
Migrating Enterprise Applications to the Cloud:
Methodology and Evaluation

Steve Strauch, Vasilios Andrikopoulos, Dimka Karastoyanova, and Frank Leymann
Institute of Architecture of Application Systems,

University of Stuttgart, Germany
{firstname.lastname}@iaas.uni-stuttgart.de

@ARTICLE{,
author = {Strauch, Steve and Andrikopoulos, Vasilios and Karastoynova, Dimka

and Leymann, Frank and Nachev, Nikolay and Staebler, Albrecht},
title = {Migrating Enterprise Applications to the Cloud: Methodology and

Evaluation},
journal = {International Journal of Big Data Intelligence},
publisher = {Perpetual Innovation Media Pvt. Ltd},
pages = {127--140},
volume = {1},
number = {3},
url = {www.inderscience.com/ijbdi},
year = {2014}
}

:

Institute of Architecture of Application Systems

© 2014 Inderscience Enterprises Ltd.
The original publication is available at
International Journal of Big Data Intelligence

Nikolay Nachev and Albrecht Stäbler
NovaTec Holding GmbH,

Leinfelden-Echterdingen, Germany
{firstname.lastname}@novatec-gmbh.de

http://www.inderscience.com/ijbdi

Int. J. Big Data Intelligence, Vol. 1, No. 3, 2014 127

Copyright © 2014 Inderscience Enterprises Ltd.

Migrating enterprise applications to the cloud:
methodology and evaluation

Steve Strauch*, Vasilios Andrikopoulos,
Dimka Karastoyanova and Frank Leymann
Institute of Architecture of Application Systems,
University of Stuttgart,
Universitaetsstrasse 38,
70569 Stuttgart, Germany
Email: steve.strauch@iaas.uni-stuttgart.de
Email: vasilios.andrikopoulos@iaas.uni-stuttgart.de
Email: dimka.karastoyanova@iaas.uni-stuttgart.de
Email: frank.leymann@iaas.uni-stuttgart.de
*Corresponding author

Nikolay Nachev and Albrecht Stäbler
NovaTec Holding GmbH,
Dieselstrasse 18/1,
70771 Leinfelden-Echterdingen, Germany
Email: nikolay.nachev@novatec-gmbh.de
Email: albrecht.staebler@novatec-gmbh.de

Abstract: Migrating existing on-premise applications to the cloud is a complex and
multi-dimensional task and may require adapting the applications themselves significantly. For
example, when considering the migration of the database layer of an application, which provides
data persistence and manipulation capabilities, it is necessary to address aspects like differences
in the granularity of interactions and data confidentiality, and to enable the interaction of the
application with remote data sources. In this work, we present a methodology for application
migration to the cloud that takes these aspects into account. In addition, we also introduce a tool
for decision support, application refactoring and data migration that assists application
developers in realising this methodology. We evaluate the proposed methodology and enabling
tool using a case study in collaboration with an IT enterprise.

Keywords: data migration; application migration; decision support; database layer; application
refactoring; cloud computing.

Reference to this paper should be made as follows: Strauch, S., Andrikopoulos, V.,
Karastoyanova, D., Leymann, F., Nachev, N. and Stäbler, A. (2014) ‘Migrating enterprise
applications to the cloud: methodology and evaluation’, Int. J. Big Data Intelligence, Vol. 1,
No. 3, pp.127–140.

Biographical notes: Steve Strauch works as a Research Associate and PhD student at the
Institute of Architecture of Application Systems (IAAS) at the University of Stuttgart since 2008.
His research interests are data migration, data hosting, as well as data security and privacy in the
area of cloud computing, with an emphasis on their architectural aspects. He has contributed
to the European projects COMPAS, 4CaaSt, ALLOW Ensembles, and the German Government
funded BMBF project ECHO.

Vasilios Andrikopoulos is a Senior Researcher at IAAS, University of Stuttgart. His research is
in the areas of services science, cloud computing and infrastructures, and software engineering
with an emphasis on evolution and adaptation. He received his PhD in 2010 from Tilburg
University, the Netherlands, where he was also a member of the European Research Institute in
Service Science (ERISS). He has experience in research and teaching database systems and
management, software modelling and programming, business process management and
integration, service engineering and cloud computing. He has participated in a number of EU
projects, including NoE S-Cube and 4CaaSt.

Dimka Karastoyanova is a Junior Professor at the Institute of Architecture of Application
Systems (IAAS) and in the Cluster of Excellence ‘Simulation Technology’ at the University of
Stuttgart. She has received her Doctoral in Computer Science from TU Darmstadt, Germany. Her
research interests and teaching activities include service-oriented computing and architecture,
service middleware, business process management, flexible service compositions and adaptive
systems, semantics and security aspects of service-based applications.

128 S. Strauch et al.

Frank Leymann is a Full Professor of Computer Science and Director of the Institute
of Architecture of Application Systems (IAAS) at the University of Stuttgart, Germany.
His research interests include service-oriented architectures and associated middleware,
workflow- and business process management, cloud computing and associated systems
management aspects, and patterns. The projects he is working on are funded by the European
Union, the German Government, or directly by industry partners. He is the co-author of about
300 peer reviewed papers, more than 40 patents, and several industry standards (e.g., BPEL,
BPMN, TOSCA). He is an invited expert to consult the European Commission in the area of
cloud computing. Before accepting the professor position at University of Stuttgart, he worked
for two decades as an IBM Distinguished Engineer where he was a member of a small team that
was in charge of the architecture of IBM’s complete middleware stack.

Nikolay Nachev works as a Consultant at NovaTec GmbH since October 2013. His interests are
in the area of server administration, cloud computing and object-oriented programming.
He has contributed to the projects CIMS (code.google.com/p/stuproa-cims) and moby
(http://moby.iao.fraunhofer.de).

Albrecht Stäbler is the Chairman of the Board of the NovaTec GmbH, and is holding a university
degree as Diplom-Ingenieur and is teaching software engineering, architectures and operating
system software, middleware and workflow management at several universities in Germany and
abroad. In strategic customer projects, he provides his experiences and his know-how in the field
of large-scale software architecture and enterprise architecture as well as doing project audits and
crisis management. As CEO, he is responsible for the corporate strategy. In the field of cloud
engineering, he is the advisor for the cloud-provisioning product automaIT
(http://www.automait.de/1/home/) and therefore is doing research and applied research in the
fields cloud native architectures, TOSCA and others.

This paper is a revised and expanded version of a paper entitled ‘Decision support for the
migration of the application database layer to the cloud’ presented at the 5th IEEE International
Conference on Cloud Computing Technology and Science (CloudCom’2013), Bristol, UK,
2–5 December 2013.

