
1Hasso-Plattner-Institute, University of Potsdam, Germany
{gero.decker,weske}@hpi.uni-potsdam.de

2Institute of Architecture of Application Systems, University of Stuttgart, Germany
lastname@iaas.uni-stuttgart.de

Interacting services: From specification to execution

Gero Decker1, Oliver Kopp2, Frank Leymann2, Mathias Weske1

© 2009 Elsevier Science Publishers.
Paper available at http://dx.doi.org/10.1016/j.datak.2009.04.003
See also Elsevier homepage: http://www.sciencedirect.com

@article{DKLW2009,
author = {Gero Decker and Oliver Kopp and

Frank Leymann and Mathias Weske},
title = {Interacting services:

From specification to executio},
jounal = {Data \& Knowledge Engineering},
year = {2009},
volume = 68,
number = 10,
pages = {946‐‐972},
doi = {10.1016/j.datak.2009.04.003},
publisher = {Elsevier Science Publishers}

}

:

Interacting Services:

From Specification to Execution

Gero Decker a, Oliver Kopp b, Frank Leymann b,
Mathias Weske a

aHasso-Plattner-Institute, University of Potsdam, Germany
bInstitute of Architecture of Application Systems, University of Stuttgart, Germany

Abstract

Interacting services play a key role to realize business process integration among
different business partners by means of electronic message exchange. In order to
provide seamless integration of these services, the messages exchanged as well as
their dependencies must be well-defined. Service choreographies are a means to
describe the allowed conversations. This article presents a requirements framework
for service choreography languages, along which existing choreography languages are
assessed. The requirements framework provides the basis for introducing the language
BPEL4Chor, which extends the industry standard WS-BPEL with choreography-
specific concepts. A validation is provided and integration with executable service
orchestrations is discussed.

Key words: Choreography, Service Interaction Modeling

1 Introduction

In a networked business world, companies need to interact with their cus-
tomers, suppliers and other stakeholders as part of their day-to-day business.
While such interactions used to be realized mostly by phone calls, letters and
faxes, more and more companies increase efficiency by exchanging electronic

Email addresses: gero.decker@hpi.uni-potsdam.de (Gero Decker),
oliver.kopp@iaas.uni-stuttgart.de (Oliver Kopp),
leymann@iaas.uni-stuttgart.de (Frank Leymann),
weske@hpi.uni-potsdam.de (Mathias Weske).

URLs: http://www.iaas.uni-stuttgart.de (Frank Leymann),
http://bpt.hpi.uni-potsdam.de/ (Mathias Weske).

Preprint submitted to Elsevier 16 October 2008

messages. This can lower costs, increase the overall process performance, and
sometimes even lead to new business opportunities. On the other hand, elec-
tronic communication also creates a need to specify the desired message formats
and interaction sequences. Since a fast setup of new collaborations increases
competitiveness of companies, powerful means to specify interaction scenarios
between business partners are required. To this end, service choreographies
serve as contract that the companies have to conform to.

Interactions by electronic messages also involve technical aspects. In this
context, service-oriented architectures (SOA) have received a lot of attention
lately. SOA is an architectural style prescribing systems to be made up of
loosely coupled services with clearly defined interfaces [9]. These services are
not just software components but have business meaning. They are meant to be
reusable in different business processes. The possibility of easily rearranging and
exchanging services in business processes promises quick adaption of software
systems to changing business requirements [33].

In a first generation of services, only simple variants of request/response
message exchanges were considered. This view is sufficient when considering
simple interactions, for instance, a stock information service, where the current
or a past value of a share can be requested. However, more complex interactions
must be considered in many real-world business scenarios. For instance, in
a typical purchasing scenario, goods can be ordered, orders can be modified
or canceled, orders must be acknowledged and delivery can be rerouted, or
alternative products or quantities are offered in out-of-stock situations. Also
multi-lateral scenarios involving, for instance, external payment, shipment and
insurance services need to be considered. These scenarios involve multiple
interactions and the complex dependencies between them must be addressed.

As typically multiple parties are involved, each offering their own services,
successful service integration can be roughly divided into two phases. (i) The
different service providers need to agree on a certain interaction behavior. This
includes ordering constraints, alternatives and time constraints. Therefore, the
result of the specification phase is an interaction contract, also called service
choreography (cf. [23]). (ii) At runtime all service providers need to adhere
to what was initially agreed upon in the choreography. Violations could lead
to exceptions in operations and might have legal consequences. Examples for
exceptions in operations are ignored incoming messages or the suspension of
process instances. The latter happens only if a proper infrastructure is in place:
the infrastructure has to be capable to detect violations during the runtime of
a choreography and be able to suspend the sender of a message causing the
violation.

A large number of industry initiatives such as RosettaNet (http://www.
rosettanet.org/) aim at facilitating integration between different compa-

2

http://www.rosettanet.org/
http://www.rosettanet.org/

nies of a particular domain. However, due to a lack of suitable choreography
modeling languages available, these initiatives have mostly resorted to textual
descriptions of the overall choreographies, while providing detailed message
format descriptions. Therefore, a clear need for choreography languages that
allow for technical configurations can be observed. The initiatives’ artifacts, in
turn, allow the derivation of requirements for choreography languages.

The Web Service Choreography Description Language (WS-CDL, [28]) is a
prominent language in the field of service choreographies. However, as this
paper will point out, it has a number of drawbacks, including limited support
for scenarios with an unknown number of services, integration with service
orchestration languages, and different technical realizations of the used services.

The Web Services Business Process Execution Language (WS-BPEL [51], BPEL
for short) is the de facto language for service composition in web services
environments. In addition, it is very valuable in the context of interaction
services: BPEL can be used to implement web services that show complex
interaction behavior with their environment. Both external services (i.e. web
services offered by other service providers) and internal web services can
be composed into a single executable business processes. BPEL processes
themselves are offered as web services to the environment once they are
deployed in a BPEL engine. Therefore, BPEL is well suited as implementation
language for the runtime of web services. Although BPEL can also be used
to describe the communication behavior of a web service, it is not suited
as choreography language: BPEL focuses on describing the behavior of a
single partner. The interconnection of multiple partners cannot be represented
appropriately [36].

In this article we present a requirements framework for service choreography
languages, which is largely based on the service interaction patterns [7]. We
are going to assess WS-CDL, BPEL, and a number of other languages along
this framework. As this assessment will show, none of the existing languages
meets the identified requirements. Therefore, extensions to existing languages
have to be introduced or a new language needs to be designed.

As main contribution, this article introduces BPEL4Chor as additional layer
on top of BPEL. Core concepts of this language have already been presented
in [17]. We show that BPEL4Chor is indeed suited to express choreographies.
Furthermore, we investigate the integration of BPEL4Chor choreographies and
executable BPEL processes. More specifically, we show how BPEL processes
can be generated out of BPEL4Chor choreographies.

The remainder of this article is structured as follows: the next section presents
the main concepts of service choreographies and introduces a choreography
example. Section 3 presents the requirements framework, points to related work

3

and assesses WS-CDL and other languages along the framework. BPEL4Chor
and its artifact types are discussed in Section 4. The suitability of BPEL4Chor
for choreography modeling is assessed in Section 5. Section 6 discusses the
integration of BPEL4Chor with executable BPEL. Section 7 concludes the
paper and points to directions of future work.

2 Service Choreographies

A motivating example illustrates the main concepts in service choreographies.
Figure 1 presents a sample choreography describing an auctioning scenario in
the financial sector. Three types of participants are involved in this scenario:
a seller, several bidders and a broker. The seller wants to sell stock options
for the highest possible price. Brokers are able to carry out auctions more
efficiently than the seller. That is why the seller outsources the operation of
the auction to a broker. Different bidders can join in if they are interested in
the options and place their bids accordingly. The Business Process Modeling
Notation (BPMN [48]) is used in this example. All interactions are realized
as exchange of electronic documents. Broker services provide all functionality
needed. On the seller and bidder side, electronic services are also available
to carry out most of the work. The seller service automatically handles the
exchange of options for payment. The bidder service automatically issues bids,
based on pre-defined rules (which are not in the scope of this work).

An auction works as follows. First, the seller service sends an auction creation
request to the broker service, who acknowledges it with a confirmation message.
As soon as the auction begins, bidder services can place bids that are in turn
confirmed by the broker service. Each bidder service is allowed to place several
bids during an auction. The auction ends at a given point in time. When an
auction has ended, the broker service notifies the seller service about which
bidder won the auction, i.e., which bidder service has placed the bid with the
highest amount. The bidder service, which has won the auction also gets a
notification. The unsuccessful bidder services are informed, too. Finally, the
exchange of the options payment can happen in parallel. The seller service
sends payment details to the successful bidder service, and the bidder issues
the payment. On the option side, the seller service grants the stock options to
the bidder service and the bidder service acknowledges this.

This scenario shows how interacting processes are realized as interacting services.
The focus is placed on the actual message exchanges between the services.
Human involvement is not documented in this example, although it might
be present. The different seller and bidder services might differ in the degree
of automation, e.g. a bidder service might need to be triggered to enter an
auction or it constantly observes all offered stock options and decides to enter

4

Auction
beginsBid

Unsucessful
bid

Successful
bid

Payment
details

Grant ack

Grant

Creation
confirmation

Completion
notification

Payment

Auction creation
request

Bid ack

For each
unsuccessful
bidder

Seller Service Broker Service

Send creation
confirmation

Send bid
ack

Send
completion
notification

Send
successful bid

Bidder Service

Send
grant ack

Issue
payment

Send auction
creation
request

Send
payment
details

Grant stock
options

Send bid

Auction
over

Send
unsuccessful

bid

Pool Message
send task

AND-
gateway

Event-
based

gateway

XOR-
gateway

Start
event

Message
receive
event

Timeout
event End event Looped

activity

Multi
instances

activity

Fig. 1. Auctioning Scenario

an auction based on sophisticated algorithms and extensive financial data sets.

This example also shows the correspondence between the terms participants
and services, as well as participant types and service types: the individual
sellers, brokers and bidders are choreography participants, realized as seller,
bidder and broker services, respectively. All sellers are of participant type
“seller”, while all seller services are of service type “seller service”.

5

While choreographies in general show how participant of different types interact
with each other, we focus on service choreographies where all interactions are
realized as electronic message exchanges.

The Business Process Modeling Notation (BPMN [48]), used to express the
example, is a popular language to model choreographies. The service types
are represented by pools (big rectangles in the background). Message flows
(dashed arrows) indicate which messages might be sent from a service of one
type to a service of another type. Message events (circles containing a letter
icon) represent message receipt activities while the rounded rectangles with
outgoing message flow represent message send activities. Additionally you find
timer events (circles containing a clock icon) and a number of control flow
constructs defining the behavioral dependencies between the different message
exchange activities.

While the BPMN diagram provides an appropriate overview by representing
participant types and interactions, the diagram alone would not be sufficient
as interaction contract. It is too imprecise in many aspects. Time information
about the start of the auction and its completion are only given in an informal
way, i.e., in plain text. The case that no bids are placed is not covered and
the distinction between different bidders, i.e., between different participants
of a given type, is not specified. Finally, the message formats are not defined.
While handling exceptions such as “no bids” could be represented in BPMN,
other aspects are only poorly supported and require further refinement in a
service choreography.

3 Motivation of the Approach

The example in the previous section showed that choreographies easily go
beyond simple sequences of message exchanges between two services. What
happens to the bidder service that has not placed the highest bid? What
happens if an answer does not arrive on time? Does the payment need to be
carried out prior to delivery? These are sample questions a choreography must
answer.

In this section, requirements are developed that can be used to identify short-
comings of choreography languages.

The service interaction patterns [7] represent a catalog of typical scenarios for
interacting services. They can be used to benchmark modeling languages or
systems regarding their support for typical use cases. While the workflow pat-
terns [2] concentrate on control flow structures within service implementations,
they do not capture scenarios where two or more services engage in complex

6

interactions. The service interaction patterns fill this gap. However, there is
some overlap between the pattern sets. Often, a service interaction pattern is
based on a certain workflow pattern, while adding certain aspects that only
apply to choreographies.

The service interaction patterns are divided into four categories. The distinguish-
ing criteria are: (i) the number of services involved (bi-lateral vs. multilateral
interactions), (ii) the number of messages exchanged (single-transmission vs.
multi-transmission interactions) and (iii) in the case of two-way interactions, if
the receiver of a response is necessarily the same as the sender of the request
(round-trip vs. routed interactions). The resulting categories therefore are:
(1) single-transmission bilateral interaction patterns, (2) single-transmission
multilateral interaction patterns, (3) multi-transmission interaction patterns
and (4) routing patterns.

Through the analysis of these patterns, we extracted key requirements of
service choreographies. At least following requirements must be fulfilled by a
choreography language:

• R1. Multi-lateral interactions. The example in the previous section
shows that more than two services can be involved in a choreography. The
higher the number of services, the more important the service choreography
becomes: while it is possible to make small runtime adjustments in the
case of two interacting services, these adjustments are more difficult if
multiple services are involved. Therefore, a choreography language must
support multi-lateral interactions.

