comprised within One Component

40

3.3 Reference Architecture

spiepuelg pue s[020301d Surpuodsaiio) YIIM SINJIAIYDIY DUIJIY :¢'¢ 2InS1]

spiepuels 3urpuodsaiio) (q)

’
1

\
\
.
~

e N
JaAlIQ
l€—
92INaQ
_\ . J X
WeAMT ot isoN T~ -
‘INTINRUO ‘WZIN IS13 &
INTIAMT
Aemalen INZINBUO
J ‘WTIN IS13

A\
INZINMT ‘0T/6 ISON 4
‘INTINIRUO “NZINI ISL3

ﬁ lojenyoy/iosuas g

-

N

Y

ILO]

N

01/6 ISON
‘INTINBUO ‘NTZIN ISL3

S[020301d 3urpuodsaiio) (e)

1

\ ﬁ lojenyoy/iosuas g

N

Y

\

N

i

/
JaALIQ g

921naQ

193005g3M “335iEIG *dNO1S |
‘dOINY ‘dv0D ‘dLLH ‘LIDIN ¥

Aemalen

ymv_uomm_w>> ‘1919wWweig p
‘dDNYV ‘dV0D ‘d11H ‘LIOIN \

y

NILO]

§7

Tu;:om eieq Jayun4 g ﬁ

uoped|ddy

7 Tu;:om eleq Jayun4 ;

‘dv0D ‘dLIH ‘LI

N

19)20SgaM
‘J919welq
‘dOINY
‘dv0D
‘d1LH
‘LIDN

ﬁ uoped|ddy

41

4 Validation of the Reference
Architecture

This Chapter validates the developed reference architecture by mapping it to the archi-
tecture of every considered CPS solution. Differences are depicted, and a conclusion
recapitulates the reference architecture and the applicability.

4.1 OpenMTC

Figure 4.1 shows the architecture of OpenMTC on the left side (a), and the mapping of
the reference architecture with the underlying architecture of OpenMTC on the right
side (b). OpenMTC enables the connection of sensors and actuators via communication
technologies like WiFi, and Bluetooth. Since this correlates with the Device component,
but not with the Sensor & Actuator component, they represent the Device component.
Accordingly the Sensor & Actuator component is southbound partly overlapping it.
Likewise partly comprised by the Device component is the lowest layer of the Front-End,
which represent the communication technology of the devices. The Gateway component
encompasses the Core Features of the Front-End, the Connectivity component inside the
Front-End, and the Connectivity component of the Back-End, including the OpenEPC
component in between. The OpenEPC component, the Core Features, and partly the
Application Enablement of the Back-End are part of the IoTIM, since they provide
the core logic of the platform. The Application component comprises the Application
Enablement, and the Applications component of the Back-End, and the one of the
Front-End, providing the connection, and the usage of further applications. Additionally
the Further Data Source component consolidates the M2M Platforms connected to the
Back-End.

Following this the reference architecture is applicable to the OpenMTC architecture.

43

4 Validation of the Reference Architecture

Intelligent

OpenMTC Front-End

_ Transport Protocols _

_ Network Exposure _

H Core Features

_..

_ IEC _ _ FS20 _

_ ZigBee -_ w_cmgoﬂr-

Sensors & Actuators

(a) OpenMTC Architecture

JuBWa|geus

m 2 Environment eHealth . Smart Grid
s m App App Transportation App
< Systems App
J
Mla/Mca
- — Device AP| _ — Data API _ — Network API _ /
Ew Application Enablement
~
S
a2 , Mcc’
[S) H Core Features _
2
s v
c
m. Connectivity
Transport Protocols Network Exposure \
T
Mid/Mcc _|hF_
-
Managed or (Cpcre] [anpsk J(hss]
c:.Sm:mmmM ﬁ Managed hoz_‘.mnn<_n<ﬁ
access an
L transport ﬁ Acess and Core - OpenEPC H
Connectivity

uopeo|ddy

[wiopeld INTIN 13410]

>
k]
=3
=
1Y
=
s}
=1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

a
1
1
1
1

_

Applica-
tions

Intelligent
Transportation
Systems App

eHealth

App App

Smart Grid

Mla/Mca

Data AP| Network API

[0

kI TC Front-End

wJiopeld INZIA 13410

IFurther
IData Source

L

-
|
1
1
1
1

_ Transport Protocols _

Connectivity

Core Features

(b) OpenMTC Validation

Figure 4.1: OpenMTC Validation of the Reference Architecture based on [Fral5]

uoneo|ddy
uoyedl|ddy

44

4.2 FIWARE

4.2 FIWARE

The architecture of FIWARE (a), and the mapping of the reference architecture (b)
are shown in Figure 4.2. The FIWARE architecture does not represent sensors and/or
actuators, as they follow the approach of devices with integrated and/or connected
sensors and/or actuators. Hence the component Sensor & Actuator is partly overlapping
the Device component. The Device component encapsulates all devices represented within
the architecture. The Gateway comprises the IoT Edge, and the south- and northbound
APIs, as they enable the translation of messages into the required format. The IoTIM
encompasses the IoT Backend and the Data Context Broker, as they represent jointly the
core logic of FIWARE’s platform. Not depicted within the architecture are the possibly to
the Data Context Broker connected applications and further data sources. The overall
architecture depicting the GEs of FIWARE described within Section 2.2.2 shows, that
further applications and data sources are possibly connected to the platform. Hence the
Application, and the Further Data Source components are positioned northbound to the
Data Context Broker.

Consequently the reference architecture maps to FIWARE'’s architecture, and is applicable
to it.

45

4 Validation of the Reference Architecture

| e L I 1
| Application 1 Further Data Source

| o

Data Context Broker I m—
NGSI 10
B R R R R R R R S S S aSSSSSassssssaRssssRssssss|Rasasas i
! loT Back-End NGsI9 ;
v NGSI 10 '
i 1 i
I |
' | loT Device Management O loT Discovery (—(Q—{ loT Broker | !
v NGSI 9 NGSI 9 !
i 1
1 '] B~ . e T 8
e e i i R R) I uL2o/mre, 1
mMar,
o N.oﬁwﬂm Edge API Onesi10 _2(5,_\95 etc Neste “
LWM2M/CoAP, etc. I P T T T A T T L L rT Crre -

_ 1
pessssssgesssssssssfesssssssssssssssgesssssssssssssssssssssssssssspesssgesses H I | loT Edgg !
| loT Edg ' (| !
' ! 1 i
' n |
: ! I i | IoT Gateway 10T|NGSI Gateway el
i | 10T Gateway 10T|NGSI Gateway i 1 i L

I |
m - - - H ! m GW Logic (O——H GW Logic | | Protocol Adapter | —()— Data Handling || ! !
' GW Logic QO— GW Logic Protocol Adapter —QO— Data Handling || | [GW2GW API NGSI 10 ! 1
m GW2GW API NGSI 10 : ! m o
i i 1 I T Il
H ! I ' 1)

Device API W Device API %me_ 10
_ Device _ _ NGSI Device _
(a) FIWARE Architecture (b) FIWARE Validation

Figure 4.2: FIWARE Validation of the Reference Architecture based on [FIW15b]

46

4.3 SiteWhere

4.3 SiteWhere

Figure 4.3 depicts the architecture of SiteWhere on the left (a), and the mapping with
the reference architecture on the right (b). Since the SiteWhere architecture follows the
approach of devices with integrated and/or connected sensors and/or actuators, they
are not represented within the architecture. Hence the component Sensor & Actuator
overlaps part of the Device component. The data from devices, and commands to
devices components of the architecture represent the Device component of the reference
architecture. The Gateway encapsulates the Communication Engine, which ensures the
communication between the devices and the platform. The SiteWhere Tenant Engine is
comprised by the IoTIM, as it represents the core functionality of the platform. On the
right side of the platform the Application components are positioned, as well as another
Application component on the left side, as all of those blocks provide the connection
of further applications. Additionally the Further Data Source component comprises the
Integration block on the left site, since it provides the connection and usage of further
data sources.

Since the core functionality of SiteWhere integrates the connection component, the
components Gateway and IoTIM are not precisely separable. Nevertheless the reference
architecture is applicable to the SiteWhere architecture.

47

— SiteWhere e T 1
SiteWhere Admin Appl. m SiteWhere Admin Appl. I
- SiteWhere Tenant Engine b5y Big Data Storage ! Big Data Storage
o Device M (%] %
Third Party Appl. ﬂ g m t Apache HBase Third Party Appl. W—a |||||||||||||||||| H Apache HBase
w]
. . [
]
SiteWhere Java Client o SiteWherg Java Client N .

Inbound Pipeline Outbound Pipeline

B s

4 Validation of the Reference Architecture

MuleSoft AnyPoint P.

MS Azure EventHub

Twilio Cloud Comm.

Apache Solr

Command
Destinations

c
)
E=}
©
o
oo
oy
-]
£

Event Sources

SIdS 19ssvY

Asset Modul

MuleSoft AnyPoint P.

Identity Mngmt.

MS Azure EventHub

Asset Mngmt.

]

MQTT, AMQP,
Stomp, etc.

MQTT, AMQP,
Stomp, etc.

Data from
Devices

Commands to
Devices

(a) SiteWhere Architecture

_I

Twilio Cloud Comm.

Apache Solr

!Further Data Source

S

Y .
- =lnfegration. —

(b) SiteWhere Validation

Figure 4.3: SiteWhere Validation of the Reference Architecture based on [Sit16d]

Asset Modules

Identity Mngmt.
J

Location Mngmt.

— Application !

48

4.4 SmartThings

4.4 SmartThings

On the left side (a) of Figure 4.4 the SmartThings architecture is imaged, and the
mapping with the reference architecture is shown on the right side (b). Within the
SmartThings architecture, sensors and actuators are represented within one compo-
nent, together with devices, users and things. Because of that, the Sensor & Actuator
component is only a part of this component. The Device component of the reference
architecture comprises this joint component, as well as the Clients (-Devices) component.
The Clients (-Devices) component does not correlate to the definition of the Device com-
ponent, since they represent devices using the SmartThings App to control the platform,
like, e.g., a Smartphone. But it is considerable, that they also send the data of their
sensors to the IoTIM, and the user’s control actions performed on the device can also be
considered as an event. The Gateway encapsulates the Hub- and Client Connectivity, and
the Device Type Handlers, which manage the connection of the devices, and the devices
themselves. Encapsulated by the IoTIM are the Application Management System and the
Subscription Processing, where the core functionality of the platform is placed. Within
the SmartThings platform different applications can be connected, they are embraced
by the Application component of the reference architecture. Thereby the Core APIs
enable the connection, and the Event Stream, the Web UI, and the Physical Graph are
the possibly connected applications. The External System component represents the
Further Data Source component of the reference architecture.

Following the reference architecture can likewise be mapped to the SmartThings archi-
tecture, and hence is applicable to it.

49

4 Validation of the Reference Architecture

Core APIs

External
System

SmartApp Management & Execution

Application Management System

Event
Stream

Event
Stream

Physical

Subscription Processing Pl
rapl

Device Type Handlers

Hub Connectivity

|

_ Sensors & Actuators &

Client Connectivity

Devices & Users & Things

_ Clients (-Devices)

(a) SmartThings Architecture

-

(b) SmartThings Validation

Figure 4.4: SmartThings Validation of the Reference Architecture based on [Smal5b]

50

4.5 AWS loT

4.5 AWS IoT

Figure 4.5 shows the architecture of AWS IoT (a), and the mapping of the reference
architecture (b). The Things component of the AWS IoT architecture represents the
Sensor & Actuator, as well as the Device component, since AWS IoT does not differ
those components more precisely within their architecture. The Gateway sits between
the Things and the Message Broker components, and comprises a part of the Message
Broker component, as it manages the devices, and their connection to the platform.
The Message Broker, the Thing Shadow, the Rules Engine, and the Security & Identitiy
component are encapsulated by the IoTIM, since they provide the core functionality.
Within the AWS IoT architecture possibly connected applications are represented in the
IoT Applications component, and inside the collection of Amazon services on the right
side. They are embraced by the Application component of the reference architecture.
The Further Data Source component is represented by the AWS SDK.

Because of the approach of AWS IoT to integrate the connection component into the core
functionality of the platform, the components Gateway and IoTIM are not precisely sepa-
rable. Nevertheless the reference architecture is applicable to the AWS IoT architecture.

51

4 Validation of the Reference Architecture

Things

_

Thing SDK

Message
Broker

Thing
Shadows

A

v

Rules
Engine

Security & Identity

loT Appli-

10T Appli-

cations

AWS SDK

(a) AWS IoT Architecture

4
- ———

Amazon
DynamoDB

Amazon Kinesis

AWS Lambda

- -

e
“ Further Data
! Soufll> SDK

Figure 4.5: AWS IoT Validation of the Reference Architecture based on [Amal6c]

(b) AWS IoT Validation

Application

52

4.6 Microsoft Azure loT Hub

4.6 Microsoft Azure IoT Hub

Within Figure 4.6 the Microsoft Azure’s IoT Hub architecture is depicted on the left (a),
and the mapping of the reference architecture on the right (b). As the architecture does
not represent sensors and actuators, the Sensor & Actuator component of the reference
architecture overlaps the Device component, which comprises all devices of the Microsoft
Azure IoT Hub architecture. The Gateway encapsulates the Field Gateway and the Cloud
Protocol Gateway, where the connection of the devices, and the message translation
is handled. The core functionality, and hence the IoTIM component of the reference
architecture is the IoT Hub, the Event Processing and Insight, the Device Business Logic,
Connectivity Monitoring, and the Application Device Provisioning and Management.
The last component of the underlying architecture is likewise partly the Application
component of the reference architecture, as it enables the connection of further appli-
cations. The Further Data Source component is not represented within the Azure IoT
Hub architecture, nevertheless the connection of further data sources is enabled. Even
though the IoTIM and the Application components cannot be separated precisely, and the
Further Data Source component is not represented within the architecture, the reference
architecture is applicable to the architecture of the Microsoft Azure IoT Hub.

53

4 Validation of the Reference Architecture

fm——m—————--

Device Business Application Device
Logic, Connectivity Provisioning and
Monitoring Management

| |]

10T Hub

Event Processing
and Insight

y

ﬁ Cloud Protocol Gateway g

cloud

Pl] T - . R R N R R

field

ﬁ Field Gateway g

H

ﬁ Device g_?nmumzmﬁ Device Q EE?&E:&E

(a) Azure IoT Hub Architecture (b) Azure IoT Hub Validation

Figure 4.6: Azure IoT Hub Validation of the Reference Architecture based on [Bet16]

54

4.7 1BM Watson loT Platform

4.7 IBM Watson IoT Platform

Figure 4.7 shows the architecture of the IBM Watson IoT Platform (a), and the mapping of
the reference architecture (b). Considering the Connection component of IBM’s Watson
IoT Platform it represents partly the Sensor & Actuator and the Device components of the
reference architecture. Mainly it depicts the Gateway, since the connection of the devices,
and the translation of messages are managed within the Connection component. The
IoTIM comprises the Analytics, the Risk Management, the Information Management, and
the Bluemix Open Standards Based Services, as they provide the core functionality of the
platform. The IBM Watson IoT Platform enables the connection of further applications
and data sources, within the compoenents IoT Industry Solutions, Third Party Apps,
Flexible Deployment, as well as partly the Bluemix Open Standards Based Services. They
are encapsulated by the Application and the Further Data Source components of the
reference architecture.

Since the IBM Watson IoT Platform follows the approach of providing core functionality
of the platform within connected IBM Bluemix Open Standards Based Services, a
precise differentiation between the IoTIM and the Application component is not possible.
Nevertheless the reference architecture is applicable to the IBM Watson IoT Platform.

4.8 Conclusion

The validation of the reference architecture with the considered CPS solutions has shown,
that it is applicable to the architectures. In some cases a precise differentiation is not
possible, caused by the integration of multiple components within one. Nevertheless
the core components of the reference architecture are apparent. Hence the components
of the reference architecture do not have to be strictly seperable. The derived refer-
ence architecture as imaged in Figure 3.1 can be used as a universal reference of the
architecture of a CPS. Therefor it is important to respect the definition of the reference
architecture components, described in Section 3.3.

55

4 Validation of the Reference Architecture

ﬁ loT Industry Solutions Third Party Apps q

IBM Watson loT Platform

Analytics Risk Management

Information

(Germiae: Management

Bluemix Open Standards Based Services

Flexible Deployment

(a) IBM Watson IoT Platform Architecture (b) IBM Watson IoT Platform Validation

Figure 4.7: IBM Watson IoT Platform Validation of the Reference Architecture based on [IBM16a]

56

5 Design of the Abstract Class Model

The following Chapter describes how the abstract class model is designed, based on the
considered CPS solutions. Initially the features of the CPS solutions are contemplated
and compared. Adapted from that, the features and the correlations, discovered within
every considered CPS platform, are specified, and the abstract class model is derived.

5.1 Analysis of the Features

The OpenMTC platform could not be considered for the analysis and comparison of the
features, since the pages of the documentation have no content [Fral4]. The analysis
of the features is based on the SiteWhere platform, as the classification of the features
here is distinct, and well structured [Sit16c]. Within this Section the single categories
of the SiteWhere features, called services, are described and compared to the FIWARE,
SmartThings, AWS IoT, and the IBM Watson IoT Platform. The comparison is aided
with the corresponding Section of the correlation matrix. The index declaration of the
correlation matrix can be found within the appendix A.

The Asset Management service of SiteWhere manages objects in the physical world,
i.e., people, places, and things, called Asset Categories. Those can be assigned to
devices, to describe their association. The methods are depicted in the left column
of Table 5.1 [Sitl6c]. The Asset Management service provides methods to create, re-
trieve, delete, and update Asset Categories. FIWARE has the greatest intersection with
those methods, as to every SiteWhere Asset Management method at least a comparable
method of FIWARE can be mapped [FIW15c]. The second largest intersection is repre-
sented by the IBM Watson IoT Platform, whereat only comparable functionality can be
found [IBM16b]. SmartThings only has one comparable method within the 20 methods
of the SiteWhere Asset Management service [Smal5a]. No comparable methods has
AWS IoT [Amal6b] [Amal6éd] [Amaléc].

