
T
h
is
 a
rtic

le
 is
 p
ro
te
c
te
d
 b
y
 G
e
rm

a
n
 c
o
p
y
rig

h
t la

w
. Y

o
u
 m

a
y
 c
o
p
y
 a
n
d
 d
is
trib

u
te
 th

is
 a
rtic

le
 fo

r y
o
u
r p

e
rs
o
n
a
l u

s
e
 o
n
ly
. O

th
e
r u

s
e
 is
 o
n
ly
 a
llo

w
e
d
 w
ith

 w
ritte

n
 p
e
rm

is
s
io
n
 b
y
 th

e
 c
o
p
y
rig

h
t h

o
ld
e
r.

it 4/2011

Special Issue

Composite as a Service:
Cloud Application Structures,
Provisioning, and Management
Composite as a Service: Strukturen, Provisionierung und Management
von Cloud Anwendungen

Christoph Fehling, University of Stuttgart,
Ralph Retter, T-Systems International GmbH, Leinfelden-Echterdingen

Summary Cloud computing and corresponding “as
a service” models have transformed the way in which IT re-
sources can be consumed. By taking advantage of the properties
of the cloud – elasticity, pay-per-use and standardization –
customers and providers alike can benefit from economies of
scale, faster provisioning times and reduced costs. However, to
fully exploit the potentials of the cloud, it is necessary, that
applications, to be deployed on the cloud, support the inherent
cloud properties. In this article we investigate how applica-
tions can be designed to comply with cloud infrastructures.
We present a framework that allows modeling the variability
within such applications regarding their structure, functional,
and non-functional properties, as well as their deployment.
Using these models the framework guides the user during the
customization of an application, provisions it on available clouds,
and enables common management functionality for cloud ap-
plications, such as elasticity, suspend, and resume. ���
Zusammenfassung Cloud Computing und die dazugehöri-

gen Geschäftsmodelle haben die Art und Weise, in der IT
Ressourcen genutzt werden, dramatisch verändert. Aufgrund
der Cloud spezifischen Eigenschaften, wie Elastizität, flexiblen
Preismodellen und Standardisierung, können Anbieter und
Kunden gleichermaßen von Skaleneffekten, kürzeren Bereitstel-
lungszeiten und Kostenreduktion profitieren. Um allerdings
diese positiven Eigenschaften von Clouds ausnutzen zu können,
ist es notwendig, dass diese auch innerhalb der Anwen-
dung berücksichtigt werden. In diesem Artikel stellen wir ein
Framework vor, mit dem die Variabilität solcher Anwendungen
bezüglich ihrer Struktur, funktionalen und nicht-funktionalen
Eigenschaften, sowie ihres Deployments modelliert werden
kann. Auf Basis der hierzu erstellten Modelle begleitet das
Framework den Nutzer während der Anpassung der Anwen-
dung an seine Bedürfnisse und provisioniert sie auf verfügbaren
Clouds. Weiterhin nutzt es die Modelle, um kundenspezifische
Managementfunktionalität, wie Elastizität, Suspend und Re-
sume, zu realisieren.

Keywords C.0 [Computer Systems Organization: General]; C.2.4 [Computer Systems Organization: Computer-Communication
Networks: Distributed Systems]; D.2.2 [Software: Software Engineering: Design Tools and Techniques]; D.2.3 [Software: Software
Engineering: Coding Tools and Techniques]; D.2.7 [Software: Software Engineering: Distribution, Maintenance, and Enhancement]
��� Schlagwörter Cloud Computing, Strukturen, funktionale Eigenschaften, nicht-funktionale Eigenschaften,
Verwaltungsarchitektur

1 Introduction
With the advent of cloud computing the vision of
accessing computing as a utility gathered widespread
acceptance. The fundamental properties of cloud-based

infrastructures and platforms include elasticity – the abil-
ity to dynamically scale based on customer demand,
pay-per-use – the fact that customers pay only for re-
sources they consume, and standardization – the advent

188 it – Information Technology 53 (2011) 4 / DOI 10.1524/itit.2011.0642 © Oldenbourg Wissenschaftsverlag

T
h
is
 a
rtic

le
 is
 p
ro
te
c
te
d
 b
y
 G
e
rm

a
n
 c
o
p
y
rig

h
t la

w
. Y

o
u
 m

a
y
 c
o
p
y
 a
n
d
 d
is
trib

u
te
 th

is
 a
rtic

le
 fo

r y
o
u
r p

e
rs
o
n
a
l u

s
e
 o
n
ly
. O

th
e
r u

s
e
 is
 o
n
ly
 a
llo

w
e
d
 w
ith

 w
ritte

n
 p
e
rm

is
s
io
n
 b
y
 th

e
 c
o
p
y
rig

h
t h

o
ld
e
r.