• R2. Service topology. The choreography must specify what types of
services are involved and how services of these types are interlinked. The
service topology provides an essential structural view on the choreography
from a global perspective.

• R3. Service sets. It can be observed that often several services of the
same type are involved in a choreography. As example our auctioning
scenario includes a set of bidder services. A choreography language must
support a (potentially unknown) number of services of the same type.

• R4. Selection of services and reference passing. In some cases, the
selection of services is done at design-time or deployment-time of services.
In other cases, selection is only done at runtime. In both cases it must
be ensured that other services are made aware of the selection if they are
to interact with these services as well. In our example the broker service
has to pass on the reference of the successful bidder service to the seller
service. Otherwise the seller service would not know where to send the
payment details to.

In addition to the requirements derived from the service interaction patterns,
the following technical requirements are very important for the suitability of a

7

service choreography language:

• R5. Message formats. Perfect match regarding the order of messages
does not ensure that the different services can process the messages they
receive. Often the message formats simply do not match. Initiatives such
as RosettaNet show that it is possible and fundamental to agree on the
message formats exchanged. Therefore, a choreography language has to
natively support the definition of message formats.

• R6. Interchangeability of technical configurations. A drawback of
tightly integrating message format specifications into choreographies is
the limited reusability of the choreography.

Currently, the Web Service Description Language (WSDL, [12]) is a
widely used standard to describe the structural interface (“port type”
as a collection of “operations”) of a web service. A WSDL definition
includes the definition of message formats, usually using XML Schema,
as well as the information needed to interact with a physically deployed
service—on the wire manifestation of messages and the transport protocols
(“binding”) as well as the physical endpoints (“ports”) [14]. Standards
such as RosettaNet show that it is possible to standardize the exchanged
messages, but that it is not possible to standardize the interfaces to be
used. Therefore, WSDL’s ability to standardize messages definitions is
important in choreography design, whereas the description of operations
in an interface as well as port and binding information are not needed,
because their use would force the choreography adopters to follow these
technical realizations.

Changes in port type or operation names should not require changing
the choreography. Also other technical details, e.g. whether a service is
realized using one port type or two port types or whether two messages
are exchanged in a synchronous request/response cycle or asynchronously,
should not require major changes in the choreography. Sometimes it is not
possible to agree on one message format for a particular interaction. In
these cases, message mediation is necessary. There should at least be an
extension point to plug in corresponding configurations. A choreography
language must support interchangeability of technical configurations.

• R7. Time constraints. Time is an important aspect of choreographies.
It must be agreed upon how long a certain message must be waited for
and for how long certain messages are allowed. In our auctioning example,
bids are not accepted once the auction is over. Therefore, a choreography
language must support the definition of time constraints.

• R8. Exception handling. There is typically an ideal path in a choreog-
raphy. However, there might be purely technical reasons or other reasons
why messages are not sent on time or contain the wrong content. For
these cases, control flow handling faults and exceptions must be defined.
Reactions in the form of cancellation messages or a simple termination of
a conversation might be necessary. Therefore, a choreography language

8

must allow the definition of exception handling.
• R9. Correlation. It cannot be expected that each service is involved

in at most one choreography instance at a time. It must be possible to
distinguish different conversations and to relate an incoming message to
the messages previously sent or received. Such correlation is typically
realized by placing correlation information into messages. In the example
scenario, a correlation information can be an auction id or a bid id. In
general, the service providers must agree upon where in the message
such information can be found and who is responsible to generate which
identifier. By checking the equality of an id included in a message and
an expected id, correlation is carried out. A choreography language must
support the definition of such correlation configurations.

• R10. Integration with service orchestration languages. BPEL is
the de-facto standard to implement business processes based on web
services. Therefore, choreography languages must allow an integration with
BPEL, including easy generation of BPEL processes out of choreographies
and extracting choreographies out of existing interacting BPEL processes.

In the following, we first give an overview of related work in the field of
choreography languages and then evaluate the most prominent choreography
languages and workflow languages using the ten requirements listed above. A
summary is given in Section 3.12.

3.1 Related Work

Different viewpoints for service-oriented design have been proposed in [23]; the
differences between choreographies, interface behaviors, provider behaviors, and
orchestrations are explained. “Observable behavior” [51] and “local model” [60]
are used as synonyms for provider behavior.

In addition to the Service Interaction Patterns framework [7] that is used in this
paper, there is a family of interaction patterns reported by Mulyar et al. [42].
Here, different variation points for multi-party multi-message conversations
are identified, also allowing for a detailed analysis of choreography languages.

In general, we can distinguish between two different modeling approaches
in the choreography space: interaction models and interconnected interface
behavior models [16]. The choreography model in Fig. 1 is modeled using inter-
connected participant behavior descriptions. In the case of interaction models,
elementary interactions, i.e. request and request-response message exchanges,
are the basic building blocks. Behavioral dependencies are specified between
these interactions and combinations of interactions are grouped into complex
interactions. Due to the fact that these models capture the dependencies from

9

a truly global perspective, the modeler is able to define dependencies that
cannot be enforced. For example, the modeler might specify that a shipper
can only send the delivery details to a buyer after the supplier has notified the
insurance about the delivery. In this case it is left open how the shipper can
learn about whether the notification has been sent. Additional synchronization
messages would be necessary to turn such a locally unenforceable interaction
model into an enforceable one [60]. In the case of interconnected participant
behavior descriptions such unenforceability issues cannot arise since control flow
is defined per participant. However, participant behavior descriptions might
be incompatible, i.e. the different participants cannot interact successfully with
each other. Deadlocks are typical outcomes of such incompatibility. Imagine a
participant expecting a notification of another participant before being able to
proceed and the other participant never sends such a notification (cf. [38]). It
has not yet been investigated which approach is more suitable for the human
modeler.

Most academic work in the area of choreographies mainly focuses on formal
verification of properties such as compatibility of interacting services [10,
38, 40, 55] or the conformance of a service implementation to a behavioral
specification [1, 8, 31, 39]. In this context, compatibility checking addresses the
question whether two or more services can interact successfully with each other
given the different behaviors plugged together. Conformance addresses the
question whether a service will show a communication behavior as specified [21].

A choreography definition can be used to enable proper message routing in an
enterprise service bus. In general, a service bus is a middleware platform for re-
alizing service oriented computing based on web service standards [11,14,35]. If
a service-bus is aware of the choreography, it is able to monitor the compliance
to the choreography of the participants and to react on violations of choreogra-
phies [27, 32]. In the auctioning scenario, a violation of the choreography is
that a broker does not send an unsuccessful bid notification to all unsuccessful
bidders. While there is work on conformance, a process can be verified to
conformance only if the implementation is available. Usually, service providers
claim to follow a choreography, but do not verify their business process. Then,
the only possibility to check conformance is conformance checking at runtime.
Most important, a message violating the choreography is not delivered to the
recipient and does not cause any more wrong actions at the recipient. Further
actions to be taken have to be specified within the enterprise service bus and
are currently not standardized or further investigated [32].

We presented an overview over BPEL4Chor in [17]. [19] shows a mapping of
selected concepts of BPEL4Chor to Pi-Calculus and [37] shows how BPEL4Chor
choreographies can be verified using Petri nets. This verification checks the
absence of deadlocks in choreographies.

10

3.2 Assessment of BPEL

BPEL centers around message send and receive activities, defining if and when
messages are sent or received by the BPEL engine. These communication
activities (invoke, receive, reply, pick, ...) together with other basic activities
such as data manipulation can be arranged using control flow constructs
into processes. BPEL comes with a wide range of such constructs covering
sequences, parallelism, alternatives, repetitions and even multiple-instances
where the number of parallel instances does not need to be known at design-time.
Furthermore, BPEL covers exception handling and compensation, correlation
and data flow.

BPEL comes in two flavors: abstract BPEL and executable BPEL. In the latter
case, the process definitions (together with the service interface and binding
descriptions as well as additional discovery information) represent artifacts that
can be directly executed. Abstract BPEL processes define business processes
which are not intended to be directly executable. Each abstract BPEL process
is annotated with a BPEL process profile, which states the intended usage
type of the BPEL process. The BPEL specification defines profiles for process
templates and observable behavior. Process templates serve as templates for
executable BPEL processes, whereas observable behavior processes serve as
description of the interaction behavior of the business process. Modelers are
free to define new profiles. This enables modelers to describe service behavior
in BPEL without the need to implement the described services using BPEL.

BPEL defines the notion of partner links. Partner links are connectors between
the WSDL port type offered by the process and the WSDL port type required
from the partner [14]. Through partner links, a service implemented as BPEL
processes can interact with multiple other services. Therefore, BPEL supports
Requirement R1. However, as BPEL only focuses on behavior of individual
participants and sees the services of other participants it interacts with as
black boxes, BPEL does not provide a big picture on how services are involved
in a choreography. In many cases, it is impossible to derive such a picture,
since discovery information does not form a part of BPEL. BPEL refers
to port types, not to ports. Therefore, a given set of BPEL processes with
matching port types does not guarantee that these BPEL processes are actually
interconnected. The lack of a topology and the lack of interconnection between
different communication activities make BPEL miss Requirement R2.

Services endpoints can be described by endpoint references, which in turn can
be stored in BPEL variables. This storage allows to receive endpoint references
from other services or sending endpoint references to other services. Since an
assign activity can be used to assign an endpoint reference to a partner link,
it is possible to interact with a service described by an endpoint reference. In

11

addition, endpoint reference sets can be handled through corresponding XML
schema types. In combination with the parallel forEach construct in BPEL,
the “One-to-many send/receive” pattern [7] is supported by BPEL. Relying
on external type systems, sets or lists are not first-class citizens in BPEL
and therefore working with endpoint reference sets is cumbersome. Hence, we
conclude that BPEL only partially supports Requirement R3.

Although reference passing is fully supported in BPEL, the notion of service
selection is out its scope. Service selection is done through deployment config-
urations, either realizing service selection at deployment-time or at runtime.
Again, we conclude that there is only partial support for Requirement R4.

BPEL is tightly integrated with WSDL, where message formats are specified
and thus make BPEL supporting Requirement R5. The variables used at send
and receive activities have to match the used operation in the expected data
structure. Partner link types are configured with WSDL port types and BPEL’s
communication activities depend on WSDL operations. This makes BPEL
rigid in terms of interchangeable technical configurations (R6): changes on the
WSDL side often require changes in the BPEL process.

BPEL has built-in timing capabilities (R7). Timers can be attached to the so
called scopes and can be put into regular control flow, defining the maximum
time that should be spent waiting. Furthermore, delays can be realized through
wait activities. Also a variety of possibilities to react to erroneous situations
are at hand (R8). Exceptions can be handled and completed activities can be
compensated if necessary.

In BPEL, correlation sets are used to define which process instance an incoming
message should be routed to. These correlation sets can be initialized by
the BPEL engine and correlation information is included into the messages
exchanged. The so called properties define where exactly in the message
correlation information can be found. BPEL supports Requirement R9.

The integration between executable BPEL and abstract BPEL is already
described in the specification. Although issues like conformance checking lie
outside the scope of the BPEL specification, it is defined what elements must
be used and what attributes must be set in either of the two BPEL flavors. As
the elements and attributes available do not significantly differ from abstract
BPEL to executable BPEL, we conclude that Requirement R10 is supported.

3.3 Assessment of BPELlight

BPELlight [44] has been introduced as extension of BPEL to decouple BPEL and
its technical details. BPELlight introduces the new activity type

12

interactionActivity, which replaces BPEL’s communication activities. In-
stead of using WSDL artifacts, each interaction activity is assigned to a
conversation. To enable the usage of BPELlight processes in a web ser-
vice environment, the concept of “assignment” is introduced. There, each
conversation is assigned to a “partner link” and each activity is assigned to
a WSDL operation. This makes BPELlight fulfill requirement R6.

In [45] the concept of a BPELlight partner element is extended to cover
multiple partners of the same type. BPELlight still describes the viewpoint of
one participant and thus lacks a topology. Finally, it does not offer an explicit
mechanism to describe the interconnection of activities, which makes it still
missing Requirement R2.

BPELlight supports a set of services. The declaration of a partner element
declares an unbounded set of partners. An interactionActivity is always
linked to a partner. The respective partner of a received message is looked up
in the referenced partner set. If the partner is not contained in the set, the
partner is added to the set. All in all, BPELlight does not distinguish between
a single participant and a set of participants and thus BPELlight partially
supports Requirement R3.

As in BPEL, reference passing is fully supported in BPELlight, but the notion
of service selection is out of its scope. Service selection is realized through the
concrete assignment to a communication infrastructure and thus delegated to
the infrastructure. As with BPEL, we conclude that there is partial support
for Requirement R4.

Since BPELlight not change anything else in BPEL, the assessment for the
other requirements R1,R5,R7-R10 remains unchanged in comparison to the
assessment of BPEL.