The SiteWhere Batch Operations service handles actions that operate on multiple devices,
executing asynchronously, and providing a mechanism for monitoring progress over
time, listed in the left column of Table 5.2 [Sit16c]. The SiteWhere Batch Operations
service comprises methods to create, retrieve, and schedule a batch operation. Again,

57

5 Design of the Abstract Class Model

FIWARE has at least a comparable functionality for each method of the SiteWhere Batch
Operations service [FIW15c]. AWS IoT provides two comparable methods within the six
SiteWhere Batch Operation methods [Amal6b] [Amal6d] [Amal6c]. Even though the
IBM Watson IoT Platform has a functionality category named Bulk Operations, it has no
comparable features to this SiteWhere service [IBM16b]. Likewise SmartThings has no
comparable functionality [Smal5a].

The Device Assignment service of SiteWhere provides 25 methods to manage the asso-
ciation between a device and an optionally related asset, shown in Table 5.3 [Sit16c].
It comprises methods to create, retrieve, update, and delete a device assignment, as
well as schedule command invocations, and create various events, based on the device
assignment. As above, FIWARE provides at least a comparable functionality for each
Device Assignment method [FIW15c]. The IBM Watson IoT Platform has comparable
and a few same methods [IBM16b]. Likewise SmartThings and AWS IoT both provide
some comparable features [Smal5a] [Amal6b] [Amal6d] [Amalé6c].

The methods within SiteWhere’s Device Command Invocation service comprise tar-
geted functionality, such as listing invocation responses, and providing summary in-
formation about an invocation [Sitl6c]. The methods are depicted in Table 5.4,
whereat most related operations are covered by the Device Assignments service.
Within this category only FIWARE and AWS IoT provide comparable functional-
ity [FIW15c] [Amal6b] [Amal6d] [Amal6c].

The Device Commands service listed in Table 5.5, specifies methods SiteWhere can use
to interact with a given hardware configuration, i.e., a device [Sit16c]. It comprises
methods to delete, retrieve, and update a device command. FIWARE provides the
same functionality within two different methods [FIW15c]. Comparable functionality
is comprised by AWS IoT [Amal6b] [Amal6d] [Amal6c]. Both SmartThings and IBM
Watson IoT Platform have no comparable functionality [Smal5a] [IBM16b].

SiteWhere Device Groups are used to create an association between related devices. The
corresponding service comprises methods to create, retrieve, update and delete a device
group, and methods to add and delete elements to/from a device group. The operations
are depicted in Table 5.6 [Sit16c]. The same functionality, and additionally comparable
functionality is provided by FIWARE [FIW15c]. The IBM Watson IoT Platform comprises
comparable functionality for each method of the Device Groups service [IBM16b].
SmartThings has some comparable features, whereat AWS IoT comprises no comparable
features [Smal5a] [Amal6b] [Amal6d] [Amal6c].

SiteWhere Device Specifications are applied, to capture characteristics of a given hard-
ware configuration, including a list of commands that may be invoked on the device.
The corresponding methods of this service are create, retrieve, update, and delete a
device specification, and retrieve the attached commands, listed in Table 5.7 [Sit16c]. In

58

5.1 Analysis of the Features

JUSUWIOZRURIA 19SSV A10391BD) SISYAADIIS UIIIM S2INIBd] 93 21edUIo)) 01 XIIIBJA UONB[RLIO) :1°G J[qeL

(T) 1SN

A108318) Ul J9ssY
uosiad 8unsix3 ue aiopdn

92IAap Mumﬁu n:1a

(0T) s40suas 221naQq

A10831eD Ul 19SSy
uonesoq 3unsixy ue axppdn

adAl (T) ISON Ai08331e) Ul 135Sy
221A9p a3epdn 1 alempJeH Sunsix3 ue a1opdn
adAy (€) 1oddns (z) 8u=isnd so Ai0831e)
221A9p alepdn :1a J13UBWAS 19ssy Sunsix3 ue azopdn
(2) Buaisnpd so a|npo
19SSy UE UJ $)35SY 10} 24D3as
() Buuaasnd sO S3|INPON
1955V J0 1511 9Y3 ysaifay
sadAy (2) 8ulaisnd so eI Yol
221A3p 1817114 1ey) s1assy AloSaie) 1s17
S92IA3P 1517 :08 (1) 1ISON 19SSy UB Yyum
Pa1e100SSY SYUBWUSISSY 157
S321A3P 1517 :09 () Bunaisnd SO eLaNID Ydle
1843 S3|INPOIA 19SSV 3517
sadAy () Bunaisnpd so eL3ID ydle
d1A3pP 3817 :1d 18y} s3140833e) 13ssY 15/7
adAy@a1nap 199 :1Q (2) 8uuLisn|d SO planbiun
AQ 3|Npo|A 1355y Ue 19D
adAy@a1nap 199 :1Q (€) 1oddng (2) 8uuL@isnD SO pIanbiun
J1ueWaS Aq A1o8e1e) 1955y UB 199
adA1ad1n9p 199 :1a an|eA :aInquUNIY (1) ISON pI anbiun Aq13ssy ue 129
2dA131n9p 199 1@ (1) ISON planbiun
Aq 19ssy Aio891e) e 199
adAy (1) ISON 13ssy
3IA3P 3131°Q ‘14 Aio3a3e) Bunsix3 ue a33/ag
adAy (€) (2) 8uuLisnd SO Aio8e1e)
221A3p 93312Q :1d oddns anuewsas 19ssy 8unIsix3 ue a13/ag
adAy (T) 1ISON Aio3a1e)
221Aap 31e31) 11 d Ul 135Sy UOSIDd M3N € 31021)
uonewJojul {(8) 1aA13S Uo1EIOT] Ai0891e) UI
uoneso| ‘() uoisuaix3 135Sy UOI1BI0T M3N B 3103J)

201A3p 32D :q JljuewWas gns/qnd
adAy (1) ISON Aio3a3e) Ui
201A9p 31e34) :1a 135Sy 24eMpJBH MBN B 2103.)
adAy (€) yoddng () BuLisn|y SO | A10831e) 19SSy MaN € 2103.4)

201A9p 91834) 11a JnuewWsas

jusawaseuep 13ssyY

Anjeuonduny | Ayjeuolduny swes
ajqesedwo)

Ayjeuonduny | Ayjeuoldung swes

s|qesedwo)

Ayjeuondung | Ayjeuoypung swes
s|qesedwo)

Ayjeuonounyg
ajqesedwo)

Ayjeuoypung awes

wJojield 1o] uosiem NI

101 Smv

sduiylpews

ECLZUNE]

213YMas

59

FIWARE SmartThings AWS loT IBM Watson loT Platform

Comparable
Functionality

Comparable
Functionality

Comparable
Functionality

Comparable

SiteWhere Same Funcitonality Same Funcitonality Same Funcitonality Same Funcitonality Functionality

5 Design of the Abstract Class Model

Batch Operations

Create Batch Command
Operation Based on Criteria

Service
Composition (6)

Create New Batch Command
Invocation

Service
Composition (6)

Complex Event
Processing (5)

CreateTopicRule

Get Batch Operation by
Unique Token

Service
Composition (6)

List Batch Operation
Elements

Service
Composition (6)

List Batch Operations

Service
Composition (6)

ListTopicRules

Schedule Batch Command
Operation Based on Criteria

Service
Composition (6)

Complex Event
Processing (5)

Table 5.2: Correlation Matrix to Compare the Features within SiteWhere Category Batch Operations

60

5.1 Analysis of the Features

SIUDWIUSISSY D149 A103918D) QIS UIIIM S2INIBd] Y3 21edwo)) 0] XLIIBA UONR[IIIO)) :€°G S[]RL

SJUBAD MBIA “YIH

Suiy1eiepdn () uoneyouuy e1epelsin

J13UBWS JuawWusIssy ad1nag aopdn

(9) uonisodwo) UOI}BJ0AU|

ERINVELS puewwo) 3jnpayas

(£) uoneouuy JusWUBISSY

J1ueWRS 921A2(Q DAIDY UB 35D3|IY

(£) uonesouuy BuissiIn

J1ueWaS se JuawusIssy 321Aaq YDA

adA1 oiy1dads e (9) uoisodwo) JuaWuUsIssy adineq

JO SIINDP ||e SsoUde 20INIBS 10J SJUDAF JUBWAINSEIN 1517

adA1 oiypads e
JO S3JINIP || SSoU.
SJUBAD MBIA “YIH

{uoneso| :JuUsAg

pluonE0|

(9) uosodwo)
0INIBS

Juawusissy adInaQ
10} SJUIAT UOI1EDOT IS/T

JO S9IIASP ||e Ssoude SIUIAD :321NQ (9) uonisodwo) Juawusissy

SIUDIAD MIIA Y¥IH INIBS 921N 104 SIUBAT 1S/7

s30| ansouselp (£) uonejouuy JuaWUSISSY!
201A3p || 199 :aQ Jnuewsas 921A9(J40j SWeans eyed 1s/7
s|nyaido 199 (9) uonisodwo) JUBWUBISSY J0J SIUIAT

ERIVEIN asuodsay puewwo) 3s/7

a|nyaido 199

(9) uonisodwo)
ELIIVELS

JUBWUSISSY J0) SJUIAT
UOI1BJ0AU| PUBIWO)) 1S/T

(9) uoisodwo)
INIBS

EEES
1eY) Se SUdWAINSEI|N
uBWuUBISSY 15/7

01199 /151

20IMIS

JuaWUSISSY!
921A3Q 104 SIUDAT WB|Y ISIT

(£) uonejouuy
Jnuewss

pI Aq weans
ejeq JuawWuIssy 321AaQ 129

$921A3p 3517 :08

Buiylaquasag

an|eA :ainquUNY

(£) uonesouuy
Jnuewss

uayo]|
Ag uawuBissy ao1naQ 199

(£) uonejouuy

weans eleq Juawusissy

IASp 39D :aQ JluBWAS 221A2Q WoJy e1eQ 199
sS0| onsoudelp () uonejouuy weaJls eleq Juawusissy
201A3p ||B 199 :aa J1ueWSS 221A8Q WoJj eleq ||V 199

(£) uoneyouuy
J13UBWRS

Juawusissy
921AaQ Bunsix3 ue a3a/ag

(9) uonisodwo)
INIBS

JuaWUBISsy 231Aa(104
JUIAT SIUBWRINSEIN 9103

(8) 4an435 uonesoq

JUaWUSBISSY IASQ
104 JUDAT UOIRIOT 310D

8o onsouselp

(£) uonejouuy

JUaWUSISSY AdIAaQ

901A3p PPY :ad JluBWIS 10} Weauls e1eq 1pai)
3|nyaido]a1eas) (9) uoisodwo) 1UBWUSISSY J0J JUSATJ
ERINELS 9suodsay puewwo) apa.)

3|nyaidoa1eau)

(9) uonisodwo)
INIBS

JUBWUSISSY J0) JUIAT
UOI1BI0AU| PUBWIWIOY 31D3JD

3|nyoidoa1ea1) (2) BuuLisn|d SO JusWUBISSY
901A(J0J JUSAT LBV 2103.D
Buiyeeal) aweu :21nquUNY (£) uonelouuy JudwWuBIssy!

JluBWAS

21N MON e 2103.1)

(£) uonejouuy
Jnuewss

weans eeq Juawusissy
231A8Q 0} E1EQ PPV

Sy 22In9Q

Ayjeuonoung
ajqesedwo)

Aunjeuoydung awes

Ayjeuondung
a|qesedwo)

Anjeuoldung awes

Ayjeuondung | Ayjeuoipung awes
a|qesedwo)

Aujeuonouny
ajqesedwo)

Aujeuolpung awes

wiojie|d 1o] uosiepy INGI

101 SMmv

ssuiyluews

JHVYMId

.a‘.afsﬁ_m

61

5 Design of the Abstract Class Model

this case FIWARE does not cover all methods with a comparable functionality. Probably
they would be comprised by the Administration REST API, where the page of the docu-
mentation has no content [FIW15c]. The IBM Watson IoT Platform provides comparable
features for most of the methods [IBM16b]. SmartThings and AWS IoT both only provide
two comparable methods [Smal5a] [Amal6b] [Amal6d] [Amal6c].

Within the SiteWhere platform a device is a representation of a connected physi-
cal hardware entity, that conforms to a known device specification, the correspond-
ing functionality is depicted in Table 5.8 [Sit16c]. The Devices service comprises
methods to create, retrieve, update and delete a device, and a device element map-
ping. Noticeable within this category is, that nearly every method is supported by
every platform. FIWARE and the IBM Watson IoT Platform provide mostly even
the same functionality, whereat SmartThings and AWS IoT provide comparable fea-
tures [FIW15c] [IBM16b] [Smal5a] [Amal6b] [Amal6d] [Amal6c]. Additionally the
Devices service provides a method to add multiple events for a device, which is not
covered by any of the compared platforms.

The SiteWhere Events service is used to directly access event information by an unique
event id. All other event-related methods are available in the Device Assignments ser-
vice, since SiteWhere events are always posted in the context of an assignment [Sit16c].
Table 5.9 shows that except of AWS IoT, every platform comprises a comparable func-
tionality [Amal6b] [Amal6d] [Amal6c] [FIW15c] [IBM16b] [Smal5a].

SiteWhere enables the usage of external search engines to operate on it’s data, which
allows SiteWhere to enrich the result data if necessary, and presents a single view of
the data, whether stored in SiteWhere, or indexed in an engine optimized for adhoc
queries [Sit16c]. The methods corresponding to External Search Providers are listed
in Table 5.10. FIWARE and the IBM Watson IoT Platform both provide comparable
functionality [FTIW15c] [IBM16b]. SmartThings and AWS IoT comprise no methods for
the usage of external search providers [Smal5a] [Amal6b] [Amal6d] [Amalé6c].

SiteWhere Grated Authorities are permissions assigned to users, to allow access to
various pieces of the system functionality. They are used to restrict the access to
the REST services [Sitl16c]. The methods of the Granted Authorities service, com-
prising the creation and retrieval of authorities, are listed in Table 5.11. FIWARE
and AWS IoT both comprise comparable functionality to the Granted Authorities ser-
vices [FIW15c] [Amal6b] [Amal6d] [Amal6c]. SmartThings and the IBM Watson IoT
Platform do not provide comparable methods [Smal5a] [IBM16b].

SiteWhere defines Scheduled Jobs as system actions, that are performed on a
specified schedule. The Scheduled Jobs service comprises methods to create, re-
trieve, update, and delete a scheduled job, depicted in Table 5.12 [Sitl6c]. FI-
WARE provides comparable functionality for all methods of the Scheduled Jobs ser-

62

5.1 Analysis of the Features

SUOIIBDOAU] PUBWIWIOY) 3JIA(J AI0391BD) SISYASIIS UIIIM S2INIedq 93 o1edwo) 01 XLIBJA UOLB[S1IO) 4G d[qeL

sa9|nyd1do]1si] (9) uonisodwo) UOI1BJ0AU|
INIBS puewwo) 4o} sasuodsay 1s/7

9|ny21do]199 (9) uonisodwo) Alewwns
ERIIVE]S UOI1BJI0AU| PUBWIWIOD 139

(9) uorysodwio) pi anbiun

9|nyd1do]19o

ERISEN

>£ UOI1BJ0AU| puBWWO) 195

SUOIIEIOAU| PUBWIWO) AIIN3Q

Ajjeuonpunyg Ajeuoldpung swes Aujeuonoung Ajjeuoldung sawes Ayjeuondung Ayjeuolpung swes Anjeuonduny Aljeuoldung swes EYEOT B
9|qesedwo) ?|qesedwo) 9|qesedwo) ?|qesedwo)
wuojield 10| uosiem INGI 10] SMV s3uiyyews JAVMIS

63

5 Design of the Abstract Class Model

SiteWhere

FIWARE

SmartThings

AWS loT

IBM Watson loT Platform

Same Funcitonality

Comparable
Functionality

Same Funcitonality

Comparable
Functionality

Same Funcitonality

Comparable
Functionality

Same Funcitonality

Comparable
Functionality

Device Commands

Delete Device Command by
Unique Token

Complex Event
Processing (5);
Service
Composition (6)

DeleteTopicRule

Get Device Command by
Unique Token

Complex Event
Processing (5);
Service
Composition (6)

GetTopicRule

Update an Existing Device
Command

Complex Event
Processing (5);
Service
Composition (6)

ReplaceTopicRule

Table 5.5: Correlation Matrix to Compare the Features within SiteWhere Category Device Commands

64

5.1 Analysis of the Features

vice [FIW15c]. SmartThings and AWS IoT comprise some comparable functional-
ity [Smal5a] [Amal6b] [Amal6d] [Amal6c]. The IBM Watson IoT Platform does not
provide any comparable methods [IBM16b].

The SiteWhere Schedules provide the ability to run jobs at another point in time,
rather than immediately firing an action [Sit16c]. The service comprises methods
to create, retrieve, update, and delete a schedule, they are listed in Table 5.13.
FIWARE and AWS IoT both provide comparable functionality to the Schedules ser-
vice [FIW15c] [Amal6b] [Amal6d] [Amal6c]. SmartThings provides some comparable
methods, and the IBM Watson IoT Platform does not comprise any comparable methods
at all [Smal5a] [IBM16b].

The Sites service methods of SiteWhere are used to organize devices that are related, so
that their events can be looked at from a grouped perspective. The methods are depicted
in Table 5.14 [Sit16c]. The service comprises methods to create, retrieve, update, and
delete a site, as well as retrieving alerts, command invocations, and responses for a site.
Furthermore it provides an operation to create a zone within a site, which is related to the
Zones service. Again FIWARE provides comparable functionality for every method of the
Sites service [FIW15c]. SmartThings, AWS IoT, and the IBM Watson IoT Platform com-
prise a few comparable methods [Smal5a] [Amal6b] [Amal6d] [Amal6c] [IBM16b].