Composite as a Service: Cloud Application Structures, Provisioning, ... ���

of standardized infrastructure, platform, software arti-
facts, and management interfaces that enable providers to
exploit economies of scale. Depending on the user group
that has access to a certain cloud one refers to them as
being private – organization internal, public – available to
everyone, or hybrid – a combination of private and pub-
lic cloud resources. Due to these different realizations,
clouds differ greatly in non-functional properties such as
price, performance, and privacy.

The services provided by elastic cloud infrastructures
are generally categorized as infrastructure, platform, and
software as a service depending on the portion of the
application stack that is controlled by the cloud provider.
Infrastructure as a Service (IaaS) offerings, such as Ama-
zon EC2, Rightscale or GoGrid, as well as tooling to
build such infrastructures, like Eucalyptus, Zimory, and
IBM Tivoli Service Automation Manager, form the ba-
sis of many cloud-based applications today. The same
holds true for Platform as a Service (PaaS) offerings,
such as Microsoft Azure, Google AppEngine or Saleforce’s
Force.com platform. Such infrastructure and platform
offerings are paramount and corresponding optimiza-
tion and deployment techniques are widely discussed.
There is less discussion on the influences that these elas-
tic infrastructures and platforms have on the structures,
the provisioning, the management, and the execution of
applications running on top of such offerings. In par-
ticular, there is little discussion on how applications have
to be designed so that they can benefit from the spe-
cial properties of clouds and the corresponding service
models. For example, elasticity of applications depending
on infrastructure as a service is mainly realized on the
infrastructure level rather than on the application level.

Given the availability of IaaS, PaaS and SaaS today,
applications composed of components built on multiple
of these models start to emerge. If such applications are
again offered to customers in an as a service model, it
becomes mandatory that the application is customizable
regarding its functional and non-functional properties
to reach a large number of consumers. Due to the
different non-functional properties of clouds, this cus-
tomization requires a customer specific deployment of
the application. For different customers different clouds
and different levels of sharing components among tenants
are acceptable. Therefore, a customer specific composi-
tion of application components and service models is
required. Also, possible enhancements of the application
structure might be required that ensure elasticity or han-
dle workload management, for example.

In this paper we discuss applications built of com-
ponents that use different infrastructures and platforms
and show how to compose them into a composite appli-
cation that is again offered as a service (CaaS – Composite
as a Service). The service level of this new service may
be IaaS, PaaS, or SaaS depending on the portion of the
application stack that has been composed. We motivate
why such applications are needed and their benefits and

drawbacks. Further it is shown how such applications
can be modeled and annotated with variability to be cus-
tomizable regarding their functional and non-functional
properties. We present our corresponding models for ap-
plication topologies and variability that we developed for
Cafe (composite application framework), a framework to
model, configure and automatically provision composite
applications. To cope with cloud-specific properties such
as elasticity, we introduce extensions to the Cafe frame-
work in this paper that allow to semi-automatically derive
additional management workflows. These management
workflows handle cloud-specific properties of CaaS ap-
plications such as the provisioning, suspending/resuming,
reconfiguration, growing, shrinking or de-provisioning of
individual application components or whole applications.

2 Related Work
Infrastructure as a service is offered by companies such
as Amazon (EC2, S3), GoGrid and Rightscale. Several
research projects have dealt with the effective manage-
ment [11; 12] and optimization and deployment [5] of
IaaS resources.

In the PaaS field, the major players include Google
with its AppEngine, Salesforce with its Force.com plat-
form, Microsoft with its Azure platform and Amazon
with some of its Web Services (SQS, RDS). Research has
been done on how to build platforms for the deployment
of multi-tenant enabled applications [2; 14] which is also
the focus for the research in the SaaS field.