1 Introduction

For its promise to reduce infrastructure costs and
provide virtually unlimited computational power and data
storage, as Armbrust et al. (2009) discuss, in recent years,
cloud computing has gained significant acceptance in both
the enterprise application management and scientific
computing. While active research in this field provides
novel concepts, techniques and principles towards building
cloud-native applications, there is a significant effort,
led by enterprises, to cloud-enable existing applications in
order to reuse existing systems and therefore investments.
Typically, as postulated by Andrikopoulos et al. (2013),
cloud-enabling applications are related to the migration of
whole systems or parts of them on a public or private cloud
environment. More details on current research in migration
methodologies and techniques are presented in Section 3.

In this work, we present a vendor- and
technology-independent methodology for migrating the
database layer of applications and refactoring the
application, and position it in existing application
migration methodologies (see Section 4). The methodology
is applicable to applications in different application
domains and is agnostic to the types of data sources. The
requirements this methodology meets have been identified
in collaboration with software engineers and domain
experts in several research projects and collaborations

with enterprises. For the evaluation of our approach, we use
the NovaERM application developed in the scope of a
company internal IT project at NovaTec Holding GmbH1
(in the following referred to as NovaTec). We use this
methodology for a partial and a complete migration of
NovaERM. The architecture and implementation details of
the system, as well as the motivation for migration, are
presented in Section 2. The migration of the NovaERM
application has been done using our cloud data migration
support tool. The evaluation of the methodology and tool,
and our findings are presented in Section 5. Our concluding
remarks and plans for future work are in Section 6.

2 Motivating scenario

As a motivating scenario from the enterprise field
we use the integrated and interactive enterprise resource
management application NovaERM developed in Java
in the context of a company-internal project at NovaTec.
NovaERM was developed in order to automate and support
company-internal business processes such as the hiring
process, which we use as an example in the following. As
we migrate NovaERM in the scope of our evaluation to the
cloud, we present the system architecture of NovaERM in
Figure 1.

 Migrating enterprise applications to the cloud: methodology and evaluation 129

Figure 1 Overview of NovaERM system architecture

The user interacts with the application using the NovaERM
Web GUI which provides a graphical user interface to login,
complete manual human tasks, enter data, and administer
the system. The business logic layer contains the following
three components: the business process management (BPM)
Platform Activiti, the NovaTec Reference Platform, and
the NovaERM Web Application. All company-internal
business processes such as the hiring process are deployed
and executed within the Activiti BPM Platform version
5.12.1.2 The NovaTec Reference Platform builds the
basis for the NovaERM Web Application by providing
non-application-specific functionality. The NovaERM Web
Application consists of several sub-components representing
a partner, e.g., an employee or job candidate, and a contract.
All sub-components are realised using services. The
NovaERM Web GUI and NovaERM Web Application are
running within a GlassFish application server3 version 3.2.1.
Finally, the database layer consists of the Activiti Database
and the NovaERM Database using PostgreSQL4 version
9.1.9. The Activiti Database stores the data generated by the
Activiti BPM Platform while the processes are being
deployed and executed. The NovaERM Database contains
all the data relevant for the hiring process such as contract
details and administration information for the whole system.

Considering the expansion of NovaTec, the company
decided to migrate some of their operations to the cloud. In
particular, it was needed to decide what is the solution with
the least impact on their current architecture. Thus, in
collaboration with NovaTec, we created a field study to
evaluate their options.

The challenges we faced during this process were:

• which part of the system to migrate

• what is the target system to migrate on

• if and how to adapt the existing system to operate
correctly after the migration

• and most importantly, the lack of automated support
with respect to the above decisions.

In order to address these challenges, in this work we present
a methodology which incorporates decision and refactoring
support for migration of the database layer of applications to
the cloud. For this purpose, in the following section, we
focus on investigating available methodologies and decision
support systems (DSSs) for such scenarios.

3 Related work

First, we investigate available vendor-specific and
vendor-independent methodologies and guidelines for
migrating either the database layer, or the whole
application to the cloud. Afterwards, we consider available
recommendation and DSSs with respect to migration to
the cloud.

In Varia (2010), Amazon proposes a phase-driven
approach for migration of an application to their cloud
infrastructure consisting of the following six phases: cloud
assessment, proof of concept, data migration, application
migration, leverage the cloud, and optimisation. The data
migration phase is subdivided into a selection of the
concrete Amazon AWS service and the actual migration of
the data. We use this methodology by applying the first four
phases and refined and implemented the data migration
phase by using our proposed methodology for the migration
of the database layer in order to evaluate the possibility to
integrate our proposal into a methodology to migrate the
whole application to the cloud. Additionally, Amazon
provided recommendations regarding which of their data
and storage services best fit for storing a specific type of
data, e.g., Amazon Simple Storage Service5 is ideal for
storing large write-once, read-many types of objects.
As the methodology proposed by Amazon focuses on
AmazonAWSdata and storage services only, we abstract
from this methodology and integrate the guidelines in our
proposal. In addition to several product specific guidelines
and recommendations Microsoft (2013a, 2013b), Microsoft
provides a Windows Azure SQL Database Migration
Wizard6 and the synchronisation service Windows Azure
SQL Data Sync.7 We reuse some of these tools, tutorials,

130 S. Strauch et al.

and wizards and refer to them during the data migration
phase.

Google is offering for the App Engine the tool
Bulk Loader, which supports both the import of CSV
and XML files into the App Engine Data Store and
the export as CSV, XML, or text files.8 The potentially
required transformations of the data during the import are
customisable in configuration files. In addition, Google, Inc.
(2013b) supports the user when choosing the appropriate
data store or service and during its configuration. Moreover,
Google, Inc. (2013a) provides guidelines to migrate the
whole application to Google App Engine. We refer to the
tools during the migration phase and abstract from the
vendor-specific guidelines and recommendations in order to
integrate them in our tool.

Salesforce provides data import support to their
infrastructure via a web UI or the desktop application
Apex Data Loader.9 Another option to migrate and
integrate with cloud providers such as Salesforce is
to hire external companies that are specialised on
migration and integration such as Informatica Cloud.10 In
addition to the tools or external support, salesforce.com,
Inc. (2013) provides data migration guidelines. We
consider the non-Salesforce-specific steps for our proposed
methodology. As it will be discussed extensively in
Section 4, Laszewski and Nauduri (2011) also propose a
vendor-specific methodology for the migration to Oracle
products and services by providing a detailed methodology,
guidelines, and recommendations focusing on relational
databases. We base our proposal on their methodology, by
abstracting from it, adapting and extending it.