SiteWhere’s System Information service provides two methods to retrieve information
about the running SiteWhere instance, i.e., the server runtime state, and the version
information, listed in Table 5.15 [Sit16¢c]. FIWARE provides the same functionality,
the IBM Watson IoT Platform comprises comparable methods [FIW15c] [IBM16b].
Both SmartThings and AWS IoT do not comprise methods comparable to the System
Information service of SiteWhere [Smal5a] [Amal6b] [Amal6éd] [Amaléc].

SiteWhere provides an architecture, where multiple IoT applications can run concur-
rently in separate containers, called Tenants, containing its own data and processing
pipeline [Sit16c]. The corresponding methods of the Tenant service are depicted in
Table 5.16. The service comprises methods to create, retrieve, update, and delete
a tenant. Additionally it provides a method to send a command to a Tenant En-
gine. FIWARE provides even multiple comparable methods of the Tenant service
of SiteWhere [FIW15c]. The IBM Watson IoT Platform comprises some compara-
ble functionality. SmartThings and AWS IoT do not comprise any comparable meth-
ods [IBM16b] [Smal5a] [Amal6b] [Amal6d] [Amal6c].

SiteWhere users represent entities, which are authorized to use the system. The cor-
responding User service comprises methods to create, retrieve, update, and delte
an user, and to retrieve the authorities for an user. The operations are listed in Ta-
ble 5.17 [Sit16c]. Again FIWARE comprises the same functionality as the SiteWhere
Users service [FIW15c]. AWS IoT and the IBM Watson IoT Platform both provide some

65

5 Design of the Abstract Class Model

SiteWhere

FIWARE

SmartThings

AWS loT

IBM Watson loT Platform

Same Funcitonality

Comparable
Functionality

Same Funcitonality

Comparable
Functionality

Same Funcitonality

Comparable
Functionality

Same Funcitonality

Comparable
Functionality

Device Groups

Device Handler: BO: Register
Add Elements to Device Semantic Support definition; multiple new
Group OS Clustering (2) (3) addChildDevice devices
Semantic Support DT: Create device
Create New Device Group OS Clustering (2) (3) type
Delete Device Group by Semantic Support DT: Delete device
Unique Token OS Clustering (2) (3) type

Delete Elements from Device
Group

OS Clustering (2)

Semantic Support

3)

SmartApp:
deleteChildDevice

BO: Delete multiple
devices

Get a Device Group by

Semantic Support

Unique Token OS Clustering (2) [(3) DT: Get device type
List Device Groups that Semantic Support DT: List device
Match Criteria OS Clustering (2) (3) types

List Elements in a Device Semantic Support SmartApp:

Group OS Clustering (2) (3) getChildDevices BO: List devices

Update an Existing Device
Group

OS Clustering (2)

Semantic Support

3)

DT: Update device
type

Table 5.6: Correlation Matrix to Compare the Features within SiteWhere Category Device Groups

66

5.1 Analysis of the Features

SuONEdIYIAAS 90149 A103918D) DISYASIIS UIYIIM S2INnIedq 93 aredwon) 01 XLIBJA UONB[DLIOD) /'S d[qelL

201A8p 31834 114

1J3|pueH 31AdQ

adAy (T) ISON uoleal1d3ds

901Aap 91epdn i1 921A2Q Bunsix3 axopdn
sadAy (2) 8ulL1sn|d SO CITEITR)

20I1A3p 3817 :10Q yo3e|A 1yl suoiesij1ads 3si7
sa|nyd1do] (2) Bunaasnpd sO uonesyads

199 /181 10} SpUBWIWIOD 21A3Q IS/7

sa|nyaido] doedsaweN

199 /181 Aq spuewwo) 321A3Q 15!7

adAyad1nep 199 :1Q (1) I1SON uaxoL
anbiun Aq uonesyads 199

uayo] anbiun

Aq 3j14 949 uonesyads 329

uayo] anbiun

Aq gd9 uoneayads 130

adAy (T) ISON uonedydads

921N9p 339197 :1d 921A9Q 8unsix3 a13/2ad
adAy uoniuysp (T) ISON uonesyads

221A8Q M3 31034)

<aweu puewwod>
-I9|pueH adineQg

() Buuaasn|d SO

uoledydads
10} puBWIWO) 32IA3Q 31031D

suonesyads ainaqg

Anjeuonuny Aljeuoldung swes Anjeuonoung Ajjeuolrdung sawes Ayjeuondung Ayjeuoipung awes| Ayjeuondung Ajeuolpung swes EYENT B
9|qesedwo) 9|qesedwo) 9|qesedwo) 9|qesedwo)
wiojiejd 10| uosie INGI 101 SMY ssulylyews JHVYMI

67

5 Design of the Abstract Class Model

FIWARE SmartThings AWS loT IBM Watson loT Platform
Comparable Comparable Comparable Comparable
SiteWhere Same Funcitonality Functionality Same Funcitonality Functionality Same Funcitonality Functionality Same Funcitonality Functionality
Devices

Add Multiple Events for
Device

Device Handler:

Create New Device ETSI M2M mld (9) CreateThing D: Add device
Create New Device Element NGSI (1); OS
Mapping Clustering (2) Attribute: name CreateThing
Delete Device Based on SmartApp:
Unique Hardware Id ETSI M2M mld (9) deleteChildDevice DeleteThing D: Remove device
Delete Existing Device NGSI (1); OS SmartApp:
Element Mapping Clustering (2) deleteChildDevice
Get Current Assignment for
Device DescribeThing
Device: name;
Get Device by Unique SmartApp:
Hardware Id ETSI M2M mld (9) getChildDevice DescribeThing D: List devices
List Assignment History for
Device
SmartApp:
List Devices in Device Group |OS Clustering (2) getChildDevices BO: List devices
List Devices in Device Groups
with Role OS Clustering (2) BO: List devices

List Devices that Match

Criteria ETSI M2M mid (9) ListThings D: List devices
List Devices Using a Given
Specification OS Clustering (2) ListThings D: List devices

Update an Existing Device

ETSI M2M mld (9)

UpdateThing

D: Update device

Table 5.8: Correlation Matrix to Compare the Features within SiteWhere Category Devices

68

5.1 Analysis of the Features

SJuaAy A103318D) SI9YAIIS UTYIIM S2INIed o) a1edwo) 031 XLIIB\ UOLIB[ALIO)) :6°S d[qRL

921A9p J1y109ds

© 10} JUDAD dJ1j1d9ds
B Ul JUDAD 15B| 39D
D3 ‘921A9p d1y109ds
€ 10} SJUIA3 JO
1511199 103 ‘92IASp
213109ds e uoy
SIUDAD M3IA YIH

X9 uonduasap
‘uondiiasap
HJRUEYE|

(TT) 49049 Asanp

pI anbiun Aq 1uan3 109

BUELE]

Ayjeuondunyg

9|qesedwo)

Ajljeuoydung awes

Ajeuondunyg
?|qesedwo)

Ayjeuoidung swes

Ajeuondunyg
?|qesedwo)

Ayijeuoydung awes

Ajeuondunyg
9|qesedwo)

Ayljeuoydung awes

wojiejd 1oj uosiem INGI

1ol smv

ssuiylyews

JHYMId

a19yMaxs

69

5 Design of the Abstract Class Model

SiteWhere

FIWARE

SmartThings

AWS loT

IBM Watson loT Platform

Same Funcitonality

Comparable
Functionality

Same Funcitonality

Comparable
Functionality

Same Funcitonality

Comparable
Functionality

Same Funcitonality

Comparable
Functionality

External Search Providers

List Available Search
Providers

Apps Marketplace
Search (12)

Search for Events in Provider

Apps Marketplace
Search (12)

ES: Invoke an
operation on an
external service
that has been
integrated with the
I0TF Platform

Table 5.10: Correlation Matrix to Compare the Features within SiteWhere Category External Search Providers

70

5.1 Analysis of the Features

sonLIOYINY pajuein A103938D) I9YMSIIS UTYIIM S2INIed 9y 21eduwio) 03 XIIIRJA UOTIB[21I0D) (1 1°S [qeL

S9121|0d3s!17
‘sjedpulid8uiyisn
‘s3uiyyjedpuldisn

(€T) uonezuoyiny
39 |0J1U0DSSIDY
J91dey) Ayanoaas

euau)
U21BA 18U SAIIIOYINY ISIT

(2182141349
aquasaq) Adljod1ao

(€T) uonezuoyiny
39 |0J3U0D)SSIDY
J91dey) Amunass

pI Aq Ayoyiny 199

Ad1joda1eal)

(€1) uonezuoyiny
39 |0J43U0)S$S3DY

Ajioyiny MaN e a1pai)

J91dey) Alunaes
sailoyiny pajuels
Ajjeuonpunyg Ailjeuoldpung swes Ayjeuonodung Ajeuoldpung swes Ajeuonodung Ayjeuolpung swes Anjeuonunyg Ailjeuolpung swes EYEITNEI
9|qesedwo) 9|qesedwo) 9|qesedwo) 9|qesedwo)
wJojie|d 10| uosie INGI 101 SMY s3uiy uews JHVMI

71

5 Design of the Abstract Class Model

SiteWhere

FIWARE

SmartThings

AWS loT

IBM Watson loT Platform

Same Funcitonality

Comparable
Functionality

Same Funcitonality

Comparable
Functionality

Same Funcitonality

Comparable
Functionality

Same Funcitonality

Comparable
Functionality

Scheduled Jobs

Create New Scheduled Job

Complex Event
Processing (5);
Mediator GE (14)

SmartApp:
schedule

CreateTopicRule

Delete Scheduled Job

Complex Event
Processing (5);
Mediator GE (14)

DeleteTopicRule

Get Scheduled Job by Token

Complex Event
Processing (5);
Mediator GE (14)

GetTopicRule

List Scheduled Jobs Matching

Criteria

Complex Event
Processing (5)

Update Existing Scheduled

Job

Complex Event
Processing (5);
Mediator GE (14)

Table 5.12: Correlation Matrix to Compare the Features within SiteWhere Category Scheduled Jobs

72

5.1 Analysis of the Features

S9[NPayds A103938D) ISYMSIIS UTYIIM S2INIed] 9y 21eduwo)) 03 XIIIeJA UOTIB[21I0D) :E€1°S d[qeL

9|nydido]aoe|day

(1) 39 JoreIPON
{(1T) 493049 Asanp

9|npayds 3unsix3 ue axppdn

a|nyaido]isi]

(1) 39 Jo3eIpOIN
{(11) 493049 Asanp

CIEITR)
Ud3BIA 3BY3 SBINPaYDS 1SI7

9|ny21do]199

(1) 39 J0301PAN
(1T1) 493049 Auanp

uayo] Aq a|npayds 199

3|nyoido]33131aQ

(¥T) 3D 40301PAN

3|npayas e 313/3d

(TT) 493049 Auanp
9|nydido]a1eal) (#T) 39 JoeIPON 9|NPaYIS MIN e 9103J)
{(1T) 493049 Asanp
sa|npayds
Ajjeuondunyg Ailjeuolpung swes Ayjeuonoung Aljeuolpung swes Ayjeuondung Ayjeuolpung swes Ajjeuondunyg Ailjeuolpung swes EYEITREIT
9|qesedwo) 9|qesedwo) 9|qesedwo) 9|qesedwo)
wojiejd 10j uosiem INGI 101 SMY ssuly uews JHVMI

73

5 Design of the Abstract Class Model

FIWARE SmartThings AWS loT IBM Watson loT Platform
Comparable Comparable Comparable Comparable
SiteWhere Same Funcitonality Functionality Same Funcitonality Functionality Same Funcitonality Functionality Same Funcitonality Functionality
Sites

Create New Site

OS Clustering (2);
Pub/Sub Semantic
Extension (4);
Location Server (8);
Device Sensors (10)

Location: id;
latitude; longitude;
etc.

Create New Zone for Site

OS Clustering (2);
Pub/Sub Semantic
Extension (4);
Location Server (8);
Device Sensors (10)

Delete Site by Token

OS Clustering (2);
Pub/Sub Semantic
Extension (4);
Location Server (8);
Device Sensors (10)

Get Site by Unique Token

OS Clustering (2);
Pub/Sub Semantic
Extension (4);
Location Server (8);
Device Sensors (10)

Location: name

OS Clustering (2); List / Get / Create
List Alerts for Site Location Server (8) TopicRule
List Command Invocations for OS Clustering (2); List / Get / Create
ite Location Server (8) TopicRule
List Command Responses for OS Clustering (2); List / Get / Create
Site Location Server (8) TopicRule
List Device Assignments for D: Get device
ite OS Clustering (2) location
OS Clustering (2);
Pub/Sub Semantic
Extension (4); D: Get device
Location Server (8); location
List Locations for Site Device Sensors (10) information

List Measurements for Site

OS Clustering (2);
Location Server (8)

List Sites Matching Criteria

OS Clustering (2);
Location Server (8)

List Zones for Site

OS Clustering (2);
Pub/Sub Semantic
Extension (4);
Location Server (8);
Device Sensors (10)

Update Existing Site

OS Clustering (2);
Pub/Sub Semantic
Extension (4);
Location Server (8);
Device Sensors (10)

Table 5.14: Correlation Matrix to Compare the Features within SiteWhere Category Sites

74

5.1 Analysis of the Features

UOTIRULIOJU] WAISAS A103318D) 9I9YAA\IIS UIYIIM S3INIBd o3 21eduio) 01 XL\ UONIR[9II0) :G1°G d[qeL

uolewJojul
Juswadeuew
ERIIET

199 :Q ‘s|iersp
uol1eZIURIO 3139 DO

(sT) @ndwo) so

UOI1BWIOU| UOISIBA 19D

(sT) @ndwo) so

91B1S aWiuNy JaAJSS 13D

uonjew.oju] waisAs

Ajeuonpung
9|qesedwo)

Ayjeuoldung swes

Anjeuonosung
?|qesedwo)

Ajeuolnpung swes

Anjeuondung
9|qesedwo)

Anjeuoipung swes

Ajeuonpung
?|qesedwo)

Anjeuolpung swes

wojiejd 1o] uosieM INGI

1ol smv

s8uylyews

JHYMId

EYENTTES

75

5 Design of the Abstract Class Model

FIWARE SmartThings AWS loT IBM Watson loT Platform
Comparable Comparable Comparable Comparable
SiteWhere Same Funcitonality Functionality Same Funcitonality Functionality Same Funcitonality Functionality Same Funcitonality Functionality
Tenants

Create New Tenant

Semantic Support
(3); OS Networking
(16); OS Shared File
Systems (17)

Delete Existing Tenant

Semantic Support
(3); OS Networking
(16); OS Shared File
Systems (17)

Get Tenant by Authentication
Token

OS Networking
(16); OS Shared File
Systems (17)

OC: Get
organization details

Get Tenant by Unique Id

Semantic Support
(3); OS Networking
(16); OS Shared File
Systems (17)

0OC: Get
organization details

Get Tenant Engine
Configuration

0S Networking
(16); OS Shared File
Systems (17)

List Tenants that Match
Criteria

Semantic Support
(3); OS Networking
(16); OS Shared File
Systems (17)

Send Command to Tenant
Engine

OS Networking
(16); OS Shared File
Systems (17)

Update an Existing Tenant

Semantic Support
(3); OS Networking
(16); OS Shared File
Systems (17)

Table 5.16: Correlation Matrix to Compare the Features within SiteWhere Category Tenants

76

5.1 Analysis of the Features

$I19S() A108338D) 2ISYMIIS UIYIM S2INnJed] 93 oIeduwio)) 03 XLIJBJAl UOTIR[RIIOD /'S d[qeL

(8T) Amauap| SO

J9sn Sunsixy axopdn

s3ulyasn

(81) Avauap| SO

el1a34) Sulydlen siasn Isi7

s|le3ap uoleziuedio
199200

(81) Avauap| so

1950
104 SJUBUD | PIZIIOYINY ISIT

s|ieyap uoneziuesio

(81) Avuap| so

aweusasn Aq Jasn 199

19920
s|ie3ap uoneziuegio (2180131349 (8T) Ayauap| so J3s(40} Sa1HIoYINY 139
19900 9142s9Q)
‘Ad110d399

(81) Avauap| so

aweuJasn Aq Jasn a13/ag

(81) Avauap| sO

19SM M3N 310349

siasn
Aujeuondung | Aujeuolpung awes| Apjeuonsung |Aujeuondung sawes| Aujeuonoung Aujeuolpung awes| Ayjeuonsung | Anjeuordung swes EYEOTN B
a|qesedwo) 9|qesedwo) 9|qesedwo) 9|qesedwo)
wJojiejd 10] uosie NGl 101 SMV sSulylews JHVMI

77

5 Design of the Abstract Class Model

FIWARE SmartThings AWS loT IBM Watson loT Platform
Comparable Comparable Comparable Comparable
SiteWhere Same Funcitonality Functionality Same Funcitonality Functionality Same Funcitonality Functionality Same Funcitonality Functionality
Zones

Delete Zone by Unique Token

Location Server (8);
Device Sensors
(10); OS Image
Service (19)

Get Zone by Token

Location Server (8);
Device Sensors
(10); OS Image
Service (19)

D: Get device
location
information

Update an Existing Zone

Location Server (8);
Device Sensors
(10); OS Image
Service (19)

D: Update device
location
information

Table 5.18: Correlation Matrix to Compare the Features within SiteWhere Category Zones

78

5.2 Requirements of the Features and the Abstract Class Model

comparable methods [Amal6b] [Amal6d] [Amal6c] [IBM16b]. SmartThings does not
provide any comparable functionality [Smal5a].