Players in the SaaS field include Salesforce with its
CRM product, Google with its Google Apps, IBM with
Lotus live, Microsoft with Office Live, and Deutsche
Telekom with its DeveloperGarden. Composite appli-
cations have been researched extensively in the SOA
domain [6; 13]. These applications mainly consist of ser-
vices that are recursively aggregated into new composite
services, i. e., through orchestration languages such as
WS-BPEL. However, these approaches do not take the
specifics of the “as a service” models into account as they
effectively only aggregate services on the software layer.
With the advent of IaaS and PaaS, composite applica-
tions can be aggregated not only out of services (in the
SaaS model) but also out of infrastructure and platform
services. Such composite applications can then again be
offered as a service (CaaS) [6; 10]. Application and de-
ployment models, such as the one presented in [3; 5],
can be used to model such applications but most of
the time do not take multi-tenancy into account. In the
Cafe project [7; 10] we introduced models that allow to
model composite applications that make use of different
IaaS, PaaS and SaaS services. We also showed, similar
to [3], how required initial provisioning actions can be
derived from the models. However, these approaches do
not describe how to derive management actions from the
application model.

In autonomic computing significant research has been
performed to enable self-* properties of distributed sys-

189

T
h
is
 a
rtic

le
 is
 p
ro
te
c
te
d
 b
y
 G
e
rm

a
n
 c
o
p
y
rig

h
t la

w
. Y

o
u
 m

a
y
 c
o
p
y
 a
n
d
 d
is
trib

u
te
 th

is
 a
rtic

le
 fo

r y
o
u
r p

e
rs
o
n
a
l u

s
e
 o
n
ly
. O

th
e
r u

s
e
 is
 o
n
ly
 a
llo

w
e
d
 w
ith

 w
ritte

n
 p
e
rm

is
s
io
n
 b
y
 th

e
 c
o
p
y
rig

h
t h

o
ld
e
r.

Special Issue

tems [4]. Entities in such systems undergo a MAPE-loop
(monitor, analyze, plan, execute) to adjust their behav-
ior and their direct surrounding to optimize the overall
system regarding its scalability, availability, performance
etc. Optimization of the overall system therefore emerges
from the distributed optimization decisions of the entities
it is composed of. These approaches assume a homoge-
neous runtime environment, but composite applications
often have to integrate resources from versatile comput-
ing environments. For example, an application could be
provisioned mainly on a private cloud but during peak
loads also integrates resources of a public cloud. Under
such conditions enabling of self-* properties based on
local knowledge of application components is extremely
difficult [1]. The approach discussed in this paper there-
fore considers a centralized management approach that
also supports the distribution of management function-
ality among distributed components when their local
knowledge of the system is sufficient and enacts central
control otherwise.

3 Application and Variability Metamodels
for CaaS

In this section we briefly introduce the application and
variability metamodels of the Cafe project [7; 10]. The
application metamodel allows to model the application
topology for a composite application, i. e., out of which
components the application consists and which compon-
ent has to be deployed on which other component. The
variability metamodel allows to define the variability of
the application. We then show how these models can
be extended to support cloud-specific management func-
tionality, such as growing or shrinking (elasticity).

3.1 Application Modeling
In [10] we describe how the structure and deployment
topology of applications can be modeled using the Cafe
application model. First of all the application developer
has to model the components of the application. This in-
cludes application components such as UIs, Workflows,
Services, Databases, Message Queues as well as their im-
plementations in form of code files or other artifacts.
Middleware and hardware components such as servers,
database management systems, application servers, work-
flow engines or messaging systems have to be modeled
additionally. Components can have special implemen-
tations of implementation type provider-supplied which
indicates, that the provider has to provision this compon-
ent and that the code for the component is not supplied
within the application. Components with an implementa-
tion type of provider supplied have to specify a component
type. The component type tells the provider what kind of
component he has to supply. The multi-tenancy pattern
indicates whether a component can be shared with other
customers or not. Deployment relations, i. e., which com-
ponents can be deployed on which other component, also
have to be modeled in the application model. This allows

Figure 1 Architecture of the example application.

modeling, for example, that a UI component has to be de-
ployed on an application server. Components C and the
deployment relations D ⊆ C ×C in an application model
form a directed, acyclic deployment graph DG= (C, D).