3.4 Assessment of WSFL

WSFL [34] is a predecessor of BPEL, where control flow is modeled as graph.
WSFL distinguishes between a “Flow Model” and a “Global Model”. In the
Flow Model, control flow of one process is defined, whereas a service topology
is provided in the Global Model (R2). Each Flow Model offers and requires
operations. These operations are connected together in a “Global Model” using
so-called plug links. This enables different names for the same operations. Each
time, a service provider is replaced, the Global Model has to be adopted and
the Flow Models remains unchanged (R6). Sets of services are not supported
by the Global Model (R3). Message formats are specified using XML Schema
(R5).

13

The semantics of WSFL control flow is similar to that of BPEL’s flow activity
with links. However, there is no transformation available from WSFL models
to BPEL is available, even if it should be possible due to the control flow
similarities (R10). By using different operations for different participants,
multi-lateral interactions can be realized using WSFL (R1). While services can
be selected by using the respective operation, WSFL does not support reference
passing (R4). Time constraints are not supported (R7), but WSFL supports
exception handling by a special attributes of control links (R8). The WSFL
specification mentions correlation, but not specify how correlation works (R9).

3.5 Assessment of WS-CDL

The Web Services Choreography Interface (WSCI, [3]) and the Web Service
Conversation Language (WSCL, [4]) are the predecessors of the Web Services
Choreography Description Language (WS-CDL [28]). WS-CDL is an interac-
tion modeling languages for web service choreographies. Being a candidate
recommendation by the W3C since 2005, WS-CDL is mostly criticized for
not easily integrating with BPEL. WS-CDL comes with its own set of control
flow constructs that can hardly be mapped to those of BPEL (cf. [6]). In [20],
the suitability of WS-CDL is assessed by investigating which of the workflow
patterns and service interaction patterns are supported. This assessment re-
veals that WS-CDL does not directly support scenarios where the number of
participants involved in a choreography is only known at runtime. However,
WS-CDL is the most prominent example of a language following the interaction
modeling style.

The basic building blocks of WS-CDL are interactions. They are bi-lateral
(between two web services) and involve either one message (request-only or
response-only) or two messages (request-response). Each interaction takes place
via a channel instance identifying the responding service. An important feature
of WS-CDL is the possibility to pass channel instances from one service to
another in an interaction. The structure of other information that can be passed
is specified using information types. Role types define what behaviors (WSDL
interfaces in the default case) have to be implemented by a corresponding
service. Relationship types are pairs of role types, services of which can directly
interact with each other. Interactions can be composed to activities using a
range of control flow constructs. These include sequence, parallel, choice and
workunit. Listing 1 shows how the auction creation request and the response
by the broker service can be described in WS-CDL.

A more detailed overview of WS-CDL can be found in [6] and an assessment
of WS-CDL regarding its support for the workflow patterns and the service
interaction patterns in [20].

14

Listing 1 Sample interaction in WS-CDL

<interaction name="auctionCreation"
channelVariable="tns:broker-channel"
operation="requestAuctionCreation">

<participate relationshipType="tns:SellerBrokerRel"
fromRole="tns:Seller" toRole="tns:Broker"/>

<exchange name="request" informationType="tns:creationReq"
action="request">
<send/>
<receive variable="..." />

</exchange>
<exchange name="response"...>...</exchange>
<timeout time-to-complete="..."/>

</interaction>
<exceptionBlock name="handleTimeoutException">
<noAction/>

</exceptionBlock>

WS-CDL directly supports scenarios where multiple services are involved in one
choreography (Requirement R1). This is realized through an unlimited number
of role types that can be defined in a choreography. As concrete services are
identified by channel instances, there can be potentially many services involved
in one choreography of a particular role type. As all role types are enumerated
in the choreography, a topology is present in the case of WS-CDL. However,
the number of services per role is unspecified. Although in most cases there
is at most one service per role type, this cannot always be assumed. In some
cases it can be derived from the choreography whether there might be several
services of one role type, but not in all. Therefore, we opt for partial support
for Requirement R2.

Two important features are missing to support service sets (R3): (a) sets are
not first-class citizens in WS-CDL and (b) there is no control flow construct
allowing multiple branches to be executed in parallel where the number of
branches might only be known at runtime. This results in the fact that the
workflow pattern “Multiple instances with a priori runtime knowledge” is
not supported by WS-CDL. The service interaction pattern “One-to-many
send/receive” comes in two flavors: the exact number of services might be
known at design- or only at runtime. While the first case is supported by
WS-CDL, the second one is not. Therefore, we conclude that this service
interaction pattern is only partially supported.

The notion of reference passing (R4) is directly integrated into WS-CDL.
However, it is not possible to explicitly model which service selects which
other service. This can only be derived from data flow dependencies at best.
Therefore, we conclude that there is only partial support for Requirement R4.

15

While WS-CDL focuses on the behavioral aspects of a choreography, it relies
on WSDL for the specification of message formats. Therefore, it supports
Requirement R5. However, as a drawback of this integration with WSDL, the
WSDL-configurations heavily influence the way the choreography looks like.
Changes in WSDL files often require changes in the WS-CDL choreography.
E.g. splitting a port type into several port types requires major refactoring of
the choreography. Therefore, WS-CDL does not support Requirement R6.

It is possible to specify timeouts for interactions (Requirement R7). Listing 1
includes such a timeout. It is realized through an exception block with a
dedicated exception type. Furthermore, there is a variety of other exception
types available to cover message transmission exceptions, security failures and
application failures (Support of R8).

Correlation of interactions is addressed using identity tokens that are to be
included in messages (Support of R9). The so called token locators are a
mechanism to retrieve tokens from messages: an XPath expression defines
where in the message the correlation information is placed. This is an example
of how tightly WS-CDL is linked to WSDL. Whenever the message format
changes, the token locators have to be adapted to the new format. This direct
influence of message format changes to the choreography definition is not
desired.

There have been proposals to generate abstract BPEL processes out of WS-CDL
choreographies [41]. However, it remains unclear how constructs like blocking
work units can be realized in BPEL. WS-CDL also allows the specification
of mixed choices on a global level, i.e. choices between send and receive
activities. Mixed choices on a global are a major challenge when trying to
properly translate them to interacting BPEL processes. Here, sophisticated
synchronization mechanisms might need to be applied. Furthermore, round-
tripping between WS-CDL and BPEL seems unrealistic given e.g. the fact that
BPEL includes a forEach construct which does not have a correspondence in
WS-CDL. Therefore, we conclude that Requirement R10 is not supported.

3.6 Assessment of Let’s Dance

Let’s Dance [59] is a visual choreography language targeted at business analysts.
Its origins can be found in the service interaction patterns initiative, where
Let’s Dance was positioned as first language to support most patterns. It does
not allow any technology-specific configurations. Like WS-CDL, Let’s Dance is
also an interaction modeling language. Let’s Dance distinguishes the concepts
roles and actor references. Roles correspond to what we call service types and
actor references to service references.

16

Interactions between more than two services can be expressed in Let’s Dance
(R1). The core version of Let’s Dance only comes with a behavioral view of
choreographies, which allows to express the behavioral constraints between
interactions (R2). Extensions have been proposed for also representing service
topologies in [5]. Service sets are an essential feature in Let’s Dance, where
a number of services of the same role can be addressed in “for each” interac-
tions. The concrete number does not need to be known at design-time of the
choreography. This leads to full support for requirement R3. While the notion
of reference passing is present in Let’s Dance, service selection relationships
cannot be modeled (R4).

Let’s Dance is a language on the conceptual level, meaning that there is no
technology-specific details in the language. No integration with WSDL or any
other language for describing message formats has been done (R5). Therefore,
interchangeability of technical configurations is not given, as the notion of
technical configurations is completely absent in the language (R6).

Timeouts are realized using timers, a special form of interaction in Let’s Dance.
However, time constraints are only given as free text, therefore only leading to
partial support for R7. Exception handling is not present (R8) and correlation
is not addressed, either (R9).

The generation of abstract BPEL processes was shown in [60]. While most
control flow constructs introduced in Let’s Dance are mapped to constructs
in BPEL, the mapping does not cover a number of aspects present in Let’s
Dance. As examples, timer interactions are not mapped, and roles and actor
references are ignored. Therefore, we conclude that Requirement R10 is at
most partially supported.

3.7 Assessment of BPMN

The Business Process Modeling Notation (BPMN, [48]) is a graphical mod-
eling language for intra- or inter-organizational business processes. It allows
to interconnect processes using message flows and therefore to express chore-
ographies. Thus, BPMN allows to model interconnected participant behavior
descriptions. However, BPMN lacks formal semantics and thus there is no stan-
dardized execution semantics. There are approaches to interpret the informal
execution semantics of BPMN and use this interpretation to map BPMN to
BPEL (e.g. [52]). We show in [54] how BPMN can be extended to enable the
generation of fully defined BPEL4Chor choreographies. [54] also specifies how
the transformation is carried out. Our work of [18] shows how BPMN can be
used in conjunction with BPEL4Chor to model service choreographies.

Involvement of two or more services can be represented by a corresponding

17

number of so called pools (R1). By collapsing pools and only showing message
flow between them, service topologies can be modeled. However, as pools
represent service types and it cannot be defined how many services of one type
will be involved, there is only partial support for R2. The notions of service
sets (R3), selection of services and reference passing cannot be found in BPMN
(R4). While BPMN is primarily targeted at conceptual modeling, there are
attributes to define concrete message formats (R5). However, interchangeability
of such technical configurations is not given (R6). Time constraints can be
modeled using intermediate timer events (R7) and exception handling via error
events (R8). Correlation configurations cannot be set in BPMN (R9).

An integration with existing service orchestration languages is given through
the extensive work on mapping BPMN to BPEL. While mapping in both
directions is possible for a large number of constructs, different coverage of
concepts and semantic differences between corresponding constructs do not
allow for complete round-tripping (cf. [58]). Therefore, we conclude that there
is only partial support for Requirement R10.

3.8 Assessment of iBPMN

iBPMN [15] is an extension to BPMN allowing for interaction modeling. While
most of BPMN’s control flow constructs are reused, certain restrictions are
imposed, e.g. there are no tasks and only events, complex interactions and
gateways can be arranged in the control flow. Decision points and non-message
events, such as timeouts or exceptions, must be assigned to pools, indicating
who own the choice or who can observe the events.

In terms of support for the different requirements, there is no difference between
BPMN and iBPMN regarding R1 and R3 through R9. iBPMN comes with the
concept of shadowed pools indicating that a number of services of the same
type will be involved in a choreography. Therefore, R2 is now fully supported.
However, referencing particular sets of services is still not possible.

R10 is not supported in iBPMN as the interaction model cannot directly be
mapped to orchestrations and a transformation of iBPMN to interface behavior
descriptions (e.g. given in BPMN) is largely missing.

3.9 Assessment of BPSS/UMM

The ebXML initiative (http://ebxml.org/) proposed the Business Process
Schema Specification (BPSS, [13]) to describe choreographies.

18

http://ebxml.org/

BPSS is closely related to the UN/CEFACT Modeling Methodology (UMM,
[25]) which mainly describes the different steps to specify choreographies
in a technology-independent manner. UMM also provides a meta-model for
choreographies, including the business transactional view, the business service
view and business collaboration view. Business transactions serve as basic
building blocks, each involving a request-response interaction plus additional
business signals to synchronize the state of the two business partners involved.
These bi-lateral transactions are described using UML 1.4 Activity Diagrams
[47]. Transactions are composed into a business collaboration protocol, the
choreography. UMM’s business service view finally specifies the services and
operations (or messages) participants must support in order to implement a
role.

On the behavioral level, BPSS is limited to bi-lateral scenarios, having no
support for the first three requirements (R1, R2, R3). Service selection and
reference passing are not covered, either (R4).

While BPSS is technology-independent, WSDL files can be referenced in
the Collaboration Profile Agreement (R5). Timeouts and exception handling
can also be specified (R7, R8). However, interchangeability and correlation
configurations are not given (R6, R9).

There has been a mapping of business transactions to executable BPEL code
[26]. However, as business collaborations are not covered, we conclude that
there is at most partial support for an integration with orchestration languages
(R10).

3.10 Assessment of SCA

The Service Component Architecture (SCA) provides a model for building
applications based on SOA [24,49]. Implementations of services are wrapped
in components. Each component provides a set of services and requires a set
of interfaces. The required services have to be wired with provided services
form a valid SCA composite. SCA itself does not provide a specific language
for the implementation of components and thus evaluations targeting the
implementation are not applicable (n/a). SCA supports BPEL as a possible
implementation language [50]. Thus SCA integrates with service orchestration
languages (R10). If BPEL is taken as implementation language, SCA also
supports all of the requirements BPEL supports.

In the SCA assembly model, the used components, the wires and the multiplicity
of these wires are specified (R2). By specifying 1..n as multiplicity at a wire,
one can denote service sets (R3). Each interface is specified by a Java interface,
WSDL 1.1 port types or WSDL 2.0 interfaces. Thus, the specification of

19

message formats is possible (R5). Due to the dependency to a concrete interface,
technical configurations cannot be interchanged (R6).