Apart from the vendor-specific migration methodologies
and guidelines there are also proposals independent from a
specific cloud provider. Jamshidi et al. (2013) identified,
taxonomically classified, and systematically compared
existing research on cloud migration. We considered the
lessons learned for the methodology, we propose and
addressed the identified lack of tool support for enhancing
cloud migration by implementing a tool realising our
proposed methodology.

Reddy and Kumar (2011) propose a methodology for
data migration that consists of the following phases: design,
extraction, cleansing, import, and verification. Moreover,
they categorise data migration into storage migration,
database migration, application migration, business process
migration, and digital data retention. In our proposal, we
focus on the storage and database migration as we address
the database layer. Morris (2012) specifies four golden rules
of data migration with the conclusion that the IT staff does
not often know about the semantics of the data to be
migrated, which causes a lot of overhead effort. With our
proposal of a step-by-step methodology, we provide
detailed guidance and recommendation on both data
migration and required application refactoring in order to
minimise this overhead. Tran et al. (2011) adapted the
function point method in order to estimate the costs of cloud
migration projects and classified the applications potentially
migrated to the cloud. As our assumption is that the decision

to migrate to the cloud has already been taken we do not
consider aspects like costs. We abstract from the
classification of applications in order to define the cloud
data migration scenarios and reuse distinctions such as
complete or partial migration in order to refine a chosen
migration scenario.

As we provide the prototypical realisation of a tool
providing support and guidelines while deciding for a
concrete cloud data store or service, the migration, and the
refactoring of the application architecture accordingly, in
the following, we also investigate the state-of-the-art on
DSSs as defined in Power (2002) in the area of cloud
computing. Khajeh-Hosseini et al. (2011) introduce two
tools that support the user when migrating an application to
IaaS cloud services. The first one enables the cost
estimation based on a UML deployment model of the
application in the cloud. The second tool helps to identify
advantages and potential risks with respect to the cloud
migration. None of these tools is publicly available. We do
not consider the estimation of costs, or the identification of
risks as our assumption is that the decision for migration to
the cloud has already been taken. We consider aspects like
costs, business resiliency, effort, etc. to be considered
before following our methodology and using the tool as
discussed in Andrikopoulos et al. (2013). Menzel and
Ranjan (2012) developed CloudGenius, a DSS for the
selection of an IaaS cloud provider focusing on the
migration of web servers to the cloud based on virtualisation
technology. As we provide support for the migration of the
database layer, we focus on another type of middleware
technology. Our approach is also not limited to a specific
cloud service delivery model and migration by using
virtualisation technology.

Menychtas et al. (2013) investigate a model-driven
approach for the migration of legacy applications to the
cloud and present an integrated framework supporting this
approach. Based on the fact that there is not always a model
for the legacy system to be migrated and that periodically
changing requirements for example with respect to
scalability imply periodic updates of the model, we do not
follow a model-driven approach for migration and
refactoring of the application architecture.

Leymann et al. (2011) propose a method based on
application model enrichment and a corresponding tool
chain that allows moving an application to the cloud. In
comparison to their approach, we introduce a DSS guiding
the user through a step-by-step methodology without the
need for an application model.

4 Migration methodology and tool support

As discussed above, in this section we introduce a
step-by-step methodology for the migration of the database
layer to the cloud and the refactoring of the application
architecture. Before we introduce the methodology, we
investigate the requirements to be fulfilled by such a
methodology.

 Migrating enterprise applications to the cloud: methodology and evaluation 131

4.1 Requirements

The functional and non-functional requirements we present
in this section aim to provide decision support and
guidelines for both migrating an application database layer
to the cloud, and for the refactoring of the application
architecture. The presented requirements have been
identified during our work in various research projects, and
especially during our collaboration with industry partners
and IT specialists from the enterprise domain.

4.1.1 Functional requirements

The following functional requirements must be fulfilled by
any methodology for migration of the database layer to the
cloud and refactoring of the application architecture:

FR1 Support of data stores and data services: The
methodology must support the data migration for
both fine- and coarse-grained types of interactions,
e.g., through SQL and service APIs, respectively.

FR2 On-premise and off-premise support: The
methodology has to support data stores and data
services that are either hosted on-premise or
off-premise, and using both cloud and non-cloud
technologies.

FR3 Independence from database technology: The
methodology has to support both established
relational database management systems as discussed
by Codd (1970) and NoSQL data stores as discussed
by Sadalage and Fowler (2012) that have emerged in
recent years.

FR4 Management and configuration: Any tool supporting
such a methodology must provide management and
configuration capabilities for data stores, data
services, and migration projects bundling together
different migration actions. This includes, for
example, the registration of a new data store,
including its configuration data, e.g., database
schemas, database system endpoint URLs, etc. It
must also support the creation of new migration
projects for documentation of the decisions and
actions taken during migration.

FR5 Support for incompatibility identification and
resolution: Any potential incompatibilities, e.g.,
between SQL versions supported by different data
services, must be identified, and guidance must be
provided on how to overcome them. For this purpose,
the methodology has to incorporate the specification
of functional and non-functional requirements for
both the (source) database layer used before the
migration, and for the target data store or data
service.

FR6 Support for various migration scenarios: As the data
migration depends on the context and the concrete
use case, e.g., backup, archiving, or cloud bursting,

the methodology has to support various migration
scenarios.

FR7 Support for refactoring of the application
architecture: The amount of refactoring of the
application architecture during the migration of the
database layer to the cloud depends on many aspects,
such as the supported functionalities of the target data
store or data service, use case, etc. It is therefore
required that the methodology provides guidance and
recommendations on how to refactor the application
architecture.

4.1.2 Non-functional requirements

In addition to the required functionalities, a methodology
for migration of the database layer to the cloud and
refactoring of the application architecture should also
respect the following properties:

NFR1 Security: Both data export from a source data store,
and data import to a target data store require
confidential information such as data store location
and access credentials. Any tool supporting the
methodology should therefore consider necessary
authorisation, authentication, integrity, and
confidentiality mechanisms and enforce user-wide
security policies when required.

NFR2 Reusability: As the migration of data can be either
seen as the migration of only the database layer or
as part of the migration of the whole application, the
methodology has to be reusable with respect to the
integration into a methodology for migration of the
whole application to the cloud, such
as the one proposed by Varia (2010) for Amazon.