Figure 1 shows a fictional example CaaS application. It
is offered to customers in a self-service portal where they
can subscribe and unsubscribe from this application that
is then provisioned or de-provisioned on demand. The
application consists of a UI component that is imple-
mented as a Java Web Application and must be deployed
on a Servlet container that supports such applications such
as the Google AppEngine or a Tomcat servlet container.
The UI component forwards requests to a workflow
component that must be deployed on a corresponding
workflow engine and orchestrates two Web services. The
first service, realized by the computation component is
also realized as a Java Web application and must be de-
ployed on a corresponding AppServer component, such
as a JBOSS application server running in an IaaS of-
fering such as Amazon EC2. As the computation service
is performing computing intensive operations and thus
has to scale elastically with the number of requests, it is
separated from the workflow by a queue component, real-
izing a message queue. This component must be deployed
on a messaging middleware such as Amazon’s SQS. The
second service orchestrated by the workflow component
is an SMS Web Service that notifies a user of the com-
pletion of a workflow instance. It is offered in the SaaS
model, for example by DeveloperGarden. The UI, work-
flow, queue and computation components contain their
respective implementation in the application model. The
other components are of implementation type provider
supplied which means that the provider has to supply
a corresponding implementation or delegate this to third
party (cloud) providers.

3.2 Variability Modeling
Another challenge in defining CaaS applications is to de-
fine their variability. To capture the variability offered in
such applications it is important to understand the differ-
ent variability requirements that arise from the inherently

190

T
h
is
 a
rtic

le
 is
 p
ro
te
c
te
d
 b
y
 G
e
rm

a
n
 c
o
p
y
rig

h
t la

w
. Y

o
u
 m

a
y
 c
o
p
y
 a
n
d
 d
is
trib

u
te
 th

is
 a
rtic

le
 fo

r y
o
u
r p

e
rs
o
n
a
l u

s
e
 o
n
ly
. O

th
e
r u

s
e
 is
 o
n
ly
 a
llo

w
e
d
 w
ith

 w
ritte

n
 p
e
rm

is
s
io
n
 b
y
 th

e
 c
o
p
y
rig

h
t h

o
ld
e
r.

Composite as a Service: Cloud Application Structures, Provisioning, ... ���

distributed nature and heterogeneity of such applications.
We tackle four classes of variability: functional variabil-
ity, non-functional variability, deployment variability and
structural variability.
• Functional variability is variability that impacts the

program logic or presentation of a program, for ex-
ample the addition of steps to the workflow component
in our example, or the modification of the UI com-
ponent.

• Non-functional variability is the variability that affects
the service level of an application such as availability,
performance etc.

• Deployment variability is variability that must be
bound during the provisioning and management of
the application, such as the binding of endpoint ref-
erences. In our example application, the computation
component as well as the workflow component must
be configured with the address of the queue compon-
ent. In this case the deployment variability affects the
order in which components must be provisioned, as
first the queue component must be provisioned so that
its address is known so that it can be used to configure
the two other components.

• Structural variability is variability that affects the
application model of a component. For example, a cus-
tomer could replace the SMS component with another
communication component that is running in his pri-
vate cloud.

The different classes of variability can affect each other.
For example, a functional variability can add additional
steps to the workflow component which mandates an
additional service component to be deployed which is
structural variability as it would add the component
to the application model. Additionally, it triggers the
binding of deployment variability as the endpoint ref-
erence of the new component must be configured in
the workflow component. We therefore advocate the use
of an orthogonal variability metamodel that can capture
all four classes, across different components and dif-
ferent providers. We introduced such a metamodel in
the Cafe project in [7; 9; 10]. According to this meta-
model a variability model for a CaaS application consists
of a set of variability points VP. Each variability point
is associated with a component from the corresponding
application model. For each variability point the phase
it must be bound in is annotated. Allowed phases are:
initial customization of the application by a customer,
pre-provisioning of the particular component by the man-
agement infrastructure, post-provisioning of the particular
component by the management infrastructure and depro-
visioning of the particular component by the management
infrastructure. Variability points can point into the im-
plementation artifacts of a component or can be used by
a provider to determine how he has to provision a cer-
tain component. Each variability point contains a set of
alternatives that represent choices a customer can make.
Free alternatives allow customers to enter arbitrary values.

