
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{gomez-saez, andrikopoulos, leymann, strauch}@iaas.uni-stuttgart.de

Design Support for Performance Aware Dynamic
Application (Re-)Distribution in the Cloud

Santiago Gómez Sáez, Vasilios Andrikopoulos, Frank Leymann, Steve Strauch

© 2014 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

@article {ART-2014-12,

 author = {Santiago G{\'o}mez S{\'a}ez and Vasilios Andrikopoulos and Frank Leymann and Steve

Strauch},

 title = {{Design Support for Performance Aware Dynamic Application (Re-)Distribution in the

Cloud}},

 journal = {IEEE Transactions on Service Computing},

 publisher = {IEEE Computer Society},

 pages = {1--14},

 type = {Article in Journal},

 month = {December},

 year = {2014},

 language = {English},

 cr-category = {D.2.11 Software Engineering Software Architectures, C.2.4 Distributed

Systems, D.2.8 Software Engineering Metrics},

 contact = {Santiago G{\'o}mez S{\'a}ez: gomez-saez@iaas.uni-stuttgart.de},

 department = {University of Stuttgart, Institute of Architecture of Application Systems},

}

:

Institute of Architecture of Application Systems

1939-1374 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2014.2381237, IEEE Transactions on Services Computing

JOURNAL OF TRANSACTIONS ON SERVICES COMPUTING, VOL. -, NO. -, SEPTEMBER 2014 1

Design Support for Performance Aware Dynamic
Application (Re-)Distribution in the Cloud

Santiago Gómez Sáez, Vasilios Andrikopoulos, Frank Leymann, Steve Strauch

Abstract—The wide adoption of the Cloud computing paradigm by many different domains has increased both the number and type of
available offerings as a service, e.g. Database-as-a-service (DBaaS) or Platform-as-a-Service (PaaS), and with them the possibilities in
deploying and operating an application partially or completely in the Cloud. The need for providing design support to application
developers in this environment is the focus of this work. Toward this goal, in the following we first scope the discussion on the
persistence layer of applications and we investigate the effect of different deployment scenarios on the performance of the application
over time. Based on the results of this analyses we then propose an application (re-)distribution design support process, which we
evaluate empirically by means of a well-known application. The results of this evaluation both highlight the strengths of our proposal,
and at the same time, provide a clear path for the following steps in our work.

Index Terms—Synthetic Workload; Benchmark; Cloud Application Distribution; Application Deployment; Relational Database; Cloud
Services Selection; TPC; MediaWiki

F

1 Introduction

In the last years the Cloud computing paradigm has been
widely adopted by different domains, both in industry

and research. This has led to an increase in the number
of applications that are partially or completely running
in the Cloud. The number of non hardware virtualization-
oriented services (essentially, Virtual Machine-as-a-Service,
or VMaaS, offerings) has also increased with the successful
introduction of offerings like Database-as-a-Service (DBaaS) or
Platform-as-a-Service (PaaS) from major Cloud providers. It
has become thus possible to host only some of the application
components off-premise (in the Cloud), e.g. its database,
while the remaining application remains on-premise [1]. With
such a wide space of possible deployment and runtime viable
combinations, application developers can distribute or replace
application components within or with a wide variety of Cloud
offerings. Standards like TOSCA1, for example, allow for the
modeling and management of application topology models in
an interoperable and dynamic manner, further supporting the
application distribution capabilities, potentially even in a multi-
Cloud environment. However, such technological approaches
lack support for assisting the application developer towards an
efficient selection of Cloud offerings for a partial or complete
deployment of the application components.

This investigation leverages the vast amount of opportuni-
ties provided by such a technological landscape towards devel-
oping the means that allow for the dynamic deployment and re-
deployment of application components across service providers
and solutions in order to cope with evolving performance and

• Santiago Gómez Sáez, Vasilios Andrikopoulos, Frank Leymann,
and Steve Strauch are with the Institute of Architecture of Applica-
tion Systems, University of Stuttgart, Germany.
E-mail: {gomez-saez, andrikopoulos, leymann, strauch}@iaas.uni-
stuttgart.de

Manuscript received October 31, 2014; revised -.
1. Topology and Orchestration Specification for Cloud Applications

(TOSCA) Version 1.0: http://docs.oasis-open.org/tosca/TOSCA/v1.
0/TOSCA-v1.0.html

resource demands. There are two fundamental observations in
this effort that are going to be discussed in more length during
the rest of the paper. Firstly, the distribution of the application
topology in the Cloud has a severe effect on the performance of
the application — however it is not always obvious whether this
effect is beneficial or detrimental. Secondly, a real application
workload typically fluctuates over time, leading to an evolution
of its resources demands, which may or not be fully available
in the underlying virtualized infrastructure of the utilized
Cloud offering. Hence, the application topology may have to be
adapted in order to cope with such resource and performance
fluctuation demands.

For the scope of this paper we first focus on the persistence
layer of applications [2] and study the effect on performance
of different application topology distributions of a sample
application for different generated workloads. A presentation
and analysis of our experimental results is discussed, based on
which we design a dynamic application distribution support
process aimed at performance optimization, which we then
evaluate using a well-known application. The contributions of
this work can therefore be summarized as follows:

1) a workload characterization and performance variation
analysis focusing on the application persistence layer
by using an established benchmark (TPC-H2) and well-
known Cloud offerings,

2) the generation and performance evaluation of generated
synthetic workloads for different deployment topologies of
the application persistence layer based on this analysis,

3) the design of a process which supports application design-
ers in optimizing the distribution of their application
across Cloud and non-Cloud solutions in a dynamic
manner, and,

4) the evaluation of our approach using the MediaWiki3
application, with real workload and data.

2. TPC-H Benchmark: http://www.tpc.org/tpch/
3. MediaWiki: http://www.mediawiki.org/wiki/MediaWiki

1939-1374 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2014.2381237, IEEE Transactions on Services Computing

JOURNAL OF TRANSACTIONS ON SERVICES COMPUTING, VOL. -, NO. -, SEPTEMBER 2014 2

The remaining of this paper is structured as follows: Section 2
summarizes relevant concepts and motivates further investiga-
tions. Section 3 presents our experiments with respect to the
persistence application layer, and discusses the most important
findings. A process to support the dynamic distribution of the
application in the Cloud is proposed in Section 4. Section 5
presents an empirical and conceptual evaluation of our process-
based approach. Finally, Section 6 summarizes related work
and Section 7 concludes with some future work.

2 Background
The deployment of an application in the Cloud regularly
requires the realization of preliminary compliance tasks. These
often involve specifying the required underlying resources, cost
calculations, or even architectural or realization adaptations.
Towards achieving the desired performance, such tasks should
incorporate performance awareness. The migration of the
different layers of an application to the Cloud is analyzed
in [1], where multiple migration types are categorized and
their corresponding application adaptation requirements are
identified. In [3] a migration method and tool chain based
on application model enrichment for optimally distributing
the application across one or multiple Cloud providers is
presented. This work targets the challenge of optimizing the
application layers’ distribution in the Cloud based on its
workload and expected performance. Moreover, internal or
external parameters produce variations of the application
workload. For example, an online Web store workload is
increased at certain time periods, e.g. before the Christmas
season, which may generate unnecessary monetary costs and/or
performance degradation. An analysis of this problem can be
conducted from two different perspectives, based on the Cloud
Consumer and the Cloud Provider interests. On the one hand,
the Cloud consumer aims to maximize the resource usage while
minimizing the incurred monetary costs. On the other hand,
the Cloud provider’s goals are associated with the utilization
of virtualization and multi-tenancy techniques to minimize
operational costs while ensuring isolation between the loads
generated by each Cloud consumer. In this context, our goal is
to provide the necessary methodology and artifacts to analyze
workload fluctuations over time and dynamically (re-)distribute
the application layers towards bridging the gap produced by
the existing conflict of interests between Cloud consumers and
Cloud providers.

According to several investigations [4], [5], [6], [7], [8], two
approaches for analyzing the application workload behavior
and evolution can be identified: top-down and bottom-up. In
the former, the application workload is characterized, and
the application behavior model is derived before or during
the deployment of the application. As discussed in [6], the
understanding of the application workload is mandatory in
order to achieve efficiency. Workload and statistical analysis
are often combined to derive the application workload behavior
model. However, the top-down analysis approach is restricted
to handle the workload evolution over time. Bottom-up
approaches address this deficiency with the help of resource
consumption monitoring techniques and performance metrics.
The analysis of the cyclical aspect of multiple workloads can
ease the application workload characterization, prediction,
and placement operations [5]. Furthermore, the analysis and

generation of application performance models for application
workloads in the Cloud can be used to ease capacity man-
agement operations and predict the workload behavior to
determine the most cost-effective resource configuration [7].