Within the SiteWhere platform a zone is a user-defined geographical area, that carries
a special meaning within the IoT application, like, e.g., a secure area in an airport,
where only certain personnel should be allowed. The Zones service provides func-
tionality to monitor such zones, and to react on inadvertent events, e.g., to fire an
alert if an unauthorized person enters the secure zone of an airport [Sit16¢c]. The
corresponding methods of the Zones service are depicted within Table 5.18. Notice-
able, the service only comprises methods to retrieve, update, and delete a zone. The
operation to create a zone is covered by the Sites service, since zones are attached to
sites. FIWARE and the IBM Watson IoT Platform both comprise comparable functional-
ity [FIW15c] [IBM16b]. SmartThings provides a comparable method to retrieve a zone,
and AWS IoT does not provide any comparable functionality to the SiteWhere Zones
service at all [Smal5a] [Amal6b] [Amal6éd] [Amaléc].

FIWARE, SmartThings, AWS IoT, and the IBM Watson IoT Platform all provide further
features. As the comparison has shown, SiteWhere also provides functionality, which
are not covered by the remaining ones. Considering those further features, there is
no functionality, which is covered by most of the remaining platforms. Hence it is
assumed, that they represent additional functionality, which does not influence the core
functionality, and which is not considered within the following research.

5.2 Requirements of the Features and the Abstract Class
Model

As the analysis and comparison of the features has shown, some categories are covered
by all platforms, and hence are essential for a CPS platform. Within this Section those
categories are reviewed, and the requirements of the abstract class model are derived.

Obviously a service to manage the devices of a CPS is one of the most important functions,
as every platform provides methods comparable to the Devices service of SiteWhere (5.8).
Especially methods to create, retrieve, update, and delete devices are essential to a CPS
platform. Additionally the comparison within the Device Assignments service, and the
Device Specification service of SiteWhere has indicated, that the platform should be able
to classify, and to provide further information about the devices with the aid of a device
specification (5.7), description, and assignments (5.3). Another important feature is the
ability to aggregate devices and/or users into logical or geographical groups, as shown
within the comparison of the Device Groups (5.6), the Sites (5.14), and the Zones (5.18)
services of SiteWhere. Furthermore this should enable not only to look at the data

79

5 Design of the Abstract Class Model

from a grouped perspective, but also to enable the platform to send commands to every
participant of a group, site, or zone. Noticeable is, that the SiteWhere platform uses
sites and zones in an overlapping term, i.e., a site is used for location-aware devices and
their events, and a zone is a user-defined geographical area. The compared platforms
do not differ within sites and zones in the exact same manner.

Another important, already mentioned feature are commands (5.5), invocations (5.4),
batch operations (5.2), and schedules (5.13, 5.12). They prepare the core functionality
of the platform in terms of the communication between the devices and the platform,
and the control of the devices. Obviously commands enable the control of devices, and
invocations enable an automated, predefined control of devices. The comparison has
shown, that batch operations are not provided by every platform. Nevertheless they are
crucial for an eased usage of a CPS platform, as they enable sending one command to
multiple devices. Likewise schedules are instrumental in enabling an eased usage, as
they assure to establish a time-table for commands.

Events are like devices essential to a CPS platform. They are the key enabler of monitor-
ing and controlling the physical world, which defines the aim of CPS. Furthermore they
prepare the basis for the communication of devices with the platform. The comparison
within the Events (5.9), and Asset Management (5.1)services of SiteWhere indicated
that, as well.

The analysis of the Users service (5.17) of SiteWhere has shown, that beside SmartThings
every platform provides functionality to manage the users of the platform. Since the
user interacts with, and configures the platform, a component which manages the users
should be provided. It is assumed that the SmartThings platform likewise provides some
kind of a user management, which is not represented within the features.

The Tenants (5.16), System Information (5.15), and External Search Providers (5.10)
services of SiteWhere are not covered by every considered platform. Nevertheless they
provide beneficial functionality. The deployment of tenants in terms of a separate
container, so that multiple IoT applications can run concurrently are presumably also
used by the remaining platforms. For instance AWS IoT and the IBM Watson IoT Platform
provide accounts for their clients, where they can access only their own application. It
can be of interest for the user to retrieve information system, when, e.g., the application
instance has connection problems, or bad response times. Respective the External Search
Providers service, it is likewise presumable, that comparable functionality is provided by
the remaining platforms, since all of them provide an access point for further applications
within their architectures (3.1).

80

5.3 Abstract Class Model

5.3 Abstract Class Model

Following the analysis and the requirements of the features, the abstract class model
is derived. Figure 5.1 shows the whole abstract class model, below the individual
components, and the correlations are described in detail. A simple connection between
two classes means that they have an interconnection, and can access the other class,
e.g., to use the attributes or operations in a desired way.

Figure 5.2 shows the excerpt of the platform class, and the connected classes of the upper
part of the abstract class model. Initially the platform has the attributes platformID,
which is the unique identifier, and the attribute description, which allows to characterize
the platform textual. The platform class represents the underlying basis, where all other
classes are connected to, and at least partly dependent.

Northbound with a composition connected to the Platform is the Platform Information
class. This class cannot exist without the Platform class, and every instance of the
Platform class has one instance of the Platform Information class assigned. The Platform
Information class provides operations to retrieve information about the Platform itself,
the server, and the version of the instance running on the platform. As mentioned within
Section 5.2, this class provides beneficial information to the user, if necessary.

Likewise northbound via an aggregation is the AuthorityManager class, which can be
connected with zero to multiple platform instances, as the managed authorities can
possibly be applied to more than one platform instance. Subsequently one platform
instance can be connected to zero to multiple AuthorityManagers. The AuthorityManager
contains a list of all authorities, and comprises operations to create, retrieve, update,
and delete an instance of the Authority class. The Authority class is connected to the
AuthorityManager class via a composition, i.e., the Authority class cannot exist without
the AuthorityManager class, and one instance of the AuthorityManager can have zero to
multiple instances of the Authority class associated. The Authority class contains the
attributes authority ID, which is the unique identifier, a name, and a description of the
authority. Those two classes build the basis for managing the access control and the
security.

Furthermore northbound connected to the Platform is the Pluggable Service class, which
contains an operation to retrieve available pluggable services. They can be internal,
i.e., services of the same provider as the platform, or external in terms of third party
services. One Platform can have zero to multiple instances of the Pluggable Service class
associated, and the Pluggable Service can be connected to zero to multiple Platform
instances. The Pluggable Service class represents the access point of further possibly
connected applications, like observed within every analyzed platform.

81

5 Design of the Abstract Class Model

Ruthority

Carevay
.-

DeviceSpecification

Event

ventiD

category
[value

.+ [deviced

createzonelnvocat

createzoneBatchoper

createCGroupSchedule

createzoneschedule)

o

descripion
o
Fiatform Tnformation
Fiuggable Senvice
[etrieveVersioninformationd
1 o
description
TerariManager
TetGTenants
creteTenant0
o Tenant
0.0 0. - 0. 0.
Devicstanager Grouptianager ToneManager Useanager Evenihansger
OTADwices TG0 Zones OTAIsers SOt

creaeDeviced Device createGraup : Group createZoned Zone CreateUserd User creaeiventd - Event

retreveCroup(aroupiD : Group retrevelsertuserd) : User vent
updateDevi updateGrouplaroupiD) : Group) User euieveEventsdyTyoetiype)
celeeDevice(deicelD) deleteCroupigroupiD)) etrieveEventstyCategory(category)

eloc Zone retrievenlUsers0 publishEveno - Event
oD Device fevenliGroups) CeAlZones) fevelserdyName(name) - User
Device User unsubscribeOfEventCategorycategon)
erreveDevicesOfGroupigroupiD) retreveDevicesOfZonelzoneiD)
retreveAuthortyOfUser(useriD)
o updateUserRemoveAuthorityluserdd authorityID)
retrevebsersOfGroupiaroupiD) retreveUsersOfZone(zoneiD)
n

etreveGroupsOfCrouplaroupid) etreveGroupsOiZane(zonelD)

etreveAuthorityOfCrouplgrouplD) - Authoity retreveZonesOfZone(zoneiD)
updateDeviceRemoveAuthoriy(deviceld,authoriyiD) horitiD

» retreveAuthorityOfZonezonelD) - Authority
Lo pdateZoneRemoveAuthorty(zoneld,authoriyID)
0 0.
Device

Figure 5.1: Abstract Class Model

82

5.3 Abstract Class Model

J98euen4asN 01
Ja8eue|\uUaAT 0}

uriojied 1d190xH [9POIAl SSB[D 10BnsSqY :g°S 2In31g

Jageue\auo0z 01 Jageueyjueua] o3 Jageuendnoln 0}

¢

]
¢

uondudsap

]

Qlwioje|d .~
wiope|d

0 @ =0 *

<0 _ 1

=0 ()UOIBWIOJU|UOISIBIABAB YR
(JUOIIBWIOJUIBAIDSIABIIIRS

()sad1n353|qebbn|danalilal

(@1iauoyine)Ayioyinya13|3p ()UOIIBLLIOJU|WIO IR |dBABILIRI

Auoyiny : (giAaoyine)Ajuoyinyaiepdn

221035 3|qebbnig Auoyiny : (giAaoyine)Aylioyinyansiilal

Auoyiny : (Ayuoyinyaleald UOIBWIOJU| WIoIB|d

S3RLOYINY|IVI03S!|
JabeuepAuoyiny

=0

uondudsap

sweu

aliluoyine

Ajuoyiny

J38eUR|AI2I1A3(0}

Aemaieo o3

13sn ‘auoz
‘dnoug ‘a21naQ
‘Jueua] 03

83

5 Design of the Abstract Class Model

to Gateway

to DeviceManager
to GroupManager

to Authority

Figure 5.3 shows, that the Platform is southbound via an composition connected to
the TenantManager class, which is further connected to the Tenant class. A Tenant
describes an enclosed container within a platform, to enable that multiple instances
can run concurrently, but absolutely isolated. Since the possibility to provide separate
containers within one platform seemed to be common and reasonable, this approach is

adopted.

The TenantManager provides operations to manage all tenants of a platform. It cannot
exist without the Platform, and one Platform instance can have zero to multiple instances
of the TenantManager assigned. The TenantManager contains a list of all Tenants, and
comprises operations to create, retrieve, update, and delete a single Tenant instance, as

84

Platform

<>{ platformID

description :

0..*

TenantManager

listOfAllTenants

createTenant() : Tenant

retrieveTenant(tenantiD) : Tenant
updateTenant(tenantID)

deleteTenant(tenantID)
retrieveTenantByDescription(description) : Tenant
retrieveAllTenants()
retrieveTenantInformation(tenantID)

0..*
Tenant
tenantiD
description
authoritylD

I I l [

to DeviceManager, GroupManager, ZoneManager, UserManager, EventManager

Figure 5.3: Abstract Class Model Excerpt Tenant

to EventManager
to UserManager
to ZoneManager

5.3 Abstract Class Model

well as an operation to retrieve all Tenants, and to retrieve information about a Tenant.
The Tenant class is connected to the TenantManager with a composition, so the Tenant
cannot exist without the TenantManager, and one instance of the TenantManager can be
connected to zero to multiple instances of a Tenant. It contains the attributes tenantID,
which is the unique identifier, a description of the Tenant and an authorityID, which
points to the Authority class, defining which Authority is assigned to the Tenant.

Figure 5.4 shows the excerpt of the DeviceManager, the Device, and the DeviceSpecifica-
tion class. The Device class represents physical devices, connected to the platform. The
DeviceManager provides operations to manage those devices, and the DeviceSpecifica-
tion class enables a classification of the devices. The DeviceManager class is northbound
connected with a composition to the Platform, i.e., the DeviceManager cannot exist
without the Platform, and a Platform instance can be associated to zero to multiple
instances of the DeviceManager. Additionally the DeviceManager is connected to the
Tenant, which means that the DeviceManager, it’s attributes, and operations can be
accessed via the Tenant. The DeviceManager contains a list of all Devices, and provides
operations to create, retrieve, update, and delete a Device instance, and to retrieve
information about a device instance. Furthermore it comprises operations to create,
retrieve, update, and delete an instance of the DeviceSpecification class, and to append,
retrieve appendend, and remove an Authority to/of an instance of a Device. Following
this, the DeviceManager is connected to the DeviceSpecification class, which contains the
attributes specID, the unique identifier of the specification, and a description. Obviously
the DeviceManager is connected to the Device class through an aggregation, i.e an
instance of the Device class belongs to one to many instances of the DeviceManager
class, and a DeviceManager can have zero to multiple Device instances associated.
Furthermore the DeviceManager is connected to the Group, Zone, and User class.

The Device class is connected to the DeviceSpecification class, so that one instance of a
Device can belong to zero or one instances of the DeviceSpecification, and an instance
of the DeviceSpecification can be associated to zero to multiple instances of a Device.
The Device class contains the attributes deviceID, which is the unique identifier of an
instance of a device, and the attributes name, description, and specID, which points to
the associated DeviceSpecification. Furhtermore a Device has an assignment, a location,
an authorityID, which points to the associated Authority, and an optional gatewayID,
which points to the Gateway the device uses to communicate with the platform. If the
device communicates directly with the platform, the gatewaylID is empty. Following
this, the Device is connected to the Authority, and the Gateway class. The Device
class contains operations to create, retrieve, update, and delete Commands, Alerts,
Invocations, Batch Operations, and Schedules. Accordingly the Device class is connected
to the EventManager class, since events can trigger those operations. Additionally the
Device class is connected through aggregations to the Group, and Zone classes, to enable
that a Device can be contained in zero or multiple Groups and/or Zones.

85

5 Design of the Abstract Class Model

86

to Gateway

to Platform, Tenant
0.*

DeviceManager

listOfAllDevices

createDevice() : Device

retrieveDevice(devicelD) : Device
updateDevice(devicelD) : Device
deleteDevice(devicelD)

retrieveLocation(devicelD)
retrieveDeviceByDescription(description) : Device
retrieveDeviceByAssignment(assignment) : Device
retrieveAllDevices()

retrieveDevicesOfSpec(specID)
retrieveDevicelnformation(devicelD)
createDeviceSpec() : DeviceSpecification
retrieveDeviceSpec(specID) : DeviceSpecification
updateDeviceSpec(specID)
deleteDeviceSpec(specID)

retrieveAllDeviceSpecs()
retrieveDeviceSpecByDescription(description) : DeviceSpecification
updateDeviceAppendAuthority(devicelD,authoritylD)
retrieveDeviceAuthority(devicelD) : Authority

DeviceSpecification

speciD
description

updateDeviceRemoveAuthority(devicelD,authoritylD)

1.x

0..*
Device

0..*|devicelD
name
description
speclD
assignment
location

authoritylD
gatewaylD

createCommand()
retrieveCommand(commandID)
updateCommand(commandID)
deleteCommand(commandID)
createAlert()
retrieveAlert(alertID)
updateAlert(alertiD)
deleteAlert(alertiD)
createlnvocation()
retrievelnvocation(invocationID)
updatelnvocation(invocationID)
deletelnvocation(invocationlD)
createBatchOperation()
retrieveBatchOperation(batchID)
updateBatchOperation(batchID)
deleteBatchOperation(batchID)
createSchedule()
retrieveSchedule(schedulelD)
updateSchedule(schedulelD)
deleteSchedule(schedulelD)

to Authority, EventManager, Zone

Figure 5.4: Abstract Class Model Excerpt Device

to User,
Zone,
Group

to Group

5.3 Abstract Class Model

Cateway

*

gatewaylD L to Platform

translateMessage()
manageConnection()

to Device

Figure 5.5: Abstract Class Model Excerpt Gateway

As already mentioned, the Device class is connected to the Gateway class, if the Device
requires the Gateway to enable the communication of devices with the platform. Accord-
ingly the Gateway is connected to the Platform with an aggregation, i.e., an instance of
the Gateway class belongs to zero to multiple Platform instances, and a Platform instance
can be associated with zero to multiple instances of a Gateway. The Gateway class is
shown within Figure 5.5. It contains the gatewayID, which is the unique identifier of the
instance of the Gateway class. The Gateway comprises operations to translate a message,
and to manage the connection of the devices.

Figure 5.6 depicts the GroupManager, and Group class, which enable the aggregation of
devices into logical groups, where a group can likewise contain groups. For instance,
the heaters within a room can be contained within a group. The GroupManager is
northbound connected with a composition to the Platform, so a Platform instance can be
associated to zero to multiple GroupManager instances, and the GroupManager cannot
exist without the Platform. The GroupManager is also connected to the Tenant, to enable
that the operations of the GroupManager can be accessed through the Tenant. The
GroupManager contains a list of all Groups, and comprises operations to create, retrieve,
update, and delete an instance of a Group, as well as operations to append, retrieve
appendend, or remove a Device, User, Group, or Authority of a Group. Accordingly
it is connected to the Group class, where one GroupManager can be associated to
zero to multiple Group instances, and one Group instance belongs to one to multiple
GroupManager instances.

Furthermore the Group class is northbound connected to the DeviceManager, to enable
that the Group class can access the operations of the DeviceManager. The Group class
contains the attributes groupID, which is the unique identifier of the instance of a Group,
name, and description of the instance, as well as a list of each, Devices, Users, and
Groups the instance of the Group contains. Additionally it contians an authorityID, which
points to the Authority class, hence the Group class is connected to the Authority class. A
Group can be aggregated into zero to multiple Groups, following it is connected to itself

87

5 Design of the Abstract Class Model

88

to
DeviceManager

to Platform to Tenant

0..