Dependencies Dp ⊆ VP ×VP allow to describe dependen-
cies between variability points, i. e., which variability point
must be bound before which other variability point. Vari-
ability points and their dependencies form a directed,
acyclic variability graph VG= (VP, Dp). Enabling con-
ditions allow to refine these dependencies by activating
certain alternatives only when a certain condition is met.
Thus, one can specify conditions such as “if alternative
A1 has been selected at variability point A, you can only
select alternative B2 at variability point B”.

3.3 Extensions to the Cafe Application Model
In this section we describe novel extensions to the Cafe
application model we briefly described above and more
extensively described in [7; 10]. These extensions are
necessary to cope with the dynamic nature of CaaS ap-
plications in the cloud, namely the necessity to add or
remove components dynamically during runtime, based
on certain triggers. Triggers can be user-initiated, i. e.,
a user wants to suspend/resume an application, or wants
to scale-up or down an application. The user-initiated
initial provisioning of an application can be seen as an-
other type of user-initiated trigger. Triggers can also be
time-initiated, i. e., a component or a whole application is
suspended during the night and resumed in the morning.
Additionally triggers can be system-initiated, i. e., a cer-
tain event, such as a degradation in performance, or the
reaching of a message queue’s threshold size fires the trig-
ger. We allow to model such triggers in the application
model. For each trigger we allow to model a complex
condition that evaluates if one or more notifications have
been received that initiate the trigger. Such notifications
can be sent by users through the management portal
or can be sent by components. For example, the queue
component can be annotated with notifications that state
that a lower or upper bound of messages is reached in
the queue and that the corresponding queueOverload or
queueEmpty trigger should be fired.

For each component in the application model we can
define actions that describe what should happen if a cer-
tain trigger fires. For example, we can specify that an
additional computation component has to be deployed
on an AppServer component that has to be provisioned
once the queueOverload trigger fires. We will describe the
concrete operations that can be executed by a component
in the next section.

4 Management of CaaS Applications
In this section we introduce a management architecture
for CaaS applications and show how the application and
variability models introduced in Sect. 3 can be exploited
by corresponding tooling to support the different phases
of the lifecycle of a CaaS application.

4.1 Management Infrastructure
A centralized management infrastructure at a provider
depicted in Fig. 2 offers a self-service portal to customers,

191

T
h
is
 a
rtic

le
 is
 p
ro
te
c
te
d
 b
y
 G
e
rm

a
n
 c
o
p
y
rig

h
t la

w
. Y

o
u
 m

a
y
 c
o
p
y
 a
n
d
 d
is
trib

u
te
 th

is
 a
rtic

le
 fo

r y
o
u
r p

e
rs
o
n
a
l u

s
e
 o
n
ly
. O

th
e
r u

s
e
 is
 o
n
ly
 a
llo

w
e
d
 w
ith

 w
ritte

n
 p
e
rm

is
s
io
n
 b
y
 th

e
 c
o
p
y
rig

h
t h

o
ld
e
r.

Special Issue

Figure 2 Architecture of the management infrastructure.

from which they can manage their applications. In par-
ticular, they can configure and provision new applications
from the portal. Providers can offer different CaaS appli-
cations in the portal that are modeled according to the
models described in Sect. 3. The management infrastruc-
ture contains management flows that execute management
requests sent to them by the portal or the rules engine.
The rules engine is essentially a stream processor that
sends management requests to the management flows if
a certain condition fires. These conditions are taken from
the triggers in the application model. The management
request then contains information on which trigger fired.
Similar to that management requests from the portal con-
tain information which user-initiated trigger fired.

Two types of management flows can be distinguished.
Application-vendor specific management flows and the
default management flow. Application-vendor specific
management flows are supplied by the application vendor
and can contain complex management actions. The de-
fault management flow is supplied by the portal and can
execute management actions that require only the know-
ledge that is contained in the application and variability
models of an application. We describe default manage-
ment flows and the management order graph generator on
which they depend in detail in Sect. 4.2.

Management flows can make use of customization flows
to collect customization values that are needed to con-
figure components. Customization flows are specific for
each application and are generated from the variability
model of an application. We describe how customization
flows are generated in more detail in [8].