3.11 Other Choreography Approaches

Several industry initiatives have worked towards domain-specific choreogra-
phy models in order to enable an easier integration between different com-
panies of that domain. Examples for such initiatives are RosettaNet (http:
//www.rosettanet.org/) for the supply chain domain, SWIFTNet (Society
for Worldwide Interbank Financial Transfer, http://www.swift.com/) for fi-
nancial services or HL7 (Health Level Seven, http://www.hl7.org/) for health
care services. Due to a lack of choreography modeling languages available,
these initiatives have mostly resorted to textual descriptions of the choreogra-
phies. Rather adhoc-notations where used for illustration. However, both the
textual descriptions and the illustrations have many ambiguities, allowing for
different interpretations. When it comes to execution, the current way is to
map the proprietary notations to BPEL by making heavy assumptions about
the concrete semantics. Such a mapping is currently available for RosettaNet
only and presented in [29].

WSDL 2.0 Message Exchange Patterns [46] offer means to specify the order
of messages an operation expects and sends back. This ordering is specified
using text and not a designated process description language. It is possible to
specify node types, which enables describing multi-lateral interactions from the
view of one participant. However, the specification is limited to one operation
and thus does not cover a whole choreography which may span over multiple
operations.

Most languages mentioned above are procedural languages, where the approach
is to explicitly enumerate all interactions possible in a certain situation. As
an alternative to these procedural languages there are also approaches for
a declarative style of modeling. Declarative in this context means that all
constraints are enumerated that apply for a set of interactions. That way, an
“empty” choreography would mean that all interaction sequences are allowed,
while adding constraints limits the number of allowed sequences. In procedural
languages, an “empty” choreography would mean that no interaction is allowed
and adding constructs enlarges the set of possible interaction sequences. The
goal of declarative languages is to avoid overspecification, a common phe-
nomenon that can be observed whenever procedural languages are used. An
overview of declarative workflow models is given in [53]. Let’s Dance can be
seen as a hybrid of procedural and declarative languages. It has control flow
constructs for loops and enabling like procedural languages but also contains an
“Inhibits” relationship, where an interaction is no longer allowed once another

20

http://www.rosettanet.org/
http://www.rosettanet.org/
http://www.swift.com/
http://www.hl7.org/

interaction has happened.

3.12 Summary of the Assessments

Table 1
Assessment of WS-CDL and BPEL

Requirements B
P

E
L

B
P

E
L

li
g
h
t

W
SF

L

W
S-

C
D

L

L
et

’s
D

an
ce

B
P

M
N

iB
P

M
N

B
P

SS
/U

M
M

SC
A

R1. Multi-lateral interactions + + + + + + + – n/a

R2. Service topology – – + +/– – +/– + – +

R3. Service sets +/– +/– – – + – – – +

R4. Selection of services and
reference passing

+/– +/– +/– +/– +/– – – – n/a

R5. Message formats + + + + – + + + +

R6. Interchangeability of tech-
nical configurations

– + + – – – – – –

R7. Time constraints + + – + +/– + + + n/a

R8. Exception handling + + + + – + + + n/a

R9. Correlation + + – + – – – – n/a

R10. Integration with service
orchestration languages

+ + +/– – +/– +/– – +/– n/a

Table 1 gives an overview of the assessment of the different languages. As
drawbacks of WS-CDL we see that service sets and service selection are not
fully supported. Especially the fact that an unknown number of services of the
same type is not supported in WS-CDL decreases the suitability of WS-CDL
to represent complex choreographies. Furthermore, WS-CDL is too inflexible
in terms of changing technical configurations. However, the main drawback
of WS-CDL is that it is not well aligned with BPEL, which leaves service
choreographies and service implementation disconnected.

BPEL provides better support for service sets than WS-CDL, but still service
sets need to be a first-class citizen in choreographies. Implementations requiring
complex XPath expressions can only be seen as workaround. Also the notion
of service selection is conceptually too important in choreographies to leave
it to engine-specific deployment configurations. By “service selection” we do
not mean concrete endpoints. It should not be specified, how and when a
concrete service is bound, but which service selects which other services. In

21

the example scenario, it should be possible to specify that the seller selects
the broker and not vice versa. BPEL is equally inflexible regarding changing
technical configurations as WS-CDL is. BPELlight already resolves this problem.
However, the main reason why BPEL and BPELlight simply cannot be used as
choreography languages is that they do not provide a global view on interacting
services.

The other languages have far less support for the requirements. WSFL does
not support advanced control-flow constructs such as exception handling and
timing. The handling of service sets as well as the support of link passing are
also open issues. SCA is an architectural principle and not a language to specify
control flow. The problem of Let’s Dance is that technical configurations cannot
be done. Let’s Dance operates on a purely conceptual level. BPMN and iBPMN
lack support for distinguishing different services of the same type and they
are also weak on the technical side. BPSS/UMM are early approaches where
fundamental concepts such as multi-lateral choreographies are not supported.

The comparison of these languages shows that BPEL, BPELlight and WS-CDL
already provide the broadest support for the requirements. However, they
are not satisfying with respect to our framework. Introducing a completely
new language to overcome the limitations is not desirable, as this would
hamper reuse of existing tools and techniques. Therefore, there are two possible
solutions:

(i) Enhance WS-CDL with service set capabilities, including a parallel
forEach-like control flow construct and loosen the coupling with WSDL.

(ii) Introduce choreography extensions for BPEL/BPELlight, providing a
topology, a loose link between behavioral definitions and technical con-
figurations, service sets as first-class citizens and the notion of service
selection.

Regarding the first solution, Enhancing WS-CDL would still leave the gap to
orchestration languages. We opted for the second solution, because of the broad
acceptance of BPEL as orchestration language, the huge set of supporting tools
and execution platforms, as well as the well-established processes to define
and standardize extensions to BPEL. To gain interchangeability of technical
configurations, BPELlight replaced BPEL’s communication activities. Since the
way of BPELlightis not the only way to make BPEL WSDL independent, we
introduce BPEL4Chor as new choreography language on top of BPEL.

22

Participant
Topology

Structural Aspects

Participant Behavior
Descriptions (PBDs)

Observable Behavior

Participant Grounding

Technical Configuration

Participant Declaration

List of Participants

Message Links

Connecting PBDs

Fig. 2. BPEL4Chor artifacts

4 BPEL4Chor

BPEL4Chor decouples the “heart” of choreographies, i.e. the communication
activities, their behavioral dependencies and their interconnection, from tech-
nical configuration, e.g. the definition of WSDL port types. Thus, a higher
degree of reusability of the choreography models is achieved.

Modeling a choreography using BPEL4Chor mainly follows the modeling
approach presented in [5].

(1) Specify participant types and the participants. In our example this would
be the sellers, bidder and the broker service.

(2) Specify the message links between the participants. This specifies the
business documents that are exchanged between the participants. E.g.
the bid that is sent from a bidder to the broker service and the payment
details sent from the seller to a bidder.

(3) Specify the behavioral dependencies and data flow between message
exchanges by defining each participant’s behavior. Here, the allowed
message orders are defined. E.g. bids are only received after the auction
has been set up by the seller, while the payment details and the stock
options grant can be sent in any order.

(4) (Optional) Ground each message link to concrete services. E.g. it is
specified what concrete serialization formats for the messages are used. It
is defined how the interaction will look “on the wire”.

BPEL4Chor is a collection of three different artifact types. Each artifact type
is represented as a rectangle in Fig. 2, while the dashed arrows between the
rectangles symbolize that there exist references from artifacts of one type to
artifacts of the other type.

23

Participant
Topology

Participant
Behavior

Descriptions

Participant
Grounding

BPEL4Chor Description

WSDL
Definitions

Automatic
Transformation Executable BPEL

Processes

Manual
Refinement

Abstract BPEL
Processes with
References to

WSDL Definitions

Fig. 3. Getting from a BPEL4Chor choreography to executable BPEL processes

(1) A participant topology defines the structural aspects of a choreography by
specifying participant types, participant references, and message links.

(2) Participant behavior descriptions define the control flow and data flow
dependencies between activities, in particular between communication
activities, at a given participant. By assigning a message link to a commu-
nication activity, participant behavior descriptions plug into the topology.

(3) A Participant grounding defines the actual technical configuration of
the choreography. Here, the choreography becomes web-service-specific
and the link to WSDL definitions and XSD types is established. We use
the term “grounding” similar to the Semantic Web terminology, where
“grounding” denotes that the semantically described service is bound to a
concrete technical configuration.

It is possible to get an executable process from each participant behavior
description as shown in Figure 3. First of all, all technical configurations of
each participant have to be specified in the participant grounding. This serves
as input for a transformation can be run. This transformation transforms each
participant behavior description into a BPEL process, where the technical
details given in the participant grounding are included. However, process-
internal activities, such as data manipulation or calling other services to fulfill
the requirement are missing. These have to be manually added afterwards. The
details of the transformation itself are described in Section 6.

The following sections are going to introduce the artifact types of BPEL4Chor.
Corresponding code snippets are given for the example given in Section 2.

4.1 Participant Topology

The participant topology describes the structural aspects of a choreography.
As most the important aspect, the participant topology enumerates different
participant types. BPEL4Chor supports the following three cases: (i) there
is only one participant of a certain type in one conversation (choreography
instance). As an example, an individual seller and a single broker service
involved in a specific auction can be imagined. (ii) Several participants of a
certain type appear in one conversation and the number of participants is

24

known at design-time. As an example imagine a scenario where two shippers
are involved in one conversation. (iii) An unbounded number of participants is
involved and the exact number might only be determined at runtime. Imagine
a large number of bidders involved in our sample scenario.

Participant types are not sufficient to support cases (ii) and (iii), as we need
to distinguish between different participants of the same type. E.g. we need
to distinguish between a bidder who has won the auction from a bidder who
has not. Therefore, the notions of participant reference and participant set are
introduced. A participant reference describes an instance of a participant type,
e.g. one particular bidder, while participant sets describe a set of participant
references, e.g. the set of all unsuccessful bidders.

Cardinality of participant types is implicitly given through the participant
reference and participant set declarations. (i) If there is only a participant
reference for a given participant type, we can conclude that there will only be
at most one participant of that type involved in a conversation. (ii) If there
are several participant references but no participant set for a given type, then
the number of participants in one conversation is limited by the number of
references. (iii) If there is a participant set declared for a given type, then the
number of participants is not defined at design-time.

Listing 2 shows the participants in the participant topology for the auctioning
scenario. Three participant types, namely seller, broker service and bidder,
are listed along with a participant reference for a seller and an broker service,
respectively. A participant set for the bidders is also given. The participant
reference currentBidder contained in the set will be used as iterator on the
set later on. successfulBidder is one particular participant from the set of
bidders. In general, the semantics of a reference p contained in a set s is that
if a sender p is not contained in s, then this new sender is added to the set.

Using different participant references does not guarantee that the referenced
participants are different at runtime. The same applies to sets, which may
overlap in terms of referenced participants.

In Listing 2, the declaration of the seller declares a selects attribute that
refers to the broker service. This indicates that the seller chooses which broker
service she actually wants to use. This in turn implies that there are potentially
many broker services available. The selection of participants might happen at
runtime or already at design-time. The topology in Listing 2 does not exclude
the case that every seller has exactly one broker service she always goes to.

The attribute forEach on the set of unsuccessful bidders denotes that the
forEach activity having the name notifyUnsuccesfulBidders at the auc-
tioning service should iterate over that set. The attribute forEach at the
nested participant currentBidder denotes that this participant reference

25

Listing 2 Participants in the participant topology

<topology name="topology"
targetNamespace="urn:auction"
xmlns:sns="urn:auction:seller" ...>
<participantTypes>
<participantType name="Seller"
participantBehaviorDescription="sns:seller" />

<participantType name="BrokerService" ... />
<participantType name="Bidder" ... />

</participantTypes>
<participants>
<participant name="seller" type="Seller"
selects="brokerService" />

<participant name="brokerService" type="BrokerService" />
<participantSet name="bidders" type="Bidder">
<participant name="bidder" selects="brokerService" />
<participant name="successfulBidder" />

</participantSet>
<participantSet name="unsuccessfulBidders" type="Bidder"
forEach="as:notifyUnsuccesfulBidders">
<participant name="currentBidder"
forEach="as:notifyUnsuccesfulBidders" />

</participantSet>
</participants>
...
</topology>

should store the current value of the iterator. A forEach may only iterate
on one set. Thus, we require that for each forEach there is at most one
participant set and at most one participant reference pointing to it.

Listing 3 shows the message links in the participant topology for the auctioning
scenario. Message links state which participant can potentially communicate
with which other participants. However, the topology does not include any
constraint about ordering sequences or the cardinality of message exchanges.
BPEL4Chor is based on a closed world assumption. In particular, message links
only connect participants listed in the topology. I.e. the sender and receiver
attributes must always be set.

Some of the message links in Listing 3 also contain the attribute
participantRefs. This attribute realizes link passing mobility in BPEL4Chor:
as part of the exchanged business documents, participant references are passed
from one participant to another. E.g. consider the message link completion-

NotificationLink. Here, the reference to the successful bidder is passed
from the auctioning service to the seller. This enables the seller to directly
communicate with this bidder later on.