CroupManager

listOfAllGroups

createGroup() : Group

retrieveGroup(groupl!D) : Group
updateGroup(grouplD) : Group
deleteGroup(grouplD)
retrieveGroupByDescription(description) : Group
retrieveAllGroups()
updateGroupAppendDevice(grouplD,devicelD)
retrieveDevicesOfGroup(grouplID)
updateGroupRemoveDevice(grouplD,devicelD)
updateGroupAppendUser(grouplD,useriD)
retrieveUsersOfGroup(grouplID)
updateGroupRemoveUser(grouplD,userlD)
updateGroupAppendGroup(grouplD,grouplID)
retrieveGroupsOfGroup(grouplID)
updateGroupRemoveGroup(grouplD,grouplD)

retrieveAuthorityOfGroup(grouplID) : Authority

updateGroupAppendAuthority(grouplD,authorityID)

updateGroupRemoveAuthority(grouplD,authoritylD)

0

1.*

1 0..*

Group

grouplD
name
, |description

to Device -%3] devices

users
groups
authoritylD

createGroupCommand()
retrieveGroupCommand(groupCommandID)
updateGroupCommand(groupCommandID)
deleteGroupCommand(groupCommandID)
createGroupAlert()
retrieveGroupAlert(groupAlertiD)
updateGroupAlert(groupAlertID)
deleteGroupAlert(groupAlertiD)
createGrouplnvocation()
retrieveGrouplnvocation(grouplnvocationiD)
updateGrouplnvocation(grouplnvocationiD)
deleteGrouplnvocation(grouplnvocationID)
createGroupBatchOperation()
retrieveGroupBatchOperation(groupBatchID)
updateGroupBatchOperation(groupBatchiD)
deleteGroupBatchOperation(groupBatchlID)
createGroupSchedule()
retrieveGroupSchedule(groupSchedulelD)
updateGroupSchedule(groupSchedulelD)
deleteGroupSchedule(groupSchedulelD)

Do

to Authority, EventManager, User

to User, Zone
to User, Zone

to Zone

Figure 5.6: Abstract Class Model Excerpt Group

5.3 Abstract Class Model

through an aggregation. The class provides similar to the Device class operations to
create, retrieve, update, and delete Group Commands, Group Alerts, Group Invocations,
Group Batch Operations, and Group Schedules. Therefor it is likewise connected to the
EventManager class. Beside the already described aggregation to the Device class, the
Group class is furthermore connected through an aggregation to the Zone and User class,
i.e., one instance of a Group can belong to zero to multiple Zone instances, and it can
comprise zero to multiple User instances.

Figure 5.7 depicts the excerpt of the ZoneManager, and the Zone class, which enable to
divide Devices, Users, and Groups into geographical or logical Zones. Likewise within
the Groups, a Zone can contain Zones. A Zone can, e.g., be a room within a building,
or the ground floor of a building, where the room is part of the ground floor. The
ZoneManager class is northbound connected to the Platform, where the connection is a
composition, i.e., the ZoneManager cannot exist without the Platform, and an instance
of the Platform can be associated to zero to multiple instances of the ZoneManager.
Likewise the DeviceManager and the GroupManager, the ZoneManager is connected to
the Tenant, which means that the operations of the ZoneManager can be accessed via the
Tenant. Containing a list of all Zones, the ZoneManager provides operations to create,
retrieve, update, and delete a Zone, as well as operations to append, retrieve appendend,
or remove Devices, Users, Groups, Zones, and an Authority to/of a Zone. Southbound
the ZoneManager is connected to the Zone class via an aggregation, which means that
one instance of the ZoneManager can be associated to zero to multiple instances of a
Zone, and one Zone belongs to one to multiple ZoneManagers.

Beside the connection to the ZoneManager, the Zone class is northbound connected to
the GroupManager, and the DeviceManager, to achieve, that the Zone can access their
operations. The Zone class contains the attributes zonelD, which is the unique identifier
of the instance of the Zone, a description, and a list of each, Devices, Users, Groups, and
Zones the instance of a Zone contains, as well as an authorityID, which points to the
Authority class. Following the Zone class is connected to the Authority class. Like the
Device and Group class the Zone class provides operations to create, retrieve, update,
and delete Zone Commands, Zone Alerts, Zone Invocations, Zone Batch Operations,
and Zone Schedules. Hence the Zone class is connected to the EventManager, since
the events are used to trigger those operations. The Zone class is connected through
an aggregation to the Device class, where one instance of a Zone contains zero to
multiple instances of a Device, and one instance of a Device is associated to zero to
multiple Zone instances. Furthermore the Zone class is connected to the User class via
an aggregation, which means that one instance of a Zone can be associated with zero
to multiple instances of a User, and one instance of a User belongs to zero to multiple
Zones. Additionally the Zone class can aggregate Groups, where one Zone instance
contains zero to multiple Group instances, and one Group instance is associated to zero
to multiple Zone instances. Again the Zone class is connected to itself, so an instance of

89

5 Design of the Abstract Class Model

90

to GroupManager

to DeviceManager

to Group

to Tenant to Platform
|o.x

ZoneManager

listOfAllZones

createZone() : Zone
retrieveZone(zonelD) : Zone
updateZone(zonelD) : Zone
deleteZone(zonelD)

retrieveAllZones()
updateZoneAppendDevice(zonelD,devicelD)
retrieveDevicesOfZone(zonelD)
updateZoneRemoveDevice(zonelD,devicelD)
updateZoneAppendUser(zonelD,userlD)
retrieveUsersOfZone(zonelD)
updateZoneRemoveUser(zonelD,userID)
updateZoneAppendGroup(zonelD,grouplD)
retrieveGroupsOfZone(zonelD)
updateZoneRemoveGroup(zonelD,grouplD)
updateZoneAppendZone(zonelD,zonelD)
retrieveZonesOfZone(zonelD)
updateZoneRemoveZone(zonelD,zonelD)

retrieveAuthorityOfZone(zonelD) : Authority

retrieveZoneByDescription(description) : Zone

updateZoneAppendAuthority(zonelD,authoritylD)

updateZoneRemoveAuthority(zonelD,authoritylD)

1.x

- to User

to
User

0..

Zone

zonelD
description
0. devices
—>users
groups
zones
authoritylD

0*

9" to User

createZoneCommand()
retrieveZoneCommand(zoneCommandID)
updateZoneCommand(zoneCommandID)
deleteZoneCommand(zoneCommandID)
createZoneAlert()
retrieveZoneAlert(zoneAlertID)
updateZoneAlert(zoneAlertID)
deleteZoneAlert(zoneAlertID)
createZonelnvocation()
retrieveZonelnvocation(zonelnvocationlID)
updateZonelnvocation(zonelnvocationID)
deleteZonelnvocation(zonelnvocation|D)
createZoneBatchOperation()
retrieveZoneBatchOperation(zoneBatchID)
updateZoneBatchOperation(zoneBatchID)
deleteZoneBatchOperation(zoneBatchID)
createZoneSchedule()
retrieveZoneSchedule(zoneSchedulelD)
updateZoneSchedule(zoneSchedulelD)
deleteZoneSchedule(zoneSchedulelD)

0..*

to Device, Authority, EventManager

Figure 5.7: Abstract Class Model Excerpt Zone

5.3 Abstract Class Model

a Zone can belong to zero to multiple Zone instances, i.e., Zones can be aggregated into
Zones.

Figure 5.8 shows the excerpt of the UserManager, and the User classes. They provide
the functionality to involve various users within the platform. The UserManager class is
northbound connected to the Platform via a composition, so that a UserManager cannot
exist without the Platform, and a Platform can be connected to zero to multiple instances
of a UserManager. Likewise the other Managers, it is connected to the Tenant, so the
operations of the UserManager can be accessed through the Tenant. The UserManager
contains a list of all Users, and provides operations to create, retrieve, update, and
delete instances of a User, and to append, retrieve appended, and remove an Authority
to/of a User. Accordingly the UserManager is connected to the User class through an
aggregation. One instance of the UserManager can be associated with zero to multiple
instances of a User, and one instance of a User belongs to one to multiple instances of a
UserManager.

The User class contains the attributes userID, which is the unique identifier of an
instance of the User, name, description, and authorityID, which points to the Authority
class. Hence the User class is connected to the Authority class. Furthermore the User
class is connected to the EventManager, the ZoneManager, the GroupManager, and the
DeviceManager, so the operations of the Manager classes can be accessed through the
User class.

Figure 5.9 depicts the excerpt of the EventManager, and the Event classes. They provide
all necessary operations regarding the handling of occurring events, and hence provide
the basis for the functionality of a CPS. The EventManager class is northbound connected
to the Platform and the Tenant. The connection to the Platform is a composition, which
means that the EventManager cannot exist without the Platform, and one instance of
the Platform can be associated to zero to multiple instances of the EventManager. The
connection to the Tenant means, that the operations of the EventManager can be accessed
through the Tenant. Southbound the EventManager is connected to the User, the Zone,
the Group, and the Device class, to enable that those classes can access the operations
of the EventManager class. It contains a list of all Events, and comprises operations to
create, retrieve, and publish an instance of an Event, as well as an operation to subscribe,
and one to unsubscribe to/of an Event Category. The EventManager is connected to
the Event class through an aggregation, so that one instance of an EventManager can
be associated to zero to multiple instances of an Event, and one instance of an Event
belongs to one to multiple instances of an EventManager.

The Event class contains the attributes eventID, which is the unique identifier of an
instance of the Event class, the name, the type, the category and the value of the instance.
The type and the category attributes enable to allocate an event to a context within it

91

5 Design of the Abstract Class Model

92

to ZoneManager

to GroupManager

to DeviceManager

to Zone

to Tenant, Platform
| | 0..*

UserManager

listOfAllUsers

createUser() : User

retrieveUser(userID) : User

updateUser(userlID) : User

deleteUser(useriD)

retrieveAllUsers()

retrieveUserByName(name) : User
retrieveUserByDescription(description) : User
updateUserAppendAuthority(userlD,authoritylD)
retrieveAuthorityOfUser(useriD) : Authority
updateUserRemoveAuthority(userlD,authoritylD)

>1..*

0..*
User

userlD
name
descirption
authoritylD

0..*

to Group, Authority

Figure 5.8: Abstract Class Model Excerpt User

to EventManager

5.3 Abstract Class Model

to Tenant, Platform

0..*

EventManager

listOfAllEvents

Event

createEvent() : Event
retrieveEvent(eventlID) : Event
retrieveEventsByType(type)
retrieveEventsByCategory(category)
publishEvent() : Event
subscribeToEventCategory(category)
unsubscribeOfEventCategory(category)

eventID

name
type

category

value

to User, Zone, Group, Device

Figure 5.9: Abstract Class Model Excerpt Event

is occurred, i.e., to append context information to an event. Both attributes are used

within the EventManager to retrieve Events.

93

6 Validation of the Abstract Class Model

This Chapter deals with the validation of the abstract class model, designed in Chap-
ter 5.3. As already mentioned within the Chapter before, the documentation of the REST
APT’s of OpenMTC is not available, hence it cannot be considered within the validation.

6.1 Validation of the Operations of the Classes

Within the following correlation matrices a check mark means, that the same func-
tionality is existent within the platform, a bracketed check mark labels comparable
existent functionality. A check mark star indicates, that presumably the same or at least a
comparable functionality is existent, which is not represented within the documentation
of the platform. A dash means, that the platform does not comprise any comparable
functionality.

Correlation Matrix 6.1 shows the validation of the Device class. Both FIWARE and AWS
IoT comprise the same functionality, the Azure IoT Hub and SmartThings provide at least
comparable functionality. SiteWhere only encompasses some of the same functionality,
therefor it is presumable, that it also provides the remaining methods, which are not
documented. Likewise the Watson IoT Platform presumably comprises the functionality
of the Device class, since they are essential for the communication of the platform with
a device.

Within Table 6.2 the correlation matrix of the DeviceManager class is represented.
FIWARE and the IBM Watson IoT Platform both provide almost the same functionality
for all methods, the remaining are comparable. SmartThings likewise encompasses at
least comparable functionality, the three methods regarding the authority of a device are
presumably existent, but not mentioned within the documentation. AWS IoT comprises
for most of the methods at least a comparable functionality, except for the location and
device information retrieval, which is not covered. SiteWhere also provides the same
or comparable functionality, beside the methods for the device information retrieval,
and the ones regarding the authority, which are not existent. Microsoft’s Azure IoT
Hub encompasses the same and comparable functionality for half of the methods of the

95

6 Validation of the Abstract Class Model

Abstraction Class Model FIWARE SiteWhere |SmartThings| AWS loT Microsoft | IBM Watson
Azure loT |loT Platform

Device

createCommand() v v* v v v v*
retrieveCommand(commandID) v v v v (v) v*
updateCommand(commandID) v v (v) v (v) v*
deleteCommand(commandID) v v (v) v v v*
createAlert() v v (v) v (v) v*
retrieveAlert(alertID) v v* (v) v (v) v*
updateAlert(alertID) v v* (v) v (v) v*
deleteAlert(alertID) v v* (v) v (v) v*
createlnvocation() v v* (v) v v v*
retrievelnvocation(invocationID) v v (v) v v v*
updatelnvocation(invocationID) v v¥* (v) v v v
deletelnvocation(invocationID) v v* (v) v v v*
createBatchOperation() v v (v) v v v*
retrieveBatchOperation(batchID) v v (v) v v v*
updateBatchOperation(batchID) v v* (v) v v v*
deleteBatchOperation(batchiID) v v* (v) v v v*
createSchedule() v v v v v v*
retrieveSchedule(schedulelD) v v (v) v v v*
updateSchedule(schedulelD) v v (v) v v v*
deleteSchedule(schedulelD) v v v v v v*

Table 6.1: Correlation Matrix to Validate the Abstract Class Model Device

DeviceManager. Not covered are the methods regarding the Device Specification, since
the Azure IoT Hub does not use anything comparable.

Within the validation of the Group class, shown in Table 6.3, AWS IoT comprises the
same functionality for every method. FIWARE, SmartThings, and the Azure IoT Hub
provide comparable functionality for all of the class methods. Likewise SiteWhere
encompasses comparable functionality for most of the methods, presumably it also
covers the remaining ones, since they are in conjunction with the covered methods. The
IBM Watson IoT Platform does not document any comparable functionality, like within
the Device class. Since it supports the grouping of devices, and users, the methods are
presumably covered.

Correlation Matrix 6.4 shows the validation of the GroupManager class. Besides AWS
IoT, which provides comparable functionality for all of the methods, FIWARE, the Azure
IoT Hub, and the Watson IoT Platform all comprise at least comparable functionality.
SmartThings provides at least comparable functionality, except for the methods regard-
ing the authority, which are presumably covered, and the ones regarding the users,
which are not encompassed, since SiteWhere does not support to have multiple users
involved within the platform. Likewise SiteWhere only encompasses at least compara-
ble functionality, beside the ones dealing with the authority. They are not covered by
SiteWhere, since the platform does only support to append authorities to users.

96

6.1 Validation of the Operations of the Classes

i B
Abstract Class Model FIWARE SiteWhere |SmartThings| AWS loT Microsoft | IBM Watson
Azure loT |loT Platform
DeviceManager
createDevice(): Device v v v v v v
retrieveDevice(devicelD): Device v v v v v v
updateDevice(devicelD): Device v v (v) v v v
deleteDevice(devicelD) v v v v v v
retrieveLocation(devicelD) (v) (v) v - - v
retrieveDeviceByDescription
o . v v (v) v v v

(description): Device
retrieveDeviceByAssignment

. . v v (v) v v v
(assignment): Device
retrieveAllDevices() v v (v) v v v
retrieveDevicesOfSpec(speclD) v v (v) v (v) v
retrieveDevicelnformation

. v - (v) - v v
(devicelD)
createDeviceSpec():

. R v v v (v) - v
DeviceSpecification
retr{eveDe\{lc.eSpec(speclD): v v v)) B v
DeviceSpecification
updateDeviceSpec(specID) v v (v) (v) - v
deleteDeviceSpec(specID) v v (v) (v) - v
retrieveAllDeviceSpecs() v (v) (v) (v) - (v)
retrle\{eD.ewceSpe.cByDes.crlptl.on v v v) v) _ ,
(description): DeviceSpecification
upda?teDewceAp[:fendAuthorlty v _ o v)))
(devicelD, authorityID)
retrlgveDev1ceAuthorlty v _ g v) (v) v)
(devicelD): Authority
updayteDevnceRemoveAuthonty v _ o) v))
(devicelD, authorityID)

Table 6.2: Correlation Matrix to Validate the Abstract Class Model DeviceManager

Like within the Group class, Table 6.5 shows, that AWS IoT provides the same functional-
ity like the Zone class of the abstract class model. FIWARE, SmartThings, and SiteWhere
comprise at least comparable functionality. Regarding the SiteWhere platform, some of
the methods are not documented, but presumably existent. The Azure IoT Hub does
not support combining devices into zones, hence it does not provide any comparable
functionality. Since the IBM Watson IoT Platform does support the approach of zones,
presumably the methods are covered.

The validation of the ZoneManager is shown in Correlation Matrix 6.6. FIWARE, AWS
IoT, and the Watson IoT Platform comprise comparable functionality for all of the
methods. Again SmartThings provides comparable functionality, besides the methods
regarding the authority and the user methods. The authority methods are presumably
covered, since the authority has to be managed by a platform. The user methods are
not covered at all, as SmartThings does not support to involve multiple users within the
platform. Likewise within the validation of the GroupManager, SiteWhere encompasses

97

6 Validation of the Abstract Class Model

Microsoft | IBM Watson

Abstraction Cl M | FIWARE SiteWh S tThi AWS loT

bstraction Class Mode iteWhere |SmartThings Slo Azure loT | 10T Platform
Group

createGroupCommandy() (v) v* (v) v (v) v*

retrieveGroupCommand

(groupCommandiD)))) d (v) .
updateGroupCommand

(groupCommandiD) v))) v (v) .
deleteGroupCommand

(groupCommandiD)))) v) .
createGroupAlert() (v) (v) (v) v (v) v*
retrieveGroupAlert(groupAlertID) (v) v* (v) v (v) v*
updateGroupAlert(groupAlertID) (v) v* (v) v (v) v*
deleteGroupAlert(groupAlertID) (v) v* (v) v (v) v*
createGrouplnvocation() (v) v* (v) v (v) v*
retrieveGrouplnvocation v) (v) (v) v v) .
(grouplnvocationID)

updateGrouplnvocation v) o (v) v v) o
(grouplnvocationID)

deleteGrouplnvocation v) .) , v) S

(grouplnvocationID)
createGroupBatchOperation() (v) (v) (v) v (v) v*
retrieveGroupBatchOperation

*
(groupBatchiD)) (v) (v) v (v) v
updateGroupBatchOperation) R “) B) .
(groupBatchlID)
deleteGroupBatchOperation () r) B) .