NFR3 Extensibility: The methodology should be extensible
to incorporate further aspects that impact the data
migration to the cloud, such as regulatory
compliance. For example, in the USA, the cloud
service provider is responsible to ensure compliance
to regulations as discussed by Louridas (2010), but
in the EU it is the cloud customer that is ultimately
responsible for investigating whether the provider
realises the Data Protection Directive as stated in
Cate (1994).

4.2 Migration methodology

The step-by-step methodology, we introduce in this section
refines and adapts the migration methodology proposed in
Laszewski and Nauduri (2011) in order to address the
identified requirements. The methodology in Laszewski and
Nauduri (2011) consists of seven distinct phases. During
the assessment phase, information relevant for project
management such as drivers for migration, migration tools,
and migration options is collected in order to assess the
impact of the database migration on the IT ecosystem. The
analysis and design phase investigates the implementation
details on the target database, e.g., potentially different data

132 S. Strauch et al.

types and transaction management mechanisms being used.
The goal of this phase is the creation of a plan to overcome
potential incompatibilities between the source and target
data store, while avoiding changes in the business logic
of the application. The migration phase deals with the
migration of the data from the source data store to the target
data store in a testing environment, including tasks such as
database schema migration, database stored procedures
migration, and data migration. After the migration, both the
database and the application have to be tested in the test
phase. This includes for example tasks such as data
verification and testing the interaction of the application
with the new target data store. As applications are in
general highly optimised for a particular database, after the
migration to another target data store the performance might
be poor. Thus, optimisations based on the new target store
used are applied in the optimisation phase in order to
improve the performance. The goal of the deployment phase
is to deploy the final system, including actually migrating
the database, to the production environment.

At first glance, the methodology of Laszewski and
Nauduri (2011) addresses most of the requirements
discussed in the previous. However, it discusses its phases
on a high level that is not suitable for direct application,
requiring further refinement in practice. Furthermore, it fails
to satisfy some of the most important requirements that we
identified. More specifically, as the methodology focuses on
Oracle solutions it only considers the relational database
management system of Oracle as target data store and the
following relational data stores as source databases for the
migration: Microsoft SQL Server11, Sybase12, IBM DB213,
and IBM Informix14. All of these databases are data stores
supporting fine-grained interactions through SQL. It is
unclear whether the methodology also supports data
services, as no information can be found on this aspect in
Laszewski and Nauduri (2011) (FR1). The methodology is
not independent from the database technology as it focuses

on a small set of relational databases and does not support
NoSQL approaches (FR3). Moreover, the methodology is
limited to the pure outsourcing of the database layer to the
cloud and does not consider the context and specifics of
migration scenarios such as cloud bursting, backup, and
archiving (FR6). As concrete migration scenarios are not
considered, their specifics and the context cannot be
considered for the guidance and recommendation towards
refactoring of the application architecture. In addition, the
guidance and recommendations for the required adaptations
of the application architecture during the migration are
very limited, since the migration methodology in Laszewski
and Nauduri (2011) considers only one vendor-specific
relational target data store and a small subset of
vendor-specific relational data stores as source data store
(FR7). The vendor-specificity has also the consequence that
the methodology does not consider the reusability aspect
with respect to the integration or combination of this
methodology with other existing proposals for migration to
the cloud (NFR2).

Addressing these deficiencies, in the following we
propose a vendor- and database technology-independent
step-by-step methodology which refines and adapts the one
proposed in Laszewski and Nauduri (2011). Figure 2
provides an overview of our proposal consisting of seven
steps. All steps are semi-automatic, in the sense that a
human (e.g., the application developer in charge of the
migration) has to provide input and follow the
recommendations and guidelines provided by the
methodology. Figure 2 also shows the mapping between the
proposed methodology and the one in Laszewski and
Nauduri (2011). As it can be seen, no direct support for the
test and optimisation phases is provided by our proposal
since there are no identified requirements explicitly
requiring these phases. The impact of not supporting these
phases is evaluated in Section 5. The steps of the
methodology are.

Figure 2 Methodology for migration of the database layer to the cloud and refactoring of the application architecture

 Migrating enterprise applications to the cloud: methodology and evaluation 133

Step 1 Select migration scenario

The first step in our proposed methodology is the selection
of the migration scenario. For this purpose, we use the ten
cloud data migration scenarios identified in Strauch et al.
(2013a): database layer outsourcing, using highly-scalable
data stores, geographical replication, sharding, cloud
bursting, working on data copy, data synchronisation,
backup, archiving, and data import from the cloud (FR6).
These migration scenarios cover both migration directions
between on-premise and off-premise (FR2).

Based on the selection of the migration scenario, a
migration strategy is formulated by considering properties
such as live or non-live migration, complete or partial
migration, and permanent or temporary migration to the
cloud. During this step, potential conflicts between the
migration scenario selected and the refined migration
strategy should be explicitly addressed by proposing
solutions to the user, e.g., the choice of a different migration
scenario. An example of a conflict is the selection of the
migration scenario cloud bursting and the choice of a
permanent migration to the cloud in the strategy. The

purpose of this migration scenario is by definition to
migrate the database layer to the cloud in order to cover
peak loads and migrate it back afterwards; choosing
therefore permanent migration as part of the strategy cannot
be satisfied.

Step 2 Describe desired cloud data hosting solution

The specification of functional and non-functional
requirements with respect to the target data store or data
service is the focus of the second step. We define cloud data
hosting solution as the concrete configuration of a cloud
data store or Cloud data service in terms of a set of concrete
functional and non-functional properties (FR1). Therefore,
we derived an initial set of properties grouped into different
categories based on the analysis of current data store and
data service offerings of established cloud providers such as
Amazon, Google, and Microsoft. Table 1 provides an
excerpt of the categories and corresponding properties we
consider. These categories cover both relational and NoSQL
solutions (FR3, FR5).

Table 1 Excerpt of categories and properties for specification of requirements of cloud data hosting solutions

Categories Properties Available options

Scalability

Degree of automation Manual, automated
Type Horizontal, vertical

Degree Virtually unlimited, limited
Time to launch new instance None, duration in minutes

Availability

Replication Yes, no
Replication type Master-slave, master-master

Replication method Synchronous, asynchronous
Replication location Same data centre, different data centre (same region)
Automatic failover Yes, no

Degree 99.9%, 99.999%

Security

Storage encryption Yes, no
Transfer encryption Yes, no

Firewall Yes, no
Authentication Yes, no
Confidentiality Yes, no

Integrity Yes, no
Authorisation Yes, no

Interoperability

Data portability None, import, export, one-way-synchronisation
Data exchange format XML, JSON, proprietary

Storage access SOA, REST-API, SQL, proprietary
ORM JPA, JDO, LINQ

Migration and deployment support Yes, no
Supported IDE Eclipse, NetBeans, IntelliJ IDEA

Developer SDKs Java, .Net, PHP, Ruby
Storage Storage type RDBMS, NoSQL

CAP Consistency model Strong, weak, eventual
Availability in case of partitioning Available, not available

134 S. Strauch et al.

Step 3 Select cloud data store or data service

The concrete target data store or data service for the
migration is selected in step three by mapping the properties
of the cloud data hosting solution specified in the previous
step to the set of available data stores and data services that
have been categorised according to the same non-functional
and functional properties. Implementing this step requires
data stores and data services to be previously specified
according to the set of functional and non-functional
properties either directly by the cloud providers, or
by the users of the methodology. The management and
configuration capabilities required for this specification can
however be used at a latter time to also make new cloud
data stores and data services available (FR4).