In this work we therefore propose to consolidate the top-
down and bottom-up application workload analysis approaches
over time in order to proactively satisfy application demands
by dynamically (re-)adapting its topology. Toward this goal,
in this paper we focus on the application persistence layer. For
this purpose, we analyze the application performance under
different deployment topologies, using the TPC-H benchmark
as the basis to generate application workloads with different
characteristics.

3 Experiments
3.1 Experimental Setup
The experiments discussed in the following emulate the
behavior of an application which is built using the three
layers pattern (presentation, business logic, and data, i.e.
persistence) proposed in [2]. We first generate 1GB of rep-
resentative application data using the TPC-H Benchmark.
Apache JMeter 2.94 is then used as the application load
driver to emulate the application business logic layer, using
the set of 23 TPC-H generated SQL queries as the load.
The following infrastructures are used for distributing the
application business logic and persistence layers:

• an on-premise virtualized server on 4 CPUs Intel Xeon
2.53 GHz with 8192KB cache, 4GB RAM, running Ubuntu
10.04 Linux OS and MySQL 5.1.72,

• an off-premise virtualized server (IaaS) hosted in the
Flexiscale service5 consuming 8GB RAM, 4 CPUs AMD
Opteron 2GHz with 512KB cache, and running Ubuntu
10.04 Linux OS and MySQL 5.1.67,

• an off-premise virtualized server (IaaS) Amazon EC26

m1.xlarge instance hosted in the EU (Ireland) zone and
running Ubuntu 10.04 Linux OS and MySQL 5.1.67,

• and an off-premise Amazon RDS7 DBaaS db.m1.xlarge
database instance hosted in the EU (Ireland) zone and
running MySQL 5.1.69.

We create three distribution scenarios, with the application
data 1) in the MySQL on-premise, 2) on the DBaaS solution,
and 3) in the MySQL on the IaaS solutions. The load driver
remains in all cases on-premise. The application persistence
layer performance is measured by normalizing the throughput
(Req./s) across 10 rounds on average per day for a period of
three weeks in the last quarter of 2013.

3.2 TPC-H Workload Characterization & Distribution
Analysis
The combination of top-down and bottom-up techniques
can benefit the evaluation and analysis of the application
workload and behavior over time. For this purpose, using
the first distribution scenario (application data on-premise)
we analyze the relationship between the database schema
and the access count on each database table for the initial

4. Apache JMeter: http://jmeter.apache.org
5. Flexiscale: http://www.flexiscale.com
6. Amazon EC2: http://aws.amazon.com/ec2/
7. Amazon RDS: http://aws.amazon.com/rds/

1939-1374 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2014.2381237, IEEE Transactions on Services Computing

JOURNAL OF TRANSACTIONS ON SERVICES COMPUTING, VOL. -, NO. -, SEPTEMBER 2014 3

TABLE 1: TPC-H Workload Analysis.

Query Accessed
Tables

Subqueries Total
Logical

Evaluations

Throughput (Req./s) Retrieved
Data (B)

Category
ID

On-
Premise

IaaS DBaaS

Flexiscale AWS EC2

Q(1) 1 0 1 0.03425 0.03396 0.04115 0.03817 538 CH
Q(2) 5 1 13 0.07927 0.14884 0.07413 3.03260 15857 CH
Q(3) 3 0 5 0.08687 0.11733 0.08446 0.31185 376 CH
Q(4) 2 1 5 0.53950 0.73922 0.54244 0.94903 105 CL
Q(5) 6 0 9 0.01148 0.02014 0.01377 0.33484 130 CH
Q(6) 1 0 4 0.20583 0.21355 0.22450 0.28261 23 CL
Q(7) 5 1 11 0.03123 0.04782 0.03477 0.20792 163 CH
Q(8) 7 1 11 0.97156 1.45380 0.74072 0.18196 49 CM
Q(9) 6 1 8 0.05947 0.09123 0.05470 0.05548 4764 CH
Q(10) 4 0 6 0.09168 0.11970 0.09584 0.49834 3454 CH
Q(11) 3 1 6 2.59998 4.07134 1.85092 0.26802 16069 CL
Q(12) 2 0 7 0.21147 0.22465 0.23487 0.13981 71 CL
Q(13) 2 1 2 0.12771 5.32350 - - 16 CL
Q(14) 2 0 3 0.03373 0.06017 0.03444 0.29052 28 CH
Q(15) 1 0 2 201.53365 22.25911 12.0840 23.11528 9 CL
Q(16) 2 1 2 0.11346 0.11219 0.12755 0.13471 120 CM
Q(17) 3 1 6 0.10931 0.19021 0.11319 0.97148 648259 CL
Q(18) 2 1 5 0.98213 1.81212 - - 25 CL
Q(19) 3 1 3 - - - - - -
Q(20) 2 0 25 4.05648 4.90228 3.29667 0.17083 21 CM
Q(21) 5 2 8 3.02705 5.32847 2.36784 - 8989 CM
Q(22) 4 2 13 0.01070 0.01734 0.01610 0.06065 8944 CH
Q(23) 2 2 6 2.72083 3.30785 2.35940 - 137 CL

Average 3.17 0.73 7 9.89262 2.29976 1.21958 1.72467 32188.5
Median 3 1 6 0.12058 0.20188 0.12037 0.27531 133.5
σ 1.74 0.68 5.23 41.83568 4.73645 2.67162 5.23164 137693.78

workload. A secondary analysis consists of dissecting the set of
items which constitute the initial workload, and quantitatively
analyzing their logical complexity, table joints, subqueries,
etc. Table 1 presents our findings. Throughput and retrieved
data size measurements are considered as performance metrics,
and therefore are a part of the bottom-up analysis approach.
We combined both analysis approaches to 1) analyze the
relationship between the complexity of the workload queries, 2)
to evaluate the performance of different application persistence
deployment topologies, and 3) to analyze the performance
variation of the initial and generated workload over time
perceived by the application’s end user. Towards this goal,
queries are categorized by trimming the mid-range of the
initial workload measured throughput and by comparing
the total number of logical evaluations with respect to the
remaining set of queries in the workload. Given the strong
connection between the measured throughput and the resource
consumption of the database engine in the TPC-H benchmark,
the categories compute high (CH), compute medium (CM), and
compute low (CL) are defined, and each query is associated
with its corresponding category as shown in Table 1.

The initial workload empirical distribution was analyzed
in terms of its cumulative distribution function. In order to
derive the theoretical statistical model associated with the
initial workload behavior distribution for the three distribution
scenarios, the probability distribution fitting functionalities

provided by the MASS and Stats libraries of R 3.0.28 were
used. We selected the Kolmogorov-Smirnov (KS) goodness of
fit tests, as these work well with small data samples. The KS
goodness of fit tests showed a minimal distance between the
empirical distribution and the estimated theoretical Weibull
distribution with a p-value (confidence) greater than 0.05.
Therefore, we can accept the KS goodness of fit null hypothesis,
which determines the Weibull distribution as the theoretical
distribution that best fits the initial empirical distribution
representing the application workload behavior. Figs. 1a, 1b,
and 1c depict the empirical and fitted Weibull cumulative
distributions for the on-premise, DBaaS, and IaaS scenarios,
respectively. The analysis above, however, does not take into
account the variability in the performance of the different
deployment scenarios over time. In the following we focus on
its effect to our measurements.

3.3 Performance Variation Analysis
The derivation of the statistical model for the initial workload,
and the characterization of each operation constituting this
workload provide a representative view on how the underlying
infrastructure is capable of handling a workload with concrete
characteristics. However, such analysis does not explicitly
provide a fined grained analytical view on the performance
variation perceived by the end user when executing each
workload operation during a time interval. Therefore, we

8. R Project: http://www.r-project.org

1939-1374 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2014.2381237, IEEE Transactions on Services Computing

JOURNAL OF TRANSACTIONS ON SERVICES COMPUTING, VOL. -, NO. -, SEPTEMBER 2014 4

(a) On-premise (b) DBaaS (c) IaaS

Fig. 1: Initial Workload Behavior Distribution Analysis — Cumulative Distribution Fit.

Fig. 2: Performance variation - Initial Workload & On-premise
scenario.

focus in this third analytical step on analyzing the degree of
performance variation among the experimental time period for
the different persistency layer deployment scenarios. There are
two fundamental aspects that we must take into account when
analyzing the performance variation in the scope of this work.
In the first place, the performance variation for each workload
operation has an impact in the overall workload performance
variation depending on the virtualized or non-virtualized
infrastructure where it is executed. Secondly, the workload
performance in highly virtualized environments, e.g. AWS or
Flexiscale, mostly depends on the current demands of the
underlying shared infrastructure. The observed performance
variation, however, can be beneficial or detrimental, and
directly depends on the concrete day and time when the
experimental rounds are driven.