26

Listing 3 Message links in the participant topology

<topology name="topology"
targetNamespace="urn:auction" ...>
...
<messageLinks>
<messageLink name="auctionRequestLink"
sender="seller" sendActivity="sendAuctionCreationRequest"
bindSenderTo="seller"
receiver="auctioningService"
receiveActivity="receiveAuctionCreationRequest"
messageName="auctionCreationRequest" />
...
<messageLink name="bidLink"
senders="bidders" sendActivity="sendBid"
bindSenderTo="bidder"
receiver="auctioningService" receiveActivity="receiveBid"
messageName="bid" />
<messageLink name="bidAckLink"
sender="auctioningService" sendActivity="sendBidAck"
receiver="bidder" receiveActivity="receiveBidAck" />
...
<messageLink name="completionNotificationLink"
sender="auctioningService"

sendActivity="sendCompletionNotification"
receiver="seller" receiveActivity="completionNotification"
messageName="notification"
participantRefs="successfulBidder" />
<messageLink name="unsuccessfulBidLink">
sender="auctioningService" sendActivity="sendUnsuccessfulBid"
receiver="currentBidder" receiveActivity="receiveUnsuccessfulBid"
messageName="notification" />
</messageLink>
...

</messageLinks>
</topology>

Reference passing must also happen whenever the attribute bindSenderTo

is set for a message link. In contrast to participantRefs, where a reference
to a third participant is passed, bindSenderTo implies that the sender of
the message must include a reference to herself in the message. As knowledge
about participants is local, the usage of bindSenderTo is required even
in those scenarios where only one participant of a type is involved. Take
auctionRequestLink. Here, the seller sends a reference pointing to herself,
enabling the auctioning service to reply later on.

Selection and reference passing lead to the binding of concrete participants
to participant references. In the case of reference passing, rebinding occurs if

27

a participant was already bound to a reference. The reference is simply over-
written. If a referenced participant should be bound to a different participant
reference, the attribute copyParticipantRefsTo is used.

Special semantics apply if binding occurs for a participant reference contained
in a participant set. Here, the reference must be added to the set upon binding,
provided that a reference to that participant is not yet contained in the set.

The listing also shows that either the attribute sender or senders is used in
a message link. sender is used if one participant reference applies, senders

is used if any participant out of a set can be the sender.

Topologies by themselves only describe the basic structural aspects of a choreog-
raphy. However, the typical usage for topologies is to glue together participant
behavior descriptions. Therefore, one already finds connections to constructs
from participant behavior descriptions in the topology. These attributes are
explained in the next section.

4.2 Participant Behavior Descriptions

Participant behavior descriptions (PBDs) cover the behavioral aspects of a
choreography. Control flow dependencies between communication activities
are defined per participant type. These dependencies determine the ordering
sequences of message exchanges the different participants have to adhere
to. Furthermore, data flow aspects are covered in the participant behavior
descriptions. It is important to specify what data can be expected by the
receiver of a message and how this data relates to data previously exchanged.

Abstract BPEL is used as basis for participant behavior descriptions. It already
provides most constructs that are needed. In contrast to executable BPEL, some
language constructs do not need to occur and some attributes do not need to
be set. BPEL profiles force or forbid the usage of certain attributes in abstract
BPEL process. Therefore, we will introduce the Abstract Process Profile for
Participant Behavior Descriptions stating the requirements for the definition
the behavior of one participant. This profile inherits all constraints of the
Abstract Process Profile for Observable Behavior from the BPEL specification.
This allows us to add e.g. opaque activities into a PBD, which is useful for
documentation purposes.

Communication activities. Message send and receive activities are at the
center of attention in choreographies. BPEL introduces invoke and reply

as send activities and receive and onMessage as receive activities. These
activities are reused in BPEL4Chor.

28

Listing 4 Constraints of the “Abstract Process Profile for Participant Behavior
Descriptions” on the invoke activity.

<invoke

partnerLink="NCName"

portType="QName"?

operation="NCName"

inputVariable="BPELVariableName"?

outputVariable="BPELVariableName"?

 standard-attributes

 wsu:id="NCName"

>

...

</invoke>

must not be used

must be used

The usage of partnerLink, portType and operation attributes at the
communication activities of BPEL link the BPEL process tightly to WSDL
operations. The communication activities are linked together using message
links in the topology as described in the last section. Thus, a linkage to
WSDL artifacts is obsolete. Therefore, we forbid the usage of the attributes
partnerLink, portType and operation at communication activities.

In the topology, a message link references two communication activities. To
enable proper referencing, we need an identifier for each communication activity
in a participant behavior description. Since onMessage branches do not offer
an attribute name, we introduce the attribute wsu:id having the type xsd:id

as new attribute for communication activities and onMessage branches. To
simplify reading, the wsu:id attribute defaults to the attribute name of the
BPEL activity. Listing 4 presents the modifications in the case of the invoke

activity. Typically, one message link references exactly one send and one receive
activity. However, there are scenarios, where one message link references several
send and/or receive activities. E.g. several send activities can have the same
target activity or several receive activities refer to the same message type.

BPEL directly adopts some of the WSDL interaction styles. BPEL distinguishes
between one-way interaction and request/response interactions. We argue that
the choice of the interaction style is a configuration issue and should normally
happen in the phase of the technical configuration. Nevertheless, we allow that
both interaction styles can be used in the participant behavior descriptions.
This allows higher similarity between participant behavior descriptions and
orchestrations. Especially in a bottom-up approach where existing BPEL files
are the starting point, we do not want to force the modeler having to split e.g. a
request/response activity into two activities in the BPEL code. In this context,
we force the attribute messageExchange to be present in order to relate
pairs of receive and reply activities. This constraint is necessary, because
corresponding pairs can no longer be determined by matching portType and
operation values.

29

Control flow. BPEL comes with a rich set of control flow constructs, which
are used unchanged in BPEL4Chor. This enables the reuse of existing BPEL
tools to model choreographies. As examples if, pick, flow and forEach

are available to model branching structures and concurrency.

Timing constraints play an important role in choreographies. Offers might only
be valid for a certain timespan. In our example, an auction begins at a certain
point in time and only lasts for a certain timespan. BPEL’s facilities to model
time constraints, namely wait and event handlers with onAlarm, are also
reused unchanged.

Support for participant sets. Scenarios where a number of participants of
the same type are involved in one conversation are recurrent in the choreography
world. BPEL supports parallel instances the number of which might only be
known at runtime through the forEach construct. Therefore, there is sufficient
support for participant sets from the control flow side. In contrast to this, data
sets are not natively supported in BPEL. Special XSD types have to be used
for this purpose.

As a realization for the iteration on participant sets, the attribute forEach

can be set for participant references and participant sets in the participant
topology. The semantics is that the corresponding set determines the number
of branches spawned and the participant reference is used as iterator.

Data flow. It should be specified in a choreography what contents can be
expected by the receiver of a message. As an example the quantity of ordered
products in an order message and the quantity in an order acknowledgment
message must not differ. Furthermore, data values can determine branching
behavior in choreographies. E.g. a seller might need to be ready to provide
further details when the goods offered have a certain value.

BPEL offers a rich set of constructs to model data access and data manipulation.
Variables are used as output of receive activities and input of send activities.
Data “flows” from one activity to another by using one variable as output
variable for the first activity and input variable of the other, provided that no
other activity overwrites the variable in between.

In the general case, it should be possible to leave variables untyped to offer a
greater flexibility to the business user. This is in line with the Abstract Process
Profile for Observable Behavior, which does not require the specification of
a type for each variable. However, typed variables are necessary to define
data-based decisions in detail. Otherwise, branching conditions can only be
formulated as plain text.

For documentation purposes it is sometimes useful to add hints about depen-
dencies between data values. E.g. it could be specified that the decision about

30

who is the successful bidder in an auction should be based on the height of
the bid. Assign activities with opaque from or to parts can be used in this
context.

Listing 5 Participant behavior description for the auctioning service

<process name="auctioningService"
targetNamespace="urn:auction:auctioningService"
abstractProcessProfile=
"urn:HPI_IAAS:choreography:profile:2006/12">

<sequence>
<receive name="receiveAuctionCreationRequest"
createInstance="yes" />
...
<scope>
<eventHandlers><onAlarm .../></eventHandlers>
<sequence>
<receive name="receiveBid" />
<invoke name="sendBidAck" />

</sequence>
</scope>
<flow>
<invoke name="sendCompletionNotification" />
<forEach name="notifyUnsuccesfulBidders">
<scope><invoke name="sendUnsuccessfulBid" /></scope>

</forEach>
<invoke name="sendSuccessfulBid" />

</flow>
</sequence>
</process>

Message correlation. BPEL comes with a built-in handling of message
correlation. Since BPEL4Chor choreographies depend on BPEL and should
not introduce any implementation dependencies, the correlation mechanism
of BPEL is used unchanged: correlation may be specified in the participant
behavior description. We allow the usage of the attribute correlationSet,
but use the QNames of the properties specified for a correlation set as names.
Thus, the names of properties change to NCNames and therefore have no
connection to property aliases. Hence, in contrast to BPEL, properties can be
left untyped and are not bound to WSDL. Actual typing will happen in the
participant grounding.

Listing 5 shows the participant behavior description (PBD) for the auctioning
service in the example given in Section 2. The abstract BPEL profile for
participant behavior descriptions is referenced.

31

4.3 Participant Grounding

While the participant topology and the participant behavior descriptions are
free of technical configuration details, the participant grounding introduces
the mapping to web-service-specific configurations. So far, port types and
operations are left out and XML schema types for messages are not mandatory.
In the participant grounding, these aspects are brought in. The participant
grounding is specific to the target platform. While we use BPEL as target
platform, it is possible to replace the participant grounding by a participant
grounding specific to other target platforms, such as BPEL4SWS [43], to enable
a semantic-based execution of each participant.

After a process is grounded, the participant behavior descriptions can be
transformed to abstract BPEL processes, where partner links, port types and
operations are defined (cf. Section 6). Since BPEL depends on WSDL 1.1 [12],
message links, participant references and properties have to be assigned to
WSDL artifacts in a participant grounding.

Message links are targeted at one or more receive activities. A message link
models the sending and consumption of one message and does not model
multicast. Therefore, one message link is grounded to one WSDL operation.
This allows for realizing one participant through different port types. The
attributes participantRefs and bindSenderTo enable link passing mobility
in BPEL4Chor choreographies. In the case of executable BPEL, end service
references are passed in messages. The mapping of participant references to
concrete service references is done by grounding a participant reference to a
WSDL property. A WSDL property states where a certain element is located
in different message types. Using that property, a BPEL process can extract
the concrete service reference out of an incoming message regardless of the
type of the incoming message. In that way, the service reference of a passed
participant reference can be located in different messages. For correlation, we
allowed untyped correlation sets. With the participant grounding, these sets
get typed.

Listing 6 presents the participant grounding for the example given in Section 2.
Each message link is grounded to a WSDL operation and each participant
reference is grounded to a WSDL property.

4.4 Consistency between BPEL4Chor Artifacts

This section will introduce a number of constraints. These constraints are used
to ensure consistency between BPEL4Chor artifacts.

32

Listing 6 Participant grounding

<grounding topology="auc:topology"
xmlns:top="urn:auction" ...>
<messageLinks>
<messageLink name="auctionRequestLink"
portType="auc:auction_pt"
operation="auctionRequest" />
<messageLink name="bidLink"
portType="auc:auction_pt"
operation="bid" />
<messageLink name="bidAckLink"
portType="bid:bidder_pt"
operation="bidAck" />
...

</messageLinks>
<participantRefs>
<participantRef name="seller"
WSDLproperty="msgs:sellerProp" />
<participantRef name="bidder"
WSDLproperty="msgs:bidderProp" />

</participantRefs>
</grounding>

Participant references and message links. If there are several senders in a
message link and the attribute bindSenderTo is set, all senders must be of the
same type as the participant reference defined in the attribute. If the attribute
copyParticipantRefsTo is set, the list must match the participantRefs

list in terms of length, participant types and cardinality.

A participant set having an attribute forEach must contain exactly one
participant with a matching attribute forEach for every forEach listed.

Message links and communication activities. For every invoke and
reply (receive and onMessage) activity there must be at least one message
link in which this activity is a send (receive) activity. In the other direction,
the send (receive) activities given in a message link must be invoke or reply

(receive, onMessage or invoke) activities.

If senders is specified in a message link l and the receiving activity is connected
to a reply activity through an attribute messageExchange, bindSenderTo

has to be specified in the link l.

Synchronism issues. If the output variable is specified for an invoke activity,
it must appear as receiveActivity in a message link. The synchronous call
must be matched on the receiving side by receive activities with corresponding
reply activities. On the other hand, each pair of receive / reply activities
must be matched by a corresponding invoke activity.