Step 4 Describe source data store or data service

As it is not sufficient to consider only where the data
has to be migrated to, in step four the functional and
non-functional properties of the source data store or data
service are also described in order to identify and solve
potential migration conflicts, e.g., the database technology
used, or whether the location is on-premise or off-premise
(FR5).

Step 5 Identify patterns to solve potential migration
conflicts

The usage of cloud technology leads to challenges such as
incompatibilities with the database layer previously used or
the accidental disclosing of critical data, e.g., by moving
them to the public cloud. Incompatibilities in the database
layer may refer to inconsistencies between the
functionalities of an existing traditional database layer and
the characteristics of an equivalent cloud data hosting
solution. Therefore, in the fifth step conflicts are identified
by checking the compatibility of the properties of the target
data store selected in step three with the properties of the
source data store or service used before the migration (FR5).
As a way to address these conflicts, in previous work
Strauch et al. (2013c) we have defined a set of cloud data
patterns as the best practices to deal with them that can be
reused here.

Step 6 Refactor application architecture

As the migration of the database layer also has an impact on
the remaining application layers [presentation and business
logic as described in Fowler et al. (2002)], the methodology
should also provide guidelines and hints on what to be
considered for the refactoring of the application. Special
focus should be given on the adaptation of the network, the
data access layer, and the business logic layer of the
application, depending on the outcomes of the previous
steps (FR7). Networking adaptation might require for
example the reconfiguration of open ports in the enterprise
firewall. Although the cloud data store might be fully

compatible with the data store previously used, the
migration requires at least a change to the database
connection string in the data access layer. The impact o
f the database layer migration to the cloud on the business
logic layer depends on several aspects, such as the
migration scenario and the incompatibilities of the source
and target data store. In case of switching from a relational
database to a NoSQL data service, the business logic
needs to be significantly adapted as the characteristics
of these two technologies are different for example with
respect to transaction support, relational database schema
vs. schema-free or schema-less NoSQL solution, and quality
of services (see Sadalage and Fowler, 2012).

Step 7 Migrate data

The final step, migrating the data, entails the configuration
of the connections to the source and target data stores or
services by requiring input on the location, credentials, etc.
from the user. This step should also provide adapters for the
corresponding source and target stores, bridging possible
incompatibilities between them, and/or reuse of the data
export and import tools offered by the different cloud
providers. As the last step is dealing with potentially
confidential information, in order to prevent other users
from accessing the data a tool supporting the proposed
methodology has to support the required security
mechanisms (NFR1).

4.3 Realisation

In this section, we introduce the realisation of a cloud data
migration tool for the migration of the database layer to the
cloud and the refactoring of the application architecture.
More specifically, in order to support the proposed
methodology, the cloud data migration tool provides two
main functionalities. On the one hand, it provides a
repository for cloud data stores and cloud data services and
allows browsing through it, even without user registration.
Additionally, it implements the required management
functionality to add new entries in the repository by
specifying their functional and non-functional properties.
On the other hand, the tool guides the user through the first
six steps of the proposed methodology through a DSS. For
the last step of migrating the data, the tool is equipped with
adapters that allow the automatic export of data from the
source data store and their import in the target data store.
Currently, the tool has source adapters for PostgreSQL15
and Oracle MySQL.16 We provide target adapters for a
number of cloud data stores and data services like Amazon
RDS17 and 10gen MongoDB18, MySQL in Amazon EC2
instances19, Google Cloud SQL20, and Amazon SimpleDB.21
In addition to the adapters, the user is also referred to
various guidelines and tutorials provided by the different
cloud providers, like e.g., Google, Inc. (2013c). This is
especially useful if no appropriate adapter is available for a
particular data store or service.

 Migrating enterprise applications to the cloud: methodology and evaluation 135

Figure 3 Screen shot of the realisation of the cloud data migration tool (see online version for colours)

Figure 3 provides an overview of the main page of the cloud
data migration tool publicly available for free use.22 As the
user has to provide confidential data following the
guidelines and recommendations of the tool, e.g., access
credentials to the source and target data stores or services
for data export and import in the last step, he has to register
with user, password, and e-mail address. After a migration
project is finalised, the user can print a report of the
decisions made during the migration, the identified conflicts
and their resolutions for the purpose of documentation and
support. Currently, we are supporting the migration from
one source data store to one target data store or service and
one migration project has to be created per migration.
Extending the tool in order to support more than one target
data stores per migration project is ongoing work.

The cloud data migration tool is realised as a Java 6 web
application and follows a three layer architecture. The
presentation layer is realised using HTML, JavaScript, JSP,
and CSS. The business logic layer is implemented in Java.
For the object-relational mapping, we use Java Data Objects
version 3.1 and its implementation DataNucleus version
3.0.23 For online hosting of the tool, we use Google Cloud
SQL as the data layer and run the whole application in
Google’s App Engine. A stand-alone, offline version of the
tool also exists, allowing the user to run the tool locally. In
this case, MySQL 5.5 is used for the data layer and
Apache Tomcat version 7 as the servlet container. Further

information is available in Strauch et al. (2013b) and
on the website of the cloud data migration tool
http://www.cloud-data-migration.com.

5 Evaluation

In this section, we evaluate both the methodology
introduced in Section 4.2, and the cloud data migration tool
supporting this methodology presented in the previous
section. For this purpose, we use the motivating scenario
discussed in Section 2 as a field study, as defined by
Taylor-Powell and Steele (1996), involving both the partial
migration of the NovaERM application by migrating the
database layer only, and the complete migration of
NovaERM to the cloud [Type II and Type III in the
classification of Andrikopoulos et al. (2013)].