Management flows also make use of component man-
agement interfaces for the components that are affected
by a management request. The provider has to offer a
component management interface for each component type
he can provision. This component management interface

must offer standardized operations to reserve, provision,
suspend, resume, and deprovision components as well as
to get configurations and configure a component. Com-
ponents that allow that other components are deployed
on them must additionally offer a deploy and undeploy
operation. Components that are multi-tenant aware must
offer addTenant and removeTenant operations. The com-
ponent management interface abstracts from the concrete
management tooling used to manage a component which
can be monitoring tools, provisioning engines or the
API of a cloud provider such as Amazon’s EC2 API.
For more information on the concrete component man-
agement interfaces see [7; 8]. We implemented wrappers
implementing this interface for a variety of management
interfaces such as a Amazon EC2, a cloud managed by
Zimory, Eucalyptus and Sun N1 Service Provisioning Sys-
tem.

4.2 Default Management Flow
In our previous research for the Cafe project we found
out that a variety of applications can be provisioned
and deprovisioned with the knowledge included in the
application model and the variability model of the ap-
plication [7; 10]. Thus we were able to use a default
provisioning flow to provision such applications. Here
we show how the knowledge included in the applica-
tion model and the variability model can be used to cope
with a variety of additional cloud-related management re-
quests and thus can be handled by a default management
flow generalizing the concept of the default provisioning
flow.

On a high level, the default management flow works
as follows: (i) invoke the customization flow to get the
current customization of the application, (ii) invoke the
management order graph generator to get the compo-
nents that are affected and the order in which they must
be treated and then (iii) perform the management actions
for each component.

As each management request contains information
about the trigger that initiated it, the management flow
first needs to know which components are affected by the
trigger. Therefore it forwards the trigger to the manage-
ment order graph generator (MOGG). The MOGG then
inspects for each component in the application model
if it specifies an action for that trigger. If yes it adds
the component and its action to the affected component
list. There exist four implicit triggers initialProvisioning,
deProvisioning, suspend and resume. In these cases all
components are added to the affected component list, ei-
ther with the operation contained in the corresponding
action (if specified) or with the operation that corres-
ponds to the management request. For example, for an
initialProvisioning request, all components that do not
have an action that is triggered by that trigger are added
with an operation of provision. In the second step, the
MOGG determines the order in which components need
to be treated.

192

T
h
is
 a
rtic

le
 is
 p
ro
te
c
te
d
 b
y
 G
e
rm

a
n
 c
o
p
y
rig

h
t la

w
. Y

o
u
 m

a
y
 c
o
p
y
 a
n
d
 d
is
trib

u
te
 th

is
 a
rtic

le
 fo

r y
o
u
r p

e
rs
o
n
a
l u

s
e
 o
n
ly
. O

th
e
r u

s
e
 is
 o
n
ly
 a
llo

w
e
d
 w
ith

 w
ritte

n
 p
e
rm

is
s
io
n
 b
y
 th

e
 c
o
p
y
rig

h
t h

o
ld
e
r.

Composite as a Service: Cloud Application Structures, Provisioning, ... ���

The order in which components need to be treated is
determined by the application model and the variabil-
ity model. The general rule is that a component that
depends on other components must be provisioned or
deployed after the components it depends on, for ex-
ample, if it must be deployed on another component as
specified in the application model. The other case of de-
pendencies is if a component is dependent on another one
because of the variability model. It then has a variability
point that must be bound before the component must be
provisioned but after the component it depends on has
already been provisioned. In case components must be
deprovisioned or suspended, first those must be handled
that depend on other components and then those can be
treated when all components that depend on them have
already been deprovisioned.

In case some components must be provisioned for
a management request and some must be deprovisioned,
first all components are provisioned in the right order,
and then the other ones are deprovisioned.

In the following we describe some concrete manage-
ment requests for our example application, and how they
are handled by the default management flow and the
MOGG:

Initial Provisioning. During initial provisioning the cus-
tomization flow has never been invoked before, thus it
asks the customer for all necessary decisions. Then the
MOGG returns a management order graph that con-
tains all components. Each component that needs to
be deployed on another component (all those with an
implementation contained in the application model) is
annotated with the operation “deploy”, those that need
to be provisioned (those with an implementation type
of provider supplied) are annotated with the operation
“provision”. If the application would contain compo-
nents shared with other tenants and these were already
available, those would be only marked with “configure”
indicating that they must be configured, rather than
provisioned or deployed. The corresponding implemen-
tations of the operations then have to take care of the
deployment and provisioning of the respective compo-
nents. In case of the queue component that contains
notifications these have to be used to configure the cor-
responding management framework to send out the
notifications to the management infrastructure when the
queue reaches the lower or upper thresholds.