33

Completeness of participant grounding. All passed participant references,
used message properties and message links must be grounded. If variable types
are defined for a send or receive activity, the variable type must match the
type of the expected port type. Furthermore, references passed via a message
link must be grounded in a WSDL property. This applies to the two attributes
participantRefs and bindSenderTo.

Conflicting groundings of message links can occur especially in choreographies
with synchronous interactions. The corresponding message links must be
grounded in one WSDL request-response operation.

Further consistency issues. The consistency constraints mentioned above
can be detected easily in a BPEL4Chor choreography on a syntactical level.
However, there are certain anomalies that are not covered yet and which
require behavioral analysis. The most obvious anomaly is a deadlock, where a
participant waits for messages that will never be sent by other participants. Such
deadlocks are typically be detected in compatibility checking techniques [21].
An approach for checking the absence of deadlocks and proper termination was
presented by Lohmann et al. [37], where the participant behavior descriptions
are translated to Petri nets [57] and connected via communication places as it
can be derived from the topology. However, this approach abstracts from data
flow and data-based decisions are treated as non-deterministic choices.

Another challenge is the verification of proper reference passing. In scenarios
where dynamic binding is used, it must be ensured that the selection of
participants is properly propagated to the corresponding participants. We have
already presented a technique to check “instance isolation” in the context of
concurrent conversations [22]. It checks whether correlation information was
properly set. However, a mapping from BPEL4Chor to ν∗-nets, an extension
for Petri nets used in instance isolation analysis, is not available yet.

When multiple participants of the same type are involved, it may frequently
occur that some of the combinations of communication activities and partici-
pant references are not used in message links. For example, the receive activity
receiveUnsuccessfulBid is contained in the participant behavior descrip-
tion for the participant type Bidder. Concrete participants for this type
are bidder, successfulBidder and currentBidder. The message link
unsuccessfulBidLink is only one message link targeting
receiveUnsuccessfulBid. This message link specifies currentBidder as
receiver. Thus, the activity receiveUnsuccessfulBid of the participants
successfulBidder and currentBidder will never be used. In the example
process, this does not cause a problem, since this activity is only reached for
unsuccessful bidders. In order to decide reachability for particular participants,
the overall behavior has to be considered. However, these analyses are beyond
the scope of this article.

34

These constraints have to be ensured directly by a BPEL4Chor modeling
tool or by a dedicated tool to check BPEL4Chor choreographies. Currently,
BPEL2oWFN [37] implements an analysis of a subset of the presented con-
straints.

5 Assessment of BPEL4Chor

This section presents an assessment of BPEL4Chor using the service inter-
action patterns [7]. It illustrates how suitable BPEL4Chor is with regard to
complex interaction scenarios. The examples provided further illustrate the
capabilities of BPEL4Chor beyond what was already presented in the listings
of Section 4. Most importantly, the assessment serves as input to present which
of the requirements presented in Section 3 are partially or fully supported by
BPEL4Chor. The result is presented in Section 5.5.

5.1 Single-transmission bilateral interaction patterns

The two patterns Send and Receive are directly supported in BPEL4Chor
through the send activities <invoke> and <reply> and <receive> activities
when being interconnected using message links in the participant topology.
The requesting part of Send/receive can be realized in two ways: either by
using the synchronous <invoke> activity or using a combination of one-way
<invoke> and <receive>. The responding party can be realized using a
combination of <receive> and <reply> or <receive> and <invoke>. In
all these cases, <onMessage> is an alternative to use <receive>. BPEL4Chor
allows that a receiver of a message is bound at design-time or at runtime.
Runtime re-binding is allowed through the copyParticipantRefsTo attribute
in a <messageLink> definition. Listing 7 lists the topology and Listing 8
lists the PBD for the requestor. Since there is one single message link leaving
sendRequest, the <invoke> is a one-way invoke, otherwise there would have
been a message link targeting sendRequest.

5.2 Single-transmission multilateral interaction patterns

In the case of the Racing incoming messages pattern, a party expects to
receive one message among a set of messages. This pattern is directly supported
by the <pick> activity. It is both possible that messages have different types
and that messages can originate from different senders. If the participant
reference that is used for the respective receive activity is not bound when this

35

Listing 7 Participant topology for the Send/receive pattern

<participants>
<participant name="a" type="Requestor" />
<participant name="b" type="Responder" />

</participants>
<messageLinks>
<messageLink sender="a" sendActivity="sendRequest" receiver="b"

receiveActivity="receiveRequest" messageName="request" />
<messageLink sender="b" sendActivity="sendResponse" receiver="a"

receiveActivity="receiveResponse" messageName="response" />
</messageLinks>

Listing 8 Participant behavior description for participant type Requestor in
the Send/receive pattern

<sequence>
<invoke name="sendRequest" />
<receive name="receiveResponse" />

</sequence>

activity is reached, messages from arbitrary senders can be received. Listing 9
lists the topology and Listing 10 lists the PBD for the receiver.

Listing 9 Participant topology for the Racing incoming messages pattern

<participants>
<participant name="a" type="Receiver" />
<participantSet name="senders" type="Sender">
<participant name="b" />

</participantSet>
</participants>
<messageLinks>
<messageLink senders="senders" sendActivities="sendX"

bindSenderTo="b" receiver="a" receiveActivity="receiveX"
messageName="documentX" />

<messageLink senders="senders" sendActivities="sendY"
bindSenderTo="b" receiver="a" receiveActivity="receiveY"
messageName="documentY" />

</messageLinks>

Listing 10 Participant behavior description for participant type Receiver in
the Racing incoming messages pattern

<pick>
<onMessage wsu:id="receiveX" /> activity </onMessage>
<onMessage wsu:id="receiveY" /> activity </onMessage>

</pick>

In the case of the One-to-many send pattern a party sends messages to
several parties. Solution: in BPEL4Chor this pattern is directly supported
through the notion of participant sets in combination with the <forEach>

36

construct. The number of recipients does not need to be known at design-time.
The sender is responsible to select the recipients. This obligation is specified
using the selects attribute at the declaration of the sender s. Listing 11
lists the topology and Listing 12 lists the PBD for the sender.

Listing 11 Participant topology for the One-to-many send pattern

<participants>
<participant name="s" type="Sender" selects="receivers" />
<participantSet name="receivers" type="Receiver" forEach="s:fe1">
<participant name="r" forEach="s:fe1" />

</participantSet>
</participants>
<messageLinks>
<messageLink sender="s" sendActivity="sendDocument" receiver="r"

receiveActivity="receiveDocument" messageName="document" />
</messageLinks>

Listing 12 Participant behavior description for participant type Sender in the
One-to-many send pattern

<forEach name="fe1" parallel="yes"><scope>
<invoke name="sendDocument" />

</scope></forEach>

The One-from-many receive pattern describes that a party receives a num-
ber of logically related messages that arise from autonomous events occurring
at different parties. The arrival of messages needs to be timely so that they
can be correlated as a single logical request. Solution: this can be expressed
using a <while> construct in BPEL4Chor with a corresponding participant
topology. A participant set senders represents the set of all possible senders.
The second set mySenders contains all the participants whose messages are
actually received. Within the <while> structure we find a scope to which
the participant reference s is limited. This means that every time the scope
is entered, no participant is bound to s and a message from any sender can
be received. The containment relationship between s and mySenders has the
semantics that if a sender not contained in mySenders is bound to s, then
this new sender is added to the set. Listing 13 lists the topology and Listing 14
lists the PBD for the receiver.

The One-to-many send/receive pattern is similar to One-to-many send : a
party sends a request to several other parties. Responses are expected within a
given timeframe. The interaction may complete successfully or not, depending
on the set of responses gathered. Solution: the timeframe aspect is supported
in BPEL4Chor through scopes with an attached <onAlarm> event handler.
Successful vs. unsuccessful completion is directly supported through exception
mechanisms. Otherwise, the implementation in BPEL4Chor looks similar to
the one for One-to-many-send.

37

Listing 13 Participant topology for the One-from-many receive pattern

<participants>
<participant name="r" type="Receiver" />
<participantSet name="senders" type="Sender" />
<participantSet name="mySenders" type="Sender">
<participant name="s" scope="rcvScope" />

</participantSet>
</participants>
<messageLinks>
<messageLink senders="senders" sendActivity="sendDoc"

bindSenderTo="s" receiver="r" receiveActivity="receiveDoc"
messageName="document" />

</messageLinks>

Listing 14 Participant behavior description for participant type Receiver in
the One-from-many receive pattern

<while><condition />
<scope name="rcvScope"><receive name="receiveDoc" /></scope>

</while>

5.3 Multi-transmission interaction patterns

In the case of Multi-responses a party X sends a request to another party
Y. Subsequently, X receives any number of responses from Y until no further
responses are required. Solution: this pattern is directly supported through
<while> structures.

The Contingent requests pattern describes that a party X makes a request
to another party Y. If X does not receive a response within a certain timeframe,
X alternatively sends a request to another party Z, and so on. Responses from
previous requests might be still considered or discarded. Solution: the limited
timeframe can be specified through an <onAlarm> structure. Should responses
for previous requests also be considered we need to introduce two different
participant references for the responders. However, we cannot ensure that the
responder has actually received a request before. If responses from previous
requests should be discarded, we only need to employ one participant reference
for the responders. That way we ensure that the sender of the response is the
same participant than the recipient of the last request. Listing 15 lists the
topology and Listing 16 lists the PBD for the requestor.

In the case of Atomic multicast notification a party sends notifications
to several parties implying that a certain number of parties are required to
accept the notification within a certain timeframe. For example, two or more
parties have to accept the notification. In general, the constraint for successful
notification applies over a range between a minimum and a maximum number.

38

Listing 15 Participant topology for the Contingent requests pattern

<participants>
<participant name="a" type="Requestor" />
<participantSet name="responders" type="Responder"

forEach="rs:fe1" >
<participant name="currR" forEach="rs:fe1" />

</participantSet>
<participant name="r" type="Responder" />

</participants>
<messageLinks>
<messageLink sender="a" sendActivity="sendReq"

receiver="currR" receiveActivity="receiveReq"
messageName="request" />

<messageLink sender="r" sendActivity="sendResp" receiver="a"
receiveActivity="receiveResp" messageName="response" />

</messageLinks>

Listing 16 Participant behavior description for participant type Requestor in
the Contingent requests pattern

<forEach name="fe1"><scope>
<sequence>
<invoke name="sendRequest" />
<pick>
<onMessage wsu:id="receiveResp" /><empty /></onMessage>
<onAlarm><for>3m</for><empty /></onAlarm>

</pick>
</sequence>

</scope></forEach>

There is no direct support for this pattern in BPEL4Chor. As a workaround
we could use a similar implementation like the one used for One-to-many
send/receive.

5.4 Routing patterns

Request with referral : Party A sends a request to party B indicating that
any follow-up response should be sent to a number of other parties (P1, P2, ...,
Pn) depending on the evaluation of certain conditions. Solution: BPEL4Chor
directly supports link passing mobility through the participantRefs attribute
of the <messageLink> element. Since participant sets can also be used as
values for that attribute, the number of passed references does not need to
be known at design-time in BPEL4Chor. Listing 17 lists the topology and
Listing 18 lists the PBD for the party B.

Relayed request : Party A makes a request to party B which delegates

39

Listing 17 Participant topology for the Request with referral pattern

<participants>
<participant name="a" type="A" selects="b p"/>
<participant name="b" type="B" />
<participantSet name="p" type="P" forEach="b:fe1">
<participant name="pi" forEach="b:fe1" />

</participantSet>
</participants>
<messageLinks>
<messageLink sender="a" sendActivity="sendMsg1" receiver="b"

receiveActivity="receiveMsg1" messageName="msg1"
participantRefs="p" />

<messageLink sender="b" sendActivity="sendMsg2" receiver="pi"
receiveActivity="receiveMsg2" messageName="msg2" />

</messageLinks>

Listing 18 Participant behavior description for participant type B in the
Request with referral pattern

<sequence>
<receive name="receiveMsg1" />
<forEach name="fe1" parallel="yes"><scope>
<invoke name="sendMsg2" />

</scope></forEach>
</sequence>

the request to other parties (P1, ..., Pn). Parties P1, ..., Pn then continue
interactions with party A while party B observes a “view” of the interactions
including faults. Solution: by using a <flow> structure, the responses will be
sent to A and to B.

5.5 Summary

BPEL4Chor covers multi-lateral choreographies and introduces a topology.
Service selection and reference passing are also present in BPEL4Chor. There-
fore, BPEL4Chor fully supports Requirements R1, R2 and R4. It was shown
in Section 3 that WS-CDL does not support the notion of service sets. On
the contrary, BPEL4Chor introduces sets as first class citizen and therefore
supports Requirement R3.