3.3.1 Individual Deployment Alternatives Analysis
Fig. 2 shows the dispersion of the measured response time
among multiple experimental rounds, each one corresponding
to the execution of the initial workload in a database deployed
on-premise. The latency experienced by the end database

user when executing each workload operation among multiple
evaluation rounds is spread into three main intervals: (80000,
100000) ms., (20000, 40000) ms., and (0, 20000) ms. These
intervals already show that there are workload operations, e.g.
Q(5) and Q(22), which can substantially reduce the overall
latency if executed off-premise. A similar performance pattern
is observed when executing the same workload operations in
a database deployed in an IaaS offering, such as AWS EC2
(see Fig. 3). However, when executing such operations in a
database deployed in a DBaaS solution, e.g. AWS RDS, the
observed performance degradation is overturned, as the latency
is significantly reduced in approximately 90% in average
(see Fig. 4). Such improvement can be attributed to the
fact that the database’s engine configuration in a DBaaS
solution is highly optimized for complex (retrieval) query
processing. However, such performance improvement pattern
is not observed across all sampled workload operations.

The latency observed in most of the workload operations
in the on-premise scenario shows a detrimental variation,
as most of the latency measurements for each workload
operation sample present outliers tending to a higher expected
latency with respect to the experimental observations. Such
performance fluctuation would require a further empirical
analysis for requests Q(1), Q(2), Q(3), Q(4), Q(8), Q(10), and
Q(12), potentially investigating individually the underlying
resources, such as the storage system or the concrete database
server configuration. The scenario comprising the execution
of the workload in a database deployed in an IaaS solution
presents a lower average performance variation with respect to
the on-premise scenario (see Fig. 3). Most of the observations
show a minimum amount of outliers, potentially caused by ex-
traordinary events in the local network or load driver. However,
the observed latency of most of the workload operations shows
a slight performance deterioration with respect to the mean.

The latency variation analysis shown in Fig. 4 corresponds
to the execution of the workload operations in a database
deployed in a DBaaS solution. At a first glange, an overall
performance improvement can be observed when executing
the complete workload. However, we can also observe by
driving an individual analysis of the operations that such
overall performance improvement is not present in all workload
operations. For example, there are workload operations which

1939-1374 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2014.2381237, IEEE Transactions on Services Computing

JOURNAL OF TRANSACTIONS ON SERVICES COMPUTING, VOL. -, NO. -, SEPTEMBER 2014 5

Fig. 3: Performance variation - Initial Workload & IaaS
scenario.

clearly show a performance deterioration (Q(18), Q(11), and
Q(20)) when comparing their execution to the on-premise
or IaaS solution scenarios (see Fig. 2 and 3, respectively).
Moreover, Q(1) shows a slight performance degradation with
respect to executing it in a database deployed in an IaaS
solution. Moreover, such workload operations show a trend
towards increasing the latency with respect to the median.
Focusing on the performance variation in the DBaaS offering,
we can observe that more than 50% of the workload operations
present a high amount of outliers. Such variations, however, do
not always follow a trend towards a performance degradation,
as observed in the on-premise scenario. For example, for the
workload operations Q(8), Q(12), Q(14), and Q(16) there are
some latency observations which improve the performance in
approximately 10% in average with respect to the median.

The previous results show that there exists a divergent
performance variation which fundamentally depends on the
concrete workload operation and the infrastructure where it is
executed. However, there are some scenarios where a certain
set of workload operations converge to at least a range of
performance measured values. With respect to the variation
trend among the different database deployment scenarios, we
can deduce that the majority of workload operations tend to
show a degraded performance among the experimental rounds
due to this variation.

3.3.2 Overall Deployment Alternatives Weekly Analysis
As discussed in Section 2, the application’s workload fluctu-
ation can highly vary according to different parameters, e.g.
end users’ demands, popularity of the data, year’s season,
etc. Moreover, virtualized environments typically share the
underlying resources, e.g. hardware, middleware, etc. between
multiple applications. The resources assigned to each appli-
cation depend on the current and predicted demand of the
other applications [5]. Resource management, monitoring,
and scheduling techniques are typically used to perform
analytical operations on current and predicted time intervals.
For example, Gmach et al. [5] focus on deriving workload
patterns to describe the resources demand’s behavioral aspects
over time. The driven experiments focused on performing

Fig. 4: Performance variation - Initial Workload & DBaaS
scenario.

a weekly monitoring, analysis, and patterns derivation of
multiple workloads in an HP data center in order to derive
solid prediction and resource scheduling models.

Following a similar approach in our experiments, we focus
on analyzing the application’s performance from the user’s
perspective, rather than investigating resources assignment
optimization techniques in a virtualized environment. There-
fore, we analyze the perceived by the user latency for the same
workload on a weekly basis for different deployment scenarios
of the application’s persistency layer. The measurements were
taken from 10 experimental rounds on average per day for
a period of three weeks in the last quarter of 2013. Fig. 5
shows a comparison among the different deployment scenarios
covered in these experiments focusing on the latency measured
in different experimental rounds.

In a first step, we can observe that there exists an overall
performance improvement when running the application’s
persistency layer off-premise. Furtermore, there exists a clear
gain in performance when using database related Cloud
offerings, such as AWS RDS. The observations in this this
analysis, however, also show a performance variation when
executing the initial workload under different deployment
scenarios. The on-premise and DBaaS scenarios present the
highest performance variation, while a steadier over time
performance is observed for the IaaS scenarios. Focusing on
the data trend for each scenario, off-premise scenarios present
a trend towards improving the performance when reaching
the weekend, while the on-premise scenario behaves in an
inverse manner. Such performance degradation trend observed
in the on-premise scenario relate to scheduled maintenance
tasks running in parallel to our experiments in the on-premise
infrastructure. However, the on-premise deployment scenario
shows, for example, a better performance until Wednesday,
when comparing it to the IaaS EC2. The comparison of trends
based on empirical data assists the application developer to
make an efficient decision towards which deployment scenario
offers a better performance during a concrete time interval.

1939-1374 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2014.2381237, IEEE Transactions on Services Computing

JOURNAL OF TRANSACTIONS ON SERVICES COMPUTING, VOL. -, NO. -, SEPTEMBER 2014 6

Fig. 5: Workload and Application Data Distribution Evaluation
Results.

TABLE 2: Workload and Application Data Distribution
Evaluation Results.

Scenario Category % Queries
same

Category

Distribution
Parameters

Throughput
(Req./s)

On-
Premise

CL 79.4% k= 0.35666
λ= 3.28983

0.27749

On-
Premise

CM 18.9% k= 0.36037
λ= 0.80655

0.05888

On-
Premise

CH 95.0% k= 0.53023
λ= 0.08990

0.02696

DBaaS CL 66% k= 0.54324
λ= 0.59264

0.45238

DBaaS CM 21.6% k= 0.57200
λ= 0.88472

0.19972

DBaaS CH 88.3% k= 0.74471
λ= 0.23991

0.10273

IaaS CL 78.2% k= 0.63816
λ= 1.64010

0.34477

IaaS CM 20.0% k= 0.52690
λ= 0.53472

0.06046

IaaS CH 90.8% k= 0.60906
λ= 0.11362

0.03378

3.4 Generation and Evaluation of Synthetic Workloads

The previous analyses consisted of analyzing the initial work-
load behavior, evaluating the persistency layer’s performance
and its variation under different deployment topologies, and
establishing the experimental baseline for interpreting the
application performance under fluctuating over time workloads.
Subsequent to characterizing and aligning the application
workload into the previously presented categories, synthetic
workload generation and evaluation phases can take place.
The workload generation consists of generating a set of
representative workloads with different characteristics which
take into account the different dimensions previously analyzed.
With respect to the the workload generation, in this research
work we specifically focus on the categorization and characteri-

zation aspects when probabilistically generating a significant
workload. The incorporation of environment context aspects
into the workload generation methodology, i.e. the observed
performance variation in the environment, is planned to be
incorporated in future investigations.

The probabilistic workload generation is typically sup-
ported by incorporating statistical methods into workload
generation tools, such as Malgen9 or Rain [9]. Malgen sup-
ports the creation of large distributed data sets for parallel
processing benchmarking, e.g. Hadoop, while Rain provides a
flexible and adaptable workload generator framework for Cloud
computing applications based on associating workload items
with a probability of occurrence. However, such approaches
do not explicitly take into consideration the distribution of
the application layers among multiple Cloud services. By
using scripting techniques and the set of successfully executed
TPC-H queries, we created multiple workloads for each of the
categories we identified in the previous section with fixed size
of 1000 SQL queries each. A generated synthetic workload is
categorized based on the frequentist probability of the queries
which constitute the workload. For example, the CL synthetic
workload is generated by assigning a higher probability of
occurrence to the CL queries, and consists of 79.4% of queries
categorized as CL as depicted in Table 2 (in the on-premise
scenario). However, for the generated CM synthetic workloads
the number of CM queries decreases, as the amount of CM
queries in the initial workload is lower with respect to the
CL and CH queries (Table 1). The variation of the previously
selected Weibull distributions of the generated workloads with
respect to the initial workload are depicted in Figs. 6a, 6b, and
6c, for the on-premise, DBaaS, and IaaS scenarios, respectively.
Table 2 provides the shape and scale parameters of the Weibull
distribution for the multiple generated workloads. In the future,
we plan to evaluate existing workload generation tools to
incorporate support for generating multiple artificial workloads
according to specified probability distributions considering the
different deployment topologies of the application layers.