(groupBatchID)
createGroupSchedule() (v) (v) (v) v (v) v*
retrieveGroupSchedule

(groupSchedulelD) (v)) (v) v (v) v*
updateGroupSchedule .
(groupSchedulelD) (v))) v v) v

deleteGroupSchedule v))) ,) .

(groupSchedulelD)

Table 6.3: Correlation Matrix to Validate the Abstract Class Model Group

at least comparable functionality of the ZoneManager methods, except for the ones
regarding the authority, which are not covered.

Correlation Matrix 6.7 shows the validation of the UserManager class of the abstract
class model. SmartThings does not comprise any comparable functionality at all, since
it does not support multiple users involved within the system. FIWARE, SiteWhere,
AWS IoT and the Azure IoT Hub all provide at least comparable functionality. The IBM
Watson IoT Platform supports only one user per instance of the platform, i.e., an admin
to setup and manage the system. Hence it is possible to retrieve the instance of the user,
and the authority assigned, but all other methods are not covered.

98

6.1 Validation of the Operations of the Classes

Microsoft | IBM Watson

Abstract Class Model FIWARE SiteWhere |SmartThings| AWS loT Azure loT | 10T Platform
GroupManager

createGroup(): Group v v v (v) v v
retrieveGroup(grouplD): Group v v v (v) v v
updateGroup(grouplD): Group v v (v) (v) v v
deleteGroup(grouplD) v v (v) (v) v v
retrieveGroupByDescription v v v) v) v P

(description): Group
retrieveAllGroups() v v (v) (v) v v
updateGroupAppendDevice
(grouplD, devicelD)
retrieveDevicesOfGroup(grouplD) v v v (v) v v
udateGroupRemoveDevice
(grouplD, devicelD)
updateGroupAppendUser
(grouplD, userID)
retrieveUsersOfGroup(grouplD) v v - (v) v v
updateGroupRemoveUser
(grouplD, userlD)
;deateGroupAppendGroup)) v) v) v) v)
grouplD, groupID)

retrieveGroupsOfGroup(groupID) (v) (v) (v) (v) (v) (v)
updateGroupRemoveGroup

v v v (v) v v

v v v (v) v v

v v - (v) v v

v v - (v) v v

(grouplD, grouplD) ()) () (v) (v) (v)
updateGroupAppendAuthority v) _ s v) v) v)
(grouplD, authorityID)

retrieveAuthorityOfGroup _ .

(grouplD): Authority () v (v) (v) (v)
updateGroupRemoveAuthority v) _ s* v) v) v)

(grouplD, authorityID)

Table 6.4: Correlation Matrix to Validate the Abstract Class Model GroupManager

The validation of the EventManager is shown within Table 6.8. FIWARE, SmartThings,
and the Azure IoT Hub provide at least comparable functionality for every operation of
the EventManager. The IBM Watson IoT Platform comprises comparable functionality,
except for the subscribe to and unsubscribe of an event operation. Since the platform sup-
ports to publish events, it is presumable that it also covers the subscribe and unsubscribe
operation. The documentation of AWS IoT gives no information about any operations
regarding events. As they are essential for the communication, and an accurate usage of
a CPS platform, they are presumably covered. SiteWhere provides comparable function-
ality, except for the subscribe to, and unsubscribe of an event operation, which are not
covered.

Table 6.9 shows the correlation matrix of the TenantManager class of the abstract class
model. FIWARE, SiteWhere, and the Azure IoT Hub all provide the same functionality,
except for the operation to retrieve all tenants, where those platforms provide com-
parable functionality. SmartThings comprises comparable functionality for all of the

99

6 Validation of the Abstract Class Model

Microsoft | IBM Watson

Abstraction Cl M | FIWARE SiteWh S tThi AWS loT

bstraction Class Mode iteWhere |SmartThings Slo Azure loT | 10T Platform
Zone

createZoneCommand() (v) v* (v) v - v*

retrieveZoneCommand

- *
(zoneCommandiD) (v) v) (v) v v
updateZoneCommand i -
(zoneCommandID) (v) (v) (v) v v
deleteZoneCommand))) B i -

(zoneCommandID)
createZoneAlert() v (v) (v) v - v*
retrieveZoneAlert(zoneAlertID) v v* (v) v - v*
updateZoneAlert(zoneAlertID) v v* (v) v - v*
v v
v v

deleteZoneAlert(zoneAlertID) v* (v) - v*

createZonelnvocation() v* (v) - v*
retrieveZonelnvocation
. v (v) (v) v - v*
(zonelnvocationID)
updateZonelnvocation
P . v v* (v) v - v*
(zonelnvocationlID)
deleteZonelnvocation
v v* (v) v - v*

(zonelnvocationID)
createZoneBatchOperation() (v) (v) (v) v - v*
retrieveZoneBatchOperation

v v v v _ s*
(zoneBatchlID) (v) (v) (v)
updateZoneBatchOperation) R “) B - .
(zoneBatchID)
deleteZoneBatchOperation () r) B - .

(zoneBatchiD)
createZoneSchedule() (v) (v) (v) v - v*
retrieveZoneSchedule

- *
(zoneSchedulelD) (v) (v) (v) v v
updateZoneSchedule i -
(zoneSchedulelD)) (v) (v) v v
deleteZoneSchedule) “)) B - -

(zoneSchedulelD)

Table 6.5: Correlation Matrix to Validate the Abstract Class Model Zone

operations of the TenantManager. Within AWS IoT the approach of tenants is existent,
but not visible for the clients, since each tenant is explicitly assigned to one client. Hence
AWS IoT does not cover any of the operations of the TenantManager class. Likewise
the IBM Watson IoT Platform uses the approach of tenants, whereby the clients can still
retrieve the tenant itself, and information about it, but the remaining operations are not
covered.

Within Correlation Matrix 6.10 the validation of the AuthorityManager is represented.
FIWARE and the Azure IoT Hub both provide the same functionality for all operations
of this class. AWS IoT provides at least comparable functionality. The IBM Watson IoT
Platform encompasses comparable functionality, except for the deletion of authorities,
which is not supported, since the authority is assigned at the point of the creation of a

100

6.1 Validation of the Operations of the Classes

Microsoft | IBM Watson

Abstract Class Model FIWARE SiteWhere |SmartThings| AWS loT Azure loT | 10T Platform
ZoneManager

createZone(): Zone v v v (v) - v
retrieveZone(zonelD): Zone v v v (v) - v
upateZone(zonelD): Zone v v (v) (v) - v
deleteZone(zonelD) v v (v) (v) - (v)
retrieveZoneByDescription v v v) (v) _ v)

(description): Zone
retrieveAllZones() (v) (v) (v) (v) - (v)
updateZoneAppendDevice

(zonelD, devicelD)))) (v) -)
retrieveDevicesOfZone(zonelD) (v) (v) (v) (v) - (v)
udateZoneRemoveDevice)))) B)
(zonelD, devicelD)

updateZoneAppendUser _ B
(zonelD, userID))) (v))
retrieveUsersOfZone(zonelD) (v) (v) - (v) - (v)
updateZoneRemoveUser

b) (v) - (v) -)

(zonelD, userID)

updateZoneAppendGroup B
(zonelD, grouplD))))))
retrieveGroupsOfZone(zonelD) (v) (v) (v) (v) - (v)
updateZoneRemoveGroup

(zonelD, grouplD)))) (v) - (v)
updateZoneAppendZone _

(zonelD, zonelD)))) (v) (v)
retrieveZonesOfZone(zonelD) (v) (v) (v) (v) - (v)
updateZoneRemoveZone _

(zonelD, zonelD)))) (v) (v)
updateZoneAppendAuthority) _ . v) B)
(zonelD, authorityID)

retrieveAuthorityOfZone _ * _

(zonelD): Authority) v (v) (v)
updateZoneRemoveAuthority v) _ o) _)

(zonelD, authorityID)

Table 6.6: Correlation Matrix to Validate the Abstract Class Model ZoneManager

device. SiteWhere comprises the creation, and retrieval of authorities, while it does not
cover comparable operations to update or delete an authority. The documentation of
SmartThings gives no information about the authority handling, therefor the operations
are presumed to be existent.

Table 6.11 shows the correlation matrix of the classes Pluggable Service, Platform
Information, and Gateway. FIWARE, SiteWhere, the Azure IoT Hub, and the Watson IoT
Platform all comprise a functionality to retrieve pluggable services. Since SmartThings,
and AWS IoT provide the connection of further applications, the operation to retrieve
pluggable services is presumably covered. All platforms, except AWS IoT, provide at
least comparable functionality to retrieve information about the platform, server, and

101

6 Validation of the Abstract Class Model

(userlD, authorityID)

i B
Abstract Class Model FIWARE SiteWhere |SmartThings| AWS loT Microsoft | IBM Watson
Azure loT |loT Platform
UserManager
createUser(): User v v - (v) v -
retrieveUser(userID): User (v) (v) - (v) v (v)
updateUser(userlD): User v v - (v) v -
deleteUser(userlID) v v - (v) v -
retrieveAllUsers() (v) (v) - (v) v -
retrieveUserByName(name): User v v - (v) v v
retrieveUserByDescription
o v v - (v) v -
(description): User
updateUserAppendAuthorit
. PP Y v (v) - (v) (v) -
(userlD, authorityID)
retrieveAuthorityOfUser
. v v - (v) (v) v
(userID): Authority
updateUserRemoveAuthorit
P Y v (v) - (v) (v) -

Table 6.7: Correlation Matrix to Validate the Abstract Class Model UserManager

i B

Abstract Class Model FIWARE SiteWhere |SmartThings| AWS loT Microsoft | IBM Watson

Azure loT |loT Platform
EventManager
createEvent(): Event (v) (v) v v* (v) (v)
retrieveEvent(eventID): Event v v v v* (v) v
retrieveEventsByType(type) v (v) (v) v* (v) (v)
retrieveEventsByCategory v v) v) * v) v
(category)
publishEvent(): Event v v v v* v v
subscribeToEventCategory v B v o v o
(category)
unsubscribeOfEventCategory v B v S v .

(category)

Table 6.8: Correlation Matrix to Validate the Abstract Class Model EventManager

Mi ft | IBM Wat
Abstract Class Model FIWARE SiteWhere |SmartThings| AWS loT croso atson
Azure loT |loT Platform
TenantManager
createTenant(): Tenant v v (v) - v -
retrieveTenant(tenantID): Tenant v v (v) - v v
updateTenant(tenantID): Tenant v v (v) - v -
deleteTenant(tenantID) v v (v) - v -
retrieveTenantByDescription
i v v (v) - v —
(description): Tenant
retrieveAllTenants() (v) (v) (v) - (v) -
retrieveTenantInformation
v v (v) - v v

(tenantlID)

Table 6.9: Correlation Matrix to Validate the Abstract Class Model TenantManager

102

6.2 Conclusion

Microsoft | IBM Watson

Abstract Class M | FIWARE iteWh tThi AWS loT

stract Class Mode SiteWhere |SmartThings o Azure loT | 10T Platform
AuthorityManager

createAuthority(): Authority v v v* v v (v)

retrieveAuthority

*
(authorityID): Authority v v v v v (v)
updateAuthority "
v - v v v v
(authorityID): Authority (v) (v)
deleteAuthority(authorityID) v - v* (v) v -

Table 6.10: Correlation Matrix to Validate the Abstract Class Model AuthorityManager

Abstract Class Model FIWARE SiteWhere |SmartThings| AWS loT Microsoft | IBM Watson
Azure loT |loT Platform

Pluggable Service

retrievePluggableServices() | v [v [v* [v* | v [v

Platform Information

retrievePlatformInformation() (v) (v) (v) - v v

retrieveServerinformation() v v (v) - (v) v

retrieveVersionInformation() v v (v) - v v

Gateway

translateMessage() v* v* v v* v* v*

manageConnection() v* v* v v* v* v*

Table 6.11: Correlation Matrix to Validate the Abstract Class Model Pluggable Service,
Platform Information, and Gateway

the version. Within AWS IoT no comparable functionality is existent. The Gateway
class operations are only mentioned explicitly within the documentation of SmartThings,
and therefor the same functionality exists. All remaining platforms do not have any
comparable functionality documented. Since a connection component was part of every
architecture, they presumably have comparable functionality. Furthermore it provides
the underlying basis for the communication of the devices with the platform, and hence
is essential for a CPS.

6.2 Conclusion

Following the validation of the abstract class model, most of the operations of the classes
can be found within the considered platforms. The differences within the Zone, and
ZoneManager result of the various approaches to group devices, and users. Likewise
the distinction of the concept of a user is indicated within the validation. The approach
of tenants is existent within every platform, where the impacts to the user of the
platforms differ. Since there is no standardized approach to manage the authorities,
every platform uses a different solution. This becomes apparent within the validation

103

6 Validation of the Abstract Class Model

of the AuthorityManager. Nevertheless the validation of the abstract class model has
shown, that it is applicable to the considered platforms. Hence it can be applied as an
reference for the design of a CPS.

104

7 Discussion and Further Research

The following Chapter summarizes the previous research. Furthermore it discusses the
conclusions, and subsequently possible further research is outlined.

7.1 Résumé

Within this Master’s Thesis initially CPS, and applied protocols and standards are
introduced. The considered CPS solutions are described, and analyzed. Thereupon
the reference architecture is derived, and validated. Subsequently the features of the
considered CPS solutions are analyzed, and the abstract class model is derived and
validated, as well.

The conclusion of the validation of the CPS reference architecture is, that the derived
reference architecture is applicable to every considered CPS platform, and hence can be
used as an universal reference architecture. The aim is to provide an architectural basis
for the design of an CPS, and a reference for the content of the components. The refer-
ence architecture contains of six components: the Sensor/Actuator, the Device (including
the Driver), the Gateway, the IoTIM, the Application, and the Further Data Source. An
Sensor is a hardware entity, translating changes of the physical environment into electri-
cal signals, and sending those to the device. An Actuator is likewise a hardware entity,
receiving commands send by the device, and acting on the physical environment by
translating electrical signals into some kind of physical action. Sensors/Actuators are
always physically connected to a Device, which is likewise a hardware entity. A Device
communicates either directly, or via a Gateway with the IoTIM. A Gateway translates the
messages of the device into the required format, and passes it on to the [oTIM. The IoTIM
is the core logic component of a CPS. The features of the IoTIM are represented within
the abstract class model. The Application, and the Further Data Source components
enable the connection of further applications, and data sources.

Following the validation of the abstract class model, it is likewise applicable to the
considered CPS platforms, and hence can be referenced as basis for the design of a CPS.
The abstract class model consists of 19 classes, where seven are managing classes, i.e.,
they exist to instantiate, and manage their underlying classes. Namely the managing

105

7 Discussion and Further Research

classes with their underlying classes are: TenantManager and Tenant, AuthorityManager
and Authority, DeviceManager and Device, GroupManager and Group, ZoneManager and
Zone, UserManager and User, and EventManager and Event. The remaining classes are:
DeviceSpecification, Gateway, Platform, Platform Information, and Pluggable Service. As
the platform class represents the initial point, every class is dependent of the Platform.
A Tenant enables to build autonomous instances of a CPS within one platform. Groups
and Zones are used to aggregate Devices and Users into logical or geographical units.
Furthermore the DeviceSpecification can be used to categorize the devices. The Gateway
enables the translation of messages, and manages the connection of the devices. The
EventManager provides operations to create, retrieve, publish, and subscribe to events,
which is the basis of the communication between the Platform and the Devices. The
AuthorityManager is responsible for the authorization of Devices, Users, Groups, Zones,
and Tenants. The Platform Information provides operations to retrieve information
about the platform, the server, or the version. Pluggable Services are possibly connected
further applications, which can be internal, i.e., they are provided by the same provider
as the platform, or they are external in terms of third party applications.

7.2 Discussion

To derive the CPS reference architecture and the abstract class model, seven CPS
platforms are considered. Questionable is, if thereby a significant, universal conclusion
can be made. Since the platforms are open-source, as well as proprietary, at least various
segments are covered. The comparison of the platforms, and the validation has shown,
that the core approach is alike. The deviations are the result of the diverse concepts
pursued, like, e.g., the support of groups and zones, to aggregate devices into logical
or geographical units. Likewise the definition of devices is diverse, as some platforms
use devices in terms of a device, which has included sensors and actuators, and some
platforms differ within devices, and sensors and actuators. Furthermore the gateway
component is represented as an separate component, or integrated within the core logic
of the platform.

Another critical aspect is, that some of the documentations of the platforms seem to
be incomplete, and hence the validation therefor is assumed, based on the available
information.

106

7.3 Further Research

7.3 Further Research

Within this Master’s Thesis it is noticeable, that the introduced standards are not applied
by every platform, and only some transport protocols are supported. Since they build
the basis for the communication of the devices with the platform, they could represent
a not completely used potential, which should be researched in detail. Thereby it is
interesting, to analyze if the standards and protocols are used, if they are used in an
effective way, and if not, how this could be achieved.

Excluded within this Thesis is the security issue, which composes another further
research sector. Since the considered platforms within this research followed diverse
approaches to handle the authorization, an analysis of those approaches could be a
starting point for further research.

Within the comparison of the features of the platforms, and the validation of the
abstract class model it became apparent, that users in terms of an involved participant
of the system are not universalized. Following this, an analysis of how users should be
integrated within CPS could be another research issue.