Concrete message formats can be defined in the participant behavior descrip-
tions and in the participant grounding (Requirement R5). As participant
grounding files can be replaced without affecting the topology and the par-
ticipant behavior descriptions, Requirement R6 is also fulfilled. Regarding
Requirements R7, R8 and R9 BPEL4Chor directly inherits the capabilities

40

Table 2
Pattern support in BPEL4Chor and WS-CDL

Service Interaction Patterns BPEL4Chor BPEL / BPELlight WS-CDL

S1. Send + + +

S2. Receive + + +

S3. Send/receive + + +

S4. Racing incoming messages + + +

S5. One-to-many send + +/– +/–

S6. One-from-many receive + + +

S7. One-to-many send/receive + +/– +/–

S8. Multi-responses + + +

S9. Contingent requests + + +/–

S10. Atomic multicast notification – – –

S11. Request with referral + + +

S12. Relayed request + + +

of BPEL. The integration of BPEL4Chor and executable BPEL (R10) is
discussed in the following section.

Table 2 summarizes which service interaction patterns are supported in
BPEL4Chor. In analogy to the assessments of WS-CDL in [20] we assign
a “+” for direct support of a pattern, “+/–” for partial support and “–” for
lack of support.

When comparing BPEL4Chor with WS-CDL the following main differences
can be identified:

(1) Unknown numbers of participants are natively supported in BPEL4Chor
through the notion of participant sets (cf. S5 and S7 in Table 2). WS-CDL
does not directly support parallel conversations with an unknown number
of participants.

(2) While a WS-CDL choreography is tightly coupled to WSDL files, web-
service-specific details only appear in BPEL4Chor’s participant grounding.
Therefore, the same choreography can be reused with different port type
definitions by changing the participant grounding.

(3) As BPEL4Chor is based on BPEL, a seamless integration between chore-
ographies and orchestrations is possible. While WS-CDL comes with a
different set of control flow constructs, the same constructs are found
in BPEL and BPEL4Chor. All constructs introduced in topologies and
participant grounding can be mapped to BPEL as shown in Section 6.

41

BPEL4Chor compares to BPEL/BPELlight as follows:

(1) BPEL4Chor is a true choreography language in that it specifies the com-
munication behavior for all services involved in a choreography. The
introduction of a service topology provides a structural overview of chore-
ographies, which is not in place in the case of BPEL/BPELlight (R3).

(2) The native support for service sets leads to direct support of require-
ment R3 and patterns S5 and S7, which were not fully supported in
BPEL/BPELlight.

(3) Service selection is natively supported in BPEL4Chor, which was not the
case for BPEL/BPELlight.

6 From BPEL4Chor to Executable BPEL

While choreographies serve as interaction contract between business partners,
they are not meant to be executed by themselves. However, they can serve as
blueprint for actual business process implementation for the different partners.
As the usage of executable BPEL for process implementation is a typical case,
we discuss the transformation of BPEL4Chor to executable BPEL in this
section. An overview of the transformation has been given in Section 4. Recall
BPEL offers both, the definition of abstract BPEL processes and executable
BPEL processes. Executable BPEL are processes which can be deployed an
run at a BPEL engine. The intend usage of abstract processes is defined by a
so-called “profile”. Recall from Section 3.2 that the BPEL specification defines
a profile for process templates and a profile for observable behavior. The profile
for observable behavior ensures that the interactions between the participants
will not be changed during an executable completion of an abstract BPEL
process. “Executable completion” is defined in the BPEL specification [51] and
describes constraints on the manual actions taken to advance from an abstract
BPEL process to an executable BPEL process.

When advancing from BPEL4Chor to executable BPEL two typical scenarios
can be distinguished. (i) A BPEL4Chor choreography was set up and agreed
upon by a set of business partners. This choreography not only includes
the topology and the participant behavior descriptions but also a complete
participant grounding. A complete participant grounding includes that port
types and operations are defined for all message links. Imagine there is one
auctioning service dictating the participant grounding. Now each partner uses
his generated abstract BPEL process as starting point for internal refinement.
(ii) A BPEL4Chor choreography is set up. This time, the choreography is
used with different participant groundings. For example, there still is only
one auctioning service but some of the very important sellers require different
participant groundings. The internal process of the auctioning service stays

42

unchanged for different sellers. In this case, the auctioning service refines the
BPEL4Chor choreography by adding internal activities and variables. Then
an executable BPEL process is generated for each participant grounding and
directly fed into an execution engine.

In both scenarios there is a transformation step, where—combined with the
topology and participant grounding—a participant behavior description is
mapped to a BPEL process following the Abstract Process Profile for Observable
Behavior (observable BPEL for short). The transformation from a participant
behavior description to observable BPEL processes is an automatic step and
described in detail in [56]. While most aspects are copied unchanged from
the participant behavior description to the observable BPEL process, four
challenges are to be tackled:

• Generation of partner link types and partner links. Partner links
are excluded in BPEL4Chor, but required in the observable BPEL to
specify the partner to interact with. Therefore, partner link types and
partner links have to be generated.

• Realization of BPEL4Chor binding semantics. Participants are
bound if their reference is passed over a message link. The pendant for
participant references are service references in observable BPEL. Thus,
participant references have to be mapped to service references.

• Realization of participant sets. A participant set contains multiple
participant references. Since the BPEL specification is not aware of a set
of service references, we have to introduce them.

• Inclusion of participant grounding details. A participant behavior
description leaves out port types and operations. If it comes to the BPEL
processes following the “Abstract Process Profile for Observable Behavior”,
these technical details have to be put into communication constructs, such
as invoke or receive.

6.1 Generation of Partner Link Types and Partner Links

BPEL uses the notion of partner link types to connect two services. A partner
link is an instance of a partner link type and is declared in a BPEL process. A
partner link denotes which port type is used to send a message and which port
type is offered to receive a message. The semantics of partner links is that a
partner link holds service references at runtime and denotes the port type to be
used. The BPEL specification does not introduce any other runtime semantics
at the atomic service level. The concept of partner links is specified in the
BPEL specification and added as an extension to WSDL. At the participant
grounding, we use WSDL without BPEL specific extensions. Therefore, we
generate partner links out of the port types given in the participant grounding.

43

There may be more than one partner link for a participant if the participant is
realized by multiple port types: for example, the participant grounding of the
auctioning scenario (Listing 6) shows two different port types for two message
links targeting at the bidder.

In general, for each participant reference and message link, a partner link type
and a partner link are generated. A partner link is reused, if it is visible at
the current activity and if the message link belongs to the same participant
reference and the message link is grounded to the same port type. The grounded
port type is set to myRole if the message link is inbound and the port type is
put as partnerRole if the message link is outbound.

6.2 Realization of BPEL4Chor Binding Semantics

In the context of BPEL, partner links and correlation sets are the artifacts used
to realize binding semantics: if an endpoint reference is copied to a partner link,
the participant belonging to the port type is bound. As soon as a reference is
passed over a message link, the reference is copied to the partner link. In the
case of correlation sets, the correlation set has to be defined and the content
of the message has to match it. As a next step, the message is passed to the
receiving activity. The port to which the message is sent to may be bound
at deployment time or at runtime. At runtime, the port may be bound at
process instantiation or at the first usage of the port. If correlation sets are
used to realize BPEL4Chor binding semantics, the user has to ensure that the
correlation sets are properly used. The last moment when this may happen is
when an executable completion of the abstract BPEL process is made.

In the presented auctioning scenario, references are passed over the message
link, since arbitrary sellers can register at the auctioning service and the bidders
are unknown at modeling time. The seller has to send his service reference to
the auctioning service, which in turn uses this service reference to communicate
with the seller. The message link auctionRequest specifies bindSenderTo.
Therefore, the auctioning service can use the grounded WSDL property to
fetch the service reference out of the received message. That service reference
is then copied to the partner link used to send messages to the seller. If there
are multiple partner links used for the seller, the service reference has to
be a virtual service reference. A virtual service reference can be used by an
Enterprise Service Bus (ESB) to determine the endpoint of the service [11].
An endpoint is the concrete point, where a service can be reached.

The participant reference of the successful bidder is passed to the seller in the
message link completionNotificationLink using the attribute
participantRefs. Similar to a reference being passed using bindSenderTo,

44

each passed reference is copied to the respective partner link. If a participant set
is passed, the set is copied to the variable representing the set (cf. Section 6.3).

6.3 Realization of Participant Sets

A participant set is a set of participant references. The BPEL specification does
not specify the XML type of a set of service references. Therefore, we define
sref:service-references to be a sequence of sref:service-reference

elements.

The forEach of BPEL may only iterate over numbers. Therefore, forEach

activities iterating over participant sets are mapped to forEach activities
iterating over a number and a nested assign activity copying the current
service reference to a partner link.

6.4 Inclusion of Participant Grounding Details

In the participant behavior description, communication activities have no
partner link and no operation assigned. With the participant grounding and
the generation of partner links (cf. Section 6.1), partner links and operations are
generated for each communication activity. Thus, the attributes partnerLink

and operation get written at the mapping of each activity.

7 Conclusion

This article has positioned service choreographies as an important artifact to
realize successful interaction between business partners. Service choreographies
describe the electronic messages exchanged and the dependencies between
these exchanges. We presented a list of requirements for service choreography
languages. These requirements were used to highlight the shortcomings of using
BPEL, WS-CDL and languages used in the context of choreography modeling.

As main contribution, this paper introduced a choreography layer on top
of abstract BPEL, namely BPEL4Chor. The different choreography-specific
extensions were described and a detailed assessment using the service inter-
action patterns was provided. The paper presented the modeling approach
and presented how to get from a choreography model to executable BPEL
processes, where all details necessary for execution are contained. By using
abstract BPEL during the choreography modeling, the modeler is free to leave
out process internal details and focus on the interaction behavior.

45

Regarding the participant groundings, we demanded the variable types of a
sendActivity and the receiveActivity to match. A next research step is
to investigate how message mediation can help in this context. The participant
grounding links activities directly to WSDL port types and operations. We
suppose this is not the only way to do grounding and will investigate other
possibilities such as semantical grounding.

As mentioned earlier, BPEL4Chor assumes a closed world. It is not possible
to model message exchanges with an environment that is not further defined.
Explicitly introducing a participant “environment” without participant behav-
ior description can serve as a workaround at the moment. Furthermore, there
is currently no possibility to compose different BPEL4Chor choreographies
into bigger choreographies. This is left open for future work. Proposals such
as BPEL for subprocesses [30] are a promising basis for solving this issue.
However, BPEL for subprocesses has not been released yet.

An infrastructure to monitor a BPEL4Chor choreography does not yet exist.
Currently, violations of a choreography can only be detected by additional
logic at the participants or by (manually) analyzing audit log information. We
foresee an infrastructure, where the execution of choreographies is actively
monitored and violations are recognized as soon as they happen. This enables
a proper reaction to violations, such as not delivering wrong messages and
suspending senders of wrong messages.

Acknowledgments. This work was partially supported by the German Federal
Ministry of Education and Research (Tools4BPEL, project number 01ISE08B).

References

[1] W. M. P. v. d. Aalst, N. Lohmann, P. Massuthe, C. Stahl, K. Wolf, From Public
Views to Private Views – Correctness-by-Design for Services, in: Proceedings
4th International Workshop on Web Services and Formal Methods (WS-FM),
vol. 4937 of Lecture Notes in Computer Science, Springer Verlag, 2007.

[2] W. M. P. v. d. Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, A. P. Barros,
Workflow Patterns, Distributed and Parallel Databases 14 (1) (2003) 5–51.

[3] A. Arkin, et al., Web Service Choreography Interface (WSCI) 1.0, World Wide
Web Consortium, http://www.w3.org/TR/wsci/ (Aug 2002).

[4] A. Banerji, et al., Web Services Conversation Language (WSCL) 1.0, W3C Note,
http://www.w3.org/TR/wscl10/ (March 2002).

[5] A. Barros, G. Decker, M. Dumas, Multi-staged and Multi-viewpoint Service
Choreography Modelling, in: Proceedings Workshop on Software Engineering

46

http://www.w3.org/TR/wsci/
http://www.w3.org/TR/wscl10/

Methods for Service Oriented Architecture (SEMSOA), No. 244 in CEUR
Workshop Proceedings, 2007.

[6] A. Barros, M. Dumas, P. Oaks, A Critical Overview of WS-CDL, BPTrends
3 (3).

[7] A. Barros, M. Dumas, A. ter Hofstede, Service Interaction Patterns, in:
Proceedings 3rd International Conference on Business Process Management
(BPM), vol. 3649 of Lecture Notes in Computer Science, Springer Verlag, 2005.

[8] T. Basten, W. M. P. van der Aalst, Inheritance of Behavior, Journal of Logic
and Algebraic Programming 47 (2) (2001) 47–145.

[9] S. Burbeck, The Tao of e-business services: The evolution of Web applications
into service-oriented components with Web services, http://www.ibm.com/
developerworks/webservices/library/ws-tao/ (October 2000).

[10] C. Canal, E. Pimentel, J. M. Troya, Compatibility and Inheritance in Software
Architectures, Science of Computer Programming 41 (2) (2001) 105–138.

[11] D. Chappell, Enterprise Service Bus, O’Reilly Media, Inc., 2004.

[12] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, Web
Services Description Language (WSDL) 1.1, http://www.w3.org/TR/2001/
NOTE-wsdl-20010315 (Mar 2001).