5.1 Method

As our investigation of the literature did not result in a
method that specifically aims at the evaluation of migration
methodologies, we focused our analysis on related
evaluation methods and standards for software processes
and software quality. For the evaluation of software
processes there are multiple guidelines, e.g., Shull et al.
(2001) and Sommerville (1996), and standardised best
practices such as the capability maturity model integration

136 S. Strauch et al.

(CMMI) from the CMMI Product Team (2010) and the
continual service improvement (CSI) module of the IT
Infrastructure Library (ITIL) by Case and Spalding (2011).
We base our evaluation of the migration methodology on
the ITIL CSI process, but adapt it in order to consider the
technical aspects of the methodology by considering
appropriate metrics for software processes provided by Kan
(2002). The goal of this process is to identify weaknesses of
IT services and to derive possible improvements. A
simplified representation of the resulting process is shown
in Figure 4.

Berander et al. (2005) and Al-Qutaish (2010) provide an
overview of available software quality models and
standards. Based on their findings, we selected the
ISO/IEC 25010 Software product Quality Requirements
and Evaluation (SQuaRE) standard provided by the
International Organization for Standardization (ISO) and the
International Electrotechnical Commission (IEC) for the
evaluation of the cloud data migration tool. The quality in
use model and system/software product quality model of
SQuaRE includes the metrics we are considering as most
relevant. For the quality in use, we focus on efficiency
and effectiveness and for product quality we consider
functional suitability, i.e., functional completeness and
functional correctness, and usability, i.e., learnability and
appropriateness ISO/IEC (2005). In order to evaluate these
metrics, we recorded the user-identified problems that
occurred during the execution of the partial and complete
migration of NovaERM to the cloud as the means to
evaluate the software quality of the cloud data migration
tool. Such problems were gathered only in a qualitative
manner, i.e., we are not interested in the number of
occurred problems, but in a comprehensive description and
classification of these problems. This approach increases the
effort to gather the data, but in turn enables a more detailed
and potentially more meaningful analysis. In terms of

quantitative data, we recorded the time required for
executing the various migration phases.

5.2 Evaluation setup

In order to consider both the partial migration of NovaERM
by migrating the database layer only, and the complete
migration to the Cloud, we split the evaluation into two
iterations. In the first iteration, we migrate the NovaERM
Database and the Activiti Database to the NovaTec-internal
Private Cloud and keep the other components of NovaERM
locally, which is Migration Type II in Andrikopoulos et al.
(2013) classification. During the second iteration, we
migrate the whole software stack of NovaERM to the
Amazon Public Cloud (Migration Type III). In order to
evaluate the reusability of our proposed methodology with
respect to the integration into a methodology for the
migration of the whole application, we use the methodology
proposed by Varia (2010) for Amazon and integrated our
proposed methodology by using it as refinement and
implementation of the data migration phase. In both
iterations, we use virtual machines (VMs) to host
NovaERM partially or completely in the cloud.
Table 2 provides the specification of the VMs used.

In order to speed up the setup and configuration of the
components of NovaERM both at the initial, local topology
and during the migration to the cloud we used the
provisioning solution automaIT24 version 1.2, a commercial
product of NovaTec which has been proven in various
industry projects. In order to ensure that the NovaERM
application works correctly after provisioning it partially
and completely in the cloud through regression tests, we
used the software testing tool selenium HQ25 version 2.34
which enables browser automation, e.g., for automating web
applications for testing purposes. Thirty-four test cases
based on the hiring process were provided by the NovaTec
internal development team for this purpose.

Figure 4 CSI seven-step process used for the evaluation

Source: Adapted from Case and Spalding (2011)

 Migrating enterprise applications to the cloud: methodology and evaluation 137

Table 2 Properties of VMs used

Properties NovaTec private cloud Amazon EC2

Instance Size n/a m1.medium
Vendor ID GenuineIntel GenuineIntel
CPU model name Intel Xeon CPU E5-2640@2.5GHz Intel Xeon CPU E5-2650@2.0GHz
CPU MHz 2500.000 1795.672
CPU cache size 15360 KB 20480 KB
Total Memory 3833 MB 3750 MB
Distribution ID CentOS Ubuntu
Distribution Release 6.4 12.04.2 LTS
AMI-ID n/a ami-ddfae2a9

Figure 5 Overview of duration of the database layer migration during first and second iteration (see online version for colours)

Table 3 Overview of duration of the Amazon methodology integrated with the proposed methodology

Phase Duration in minutes

Cloud assessment 10
Proof of concept 1,440
Data migration 32
Application migration phase 20

Testing 35

5.3 Evaluation results

In this section, we present the evaluation results and discuss
the lessons learned. Figure 5 provides an overview of the
duration for each of the steps for the migration of the
database layer to the cloud executed by a domain expert in
the first and second iteration. No optimisation activity was
implemented as part of the field study. Compared to the first
iteration, the total duration of the migration of the database
layer decreased in the second iteration by 12 minutes
(measuring only the migration of the database). Thus, we
conclude that there appears to be a shallow learning curve in
using the cloud data migration tool, which in addition to the

reusability of the data entered during the first iteration, are
the main reasons for the faster migration results.

Table 3 presents the duration of the phases when
migrating NovaERM completely to Amazon using the
proposed methodology integrated into the migration
methodology by Varia (2010) by refining and implementing
it in the second iteration. The results show that there is an
increase of the duration of the data migration phase of ten
minutes compared to the duration of the proposed
methodology as shown in Figure 5, because the migration to
the Public Cloud of Amazon required further security
configurations, in addition to network latency despite using
the EUWest (Ireland) region of AWS. During the second
iteration, we discovered that the proposed methodology

138 S. Strauch et al.

does not only cover the data migration phase, but also
impacts the cloud assessment phase and application
migration phase of the methodology from Amazon by
accelerating them. From the amount of time spent on testing
during both iterations and on the proof of concept phase in
the second iteration, we conclude the need of incorporating
support for testing and optimisation into our methodology
and tool in the future.

In order to enable a structured gathering and recording
of occurring problems we have defined a set of attributes
related to them. Table 4 shows an example of such a
problem that was identified during our evaluation, and the
information we collected for it. Every problem has a unique
identifier (ID) and a descriptive name. The attribute class is
used to classify the problem in predefined categories
derived from the ISO/IEC 25010 according to the focus
of our evaluation ISO/IEC (2005). With respect to the
quality in use we consider efficiency and effectiveness and
for product quality we focus on functional suitability,
i.e., functional completeness and functional correctness, and
usability, i.e., learnability and appropriateness, which are
the possible values for the Class attribute. The problem
identified in Table 4, for example, is classified under
the functional suitability sub-characteristic of functional
correctness and under the usability sub-characteristic
appropriateness. The attribute severity describes the severity
of a problem with respect to the impact on the migration
result. The allowed values are low, middle, high, or critical.
A detailed description of a problem is given with the
attribute description. The attribute error handling describes
how the user has proceeded to find a solution for the
occurred problem. Solution/adaptation describes how
the problem was fixed or how to eliminate the cause
of the problem by adaptations of the tool that may be
required.