107

Bibliography

[Amal6a]

[Amal6b]

[Amaléc]

[Amaléd]

[Amal6e]

[And13]

[Anj+02]

[ARM11]

Amazon Web Services. AWS IoT. https://aws.amazon.com/de/iot/how-it-
works/. 2016. (Visited on 02/29/2016).

Amazon Web Services. AWS IoT API Reference. http://docs.aws.amazon.
com/ iot/ latest/ apireference / Welcome . html. Mar. 2016. (Visited on
09/03/2016).

Amazon Web Services. AWS IoT Developer Guide. http://docs.aws.amazon.
com/iot/latest/developerguide/what-is-aws-iot.html. 2016. (Visited on
09/03/2016).

Amazon Web Services. AWS IoT Documentation. https://aws.amazon.com/
documentation/iot/. 2016. (Visited on 02/03/2016).

Amazon Web Services. AWS IoT FAQs - Amazon Web Services. https://aws.
amazon.com/iot/fags/. 2016. (Visited on 03/17/2016).

Piper Andy. Choosing Your Messaging Protocol: AMQP, MQTT, or STOMP.
https://blogs.vmware.com/vfabric/2013/02/choosing-your-messaging-
protocol-amqgp-mqtt-or-stomp.html. Feb. 2013. (Visited on 02/29/2016).

M. Anjanappa, K. Datta, and T. Song. “Introduction to Sensors and Actua-
tors.” In: The Mechatronics Handbook. 2nd ed. Austin, Texas: CRC Press,
2002, (16-1)-(16-14).

ARM Limited. ARM Information Center - How to start Device Server
to support CoAP over TCP. https : / / www . google . com / url ?
sa=t&rct =j&q= &esrc = s & source = web & cd =1 & ved =
O0ahUKEwi8uJLonZ LAhWJDZoKHZsmAXUQFggdMAA&url=https%3A%
2F%2Frepositorium.sdum.uminho.pt%2Fbitstream%2F1822%2F34905%
2F1 % 2FDisserta % 25C3 % 25A7 % 25C3 % 25A30 _ Pedro % 2520de %
2520Barbosa % 2520Mendon % 25C3 % 25A7a%2520Diogo 2014.pdf&
usg = AFQjCNFoPBPnMFpxblgEAeU - bFOmqRF2NQ. 2011. (Visited on
03/20/2016).

109

https://aws.amazon.com/de/iot/how-it-works/
https://aws.amazon.com/de/iot/how-it-works/
http://docs.aws.amazon.com/iot/latest/apireference/Welcome.html
http://docs.aws.amazon.com/iot/latest/apireference/Welcome.html
http://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html
http://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html
https://aws.amazon.com/documentation/iot/
https://aws.amazon.com/documentation/iot/
https://aws.amazon.com/iot/faqs/
https://aws.amazon.com/iot/faqs/
https://blogs.vmware.com/vfabric/2013/02/choosing-your-messaging-protocol-amqp-mqtt-or-stomp.html
https://blogs.vmware.com/vfabric/2013/02/choosing-your-messaging-protocol-amqp-mqtt-or-stomp.html
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwi8uJLonZ_LAhWJDZoKHZsmAXUQFggdMAA&url=https%3A%2F%2Frepositorium.sdum.uminho.pt%2Fbitstream%2F1822%2F34905%2F1%2FDisserta%25C3%25A7%25C3%25A3o_Pedro%2520de%2520Barbosa%2520Mendon%25C3%25A7a%2520Diogo_2014.pdf&usg=AFQjCNFoPBPnMFpxblqEAeU-bF0mqRF2NQ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwi8uJLonZ_LAhWJDZoKHZsmAXUQFggdMAA&url=https%3A%2F%2Frepositorium.sdum.uminho.pt%2Fbitstream%2F1822%2F34905%2F1%2FDisserta%25C3%25A7%25C3%25A3o_Pedro%2520de%2520Barbosa%2520Mendon%25C3%25A7a%2520Diogo_2014.pdf&usg=AFQjCNFoPBPnMFpxblqEAeU-bF0mqRF2NQ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwi8uJLonZ_LAhWJDZoKHZsmAXUQFggdMAA&url=https%3A%2F%2Frepositorium.sdum.uminho.pt%2Fbitstream%2F1822%2F34905%2F1%2FDisserta%25C3%25A7%25C3%25A3o_Pedro%2520de%2520Barbosa%2520Mendon%25C3%25A7a%2520Diogo_2014.pdf&usg=AFQjCNFoPBPnMFpxblqEAeU-bF0mqRF2NQ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwi8uJLonZ_LAhWJDZoKHZsmAXUQFggdMAA&url=https%3A%2F%2Frepositorium.sdum.uminho.pt%2Fbitstream%2F1822%2F34905%2F1%2FDisserta%25C3%25A7%25C3%25A3o_Pedro%2520de%2520Barbosa%2520Mendon%25C3%25A7a%2520Diogo_2014.pdf&usg=AFQjCNFoPBPnMFpxblqEAeU-bF0mqRF2NQ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwi8uJLonZ_LAhWJDZoKHZsmAXUQFggdMAA&url=https%3A%2F%2Frepositorium.sdum.uminho.pt%2Fbitstream%2F1822%2F34905%2F1%2FDisserta%25C3%25A7%25C3%25A3o_Pedro%2520de%2520Barbosa%2520Mendon%25C3%25A7a%2520Diogo_2014.pdf&usg=AFQjCNFoPBPnMFpxblqEAeU-bF0mqRF2NQ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwi8uJLonZ_LAhWJDZoKHZsmAXUQFggdMAA&url=https%3A%2F%2Frepositorium.sdum.uminho.pt%2Fbitstream%2F1822%2F34905%2F1%2FDisserta%25C3%25A7%25C3%25A3o_Pedro%2520de%2520Barbosa%2520Mendon%25C3%25A7a%2520Diogo_2014.pdf&usg=AFQjCNFoPBPnMFpxblqEAeU-bF0mqRF2NQ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwi8uJLonZ_LAhWJDZoKHZsmAXUQFggdMAA&url=https%3A%2F%2Frepositorium.sdum.uminho.pt%2Fbitstream%2F1822%2F34905%2F1%2FDisserta%25C3%25A7%25C3%25A3o_Pedro%2520de%2520Barbosa%2520Mendon%25C3%25A7a%2520Diogo_2014.pdf&usg=AFQjCNFoPBPnMFpxblqEAeU-bF0mqRF2NQ

Bibliography

[Ban+13]

[Bel+15a]

[Bel+15b]

[Bet16]

[Chal3]

[Cha+94]

[Che+12]

[Che+14]

[Corl6a]

[Corl6b]

[Der+15]

[Dio14]

110

S. Bandyopadhyay and A. Bhattacharyya. “Lightweight Internet protocols
for web enablement of sensors using constrained gateway devices.” In:
2013 International Conference on Computing, Networking and Communica-
tions (ICNC). Jan. 2013, pp. 334-340.

M. Belshe, R. Peon, and M. Thomson Ed. Hypertext Transfer Protocol version
2. https://tools.ietf.org/html/draft-ietf- httpbis- http2-17. Feb. 2015.
(Visited on 02/29/2016).

M. Belshe, BitGo, R. Peon, Google, Inc., and M. Thomson, Ed. RFC 7540 -
Hypertext Transfer Protocol Version 2 (HTTP/2). https://tools.ietf.org/html/
rfc7540. May 2015. (Visited on 03/16/2016).

Dominic Betts. Microsoft Azure - Ubersicht iiber Azure IoT Hub. https:
//azure.microsoft.com/de-de/documentation/articles/iot-hub-what-is-
iot-hub/. Mar. 2016. (Visited on 02/03/2016).

Hakima Chaouchi. The Internet of Things: Connecting Objects. en. John
Wiley & Sons, Feb. 2013.

Sudarshan Chawathe, Hector Garcia-Molina, Joachim Hammer, Kelly Ire-
land, Yannis Papakonstantinou, Jeffrey Ullman, and Jennifer Widom. “The
TSIMMIS Project: Integration of Heterogeneous Information Sources.” In:
Information Processing Society of Japan (IPSJ 1994). Tokyo, Japan, Oct.
1994.

Feng Chen, Changrui Ren, Qinhua Wang, and Bing Shao. “A process defini-
tion language for Internet of things.” In: 2012 IEEE International Confer-
ence on Service Operations and Logistics, and Informatics (SOLI). July 2012,
pp- 107-110.

H. W. Chen and F. J. Lin. “Converging MQTT Resources in ETSI Standards
Based M2M Platform.” In: IEEE Internet of Things (iThings), 2014 IEEE
International Conference on, and Green Computing and Communications
(GreenCom), IEEE and Cyber, Physical and Social Computing(CPSCom). Sept.
2014, pp. 292-295.

Core Network Dynamics GmbH. OpenEPC - What is EPC? http://www.
openepc.com/home/what-is-epc/. Mar. 2016. (Visited on 03/17/2016).

Core Network Dynamics GmbH. OpenEPC — The OpenEPC Project. http:
//www.openepc.com/. Mar. 2016. (Visited on 03/17/2016).

H. Derhamy, J. Eliasson, J. Delsing, and P. Priller. “A survey of commercial
frameworks for the Internet of Things.” In: 2015 IEEE 20th Conference on
Emerging Technologies Factory Automation (ETFA). Sept. 2015, pp. 1-8.

Pedro de Barbosa Mendonca Diogo. A Complete Internet of Things Solution
for Real-Time Web Monitoring. Oct. 2014.

https://tools.ietf.org/html/draft-ietf-httpbis-http2-17
https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/html/rfc7540
https://azure.microsoft.com/de-de/documentation/articles/iot-hub-what-is-iot-hub/
https://azure.microsoft.com/de-de/documentation/articles/iot-hub-what-is-iot-hub/
https://azure.microsoft.com/de-de/documentation/articles/iot-hub-what-is-iot-hub/
http://www.openepc.com/home/what-is-epc/
http://www.openepc.com/home/what-is-epc/
http://www.openepc.com/
http://www.openepc.com/

Bibliography

[Dom+09]

[Ell14]

[ETS13]

[ETS15]

[Faj+12]

[Fan+10]

[Fet+11]

[Fie+99]

[Filo0]

[FIW15a]

[FIW15b]

[FIW15c]

John Domingue, Dieter Fensel, Paolo Traverso, and FIS, eds. Future Internet
- FIS 2008: first Future Internet Symposium, FIS 2008 Vienna, Austria,
September 29-30, 2008 ; revised selected papers. eng. Lecture notes in
computer Science 5468. Berlin: Springer, 2009.

Omar Elloumi. OneM2M Service Layer Platform - Initial Release. http://

www.onem2m.org/onem2m - showcase / showcase - presentations. Dec.
2014. (Visited on 03/03/2016).

ETSI. ETSI TS 102 690 V2.1.1. http://www.etsi.org/deliver/etsi_ts/
102600 102699/102690/02.01.01_60/ts_102690v020101p.pdf. Oct.
2013. (Visited on 03/16/2016).

ETSI. ETSI TS 118 101 V1.0.0. http://www.etsi.org/deliver/etsi_ts/
118100 _118199/118101/01.00.00_60/ts_118101v010000p.pdf. Feb.
2015. (Visited on 03/16/2016).

Fajardo, Arkko, Loughney, and Zorn. RFC 6733 - Diameter Base Protocol.
https://tools.ietf.org/html/rfc6733. Oct. 2012. (Visited on 03/16/2016).

Tongrang Fan and Yanzhao Chen. “A scheme of data management in the
Internet of Things.” In: 2010 2nd IEEE International Conference on Network
Infrastructure and Digital Content. Sept. 2010, pp. 110-114.

I. Fette and A. Melnikov. RFC 6455 - The WebSocket Protocol. https://tools.
ietf.org/html/rfc6455. Dec. 2011. (Visited on 03/16/2016).

R. Fielding, UC Irvine, J. Gettys, and J. Mogul. RFC 2616 - Hypertext
Transfer Protocol — HTTP/1.1. https://tools.ietf.org/html/rfc2616. June
1999. (Visited on 03/16/2016).

Roy Thomas Fileding. “Architectural Styles and the Design of Network-
based Software Architectures.” PhD thesis. Irvine: University of California,
2000.

FIWARE. FIWARE Architecture. https: / / forge . fiware . org / plugins /
mediawiki/wiki/fiware/index.php/FI-WARE _Architecture. Aug. 2015.
(Visited on 03/17/2016).

FIWARE. Internet of Things (IoT) Services Enablement Architecture. https:
//forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Internet
of Things (IoT) Services Enablement Architecture. July 2015. (Visited
on 03/16/2016).

FIWARE. Summary of FIWARE API Open Specifications. https://forge.
fiware.org/plugins/mediawiki/wiki/fiware/index.php/Summary of FI-
WARE_API Open_Specifications. Dec. 2015. (Visited on 09/03/2016).

111

http://www.onem2m.org/onem2m-showcase/showcase-presentations
http://www.onem2m.org/onem2m-showcase/showcase-presentations
http://www.etsi.org/deliver/etsi_ts/102600_102699/102690/02.01.01_60/ts_102690v020101p.pdf
http://www.etsi.org/deliver/etsi_ts/102600_102699/102690/02.01.01_60/ts_102690v020101p.pdf
http://www.etsi.org/deliver/etsi_ts/118100_118199/118101/01.00.00_60/ts_118101v010000p.pdf
http://www.etsi.org/deliver/etsi_ts/118100_118199/118101/01.00.00_60/ts_118101v010000p.pdf
https://tools.ietf.org/html/rfc6733
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc2616
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_Architecture
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_Architecture
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Internet_of_Things_(IoT)_Services_Enablement_Architecture
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Internet_of_Things_(IoT)_Services_Enablement_Architecture
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Internet_of_Things_(IoT)_Services_Enablement_Architecture
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Summary_of_FI-WARE_API_Open_Specifications
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Summary_of_FI-WARE_API_Open_Specifications
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Summary_of_FI-WARE_API_Open_Specifications

Bibliography

[FIW16a]

[FIW16b]

[FIW16c]

[Fral4]

[Fral5]

[Fril3]

[Gaz+15]

[Gil16]

[Gos12]

[Gou+02]

[Gri+14]

[Gril3]
[[BM16a]

[IBM16b]

112

FIWARE. FIWARE. https://www. fiware . org. Feb. 2016. (Visited on
02/29/2016).

FIWARE. FIWARE Wiki. https://forge.fiware.org/plugins/mediawiki/wiki/
fiware/index.php/Main_Page. Mar. 2016. (Visited on 03/03/2016).

FIWARE. Quick FIWARE Tour Guide. http://fiwaretourguide.readthedocs.
org/en/latest/. Mar. 2016. (Visited on 02/03/2016).

FOKUS Fraunhofer. OpenMTC R3 Documentation Device Management
Overview. http://www.open-mtc.org/Downloads/API-Documentation/dm/
index.html. 2014. (Visited on 09/03/2016).

FOKUS Fraunhofer. OpenMTC. http://www.open-mtc.org. 2015. (Visited
on 02/29/2016).

Peter Friess. Internet of Things: Converging Technologies for Smart Environ-
ments and Integrated Ecosystems. en. River Publishers, June 2013.

V. Gazis, M. Gortz, M. Huber, A. Leonardi, K. Mathioudakis, A. Wiesmaier,
F. Zeiger, and E. Vasilomanolakis. “A survey of technologies for the internet
of things.” In: Wireless Communications and Mobile Computing Conference
(IWCMC), 2015 International. Aug. 2015, pp. 1090-1095.

Marc Gille. GitHub - marcgille/thing-it-node: REST, WebSocket, Service Def-
inition and Event Processing for Devices like Raspberry Pi, C.H.I.P, Intel
Computestick etc.. https://github.com/marcgille/thing-it-node. Mar. 2016.
(Visited on 03/21/2016).

Subrata Goswami. Internet Protocols: Advances, Technologies and Applica-
tions. en. Springer Science & Business Media, Dec. 2012.

David Gourley, Brian Totty, Marjorie Sayer, Anshu Aggarwal, and Sailu
Reddy. HTTP: The Definitive Guide: The Definitive Guide. en. "O’Reilly Media,
Inc.", Sept. 2002.

L. A. Grieco, M. Ben Alaya, T. Monteil, and K. Drira. “Architecting informa-
tion centric ETSI-M2M systems.” In: 2014 IEEE International Conference on
Pervasive Computing and Communications Workshops (PERCOM Workshops).
Mar. 2014, pp. 211-214.

Ilya Grigorik. High Performance Browser Networking. Sept. 2013.

IBM. IBM Internet of Things Architecture Overview. https://www.iot -
academy. info/ mod / page/view.php?id = 478. Feb. 2016. (Visited on
03/03/2016).

IBM. IBM IoT Foundation API. https://docs.internetofthings.ibmcloud.com/
swagger/v0002.html. Mar. 2016. (Visited on 09/03/2016).

https://www.fiware.org
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Main_Page
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Main_Page
http://fiwaretourguide.readthedocs.org/en/latest/
http://fiwaretourguide.readthedocs.org/en/latest/
http://www.open-mtc.org/Downloads/API-Documentation/dm/index.html
http://www.open-mtc.org/Downloads/API-Documentation/dm/index.html
http://www.open-mtc.org
https://github.com/marcgille/thing-it-node
https://www.iot-academy.info/mod/page/view.php?id=478
https://www.iot-academy.info/mod/page/view.php?id=478
https://docs.internetofthings.ibmcloud.com/swagger/v0002.html
https://docs.internetofthings.ibmcloud.com/swagger/v0002.html

Bibliography

[IBM16c]

[Kha+12]

[Kop15]

[Kufl16]

[Lee08]

[Lem+14]

[Luz+15]

[Micl6a]

[Mic16b]

[Micl6c]

[Mil+10]

[Mon16]

[OAS12]

IBM. IBM Watson Internet of Things Platform. http://www.ibm.com/
internet-of-things/iot-platform.html. Mar. 2016. (Visited on 03/03/2016).