[13] J. Clark, C. Casanave, K. Kanaskie, B. Harvey, N. Smith, J. Yunker, K. Riemer,
ebXML Business Process Specification Schema Version 1.01, UN/CEFACT and
OASIS, http://www.ebxml.org/specs/ebBPSS.pdf (May 2001).

[14] F. Curbera, F. Leymann, T. Storey, D. Ferguson, S. Weerawarana, Web Services
Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL,
WS-Reliable Messaging and More, Prentice Hall PTR, 2005.

[15] G. Decker, A. Barros, Interaction Modeling using BPMN, in: Proceedings 1st

International Workshop on Collaborative Business Processes (CBP), vol. 4928
of Lecture Notes in Computer Science, Springer Verlag, 2007.

[16] G. Decker, O. Kopp, A. Barros, An Introduction to Service Choreographies,
Information Technology 50 (2) (2008) 122–127.

[17] G. Decker, O. Kopp, F. Leymann, M. Weske, BPEL4Chor: Extending BPEL for
Modeling Choreographies, in: Proceedings IEEE 2007 International Conference
on Web Services (ICWS), IEEE Computer Society, 2007.

[18] G. Decker, O. Kopp, F. Leymann, M. Weske, Modeling Service Choreographies
using BPMN and BPEL4Chor, in: Proceedings of the 20th International
Conference on Advanced Information Systems Engineering (CAiSE), vol. 5074
of Lecture Notes in Computer Science, Springer Verlag, 2008.

[19] G. Decker, O. Kopp, F. Puhlmann, Service Referrals in BPEL-based
Choreographies, in: 2nd European Young Researchers Workshop on Service
Oriented Computing (YR-SOC), University of Leicester, 2007.

47

http://www.ibm.com/developerworks/webservices/library/ws-tao/
http://www.ibm.com/developerworks/webservices/library/ws-tao/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.ebxml.org/specs/ebBPSS.pdf

[20] G. Decker, H. Overdick, J. M. Zaha, On the Suitability of WS-CDL
for Choreography Modeling, in: Proceedings of Methoden, Konzepte und
Technologien für die Entwicklung von dienstebasierten Informationssystemen
(EMISA), vol. P-95 of Lecture Notes in Informatics, 2006.

[21] G. Decker, M. Weske, Behavioral Consistency for B2B Process Integration, in:
Proceedings 19th International Conference on Advanced Information Systems
Engineering (CAiSE), vol. 4495 of Lecture Notes in Computer Science, Springer
Verlag, 2007.

[22] G. Decker, M. Weske, Instance Isolation Analysis for Service-Oriented
Architectures, in: Proceedings of the IEEE 2008 International Conference on
Services Computing (SCC), IEEE Computer Society, 2008.

[23] R. Dijkman, M. Dumas, Service-oriented Design: A Multi-viewpoint Approach,
International Journal of Cooperative Information Systems 13 (4) (2004) 337–368.

[24] D. F. Ferguson, M. Stockton, Enterprise Business Process Management –
Architecture, Technology and Standards, in: Proceedings 4th International
Conference on Business Process Management (BPM), vol. 4102 of Lecture
Notes in Computer Science, Springer Verlag, 2006.

[25] B. Hofreiter, C. Huemer, P. Liegl, R. Schuster, M. Zapletal, UN/CEFACT’S
Modeling Methodology (UMM): A UML Profile for B2B e-Commerce, in:
Advances in Conceptual Modeling – Theory and Practice, ER 2006 Workshops
BP-UML, CoMoGIS, COSS, ECDM, OIS, QoIS, SemWAT, vol. 4231 of Lecture
Notes in Computer Science, Springer Verlag, 2006.

[26] B. Hofreiter, C. Huemer, P. Liegl, R. Schuster, M. Zapletal, Deriving executable
BPEL from UMM Business Transactions, in: IEEE International Conference on
Services Computing (SCC), IEEE Computer Society, 2007.

[27] Z. Kang, H. Wang, P. C. Hung, WS-CDL+: An Extended WS-CDL Execution
Engine for Web Service Collaboration, in: Proceedings IEEE 2007 International
Conference on Web Services (ICWS), IEEE Computer Society, 2007.

[28] N. Kavantzas, D. Burdett, G. Ritzinger, Y. Lafon, Web Services Choreography
Description Language Version 1.0, W3C Candidate Recommendation, W3C,
http://www.w3.org/TR/ws-cdl-10 (Nov. 2005).

[29] R. Khalaf, From RosettaNet PIPs to BPEL processes: A three level approach
for business protocols, Data & Knowledge Engineering 61 (2006) 23–38.

[30] M. Kloppmann, D. Koenig, F. Leymann, G. Pfau, A. Rickayzen, C. von Riegen,
P. Schmidt, I. Trickovic, WS-BPEL Extension for Sub-processes – BPEL-SPE,
IBM, SAP (2005).

[31] D. König, N. Lohmann, S. Moser, C. Stahl, K. Wolf, Extending the Compatibility
Notion for Abstract WS-BPEL Processes, in: Proceedings 17th International
Conference on World Wide Web (WWW), ACM, 2008.

48

http://www.w3.org/TR/ws-cdl-10

[32] O. Kopp, T. van Lessen, J. Nitsche, The Need for a Choreography-aware Service
Bus, in: Proceedings 3rd European Young Researchers Workshop on Service
Oriented Computing (YR-SOC), 2008.

[33] D. Krafzig, K. Banke, D. Slama, Enterprise SOA: Service-Oriented Architecture
Best Practices (The Coad Series), Prentice Hall PTR, 2004.

[34] F. Leymann, Web Services Flow Language (WSFL 1.0), IBM Software Group
(May 2001).

[35] F. Leymann, The (Service) Bus: Services Penetrate Everyday Life., in:
Proceedings of the 3rd International Conference on Service Oriented Computing
(ICSOC), vol. 3826 of Lecture Notes in Computer Science, Springer Verlag, 2005.

[36] F. Leymann, Workflow-Based Coordination and Cooperation in a Service World,
in: Proceedings 14th International Conference on Cooperative Information
Systems (CoopIS), vol. 4275 of Lecture Notes in Computer Science, Springer
Verlag, 2006.

[37] N. Lohmann, O. Kopp, F. Leymann, W. Reisig, Analyzing BPEL4Chor:
Verification and Participant Synthesis, in: Proceedings 4th International
Workshop on Web Services and Formal Methods (WS-FM), vol. 4937 of Lecture
Notes in Computer Science, Springer Verlag, 2007.

[38] A. Martens, Analyzing Web Service based Business Processes, in: M. Cerioli
(ed.), Proceedings of Intl. Conference on Fundamental Approaches to Software
Engineering (FASE), Part of the European Joint Conferences on Theory and
Practice of Software (ETAPS), vol. 3442 of Lecture Notes in Computer Science,
Springer Verlag, 2005.

[39] A. Martens, Consistency between Executable and Abstract Processes, in:
Proceedings IEEE International Conference on e-Technology, e-Commerce, and
e-Services (EEE), IEEE Computer Society, 2005.

[40] P. Massuthe, W. Reisig, K. Schmidt, An Operating Guideline Approach to the
SOA, Annals of Mathematics, Computing & Teleinformatics 1 (3) (2005) 35–43.

[41] J. Mendling, M. Hafner, From Inter-Organizational Workflows to Process
Execution: Generating BPEL from WS-CDL, in: Proceedings of OTM 2005
Workshops, vol. 3762 of Lecture Notes in Computer Science, Springer Verlag,
2005.

[42] N. Mulyar, L. Aldred, W. M. P. van der Aalst, The Conceptualization of
a Configurable Multi-party Multi-message Request-Reply Conversation, in:
Proceedings of the Distributed Objects and Applications (DOA) International
Conference, vol. 4803 of Lecture Notes in Computer Science, Springer Verlag,
2007.

[43] J. Nitzsche, T. van Lessen, D. Karastoyanova, F. Leymann, BPEL for Semantic
Web Services (BPEL4SWS), in: On the Move to Meaningful Internet Systems
2007: OTM 2007 Workshops, vol. 4805 of Lecture Notes in Computer Science,
Springer Verlag, 2007.

49

[44] J. Nitzsche, T. van Lessen, D. Karastoyanova, F. Leymann, BPELlight, in:
Proceedings 5th International Conference on Business Process Management
(BPM), vol. 4714 of Lecture Notes in Computer Science, Springer Verlag, 2007.

[45] J. Nitzsche, T. van Lessen, F. Leymann, Extending bpellight for expressing
multi-partner message exchange patterns, in: 12th International IEEE Enterprise
Distributed Object Computing Conference (EDOC), IEEE Computer Society,
2008.

[46] J. Nitzsche, T. van Lessen, F. Leymann, WSDL 2.0 Message Exchange Patterns:
Limitations and Opportunities, in: 3rd International Conference on Internet and
Web Applications and Services (ICIW), IEEE Computer Society, 2008.

[47] Object Management Group, OMG Unified Modeling Language Specification,
v1.4 (2001).

[48] Object Management Group, Business Process Modeling Notation, V1.1 – OMG
Available Specification (Jan. 2008).

[49] Organization for the Advancement of Structured Information Standards (OASIS),
SCA Assembly Model Specification V1.00 (March 2007).

[50] Organization for the Advancement of Structured Information Standards (OASIS),
SCA Client and Implementation Model Specification for WS-BPEL (March
2007).

[51] Organization for the Advancement of Structured Information Standards (OASIS),
Web Services Business Process Execution Language Version 2.0 – OASIS
Standard (Mar. 2007).

[52] C. Ouyang, M. Dumas, S. Breutel, A. H. ter Hofstede, Translating Standard
Process Models to BPEL, in: Proceedings 18th International Conference on
Advanced Information Systems Engineering (CAiSE), vol. 4001 of Lecture Notes
in Computer Science, Springer Verlag, 2006.

[53] M. Pesic, M. H. Schonenberg, N. Sidorova, W. M. P. van der Aalst, Constraint-
Based Workflow Models: Change Made Easy, in: Proceedings 15th International
Conference on Coopartive Information Systems (CoopIS), vol. 4803 of Lecture
Notes in Computer Science, Springer Verlag, 2007.

[54] K. Pfitzner, G. Decker, O. Kopp, F. Leymann, Web Service Choreography
Configurations for BPMN, in: Third International Workshop on Engineering
Service-Oriented Applications: Analysis, Design and Compostion (WESOA),
2007.

[55] F. Puhlmann, M. Weske, Interaction Soundness for Service Orchestrations, in:
A. Dan, W. Lamersdorf (eds.), Proceedings of the 4th International Conference on
Service Oriented Computing (ICSOC), vol. 4294 of Lecture Notes in Computer
Science, Springer Verlag, 2006.

[56] P. Reimann, O. Kopp, G. Decker, F. Leymann, Generating WS-BPEL 2.0
Processes from a Grounded BPEL4Chor Choreography, Tech. Rep. 2008/07,

50

University of Stuttgart, Faculty of Computer Science, Electrical Engineering,
and Information Technology, Germany (2008).

[57] W. Reisig, Petri nets, Springer Verlag, 1985.

[58] M. Weidlich, G. Decker, A. Grokopf, M. Weske, BPEL to BPMN: The Myth of
a Straight-Forward Mapping, in: Proceedings 16th International Conference on
Cooperative Information Systems (CoopIS), Lecture Notes in Computer Science,
Springer Verlag, 2008.

[59] J. M. Zaha, A. Barros, M. Dumas, A. ter Hofstede, Let’s Dance: A Language
for Service Behavior Modeling, in: Proceedings 14th International Conference
on Cooperative Information Systems (CoopIS), vol. 4275 of Lecture Notes in
Computer Science, Springer Verlag, 2006.

[60] J. M. Zaha, M. Dumas, A. ter Hofstede, A. Barros, G. Decker, Service
Interaction Modeling: Bridging Global and Local Views, in: Proceedings 10th

IEEE International EDOC Conference (EDOC), IEEE Computer Society, 2006.

All links were last followed on October 10, 2008.

51

	Introduction
	Service Choreographies
	Motivation of the Approach
	Related Work
	Assessment of BPEL
	Assessment of BPEL1light
	Assessment of WSFL
	Assessment of WS-CDL
	Assessment of Let's Dance
	Assessment of BPMN
	Assessment of iBPMN
	Assessment of BPSS/UMM
	Assessment of SCA
	Other Choreography Approaches
	Summary of the Assessments

	BPEL4Chor
	Participant Topology
	Participant Behavior Descriptions
	Participant Grounding
	Consistency between BPEL4Chor Artifacts

	Assessment of BPEL4Chor
	Single-transmission bilateral interaction patterns
	Single-transmission multilateral interaction patterns
	Multi-transmission interaction patterns
	Routing patterns
	Summary

	From BPEL4Chor to Executable BPEL
	Generation of Partner Link Types and Partner Links
	Realization of BPEL4Chor Binding Semantics
	Realization of Participant Sets
	Inclusion of Participant Grounding Details

	Conclusion
	References
	cover.pdf
	Foliennummer 1

