
Institute of Architecture of Application Systems,
University of Stuttgart, Germany,

lastname@iaas.uni-stuttgart.de

Efficient Pattern Application:
Validating the Concept of Solution Implementations

in Different Domains
Michael Falkenthal, Johanna Barzen, Uwe Breitenbücher,

Christoph Fehling, Frank Leymann

© 2014 Xpert Publishing Services

@inproceedings{Falkenthal2014,
author = {Falkenthal, Michael and Barzen, Johanna and Breitenb\{"u}cher,

Uwe and Fehling, Christoph and Leymann, Frank},
title = {Efficient Pattern Application:

Validating the Concept of Solution Implementations in Different
Domains},

journal = {International Journal on Advances in Software},
year = {2014},
volume = {7},
number = {3&4},
pages = {710--726},
issn = {1942-2628},
publisher = {Xpert Publishing Services (XPS)}

}

:

Institute of Architecture of Application Systems

Efficient Pattern Application:
Validating the Concept of Solution Implementations in Different Domains

Michael Falkenthal, Johanna Barzen, Uwe Breitenbücher, Christoph Fehling, and Frank Leymann

Institute of Architecture of Application Systems
University of Stuttgart

Stuttgart, Germany
{falkenthal, barzen, breitenbuecher, fehling, leymann}@iaas.uni-stuttgart.de

Abstract—Patterns are a well-known and often used concept
applied in various domains. They document proven solutions
to recurring problems in a specific context and in a generic
way. As a result, patterns are applicable in a multiplicity of
specific use cases. However, since the concept of patterns aims
at generalization and abstraction of solution knowledge, it is
difficult to apply patterns to specific use cases, as the required
knowledge about refinement and the manual effort that has to
be spent is often immense. Therefore, we introduce the concept
of Solution Implementations, which are concrete solution
artifacts directly associated with patterns in order to efficiently
support elaboration of concrete pattern implementations. In
addition, we show how Solution Implementations can be
aggregated to solve problems that require the application of
multiple patterns at once. We evaluate the presented approach
by conducting use cases in the following domains: (i) Cloud
Application Architecture, (ii) Cloud Application Management,
(iii) Costumes in Films, (iv) User Interaction Design, and (v)
Object-Oriented Software Engineering.

Keywords-pattern languages, solution implementations,
pattern application, cloud computing patterns, costume patterns

I. INTRODUCTION
Patterns and pattern languages are well-established

concepts in different application areas of computer science
and information technology (IT) [1]. Originally introduced
to the domain of building architecture [2], the concept of
patterns recently got more and more popular in different
domains such as education [3], design engineering [4], user
interaction design [5], large-scale emergeny
management [6], software architecture [7], enterprise
application architecture [8], enterprise architecture
management [9], cloud application architecture [10],
application security [11] or costumes [12]. Patterns are used
to document proven solutions to recurring problems in a
specific context. However, since the concept of patterns
aims at generalization and abstraction, it is often difficult to
apply the captured abstracted knowledge to a concrete
problem. Thus, pattern application often requires immense
manual effort and domain-specific knowledge to refine the
abstract, conceptual, and high-level solution description of a
pattern to an individual use case. These following examples
show that this problem occurs in several domains due to the
abstraction of solution knowledge into patterns. For
example, if a PHP: Hypertext Preprocessor (PHP) [13]
developer uses the patterns by Gamma et al. [14], he or she

is faced with the problem that the general solution concepts
of the patterns have to be translated to his or her concrete
context, i.e., he or she has to implement solutions based on a
given programming paradigm predefined by PHP. An
enterprise architect who has to integrate complex legacy
systems may use the enterprise application architecture
patterns by Fowler [8] or the enterprise integration patterns
by Hohpe and Wolf [15] to gain insight to proven solutions
of his or her problems; but, these are still generic solutions
and he or she has to create proper implementations for the
systems to integrate. This can lead to huge efforts since he
or she also has to consider many constraints given by the
running systems and technologies besides paradigms of the
used programming languages. A teacher who uses the
learning patterns by Iba and Miyake [3] has to adapt them to
match his or her prevailing school system with all the
teaching methods. To give a final example, a costume
designer could use the patterns by Schumm et al. [12] to
find clothing conventions for a cowboy in a western film but
he or she still has to come up with a specific solution for the
specific film.

The above examples show that it is often time
consuming to create concrete solutions from patterns, since
patterns in general describe proven generic solutions at a
conceptual level. To overcome this problem, we suggest that
patterns should be linked to the (i) original concrete
solutions from which they have been deduced (if available)
and (ii) to individual new concrete implementations of the
abstractly described solution. Therefore, we introduce the
concept of Solution Implementations that enables users who
want to apply a certain pattern to reuse already existing
implementation artifacts for their use cases, which eases the
application of patterns and reduces the required manual
effort significantly. In addition, our concept supports
avoiding errors of manual refinement, since existing
solution artifacts can be looked up from patterns.