Suspend. The MOGG returns a list of all components in
the order they must be suspended (reverse order of initial
provisioning) with an annotated action of “suspend”. All
those components shared with other tenants are excluded.

Elasticity. A notification is received by the rules en-
gine that the queue component has reached the upper
threshold. The corresponding rule fires and sends the
queueOverload trigger to the management flow. The man-
agement flow then forwards this trigger to the MOGG

to receive a list of affected components and required
actions, namely the computation component and its un-
derlying AppServer component. It then has to provision
the AppServer component first and then configure the
computation component with the right queue address and
deploy it on the AppServer component. The reverse ac-
tions are performed when the queueEmpty trigger is sent.

Once the order in which components have to be treated is
returned by the MOGG, the management flow interprets
the returned management order graph and executes the
necessary actions in the right order. In case components
must be configured, the management flow invokes the
customization flow to ask for the values necessary to
customize the component. These customization values
are then attached to the invocation of the component
management interface to supply the underlying manage-
ment tools with the necessary configuration data. These
management tools then perform the corresponding oper-
ations, for example, provision a new component. When
the operation is finished, the management flow is no-
tified. Configuration values, such as, for example, the
endpoint reference of a newly provisioned component,
are returned to the management flow which forwards
them to the customization flow. This is necessary as other
variability points from other components might depend
on these values and these components can then be con-
figured. Once all components in the management order
graph have been handled and thus all necessary manage-
ment operations have been invoked in the right order,
the management request that triggered the management
flow has been fulfilled.

In our prototype the management flow is implemented
as a BPEL process that runs on an Apache Ode BPEL en-
gine and makes use of a Java Web Service that implements
the provisioning order graph generator. Customization
flows are implemented as BPEL processes that are gen-
erated from the variability model of an application. The
self-service portal is implemented as a Java Web applica-
tion.

5 Summary
We have seen how application components that use the
different service models of clouds as a runtime can be
composed to form new applications that again can be
offered as a service. These applications have been de-
signed with customizability in mind, thus their variability
has been modeled using the application and variability
models of the Cafe framework. Using these models the
framework deducted a customization flow that guides the
customer of the application through the configuration of
this variability using a self-service portal to reflect his
individual requirements. Further, an extension to the ap-
plication model was introduced to model triggers that
perform certain actions in case of certain conditions in
the environment or their initiation by the user or at
a certain time. Since these triggers were also targeted by

193

T
h
is
 a
rtic

le
 is
 p
ro
te
c
te
d
 b
y
 G
e
rm

a
n
 c
o
p
y
rig

h
t la

w
. Y

o
u
 m

a
y
 c
o
p
y
 a
n
d
 d
is
trib

u
te
 th

is
 a
rtic

le
 fo

r y
o
u
r p

e
rs
o
n
a
l u

s
e
 o
n
ly
. O

th
e
r u

s
e
 is
 o
n
ly
 a
llo

w
e
d
 w
ith

 w
ritte

n
 p
e
rm

is
s
io
n
 b
y
 th

e
 c
o
p
y
rig

h
t h

o
ld
e
r.

Special Issue

application customization, individualized management
behavior could be realized by the framework to sup-
port the automatic provisioning and deprovisioning of
the application as well common management functional-
ity for cloud applications such as elasticity, suspend, and
resume.

References

[1] K. Begnum, N. Lartey, and L. Xing. Cloud-Oriented Virtual
Machine Management with MLN. In: Cloud Computing,
pages 266–277, 2009.

[2] F. Chong and G. Carraro. Architecture strategies for catching the
long tail. MSDN Library, Microsoft Corporation, 2006.

[3] K. El Maghraoui, A. Meghranjani, T. Eilam, M. Kalantar, and
A. V. Konstantinou. Model driven provisioning: Bridging the gap
between declarative object models and procedural provisioning
tools. In: Proc. of the ACM/IFIP/USENIX Int’l Conf. on Middleware,
pages 404–423, 2006.

[4] J. O. Kephart and D. M. Chess. The vision of autonomic comput-
ing. In: Computer, 36, pages 41–50, 2003.