3.5 Discussion
In the following we discuss the most important findings from
the previous results. Table 1 drives the following conclusions
with respect to the initial workload:

• When deploying the database in the Flexiscale IaaS
solution, the average performance of 85% of the success-
fully executed queries improves between 3% and 4078%.
However, when deploying the database in AWS EC2, a
performance improvement is observed only in 61% of the
successfully executed queries.

• When deploying the database in the DBaaS solution
(RDS), the average performance of 70% of the queries
improves between 11% and 3725%, but

• there are queries whose performance is degraded when
being executed off-premise, such as Q(1), Q(15), and Q(16)

(for the Flexiscale scenario), Q(2), Q(3), Q(8), Q(9), Q(11),
Q(15), Q(20), and Q(22) (for the AWS EC2 scenario), and
Q(8), Q(9), Q(11), Q(12), Q(15), and Q(20) (for the AWS
RDS scenario).

In order to evaluate the performance improvement or degra-
dation under different generated synthetic workloads and

9. Malgen: http://code.google.com/p/malgen/

1939-1374 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2014.2381237, IEEE Transactions on Services Computing

JOURNAL OF TRANSACTIONS ON SERVICES COMPUTING, VOL. -, NO. -, SEPTEMBER 2014 7

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Throughput (Req./s)

F
n(

x)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●● ● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●● ●● ●●

●

●

●

●

●

●

●

Initial Workload
CL Workload
CM Workload
CH Workload

(a) On-premise Generated WLs vs. Initial WL
- Weibull Distribution Fit

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Throughput (Req./s)

F
n(

x)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●●

●● ●

●

●

●

●

●

●

Initial Workload
CL Workload
CM Workload
CH Workload

(b) DBaaS Generated WLs vs. Initial WL -
Weibull Distribution Fit

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Throughput (Req./s)

F
n(

x)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●● ● ●●

●

●

●

●

●

●

●

●

●

Initial Workload
CL Workload
CM Workload
CH Workload

(c) IaaS Generated WLs vs. Initial WL 2 -
Weibull Distribution Fit

Fig. 6: Generated Workload Behavior Distribution Analysis.

deployment topologies of the application persistence layer,
we first analyze from Fig. 6 the workload behavior distribution
variation with respect to the initial workload fitted Weibull
distribution. It can be observed from the CL and CM fitted
Weibull distributions across all scenarios that there exists
a faster cumulative probability growth for queries with high
throughput, while in the CH case, queries with high throughput
are less likely to be included in the generated workload.
Moreover, we can observe the impact that the workload
fluctuation has on the distribution shape and scale parameters
of the Weibull distribution (Table 2). With respect to the
overall performance under the different application persistence
layer deployment topology, we can observe from the obtained
results depicted in Table 2 that:

• the compute demand is indeed increased among the
three different workload categories, and the throughput
is reduced by 78% to 90% when executing the workload
on-premise, by 55% to 77% when executing the workload
in a DBaaS solution, and by 80% to 90% when executing
the workload in an IaaS solution, using the CL category
as the baseline, and

• the overall performance is highly improved when executing
the generated workloads off-premise. For the DBaaS
solution an increase of 163%, 339%, and 381% is observed
for the CL, CM, and CH workloads, respectively. In the
IaaS AWS EC2 scenarios, the performance is improved in
124%, 102%, and 125% for the CL, CM, and CH workloads,
respectively.

From the previous experiments we can conclude that 1)
different workload distributions do not only perform in a
different manner, but also that 2) adapting the application
deployment topology with respect to the workload demands
significantly and proactively improves the application perfor-
mance. However, an efficient application distribution must 3)
take into consideration the performance variability aspects of
each Cloud service by means on identifying and predicting,
e.g. the time period that offered an efficient performance
in past observations. Providing support for (re-)adapting
the application topology, i.e. (re-)distributing its layers to
adequately consume the required resources to satisfy the
workload demands fluctuations, is therefore necessary. With

the help of workload characterization and generation tech-
niques, probabilistic models, and prediction capabilities, the
application can be proactively and efficiently adaptated to
satisfy different workload demands.

4 Application Distribution Support
Based on the previous conclusions, we investigate the require-
ments and introduce a step-by-step process to analyze the
application workload and its fluctuations over time in order to
assist the application developer to dynamically and proactively
(re-)distribute the application towards achieving an adequate
performance.

4.1 Requirements
Functional Requirements
The following functional requirements must be fulfilled by
any process based on the analysis of fluctuating application
workload over time and the dynamic (re-)distribution of the
application for achieving an efficient performance:
FR1 Support of Both Top-Down and Bottom-Up Analysis: The

process must support both analysis of the application
workload and the derivation of its workload behavior
model before the deployment of the application (top-down)
and during runtime (bottom-up), respectively.

FR2 Performance-Aware Topology Specification: The process
has to support the definition of application topologies
considering performance aspects in various formats such
as TOSCA [10] or Blueprints [11].

FR3 Management and Configuration: Any tool supporting
such a process must provide management and config-
uration capabilities for Cloud services from different
providers covering all Cloud Service Models and Cloud
Delivery Models. Focusing on data storage as an example,
this includes data stores, data services, and application
deployment and provisioning artifacts bundling together
different (re-)distribution actions.

FR4 Support of Different Migration Types: in order to
(re-)distribute an application the process has to support
all migration types identified in [1]: replacement, partial
and complete software stack migration, and cloudification.

1939-1374 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2014.2381237, IEEE Transactions on Services Computing

JOURNAL OF TRANSACTIONS ON SERVICES COMPUTING, VOL. -, NO. -, SEPTEMBER 2014 8

FR5 Independence from Architectural Paradigm: The process
has to be independent from the architecture paradigm
the application to be (re-)distributed is based on, e.g.
SOA [12] or three-layered architecture [2].

FR6 Support & Reaction on Workload Evolution: As the
workload of an application is subject to fluctuations
over time, the process must support the identification
of these fluctuations, e.g. based on resource consumption
monitoring techniques, and react by (re-)distributing the
application accordingly.

FR7 Support of Multiple Workload Characteristics: In the
ideal case, implementation- or architecture-independent
workload characteristics are used in order to create a
generic application behavior model. As there are, for
instance, an operating system influence on the application
behavior, it is nearly impossible to obtain completely
independent characteristics [6]. Thus, the process has to
support both implementation dependent and independent
workload characteristics.

FR8 Support of Hardware, Software, and Application Char-
acteristics: the performance optimization is determined
by the hardware, software, and the application itself [6].
Hence, the process has to consider characteristics for all
three.

FR9 Creation of Workload Behavior Model: The process
has to support workload behavior derivation and fitting
capabilities in order to create the workload behavior
model, e.g. based on probability [8].

Non-functional Requirements
In addition to the required functionalities, a process supporting
the dynamic application (re-)distribution to cope with fluctu-
ating over time workloads should also respect the following
properties:

NFR1 Security: (Re-)distribution and (re-)configuration of
applications requires root access and administrative rights
to the application. Any tool supporting the process should
therefore enforce user-wide security policies, and incor-
porate necessary authorization, authentication, integrity,
and confidentiality mechanisms.

NFR2 Extensibility: The methodology should be extensible,
e.g. to incorporate further provisioning and deployment
approaches and technologies.

NFR3 Reusability: The workload analysis, workload evolu-
tion observation, and application (re-)distribution mech-
anisms and underlying concepts should not be solution-
specific and depend on specific technologies to be imple-
mented. Components of a tool supporting such a process
should therefore be extensible when required and reusable
by other components and tools, e.g. to be integrated
with a Decision Support System for application migration
to the Cloud and application architecture refactoring as
presented in [13].

4.2 Application Distribution Support Process
Towards fulfilling the functional and non-functional require-
ments previously identified, in this section a process-based
realization approach is presented using the BPMN2 10 notation

10. BPMN2 specification: http://www.omg.org/spec/BPMN/2.0/

C
lo

u
d

 A
p

p
lic

at
io

n
 D

is
tr

ib
u

ti
o

n
 S

u
p

p
or

t

A
pp

lic
at

io
n

 D
e

ve
lo

p
e

r

Analyze
Application
Topology &
Workload

Derive
Application
Workload
Behavior

Topology+
Spec.