Altogether, we have recorded seven problems. One of
the recorded problems has a critical priority (see Table 4)
the remaining six have a middle priority. Five of the
occurred problems are due to bugs in the graphical user
interface or the business logic of the tool, one with critical
and four with middle priority. The rest of the problems were

caused by missing features, e.g., the domain expert
requested a migration status information during the actual
data migration. The analysis of the identified problems with
respect to their priority and the cause of the problems shows
that the main weakness of the cloud data migration tool are
bugs that need to be fixed and a lack of missing features
requested by the domain expert in order to improve the
functional suitability and usability. Finally, for the
implementation of the improvements (step seven of the ITIL
CSI process, see Figure 4), we are currently in the process
of incorporating the lessons learned by this field study in
further research work.

6 Conclusions

Enterprises have reported concrete benefits from utilising
cloud infrastructures for isolated use cases. The growing
popularity of cloud computing has led to significant
research in cloud-enabling applications, in particular with
respect to migrating whole systems or only parts of them to
the cloud. In this respect, there is a clear need for a
methodology supporting the migration of enterprise
applications to the cloud. In this work, we focus on enabling
support of migration of the database layer of enterprise
applications to the cloud. This involves not only considering
the requirements on the appropriate data source or service
imposed by the application, but also the potential need to
adapt the application in order to cope with incompatibilities
resulting from the migration. Towards this goal, in this work
we presented a step-by-step methodology for application
migration. For this purpose, we identified a series of
functional and non-functional requirements from the
enterprise and eScience domains. We then adapted the
methodology discussed in Laszewski and Nauduri (2011) in
order to satisfy the identified requirements, which resulted
in a seven-step end-to-end methodology for the migration of
the database layer of an application to the cloud and
for the application refactoring required as part of this
process.

Table 4 Documentation of an identified problem

ID MD 4

Name Support of special characters in password

Class Tool (functional correctness, appropriateness)

Severity Critical

Description The password for the source or target cloud data store or service does not allow usage of special characters like
backslash for instance.

Error handling Limit the allowed set of characters for the password to digits and alphabetic characters.

Solution/adaptation As security and privacy is most important today especially in the area of cloud computing the tool has to be
extended to support special characters in passwords.

 Migrating enterprise applications to the cloud: methodology and evaluation 139

We presented the realisation of the proposed methodology
as a publicly available and free cloud data migration tool.
The tool provides two fundamental functionalities: decision
support in selecting an appropriate data store or service, and
refactoring support during the actual migration of the data.
Users of the tool can create migration projects, define their
requirements for the migrated database layer, describe their
current database layer and receive recommendations, hints,
and guidelines on where and how to migrate their data. The
tool supports conflict resolution based on previously
identified cloud data patterns, and provides data
adapters that allow for the automatic migration of data to
recommended data stores and services. We evaluated the
applicability of our approach by migrating the NovaERM
Enterprise Resource Management application to an internal
Private Cloud of NovaTec and to Amazon Web Services
solutions. Apart from the usefulness of the methodology and
tool support, we were able to identify missing functionality
that we plan to address in our future work. In particular, our
evaluation shows that explicit support for the testing
phase of the migration has to be supported by the cloud
data migration tool. Moreover, the tool should provide
sandboxing capabilities, functional testing for bug
fixing, and performance benchmarking tools for different
application workloads. These capabilities can also be used
to support the optimisation of the database layer after its
migration. Additional functionalities that are currently being
developed include addressing the impact of the migration to
compliance, supporting more than one source and/or target
data stores or services and multiple migrations per project,
increasing the number of adapters available in the tool, as
well as improving the usability and functional suitability of
the tool for domain experts. Another important direction for
our future research is completing the methodology to enable
support for the migration of the other two logical layers of
the application architecture.

Acknowledgements

The research leading to these results has received funding
from the European Union’s Seventh Framework Programme
(FP7/2007-2013) projects 4CaaSt (Grant Agreement
No. 258862) and ALLOW Ensembles (Grant Agreement
No. 600792) and the German government funded BMBF
project ECHO (01XZ13023G).

References
Al-Qutaish, R.E. (2010) ‘Quality models in software engineering

literature: an analytical and comparative study’, Journal of
American Science, Vol. 6, No. 3, pp.166–175.

Andrikopoulos, V., Binz, T., Leymann, F. and Strauch, S. (2013)
‘How to adapt applications for the cloud environment’,
in Computing, Vol. 95, No. 6, pp.493–535, Springer.

Armbrust, M. et al. (2009) ‘Above the clouds: a Berkeley view of
cloud computing’, Technical Report UCB/EECS-2009-28,
EECS Department, University of California, Berkeley.

Berander, P. et al. (2005) ‘Software quality attributes and
trade-offs’, Technical report, Blekinge Institute of
Technology.

Case, G. and Spalding, G. (2011) ITIL Continual Service
Improvement, The Stationery Office (TSO), UK.

Cate, F. (1994) ‘The EU data protection directive, information
privacy, and the public interest’, Iowa L. Rev., Vol. 80, p.431,
Paper No. 646.

CMMI Product Team (2010) CMMI for Development, Version 1.3
(CMU/SEI-2010-TR-033), Software Engineering Institute,
Carnegie Mellon University.

Codd, E.F. (1970) ‘A relational model of data for large shared
data banks’, Communications of the ACM, Vol. 13, No. 6,
pp.377–387.

Fowler, M. et al. (2002) Patterns of Enterprise Application
Architecture, Addison-Wesley Professional, Amsterdam,
The Netherlands.

Google, Inc. (2013a) Google App Engine – Migrating
to the High Replication Datastore [online]
http://developers.google.com/appengine/docs/adminconsole/
migration (accessed 4 February 2014).

Google, Inc. (2013b) Google App Engine – Uploading
and Downloading Data [online]
http://developers.google.com/appengine/docs/python/tools/up
loadingdata?hl=en (accessed 4 February 2014).

Google, Inc. (2013c) Google Cloud SQL – Importing and
Exporting Data [online] http://developers.google.com/cloud-
sql/docs/import_export (accessed 4 February 2014).

ISO/IEC (2005) ‘Systems and software engineering – systems and
software product quality requirements and evaluation
(SQuaRE) – system and software quality models’.