R. Khan, S.U. Khan, R. Zaheer, and S. Khan. “Future Internet: The Internet
of Things Architecture, Possible Applications and Key Challenges.” In: 2012
10th International Conference on Frontiers of Information Technology (FIT).
Dec. 2012, pp. 257-260.

Oliver Kopp. Similar Approaches - marcgille/thing-it-node. https://github.
com/marcgille/thing-it-node. Dec. 2015. (Visited on 03/20/2016).

Bernard Kufluk. The IBM Watson IoT Platform arrives. https://developer.
ibm.com/iotfoundation/blog/2016,/02/12/the-ibm-watson-iot-platform-
arrives/. Feb. 2016. (Visited on 08/03/2016).

E.A. Lee. “Cyber Physical Systems: Design Challenges.” In: 2008 11th
IEEE International Symposium on Object Oriented Real-Time Distributed
Computing (ISORC). May 2008, pp. 363-369.

Simon Lemay, Hannes Tschofenig, Zebra Technologies, and Carsten Bor-
mann. A TCP and TLS Transport for the Constrained Application Protocol
(CoAP). https://tools.ietf.org/html/draft-tschofenig-core-coap-tcp-tls-01.
Sept. 2014. (Visited on 03/19/2016).

J. E. Luzuriaga, M. Perez, P. Boronat, J. C. Cano, C. Calafate, and P. Man-
zoni. “A comparative evaluation of AMQP and MQTT protocols over unsta-
ble and mobile networks.” In: 2015 12th Annual IEEE Consumer Communi-
cations and Networking Conference (CCNC). Jan. 2015, pp. 931-936.

Microsoft. Azure IoT Hub. https://azure.microsoft.com/en-us/services/iot-
hub/. Mar. 2016. (Visited on 03/03/2016).

Microsoft. Azure IoT Hub Documentation. https://azure.microsoft.com/de-
de/documentation/services/iot-hub/. Mar. 2016. (Visited on 03/03/2016).

Microsoft. Azure IoT Suite. https://azure.microsoft.com/en-us/solutions/
iot-suite/. Mar. 2016. (Visited on 01/03/2016).

Peter Millard, Peter Saint-Andre, and Ralph Meijer. Publish-Subscribe. en.
http://xmpp.org/extensions/xep-0060.html. XMPP Extension Protocol.
July 2010. (Visited on 03/17/2016).

MongoDB, Inc. MongoDB for GIANT Ideas. https://www.mongodb.org.
2016. (Visited on 03/16/2016).

OASIS Standard. OASIS Advanced Message Queuing Protocol (AMQP) Version
1.0. http://docs.oasis-open.org/amqp/core/v1.0/0s/amqgp-core-complete-
v1.0-o0s.pdf. Oct. 2012. (Visited on 03/16/2016).

113

http://www.ibm.com/internet-of-things/iot-platform.html
http://www.ibm.com/internet-of-things/iot-platform.html
https://github.com/marcgille/thing-it-node
https://github.com/marcgille/thing-it-node
https://developer.ibm.com/iotfoundation/blog/2016/02/12/the-ibm-watson-iot-platform-arrives/
https://developer.ibm.com/iotfoundation/blog/2016/02/12/the-ibm-watson-iot-platform-arrives/
https://developer.ibm.com/iotfoundation/blog/2016/02/12/the-ibm-watson-iot-platform-arrives/
https://tools.ietf.org/html/draft-tschofenig-core-coap-tcp-tls-01
https://azure.microsoft.com/en-us/services/iot-hub/
https://azure.microsoft.com/en-us/services/iot-hub/
https://azure.microsoft.com/de-de/documentation/services/iot-hub/
https://azure.microsoft.com/de-de/documentation/services/iot-hub/
https://azure.microsoft.com/en-us/solutions/iot-suite/
https://azure.microsoft.com/en-us/solutions/iot-suite/
http://xmpp.org/extensions/xep-0060.html
https://www.mongodb.org
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf

Bibliography

[OAS14]

[Onel5]

[Opel2a]

[Opel2b]

[Opel5]

[Pos16]

[Ragl5]

[Res+00]

[Sal+15]

[She+14]

114

OASIS Standard. MQTT Version 3.1.1 - OASIS Standard. http://docs.oasis-
open.org/mqtt/mqtt/v3.1.1/0s/mqtt-v3.1.1-0s.html. Oct. 2014. (Visited
on 03/16/2016).

OneM2M Partners. oneM2M White Paper - The Interoperability Enabler for
the Entire M2M and IoT Ecosystem. http://www.onem2m.org/images/
files/ oneM2M - whitepaper - January- 2015 . pdf. Jan. 2015. (Visited on
03/03/2016).

Open Mobile Alliance. Next Generation Service Interfaces Architecture -
Approved Version 1.0. http://technical.openmobilealliance.org/Technical/
Release Program/docs/NGSI/V1 0-20120529-A/OMA-AD-NGSI-V1 0-
20120529-A.pdf. May 2012. (Visited on 03/16/2016).

Open Mobile Alliance. NGSI Context Management - Approved Version 1.0.
http://technical.openmobilealliance.org/Technical /release program/
docs/NGSI/V1 _0-20120529-A/0OMA-TS-NGSI_Context Management-
V1 0-20120529-A.pdf. May 2012. (Visited on 03/03/2016).

Open Mobile Alliance. Ligthweight Machine to Machine Technical Specifci-
ation - Candidate Version 1.0. http://technical.openmobilealliance.org/
Technical/Release Program/docs/LightweightM2M/V1 0-20151214-
C/OMA-TS-LightweightM2M-V1 0-20151214-C.pdf. Dec. 2015. (Visited
on 03/16/2016).

Postscapes. 2014/15 Internet of Things Awards. http : / / postscapes .
com/internet- of- things-award/2014/winners. Mar. 2016. (Visited on
04/03/2016).

Francesco Rago. “A Smart Adaptable Architecture Based on Contexts for
Cyber Physical Systems.” In: Procedia Computer Science. Complex Adaptive
Systems San Jose, CA November 2-4, 2015 61 (2015), pp. 301-306.

E. Rescorla and RTFM, Inc. RFC 2818 - HTTP Over TLS. https://tools.ietf.
org/html/rfc2818. May 2000. (Visited on 03/16/2016).

Flora Salim and Usman Haque. “Urban computing in the wild: A sur-
vey on large scale participation and citizen engagement with ubiquitous
computing, cyber physical systems, and Internet of Things.” In: Interna-
tional Journal of Human-Computer Studies. Transdisciplinary Approaches
to Urban Computing 81 (Sept. 2015), pp. 31-48.

Z. Shelby, ARM, K. Hartke, C. Bormann, and Universitdt Bremen TZI. RFC
2752 - The Constrained Application Protocol (CoAP). http://tools.ietf.org/
html/rfc7252. June 2014. (Visited on 03/16/2016).

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://www.onem2m.org/images/files/oneM2M-whitepaper-January-2015.pdf
http://www.onem2m.org/images/files/oneM2M-whitepaper-January-2015.pdf
http://technical.openmobilealliance.org/Technical/Release_Program/docs/NGSI/V1_0-20120529-A/OMA-AD-NGSI-V1_0-20120529-A.pdf
http://technical.openmobilealliance.org/Technical/Release_Program/docs/NGSI/V1_0-20120529-A/OMA-AD-NGSI-V1_0-20120529-A.pdf
http://technical.openmobilealliance.org/Technical/Release_Program/docs/NGSI/V1_0-20120529-A/OMA-AD-NGSI-V1_0-20120529-A.pdf
http://technical.openmobilealliance.org/Technical/release_program/docs/NGSI/V1_0-20120529-A/OMA-TS-NGSI_Context_Management-V1_0-20120529-A.pdf
http://technical.openmobilealliance.org/Technical/release_program/docs/NGSI/V1_0-20120529-A/OMA-TS-NGSI_Context_Management-V1_0-20120529-A.pdf
http://technical.openmobilealliance.org/Technical/release_program/docs/NGSI/V1_0-20120529-A/OMA-TS-NGSI_Context_Management-V1_0-20120529-A.pdf
http://technical.openmobilealliance.org/Technical/Release_Program/docs/LightweightM2M/V1_0-20151214-C/OMA-TS-LightweightM2M-V1_0-20151214-C.pdf
http://technical.openmobilealliance.org/Technical/Release_Program/docs/LightweightM2M/V1_0-20151214-C/OMA-TS-LightweightM2M-V1_0-20151214-C.pdf
http://technical.openmobilealliance.org/Technical/Release_Program/docs/LightweightM2M/V1_0-20151214-C/OMA-TS-LightweightM2M-V1_0-20151214-C.pdf
http://postscapes.com/internet-of-things-award/2014/winners
http://postscapes.com/internet-of-things-award/2014/winners
https://tools.ietf.org/html/rfc2818
https://tools.ietf.org/html/rfc2818
http://tools.ietf.org/html/rfc7252
http://tools.ietf.org/html/rfc7252

Bibliography

[Shel4]

[Sit16a]

[Sit16b]

[Sitl6c]

[Sitl6d]

[Smal5a]

[Smal5b]

[Smal6]

[Stol6]

[Sub+08]

[Tal08]

[Thel6]

[Tob14]

[Vas14]

Zach Shelby. OMA Lightweight M2M Protocol (OMA LWM2M) Tutorial.
https://www.youtube.com/watch?v=g-41ZdcTnXc. May 2014. (Visited on
03/03/2016).

SiteWhere, LLC. SiteWhere. http://www.sitewhere.org. 2016. (Visited on
01/03/2016).

SiteWhere, LLC. SiteWhere Documentation. http : / / documentation .
sitewhere.org/overview.html. 2016. (Visited on 02/03/2016).

SiteWhere, LLC. SiteWhere REST Services Documentation. http : / /
documentation.sitewhere.org/rest/single.html. Mar. 2016. (Visited on
09/03/2016).

SiteWhere, LLC. SiteWhere System Architecture. http://www.sitewhere.org/
documentation/system-architecture/. 2016. (Visited on 10/30/2015).

SmartThings, Inc. SmartThings API Documentation. http : / / docs .
smartthings.com/en/latest/ ref- docs/ reference.html. 2015. (Visited
on 09/03/2016).

SmartThings, Inc. SmartThings Documentation. http://docs.smartthings.
com/en/latest/architecture/index.html. 2015. (Visited on 01/03/2016).

SmartThings, Inc. SmartThings. https://www.smartthings.com. 2016.
(Visited on 01/03/2016).

Stomp. STOMP Protocol Specification, Version 1.2. http://stomp.github.io/
stomp-specification-1.2.html. Feb. 2016. (Visited on 02/29/2016).

H. Subramoni, G. Marsh, S. Narravula, Ping Lai, and D. K. Panda. “Design
and evaluation of benchmarks for financial applications using Advanced
Message Queuing Protocol (AMQP) over InfiniBand.” In: Workshop on
High Performance Computational Finance, 2008. WHPCF 2008. Nov. 2008,
pp- 1-8.

Carolyn Talcott. “Cyber-Physical Systems and Events.” en. In: Software-
Intensive Systems and New Computing Paradigms. Ed. by Martin Wirsing,
Jean-Pierre Banatre, Matthias Holzl, and Axel Rauschmayer. Lecture Notes
in Computer Science 5380. Springer Berlin Heidelberg, 2008, pp. 101-115.

The Apache Software Foundation. Apache HBase. https://hbase.apache.org.
Mar. 2016. (Visited on 03/18/2016).

Jaffey Toby. MQTT and CoAP, IoT Protocols. https: / / eclipse . org /
community/eclipse_newsletter/2014/february/article2.php. Feb. 2014.
(Visited on 02/29/2016).

Clemens Vasters. "Service Assisted Communication" for Connected Devices.
Feb. 2014. (Visited on 03/16/2016).

115

https://www.youtube.com/watch?v=g-41ZdcTnXc
http://www.sitewhere.org
http://documentation.sitewhere.org/overview.html
http://documentation.sitewhere.org/overview.html
http://documentation.sitewhere.org/rest/single.html
http://documentation.sitewhere.org/rest/single.html
http://www.sitewhere.org/documentation/system-architecture/
http://www.sitewhere.org/documentation/system-architecture/
http://docs.smartthings.com/en/latest/ref-docs/reference.html
http://docs.smartthings.com/en/latest/ref-docs/reference.html
http://docs.smartthings.com/en/latest/architecture/index.html
http://docs.smartthings.com/en/latest/architecture/index.html
https://www.smartthings.com
http://stomp.github.io/stomp-specification-1.2.html
http://stomp.github.io/stomp-specification-1.2.html
https://hbase.apache.org
https://eclipse.org/community/eclipse_newsletter/2014/february/article2.php
https://eclipse.org/community/eclipse_newsletter/2014/february/article2.php

Bibliography

[Woj16]

[Zhe+11]

[Zim+13]

116

Maik Wojcieszak. “Internet- und Anwendungsprotokolle als IoT-Grundlage.”
deutsch. In: iX Developer 1/2016 - Internet der Dinge (Jan. 2016), pp. 68—
73.

Jun Zheng, D. Simplot-Ryl, C. Bisdikian, and H.T. Mouftah. “The internet
of things [Guest Editorial].” In: IEEE Communications Magazine 49.11 (Nov.
2011), pp. 30-31.

Alfred Zimmermann, Kurt Sandkuhl, Michael Pretz, Michael Falkenthal,
Dierk Jugel, and Matthias Wil3otzki. “Towards an integrated serviceJori-
ented reference enterprise architecture.” In: ACM, 2013, pp. 26-30.

A Appendix

1)

NGSI Open RESTful API Specification
(https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_NGSI_Open_RESTful_API_Specification)

2

~

OpenStack Clustering APl v1
(http://developer.openstack.org/api-ref-clustering-v1.html)
Senlin

(https://wiki.openstack.org/wiki/Senlin)

3

-

Semantic Support Open RESTful API Specification
(https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Semantic_Support_Open_RESTful_API_Specification)

4

=y

Publish/Subscribe Semantic Extension Open RESTful API Specification
(https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Publish/Subscribe_Semantic_Extension_Open_RESTful_API_
Specification)

5

-~

Complex Event Processing Open RESTful API Specification
(https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Complex_Event_Processing_Open_RESTful_API_Specification)

6

-

Service Composition Open API Specification
(https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Service_Composition_Open_API_Specification_
(PRELIMINARY))

7

~

Semantic Annotation Open RESTful API Specification
(https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Semantic_Annotation_Open_RESTful_API_Specification)

8

-

Location Server Open RESTful API Specification
(https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Location_Server_Open_RESTful_API_Specification)

9

=

ETSI M2M mld Open RESTful API Specification
(https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/ETSI_M2M_mIld_RESTful_API_Specification_(PRELIMINARY))

10

-~

Device Sensors API Specification
(https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Device_Sensors_API_Specification_(PRELIMINARY))

11

~

Query Broker Open RESTful API Specification
(https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Query_Broker_Open_RESTful_API_Specification)

12

~

Apps Marketplace Search RESTful API
(https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.OpenSpecification.Apps.MarketplaceSearchREST)

13

~—

Security Chapter AccessControl GE Authorization Open RESTful API Specification
(https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.OpenSpecification.Security.AccessControlGE.
Authorization.Open_RESTful_API_Specification)

14

—

Mediator GE Open RESTful API Specification
(https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Mediator_GE_Open_RESTful_API_Specification_
(PRELIMINARY))

15

-

OpenStack Compute API
(http://developer.openstack.org/api-ref-compute-v2.1.html)

16

—~

OpenStack Networking API v2.0
(http://developer.openstack.org/api-ref-networking-v2.html)

17

~

OpenStack Shared File Systems API
(http://developer.openstack.org/api-ref-share-v2.html)

18

~

OpenStack Identity API v3
(http://developer.openstack.org/api-ref-identity-v3.html)

19

=

OpenStack Image Service API v2
(http://developer.openstack.org/api-ref-image-v2.html)

Table A.1: Index Declaration of the Comparison Correlation Matrix: FIWARE

117

A Appendix

ocC Organization Configuration
BO Bulk Operations

DT Device Types

D Devices

DD Device Diagnostics

PD Problem Determination

HER Historical Event Retrieval
DMR Device Managment Requests
um Usage Management

SS Service Status

EV Event Cache

C Connectivity

ES Exsternal Services
Table A.2: Index Declaration of the Comparison Correlation Matrix: IBM Watson IoT

118

Platform

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all
direct or indirect statements from other sources con-
tained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature

	1 Introduction
	1.1 Problem Domain and Motivation
	1.2 Research Issues and Contributions
	1.3 Research Method
	1.4 Structure of the Document

	2 Fundamentals and Related Work
	2.1 Cyber-Physical Systems
	2.1.1 State-of-the-Art Research
	2.1.2 Protocols
	2.1.3 Standards

	2.2 State-of-the-Art Technologies
	2.2.1 OpenMTC
	2.2.2 FIWARE
	2.2.3 SiteWhere
	2.2.4 SmartThings
	2.2.5 AWS IoT
	2.2.6 Microsoft Azure IoT Hub
	2.2.7 IBM Watson IoT Platform

	3 Design of the Reference Architecture
	3.1 Analysis of the State-of-the-Art Technologies
	3.2 Requirements of the Reference Architecture
	3.3 Reference Architecture

	4 Validation of the Reference Architecture
	4.1 OpenMTC
	4.2 FIWARE
	4.3 SiteWhere
	4.4 SmartThings
	4.5 AWS IoT
	4.6 Microsoft Azure IoT Hub
	4.7 IBM Watson IoT Platform
	4.8 Conclusion

	5 Design of the Abstract Class Model
	5.1 Analysis of the Features
	5.2 Requirements of the Features and the Abstract Class Model
	5.3 Abstract Class Model

	6 Validation of the Abstract Class Model
	6.1 Validation of the Operations of the Classes
	6.2 Conclusion

	7 Discussion and Further Research
	7.1 Résumé
	7.2 Discussion
	7.3 Further Research

	Bibliography
	A Appendix