Model
Application

Topology

Specify Workload
Characteristics

yes

Define
Expected

Performance
WL Spec.

Create
Artificial

Application
Workloads

Build
Application
Alternative
Topologies

Analyze &
Propose

Application
Distribution

Evaluate
Distribution

Send
Application
Distribution
Candidate Distribute

Application

Evaluate
Application
Distribution

Send
 Results &

Comparison

Present
 Results &

Comparison

Analyze
Results

Register
Alternative
Topology

yes

Receive
Evolution
Analysis

Analyze
Evolution

yes

no

Monitor
Application
Distribution

Notify
Decision

Notify

no

yes

Process
Notification

Available
Workload

Characteristics
Knowledge?

Fills
Application

Requirements?

Preserve
Application
distribution?

Fig. 7: Application Analysis and Distribution Process using
BPMN2 Notation

(Fig. 7). Two main parties are identified when dynamically
(re-)distributing the application to achieve an efficient per-
formance in the Cloud: the Application Developer and the
Application Distribution Support System.

The application developer tasks are not only related to
the application design and realization, but also incorporate
responsibilities associated with specifying the application
dependencies on the underlying resources, e.g. middleware,
OS, and hardware, which are commonly specified using

1939-1374 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2014.2381237, IEEE Transactions on Services Computing

JOURNAL OF TRANSACTIONS ON SERVICES COMPUTING, VOL. -, NO. -, SEPTEMBER 2014 9

application topology languages. Available Cloud application
topology languages show nowadays a division based on the
their degree of generalization among providers. For example,
there exist topology languages that are technology specific,
e.g. TOSCA [10], Blueprints [11], and AWS CloudForma-
tion11, while others provide a more generic view together
with mapping techniques to enable its conversion to a more
concrete technological language, e.g. GENTL [14] or CAMP12.
There are two fundamental possibilities presented in [15]
and supported in this approach for modeling an application
topology:

1) A complete specification of the underlying application
stack and their corresponding relations. For instance,
explicitly specifying the desired middleware components
and operating system.

2) A partial specification of the underlying resource, poten-
tially only considering the application specific components
(and their corresponding relations) in the topology. For
instance, only depicting a front- and back-end tier of a
two-tiered application, without any details on e.g. the
operating system.

The modeled application topology may also contain informa-
tion related to resource configuration aspects, e.g. elasticity
rules in the form of policies. Subsequently to providing a
model of the application topology in the top-down approach,
the application developer has the possibility to enrich the
topology with an initial set of workload characteristics that the
application demonstrates, e.g. providing information related
to the expected frequency of a query in the persistence layer,
or defining a probability matrix for the operations in the
presentation and business layers. The expected performance
can be specified in a fine granular way, e.g. for each operation
or application layer, or for the application as a whole, e.g.
average response time for all application functionalities.

On the other side of Fig. 7, the application distribution
support system aims to guide the application developer in
the tasks related to efficiently (re-)distributing the application
to proactively react to fluctuating and varying application
workloads and performance demands. For this purpose, we
proposed in the previous sections the combination of both
top-down and bottom-up approaches over time. As a first
step, the application distribution support system analyzes
the enriched topology and the workload specification. The
expected performance is expressed as set of preferences, which
can be analyzed using utility based approaches. By using
distribution fitting and goodness of fit statistical techniques,
the system derives an (initial) workload behavior model.
Following on, multiple artificial application workloads with
different characteristics are generated from the initial work-
load, e.g. the CL, CM, and CH categories depicted in the
previous section, and their behavior models are derived. In
parallel, the system generates multiple application distribution
alternatives, depicted as alternative topologies in Fig. 7. Each
of these alternative topologies represent a performance-aware
application distribution alternative of the different potential
migration types discussed in [1]. The topology alternatives can

11. AWS CloudFormation: http://aws.amazon.com/
cloudformation/

12. OASIS CAMP v1.1: http://docs.oasis-open.org/camp/
camp-spec/v1.1/csprd03/camp-spec-v1.1-csprd03.pdf

be seen as a list of topologies which can be ordered (ranked)
in subsequent phase of the process according to the initial
developer preferences following a method like the one discussed
in [15].

The remaining tasks in the application distribution support
system initiate the Collaborative Loop. The collaborative loop is
proposed in [16] as an approach to support the (re-)distribution
of the application over time to proactively react to fluctuating
workloads and resources demands. In the analyze & propose
application distribution task, the application distribution
support system prunes the application topology alternatives
space using the previously created workloads by establishing an
association between the workload behavior and the observed
performance (taking into account its variation among time) of
the same or similar applications in previous observations. The
ranking of topologies alternatives is a result of using statistical
similarity techniques on comparable applications. In case of
not possessing such previous experience, the system presents
the set of alternative topologies, which can be empirically
evaluated prior to the application production phase, e.g. using
benchmarking techniques. The application developer then
selects a potential application distribution candidate and
sends an application distribution candidate. Subsequently, the
application distribution system distributes the application by
provisioning the required resources 1) to deploy the different
components of the application, e.g. in a public Cloud provider,
or 2) to configure the simulation environment based on previous
experience and infrastructure data.

The application distribution evaluation consist of driving
experiments or simulations using the generated artificial
workloads and the application topology alternatives. The
most relevant to the user measured KPIs, e.g. response time,
resource consumption, monetary costs, etc, are then calcu-
lated and presented to the application developer in the send
results & comparison and present results & comparison tasks,
respectively. The application developer is then responsible for
analyzing the empirical results and notifying his decision about
the proposed application distribution alternative. Once the
decision is received by the application distribution support
system, such information is registered in the system for future
analysis and prediction, e.g. for analyzing the performance
variation as depicted in Section 3. There are two main
remaining set of procedures in the collaborative loop. In
case of fulfilling the application developer requirements, in
the production phase of the application its performance and
workload evolution are monitored and analyzed. The reiteration
of such tasks enable the application distribution support
system to analyze the application workload and performance
demands evolution through the derivation of workload and
performance demands patterns, e.g. using periodogram and
workload frequency analysis techniques [5]. Such analyses are
periodically reported to the application developer towards
assisting in future decisions. The investigations of the workload
behavior and evolution over time by means of using statistical
techniques allows in this manner for the application to be
proactively (re-)distributed to efficiently cope with future
workload demands. On the other hand, if the proposed ap-
plication distribution does not fulfill the application developer
requirements, further application distribution alternatives are
proposed and the collaborative loop iterates over the previously
described tasks.

1939-1374 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2014.2381237, IEEE Transactions on Services Computing

JOURNAL OF TRANSACTIONS ON SERVICES COMPUTING, VOL. -, NO. -, SEPTEMBER 2014 10

5 Evaluation
The previously proposed approach aims at assisting the
application developer to (re-)distribute the application, i.e.
to efficiently select the underlying application resources, to
cope with the workload behavior and performance demands
fluctuation. The experiments driven in Section 3 showed that
different deployment approaches of the application persistence
layer already benefit or deteriorate its performance depending
on which Cloud offering is chosen. Moreover, different Cloud
service delivery models and providers show a different perfor-
mance variation. In the following we use these findings as part
of evaluating the process discussed in the previous section.

5.1 Methodology & Setup
The evaluation discussed in this section aims at empirically and
conceptually evaluating the previously presented application
(re-)distribution support process using a real world application
as a case study. For this purpose, we chose a well-known real
world application currently used by a wide amount of internet
users: MediaWiki. The two-tiered MediaWiki application is an
open source PHP based implementation, which is well known
due to its usage in the Wikipedia project and further projects
of the Wikipedia foundation. Since the release of real access
traces to several Wikipedia mirror servers, different research
works have driven investigations on the level of benchmarking
and workload analysis [17], [18], [19], [20]. In the experiments
we discussed in Section 3 we focused on the computational
intensity characteristic of modern applications using the TPC-
H benchmark. In the following experiments we aim to move
a step forward by considering further business application
requirements, e.g. data transfer intensity.

We partially used and extended the MediaWiki bench-
mark Wikibench13 for purposes of sampling and generating
customized workloads in this work. We used the Wikipedia
access traces and a Wikipedia database dump from the year
2008. The access traces were first sampled using the WikiBench
sampling tools. We then randomly generated from this sample a
workload consisting of 200K HTTP requests, targeting both the
retrieval of server files and pages from the back-end database,
and the storage and editing of Wikipedia pages stored in the
back-end database. Apache JMeter version 2.9 was used for all
experimental rounds as the load driver, creating 10 concurrent
users and uniformly distributing the load of the application
across them. Both the generated load and the load profile are
publicly accessible in Bitbucket14.