Jamshidi, P., Ahmad, A. and Pahl, C. (2013) ‘Cloud migration
research: a systematic review’, IEEE Transactions on Cloud
Computing, to appear.

Kan, S.H. (2002) Metrics and Models in Software Quality
Engineering, Addison-Wesley Longman Publishing Co., Inc.,
Amsterdam, The Netherlands.

Khajeh-Hosseini, A., Sommerville, I., Bogaerts, J. and
Teregowda, P. (2011) ‘Decision support tools for cloud
migration in the enterprise’, in Proceedings of CLOUD’11,
IEEE, pp.541–548.

Laszewski, T. and Nauduri, P. (2011) Migrating to the Cloud:
Oracle Client/Server Modernization, Elsevier, USA.

Leymann, F. et al. (2011) ‘Moving applications to the cloud:
an approach based on application model enrichment’,
International Journal of Cooperative Information Systems
(IJCIS), Vol. 20, No. 3, pp.307–356.

Louridas, P. (2010) ‘Up in the air: moving your applications to the
cloud’, Software, Vol. 27, No. 4, pp.6–11, IEEE.

Menychtas, A. et al. (2013) ‘ARTIST methodology and
framework: a novel approach for the migration of legacy
software on the cloud’, in Proceedings of MICAS’13, IEEE
Computer Society Conference Publishing Services.

Menzel, M. and Ranjan, R. (2012) ‘CloudGenius: decision support
for web server cloud migration’, in Proceedings of WWW ‘12,
ACM, pp.979–988.

Microsoft (2013a) Develop and Deploy
with Windows Azure SQL Database [online]
http://social.technet.microsoft.com/wiki/contents/articles/994.
develop-and-deploy-with-windows-azure-sql-database.aspx
(accessed 4 February 2014).

140 S. Strauch et al.

Microsoft (2013b) Guidelines and Limitations
(Windows Azure SQL Database) [online]
http://msdn.microsoft.com/en-
us/library/windowsazure/ff394102.aspx
(accessed 4 February 2014).

Morris, J. (2012) Practical Data Migration, 2nd ed., BCS,
The Chartered Institute for IT, UK.

Power, D. (2002) Decision Support Systems: Concepts and
Resources for Managers, Quorum Books, USA.

Reddy, V.G. and Kumar, G.S. (2011) ‘Cloud computing with a
data migration’, Journal of Current Computer Science and
Technology, Vol. 1, No. 6, pp.245–257.

Sadalage, P.J. and Fowler, M. (2012) NoSQL Distilled: A Brief
Guide to the Emerging World of Polyglot Persistence,
Addison-Wesley, USA.

salesforce.com, Inc. (2013) Salesforce Help – Data Importing
Overview [online]
http://help.salesforce.com/HTViewHelpDoc?id=importing.ht
m&language=en_US (accessed
4 February 2014).

Shull, F., Carver, J. and Travassos, G.H. (2001) ‘An empirical
methodology for introducing software processes’, SIGSOFT
Softw. Eng. Notes, Vol. 26, No. 5, pp.288–296.

Sommerville, I. (1996) ‘Software process models’, ACM Comput.
Surv., Vol. 28, No. 1, pp.269–271.

Strauch, S., Andrikopoulos, V., Bachmann, T. and Leymann, F.
(2013a) ‘Migrating application data to the cloud using cloud
data patterns’, in Proceedings of CLOSER’13, SciTePress,
pp.36–46.

Strauch, S., Andrikopoulos, V., Bachmann, T., Karastoynova, D.,
Passow, S. and
Vukojevic-Haupt, K. (2013b) ‘Decision support for the
migration of the application database layer to the cloud’, in
Proceedings of CloudCom’13, IEEE Computer Society Press,
pp.639–646.

Strauch, S., Andrikopoulos, V., Breitenbücher, U., Sáez, S.G.,
Kopp, O. and Leymann, F. (2013c) ‘Using patterns to move
the application data layer to the cloud’, in Proceedings of
PATTERNS’13, Xpert Publishing Services (XPS), pp.26–33.

Taylor-Powell, E. and Steele, S. (1996) ‘Collecting evaluation
data: an overview of sources and methods’, University of
Wisconsin Cooperative Extension Service, Cir. G3658-4.

Tran, V.T.K., Lee, K., Fekete, A., Liu, A. and Keung, J. (2011)
‘Size estimation of cloud migration projects with cloud
migration point (CMP)’, in Proceedings of ESEM’11, IEEE,
pp.265–274.

Varia, J. (2010) Migrating Your Existing Applications to the AWS
cloud. A Phase-driven Approach to Cloud Migration [online]
https://s3.amazonaws.com/awsmedia/CloudMigration-
main.pdf (accessed 4 February 2014).

Notes
1 NovaTec Holding GmbH: http://www.novatec-gmbh.de/en/.
2 Activiti BPM Platform: http://www.activiti.org.
3 GlassFish Application Server: http://glassfish.java.net.
4 PostgreSQL: http://www.postgresql.org.
5 Amazon S3: http://aws.amazon.com/s3/.
6 Windows Azure SQL Migration Wizard:

http://sqlazuremw.codeplex.com.
7 Windows Azure SQL Data Sync:

http://www.windowsazure.com/en-us/manage/services/sql-
databases/getting-started-w-sql-data-sync/.

8 Bulk Loader: http://bulkloadersample.appspot.com.
9 Apex Data Loader: http://sforce-app-dl.sourceforge.net.
10 Informatica Cloud: http://www.informaticacloud.com.
11 Microsoft SQL Server: http://www.microsoft.com/en-

us/sqlserver.
12 Sybase: http://www.sybase.com.
13 IBM DB2: http://www.ibm.com/software/data/db2.
14 IBM Informix: http://www.ibm.com/software/data/informix/.
15 PostgreSQL: http://www.postgresql.org.
16 Oracle MySQL: http://www.mysql.com.
17 Amazon Relational Database Service:

http://aws.amazon.com/rds/.
18 10gen MongoDB: http://www.mongodb.org.
19 Amazon EC2: http://aws.amazon.com/ec2/.
20 Google Cloud SQL: http://cloud.google.com/products/cloud-

sql/.
21 Amazon SimpleDB: http://aws.amazon.com/simpledb/.
22 Cloud Data Migration Tool: http://www.cloud-data-

migration.com.
23 DataNucleus: http://www.datanucleus.org.
24 automaIT: http://www.automait.de/1/home/.
25 seleniumHQ: http://www.seleniumhq.org.

	cover
	IJBDI010301 STRAUCH