[5] A. V. Konstantinou, T. Eilam, M. Kalantar, A. A. Totok, W. Arnold,
and E. Snible. An architecture for virtual solution composition
and deployment in infrastructure clouds. In: Proc. of the 3rd Int’l
Workshop on Virtualization Technologies in Distributed Computing
(VTDC), pages 9–18, 2009.

[6] F. Leymann. Cloud Computing: The Next Revolution in IT. In:
Proc. of the 52th Photogrammetric Week, pages 1–10. Online, 2009.

[7] R. Mietzner. A method and implementation to define and provision
variable composite applications, and its usage in cloud computing.
Dissertation, University of Stuttgart, August 2010.

[8] R. Mietzner and F. Leymann. Generation of BPEL Customization
Processes for SaaS Applications from Variability Descriptors. In:
Proc. of the 2008 IEEE Int’l Conf. on Services Computing (SCC),
pages 359–366, 2008.

[9] R. Mietzner and F. Leymann. Towards Provisioning the Cloud:
On the Usage of Multi-Granularity Flows and Services to Realize
a Unified Provisioning Infrastructure for SaaS Applications. In:
Proc. of the IEEE Congress on Services, pages 3–10, 2008.

[10] R. Mietzner and F. Leymann. A Self-Service Portal for Service-
Based Applications. In: Proc. of the IEEE Int’l Conf. on Service-
Oriented Computing and Applications (SOCA), pages 1–8, 2010.

[11] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff, and D. Zagorodnov. The eucalyptus open-source
cloud-computing system. In: Proc of the 9th IEEE/ACM Int’l Symp.
on Cluster Computing and the Grid, volume 0, pages 124–131, 2009.

[12] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin,
I. M. Llorente, R. Montero, Y. Wolfsthal, E. Elmroth, J. Calceres,
M. Ben-Yehuda, W. Emmerich, and F, Galan. The RESERVOIR
Model and Architecture for Open Federated Cloud Computing.
In: IBM Journal of Research and Development, 53(4):535–545,
2009.

[13] F. Rosenberg, P. Leitner, A. Michlmayr, P. Celikovic, and S. Dust-
dar. Towards Composition as a Service – A Quality of Service
Driven Approach. In: Proc. of the 25th Int’l Conf. on Data
Engineering (ICDE), pages 1733–1740, 2009.

[14] W. Sun, X. Zhang, C. J. Guo, P. Sun, and H. Su. Software as
a service: Configuration and customization perspectives. In: Proc.
of the IEEE Congress on Services, pages 18–25, 2008.

Received: November 23, 2010

Dipl.-Inf. Christoph Fehling graduated from the
University of Stuttgart in 2009 with a Diploma in
Computer Science. He currently researches cloud
application architectures and the runtime man-
agement of cloud applications at the Institute of
Architecture of Applications Systems (IAAS) at
the University of Stuttgart.

Address: University of Stuttgart, Institute of Ar-
chitecture of Application Systems, Universitäts
straße 38, 70569 Stuttgart, Germany, Tel.: +49 711
685-88486, Fax: +49 711 685-88472,
e-mail: christoph.fehling@iaas.uni-stuttgart.de

Dr. Ralph Retter geb. Mietzner is an architect at
T-Systems working on cloud applications. Before
joining T-Systems Ralph was a researcher at the
Institute of Architecture of Application Systems
(IAAS) at the University of Stuttgart. His research
was centered around cloud applications, their
structures and the automatic configuration and
provisioning of such applications. Ralph holds
a Dr. rer. nat. from University of Stuttgart.

Address: T-Systems International GmbH, Fasa-
nenweg 5, 70771 Leinfelden-Echterdingen, Ger-
many, Tel.: +49-711-972 46756,
e-mail: ralph.mietzner@t-systems.com

194

mailto:fehling@iaas.uni-stuttgart.de
mailto:mietzner@t-systems.com

	1 Introduction
	2 Related Work
	3 Application and Variability Metamodels for CaaS
	3.1 Application Modeling
	3.2 Variability Modeling
	3.3 Extensions to the Cafe Application Model

	4 Management of CaaS Applications
	4.1 Management Infrastructure
	4.2 Default Management Flow

	5 Summary
	References