The application (re-)distribution process derived a wide
set of possible application topologies alternatives for both on-
premise and off-premise deployment scenarios. In all cases, the
load driver responsible for generating the HTTP requests was
maintained on-premise, as the latency introduced by remotely
accessing must be taken into consideration when analyzing
the latency experienced by the end user. Consequently to the
derivation of the application topology alternatives, a subset of
such alternatives was selected towards empirically evaluating
the performance of the different deployment alternatives of the
application. We measured the latency experienced by each user
in milliseconds, like in Section 3.

13. Wikibench: http://www.wikibench.eu/
14. Load Driver Profile & Sample - Bitbucket Git Repository:

http://bitbucket.org/sgomezsaez/mediawiki load driver

MediaWiki_App:
PHP_App

Apache_PHP_Module:
PHP_Container

Apache_HTTP_Server:
Web_Server

Ubuntu_14.04_LTS:
Virt_Linux

MediaWiki App:
Web_App

IBM_Server:
Physical_Server

wikiDB: SQL_DB

MySQL:
SQL_RDBMS_Server

 consists_of consists_of

Ubuntu_14.04_LTS:
Virt_Linux

MySQL:
SQL_DBaaS

AWS_EC2_m3.xlarge:
AWS_EC2

AWS_RDS_m3_large:
AWS_RDS

hosted_on

alt_hosted_on

Physical Server IaaS Solution DBaaS Solution

AWS_EBS_gp2:
Distributed_Storage

uses

Alternative
Topology Node

 Topology Nodeinteracts_with

Application-
specific Topology

Node

AWS_EC2_t2.medium:
AWS_EC2

AWS_EBS_gp2:
Distributed_Storage

uses

Fig. 8: MediaWiki Application Derived Topology Alternatives.

5.2 Evaluation Results
5.2.1 Topologies Alternatives Derivation
The first set of tasks in the process derived a set of vi-
able topology alternatives for distributing the MediaWiki
application, following [15]. From this topologies alternatives
space, we then enforced an application developer requirement
related to exclusively using AWS offerings, and extracted the
subset of alternative topologies depicted in Fig. 8. As already
explained, the MediaWiki application is a two-tiered applica-
tion consisting of a front-end tier and a back-end database
tier. The underlying components required by MediaWiki are
represented as an acyclic graph in Fig. 8, where nodes depict
the different components belonging to a concrete type, while
the edges represent the relationships among them. There
are two fundamental parts in such topology: the application
specific and application independent sub-topologies (the α−
and γ−topologies, respectively, following the terminology
of [15]). The former describes the components required specif-
ically by the application, while the latter depicts a subset of
components which can be replaced by further sub-topologies,
and potentially reused by similar applications. There are
two modeling possibilities for the application developer. In
a first approach, the application developer can only model
the application specific topologies, while the process derives a
viable set of alternative topologies. However, the modeling
tasks of the process also support the scenario where the
application developer models a complete application topology,
e.g. the on-premise Physical Server topology depicted in Fig. 8.

Fig. 8 also shows the breaking down of the alternative
topologies space to the ones exclusively using AWS offerings.
The process derived a set of three application independent
sub-topologies and 6 alternative topologies (represented with
dashed lines in Fig. 8), consisting of:

1) deploying both tiers in an on-premise virtual machine,
2) migrating the backend database tier to the AWS Cloud

and deploying it

1939-1374 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2014.2381237, IEEE Transactions on Services Computing

JOURNAL OF TRANSACTIONS ON SERVICES COMPUTING, VOL. -, NO. -, SEPTEMBER 2014 11

Fig. 9: On-premise deployment of MediaWiki font-end Tier.
Back-end database tier deployed in AWS EC2 and AWS RDS

solutions.

• in an IaaS solution, such as AWS EC2
• and in a DBaaS solution, such as AWS RDS,

3) and migrating both front-end and back-end tiers of the
application and deploying them in two IaaS EC2 virtual
machines with different configurations.

5.2.2 Performance Evaluation
The performance evaluation of the previously derived alterna-
tive topologies consist in this section of measuring the latency
experienced by the application end user. For presentation
purposes, we defined two main scenarios for driving the
experiments and presenting the results. Based on the location
of the MediaWiki front-end tier (on-premise vs. off-premise),
we present the evaluation analysis for the different deployment
alternatives of the back-end database tier (see Fig. 8).

In the first set of results we compare the deployment of the
MediaWiki complete application stack on-premise, against
deploying the presentation and business logic on-premise
and the application’s database in an off-premise IaaS (AWS
EC2), and DBaaS (AWS RDS) solution. The results presented
in Fig. 9 show that there is a performance degradation of
approximately 300% when deploying the MediaWiki database
in an off-premise infrastructure, such as AWS EC2 and AWS
RDS. Such degradation can be largely attributed to the
network latency between the two application tiers. However,
due to the fact that the database server is being executed
off-premise, most of the resources previously hosting the whole
MediaWiki stack were released.

The second set of results depicted in Fig. 10 corresponds to
the migration of the complete MediaWiki application stack off-
premise. The scenarios firstly consist of deploying the database
in the same virtual machine as the presentation and business
logic layers of the application, and secondly of deploying the
database in independent AWS EC2 and RDS instances. The
latency experienced by the application’s end user is in average

Fig. 10: Off-premise deployment of MediaWiki front-end Tier.
Back-end database tier deployed in AWS EC2 and AWS RDS

solutions.

a 6.7% reduced with respect to the on-premise deployment.
Such decrease is due to a lower network overall network latency
existence in this scenario.

When comparing both scenarios, the experiments show
that the usage of a DBaaS solution helps in improving the
performance when deploying the application database off-
premise. More specifically, for the first scenario (on-premise
deployment), the performance improvement is approximately
1.79% while in the second scenario (off-premise) a 6.78%.

5.3 Discussion
From the previously derived case study evaluation in this
section we discuss the most relevant findings with respect to
the benefits and required improvements in the process based
approach for (re-)distributing the application in the Cloud.

The previously driven experiments show significant findings
when targeting a two-tiered application distribution evaluation
and analysis from two perspectives: from the database tier
(Section 3) and from the whole application point of view
(Section 5). The former consisted of using a well-known
database benchmark and load as the basis (TPC-H), while
the latter consisted of empirically evaluating a real world
application distribution using a real workload (based on
the Wikipedia traces). The experiments reported two major
process refinement points related to the performance analysis
of the different Cloud services and the investigation of the
characteristics of an application workload. More specifically,
a performance degradation was observed when moving only
the MediaWiki persistency layer to an off-premise DBaaS
solution. In contrast, the TPC-H workload showed a significant
performance improvement when executing its requests off-
premise. The nature of both workload characteristics is however
fundamentally different. On the one hand, TPC-H focus on the
computational complexity and capacity of the database server,
while on the other hand the Wikipedia workload groups a set

1939-1374 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2014.2381237, IEEE Transactions on Services Computing

JOURNAL OF TRANSACTIONS ON SERVICES COMPUTING, VOL. -, NO. -, SEPTEMBER 2014 12

of actual requests which target the data retrieval and transfer
aspects, putting an emphasis on data transfer. The process
must therefore be able not only to provide the means to the
application developer to partially or completely specify this
characteristic during the application topology design time,
but it must also be able to derive such behaviors during
the evaluation and production phases through the usage of
monitoring and analysis techniques.

With respect to the modeling and specification of
performance-aware application requirements, we found that
the process considers and adopts the most fundamental
aspects of the application performance and workload behavior
fluctuation. However, during the case study evaluation we
encountered the necessity of not exclusively scoping the applica-
tion topology enrichment with performance-aware information,
but also enabling the specification of both application hard
constraints and preliminary configuration tasks. For example,
the deployment of the MediaWiki database tier in the AWS
Cloud required the creation and configuration of Security
Groups. Such configuration tasks must be performed prior
to the empirical evaluation. Moreover, the scenario where
the database tier was deployed on-premise while migrating the
presentation and business logic to the Cloud raised a constraint
related to accessing the database due to security aspects in
our on-premise infrastructure. The specification of constraints
must be supported during the application topology modeling
phase and used during the alternative topologies space analysis.

Furthermore, vast majority of Cloud providers nowadays
offer multiple configuration options for dealing with application
workload spikes in line with optimizing the usage of the
underlying resources and satisfying the application Service
Level Objectives (SLO). Typical approaches are based on
defining reactive and dynamic rules for replicating and horizon-
tally scaling, e.g. VMs or database instances across multiple
availability zones [21]. We investigated the adaptation options
and incorporated the support for specifying the application
adaptability options through policies in [22]. Such adaptation
options have a direct impact on deciding upon a distribution
and re-distribution of the application components. Therefore,
we need to empirically evaluate in future experiments the short-
and long-term cost of re-distributing (re-deploying) partially
or completely the application vs. re-configuring and adapting
the provisioned resources.

Container-based deployment approaches, such as Docker15

are also on the rise, and most Cloud providers, e.g. AWS16,
Microsoft Azure17, or Google App Engine18, are incorporating
support for provisioning and deploying light weight containers.
In the scope of the proposed process based approach, a
container-based application deployment is already taken into
consideration, as it is considered by the process as a possible
alternative topologies set. Moreover, the tasks related to
the configuration of the required underlying resources are
also taken into consideration during the specification of the
application topology model and adaptability options.

15. Docker:https://www.docker.com/
16. AWS Beanstalk: http://aws.amazon.com/elasticbeanstalk/
17. Microsoft Azure:http://azure.microsoft.com/
18. Google App Engine - Containers: https://cloud.google.com/

compute/docs/containers

6 Related Work

In the following we present our investigations on existing appli-
cation architecture model optimization approaches, application
workload generators, application and database benchmarks, as
well as existing approaches for runtime performance evaluation
of services and Cloud applications.

The evolution of software architecture models towards
optimizing crucial quality properties is targeted in [23]. An
analysis on the problems when designing and deploying a Cloud
application in [24] motivates the definition of a methodologi-
cal approach to create structured Cloud-native applications.
Focusing on the application workload, existing application
workload generators target the evaluation of the application as
a whole, rather than evaluating the performance of each appli-
cation layer or application component separately for different
application topologies. For example, Faban Harness19 is a free
and open source performance workload creation and execution
framework for running multi-tier benchmarks, e.g. Web server,
cache, or database. Cloudstone [25] targets specifically Web
2.0 applications with a monolithic deployment implemented
in Rails, PHP, and Java EE on Amazon EC2 and Sun’s
Niagara enterprise server. Rain [9] incorporates the possibility
to determine the probability of occurrence of the different
operations of a Web application, e.g. home page request, log
in, or adding event items to the calendar. The language GT-
CWSL [4] for specifying workload characteristics is used by the
synthetic workload generator for generating Cloud computing
application workloads. Existing application benchmarks focus
either on evaluating a specific type and aspect of an application
or are application implementation and technology specific, e.g.
TPC-W20, TPC-C21, or SPECjbb201322. All these tools and
languages focus on the creation of HTTP-based workloads
in order to evaluate the performance of monolithic Web and
Cloud applications.

In this publication we focus on workload characterization
and analysis of the database layer in order to achieve an
efficient performance over time. There are several database
benchmarks and data generators for distributed data bench-
marking available. Malgen7 provides a set of scripts that
generate large distributed data sets based on probabilistic
workload generation techniques, which are suitable for testing
and benchmarking software designed to perform parallel pro-
cessing of large data sets. SysBench23 is a system performance
benchmark for evaluating operating system parameters in
order to improve database performance under intensive load.
The proprietary database performance testing tool Bench-
mark Factory24 provides database workload replay, industry-
standard benchmark testing, and scalability testing. The
Wisconsin Benchmark is for evaluation of performance of
relational database systems [26]. The TPC-H Benchmark1

illustrates decision support systems handling large volumes
of data and using queries with high degree of complexity.
The open source database load testing and benchmarking

19. Faban: http://faban.org
20. TPC-W Benchmark: http://www.tpc.org/tpcw/
21. TPC-C Benchmark: http://www.tpc.org/tpcc/
22. SPECjbb2013: http://www.spec.org/jbb2013/
23. SysBench: http://sysbench.sourceforge.net
24. Benchmark FactoryTM: http://software.dell.com/products/

benchmark-factory/

1939-1374 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2014.2381237, IEEE Transactions on Services Computing

JOURNAL OF TRANSACTIONS ON SERVICES COMPUTING, VOL. -, NO. -, SEPTEMBER 2014 13

tool HammerDB25 comes with built-in workloads for TPC-
C and TPC-H and supports various relational databases
such as Oracle, PostgreSQL, and MySQL. We based our
workload characterization and analysis on TPC-H, but we plan
to broaden the scope by incorporating additional database
benchmarks and performance testing tools.

Nowadays resource consumption monitoring techniques and
performance metrics are used to support bottom-up analysis of
the workload and in particular the workload evolution analysis.
Van Hoorn et al. present the application performance monitor-
ing and dynamic software analysis framework Kieker [27] for
continuous monitoring of concurrent or distributed software
systems. Efficient management of data-intensive workloads in
the Cloud that are generated by data intensive applications,
e.g. MapReduce of Apache Hadoop, require to minimize the
number of computations and network bottlenecks. Therefore,
Mian and Martin propose a framework for scheduling, resource
allocation, and scaling capabilities in the Cloud [28]. In the
scope of IaaS solutions, a family of truthful greedy mechanisms
is proposed in [29] as an approach to optimally provision and
allocate VMs in the Cloud. Further optimization techniques
focusing on reducing resources reconfiguration costs and
maximizing the resource utilization are investigated in [30].
VScaler [31] is proposed as an autonomic resource allocation
framework for fine granular VM resource allocation. The
systematic comparator of performance and cost of Cloud
providers CloudCmp guides Cloud customers in selecting the
best-performing provider for their applications [32]. Schad et
al. analyze how the performance varies in EC2 over time and
across multiple availability zones, using micro benchmarks to
measure CPU, I/O, and network, and utilizing a MapReduce
application in order to determine the impact of data intensive
applications [33]. The above approaches use one of the analysis
approaches (either top-down or bottom-up) and do not support
the (re-)distribution of the application. In our work we propose
to use a combination of these techniques in order to enable
application (re-)distribution.

7 Conclusions and Future Work
In the previous sections we identified the need to combine
both top-down and bottom-up application workload analysis
approaches in order to proactively enable the (re-)distribution
of the application components to cope with fluctuating re-
sources demands. The first rounds of experiments positioned
this work on the application database (persistence) layer, and
used the TPC-H benchmark as the basis. More specifically,
we characterized the TPC-H workload according to its com-
putational demands. This characterization was then used as
the basis to generate representative workloads with different
behavioral characteristics, which emulated the business logic of
an application. We evaluated different deployment approaches
of the application’s database (on-premise, on a DBaaS solution,
on different IaaS solutions) and analyzed the perceived perfor-
mance and its variation on a daily basis. The results show that
there is a dependency between the workload distribution, the
concrete distribution of the application components, and the
performance variability observed in virtualized environments.
Such a performance variation mostly increases in off-premise
virtualized environments.

25. HammerDB: http://hammerora.sourceforge.net

The experimental results motivated the need for an ap-
plication distribution process which can be used to enable
the application (re-)destribution based on a dynamic analysis
of the workload and the resources demands evolution. The
process introduced the concept of the Collaborative Loop as
an approach to assist the application developer in efficiently
selecting the distribution of the application components and
the selection of Cloud services to cope with the evolution
of the application’s performance demands. We evaluated our
approach using a realistic application and workload under
different possible application distribution scenarios. The eval-
uation showed a degraded performance attributable to an
introduced network latency when deploying the database tier
off-premise. However, such degradation is overturned when
distributing the whole application stack in an off-premise envi-
ronment. A second step in the evaluation identified potential
refinement and adaptation points in the process to exploit
further capabilities offered by most Cloud offerings.

Implementing the tool chain for this process is our main
task in ongoing work. A number of tools are already in place
both for workload analysis, as well as application topology man-
agement. Our focus is on integrating, rather than developing
them from scratch, except from when deemed necessary, e.g. in
the case of defining a performance-aware deployment language
and container for deploying Cloud based applications. Future
work also includes evaluating the performance variation for
the used realistic application and workload, and the overhead,
short-, and long-term cost of re-deploying vs. reconfiguring the
underlying resources during runtime. Utility-based analysis
to investigate the relationship between user preferences and
application performance is also part of this effort.

Acknowledgments
This research has received funding from the FP7 EU project
ALLOW Ensembles (600792), and the German BMBF project
ECHO (01XZ13023G).

References
[1] V. Andrikopoulos, T. Binz, F. Leymann, and S. Strauch, “How

to Adapt Applications for the Cloud Environment,” Computing,
vol. 95, no. 6, pp. 493–535, 2013.

[2] M. Fowler, Patterns of Enterprise Application Architecture.
Addison-Wesley Professional, 2002.

[3] F. Leymann, C. Fehling, R. Mietzner, A. Nowak, and S. Dustdar,
“Moving Applications to the Cloud: An Approach based on
Application Model Enrichment,” IJCIS, vol. 20, no. 3, pp. 307–
356, October 2011.

[4] A. Bahga and V. K. Madisetti, “Synthetic Workload Genera-
tion for Cloud Computing Applications,” Journal of Software
Engineering and Applications, vol. 4, pp. 396–410, 2011.

[5] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper, “Workload
Analysis and Demand Prediction of Enterprise Data Center
Applications,” in Proceedings of IISWC’07, 2007, pp. 171–180.

[6] L. K. John, P. Vasudevan, and J. Sabarinathan, “Workload Char-
acterization: Motivation, Goals and Methodology,” in Proceedings
of WWC’98, 1998.

[7] R. Mian, P. Martin, and J. L. Vazquez-Poletti, “Provisioning Data
Analytic Workloads in a Cloud,” FGCS, vol. 29, pp. 1452–1458,
2013.

[8] B. J. Watson, M. Marwah, D. Gmach, Y. Chen, M. Arlitt, and
Z. Wang, “Probabilistic Performance Modeling of Virtualized
Resource Allocation,” in Proceedings of ICAC’10, 2010.

[9] A. Beitch, B. Liu, T. Yung, R. Griffith, A. Fox, and D. A.
Patterson, “Rain: A Workload Generation Toolkit for Cloud
Computing Applications,” University of California, Tech. Rep.
UCB/EECS-2010-14, 2010.

1939-1374 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2014.2381237, IEEE Transactions on Services Computing

JOURNAL OF TRANSACTIONS ON SERVICES COMPUTING, VOL. -, NO. -, SEPTEMBER 2014 14

[10] T. Binz, G. Breiter, F. Leymann, and T. Spatzier, “Portable
Cloud Services Using TOSCA,” Internet Computing, IEEE,
vol. 16, no. 3, pp. 80–85, 2012.

[11] M. Papazoglou and W. van den Heuvel, “Blueprinting the Cloud,”
Internet Computing, IEEE, vol. 15, no. 6, pp. 74–79, 2011.

[12] F. Curbera, F. Leymann, T. Storey, D. Ferguson, and S. Weer-
awarana, Web Services Platform Architecture: SOAP, WSDL,
WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable Messaging
and More. Prentice Hall International, 2005.

[13] S. Strauch, V. Andrikopoulos, B. Thomas, D. Karastoyanova,
S. Passow, and K. Vukojevic-Haupt, “Decision Support for the
Migration of the Application Database Layer to the Cloud,” in
Proceedings of CloudCom’13, 2013, pp. 639–646.

[14] V. Andrikopoulos, A. Reuter, S. G. Sáez, and F. Leymann,
“A GENTL Approach for Cloud Application Topologies,” in
Proceedings ESOCC’14. Springer, September 2014, pp. 1–11.

[15] V. Andrikopoulos, S. G. Sáez, F. Leymann, and J. Wettinger,
“Optimal distribution of applications in the cloud,” in Advanced
Information Systems Engineering. Springer, 2014, pp. 75–90.

[16] S. G. Sáez, V. Andrikopoulos, F. Leymann, and S. Strauch,
“Towards Dynamic Application Distribution Support for Perfor-
mance Optimization in the Cloud,” in Proceedings of CLOUD’14,
June 2014, pp. 248–255.

[17] G. Urdaneta, G. Pierre, and M. Van Steen, “Wikipedia workload
analysis for decentralized hosting,” Computer Networks, vol. 53,
no. 11, pp. 1830–1845, 2009.

[18] L. Petrazickis, “Deploying php applications on ibm db2 in the
cloud: Mediawiki as a case study,” in Proceedings of CASCON’09.
IBM Corp., 2009, pp. 304–305.

[19] C. Curino, E. P. Jones, S. Madden, and H. Balakrishnan,
“Workload-aware database monitoring and consolidation,” in
Proceedings of ACM SIGMOD’11. ACM, 2011, pp. 313–324.

[20] R. Almeida, B. Mozafari, and J. Cho, “On the evolution of
wikipedia.” in ICWSM, 2007.

[21] L. M. Vaquero, L. Rodero-Merino, and R. Buyya, “Dynamically
scaling applications in the cloud,” ACM SIGCOMM Computer
Communication Review, vol. 41, no. 1, pp. 45–52, 2011.

[22] S. G. Sáez, V. Andrikopoulos, F. Wessling, and C. C. Marquezan,
“Cloud Adaptation & Application (Re-)Distribution: Bridging the
two Perspectives,” in Proceedings EnCASE’14. IEEE Computer
Society Press, September 2014, pp. 1–10.

[23] A. Martens, H. Koziolek, S. Becker, and R. Reussner, “Automat-
ically Improve Software Architecture Models for Performance,
Reliability, and Cost Using Evolutionary Algorithms,” in Pro-
ceedings of WOSP/SIPEW’10. ACM, 2010, pp. 105–116.

[24] C. Inzinger, S. Nastic, S. Sehic, M. Voegler, F. Li, and S. Dustdar,
“MADCAT - A Methodology For Architecture And Deployment
Of Cloud Application Topologies,” in Proceedings of SOSE’14,
2014.

[25] W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen, H. Wong,
A. Klepchukov, S. Patil, A. Fox, and D. Patterson, “Cloudstone:
Multi-platform, Multi-language Benchmark and Measurement
Tools for Web 2.0.”

[26] D. Bitton, D. J. DeWitt, and C. Turbyfill, “Benchmarking
Database Systems: A Systematic Approach,” in Proceeding of
VLDB’83, 1983, pp. 8–19.

[27] A. van Hoorn, J. Waller, and W. Hasselbring, “Kieker: A Frame-
work for Application Performance Monitoring and Dynamic
Software Analysis,” in Proceedings of ICPE’12. ACM, 2012, pp.
247–248.

[28] R. Mian and P. Martin, “Executing Data-Intensive Workloads in
a Cloud,” in Proceedings of CCGrid’12, 2012, pp. 758–763.

[29] M. M. Nejad, L. Mashayekhy, and D. Grosu, “A Family of
Truthful Greedy Mechanisms for Dynamic Virtual Machine Provi-
sioning and Allocation in Clouds,” in Proceedings of CLOUD’13,
2013, pp. 188–195.

[30] W. Chen, X. Qiao, J. Wei, and T. Huang, “A Profit-Aware
Virtual Machine Deployment Optimization Framework for Cloud
Platform Providers,” in Proceedings of CLOUD’13, R. Chang, Ed.
IEEE, 2012, pp. 17–24.

[31] L. Yazdanov and C. Fetzer, “VScaler: Autonomic Virtual Machine
Scaling,” in Proceedings of CLOUD’13. Washington, DC, USA:
IEEE Computer Society, 2013, pp. 212–219.

[32] A. Li, X. Yang, S. Kandula, and M. Zhang, “CloudCmp: Compar-
ing Public Cloud Providers,” in Proceedings of IMC’10. ACM,
2010, pp. 1–14.

[33] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, “Runtime Mea-
surements in the Cloud: Observing, Analyzing, and Reducing
Variance,” Proc. VLDB Endow., vol. 3, no. 1-2, pp. 460–471,
2010.

Santiago Gómez Sáez is currently a PhD stu-
dent and research associate in the Institute
of Architecture of Application Systems (IAAS)
at the University of Stuttgart. His experience
and research interests relate to Service Oriented
Architecture and EAI frameworks, focusing on the
aspects related to the performance of enterprise
applications and Cloud offerings discovery and
selection. Santiago has contributed to the ESB-
MT project, and currently contributes to the
European Union project ALLOW Ensembles.

Dr. Vasilios Andrikopoulos is a post-doc re-
searcher at Institute of Architecture of Appli-
cation Systems (IAAS), University of Stuttgart.
His research is in the areas of cloud computing,
services science and engineering, and software
engineering with an emphasis on evolution and
adaptation. He received his PhD from Tilburg
University, the Netherlands, where he was also
a member of the European Research Institute
in Service Science (ERISS). He has experience
in research and teaching Database Systems and

Management, Software Modeling and Programming, Business Process
Management and Integration, and Service Engineering. He has partici-
pated in a number of EU projects, including the Network of Excellence
S-Cube, and he currently contributes to the European Union project
ALLOW Ensembles.

Prof. Dr. Frank Leymann is a full professor of
computer science and director of the Institute of
Architecture of Application Systems (IAAS) at
the University of Stuttgart, Germany. His research
interests include service-oriented architectures
and associated middleware, workflow- and busi-
ness process management, cloud computing and
associated systems management aspects, and
patterns. The projects he is working on are funded
by the European Union, the German Government,
or directly by industry partners. Frank is co-author

of about 300 peer-reviewed papers, more than 40 patents, and several
industry standards (e.g. BPEL, BPMN, TOSCA). He is invited expert
to consult the European Commission in the area of Cloud Computing.
Before accepting the professor position at University of Stuttgart he
worked for two decades as an IBM Distinguished Engineer where he was
member of a small team that was in charge of the architecture of IBMs
complete middleware stack.

Steve Strauch works as a research associate and
PhD student at the Institute of Architecture of
Application Systems (IAAS) at the University of
Stuttgart since April 2008. His research interests
are data migration, data hosting, as well as
data security and privacy in the area of Cloud
Computing, with an emphasis on their application
architectural aspects. Steve has contributed to
the European projects COMPAS, 4CaaSt, AL-
LOW Ensembles, and the German government
funded BMBF project ECHO.