This paper is an extended version of our former work [1]
in which we presented Solution Implementations at the
Sixth International Conference on Pervasive Patterns and
Applications (PATTERNS 2014). In this article, we now
validate the approach of Solution Implementations in detail
by conducting additional use cases to show that the concept
is domain-agnostic and fundamental in the field of pattern
research. The studies covered in this article are conducted in
the following domains: (i) Cloud Application Architecture,

(ii) Cloud Application Management, (iii) Costumes in
Films, (iv) User Interaction Design, and (v) Object-Oriented
Software Engineering.

The remainder of this paper is structured as follows: we
clarify the difference between the common concept of
pattern solutions and Solution Implementations as separate
concrete solution artifacts in Section II. In Section III, we
discuss related work and the lack of directly usable concrete
solutions in state of the art pattern research. We show how
to keep patterns linked to concrete solution knowledge in
the form of Solution Implementations and how to select
Solution Implementations to establish concrete solution
building blocks, which can be aggregated in Section IV. In
Section V, we present detailed use cases to show the
applicability of the presented concept. We verify the
feasibility of the approach by means of implemented
prototypes in Section VI and conclude this paper with an
outline of future work in Section VII.

II. MOTIVATION
Patterns are human readable artifacts, which combine

problem knowledge with generic solution knowledge.
Patterns are often organized as pattern languages, i.e., they
are related. All patterns of a pattern language follow a
canonic pattern format, which is a template for documenting
all contained patterns. This format typically defines
different sections such as “Problem”, “Context”, “Solution”,
and “Known Uses”. The problem and context sections
describe the problem to be solved in an abstract manner
where the solution section describes the general
characteristics of the solution in an abstract way. Thus, the
general solution is refined for individual problem
manifestations and use cases resulting in different concrete
solutions every time the pattern is applied. The known uses
section is the only place where concrete solutions from
which the pattern has been abstracted are described. The
description in the known uses section is also only textually
but concrete solution artifacts are not related to patterns.
Further, the known uses are commonly not extended as the
pattern is applied nor do they guide pattern readers during
the creation of their own solutions.

Therefore, due to the abstract nature of patterns and
generalized issues, most pattern languages only contain
some concrete solutions a pattern was derived from in the
known uses section. This leads to the problem that the user
of the pattern has to design and implement a specific
solution based on his individual and concrete use case, i.e., a
solution has to be implemented based on the user’s
circumstances considering the given pattern. However,
many patterns are applied several times to similar use cases.
Thus, the effort has to be spent every time for tasks, which
were already performed multiple times. For example, the
Model-View-Controller (MVC) [16] Design Pattern is an
often-used pattern in the domain of user interface design.
This pattern was, therefore, implemented for many
applications in many programming languages from scratch,

as patterns typically provide no directly usable concrete
solutions for use cases in a concrete context. Patterns are not
linked with a growing list of solutions that can be used as
basis to apply them to individual use cases rapidly: each
time a pattern should be applied, it has to be refined
manually to the current use case. The provided sections such
as “Known Uses” and “Examples”, which are part of the
pattern structure in most pattern languages [15][17][18],
therefore, support the reader in creating new solutions only
partially: they provide only partial solution refinements or
solution templates as written text but not directly applicable
implementations that can be used without additional effort.
Thus, the reader of a pattern is faced with the problem of
creation and design to elaborate a proper solution based on a
given pattern each time when it has to be applied – which
results in time-consuming efforts that decrease the
efficiency of using patterns.

As of today, patterns are typically created by small
groups of experts. By abstracting the problems and solutions
into patterns relying on their expertise, these experts
determine the content of the patterns. This traditional way of
pattern identification, also called the “pattern guru
approach” by Reiners et al. [19], creates the two issues
already seen: first, the patterns are only hardly verifiable
because the concrete solutions they have been abstracted
from are mostly not traceable (“pattern provenance”) and
second, the patterns document abstracted knowledge,
therefore manual effort and specific knowledge is needed to
apply them to concrete problems.

Another problem occurs if multiple patterns have to be
combined to create a concrete solution. Pattern languages
tackle the problem of selecting and applying multiple
related patterns to solve overall problems. As shown by
Zdun [20], this can be supported by defining relationships
between patterns within a pattern language, which assure
that connected patterns match together semantically, i.e.,
that they are composable regarding their solutions. This
means that patterns can be used as composable building
blocks to create overall solutions. Once patterns are
composed to create overall solutions the problem arises that
concrete solutions have to be feasible in the context of
concrete problem situations. Referring to the former
mentioned example of a PHP developer, the overall concrete
solution, consisting of the concrete solutions of the
composed patterns, has to be elaborated that it complies
with the constraints defined by the programming language
PHP. So, the complexity of creating concrete solutions from
composed patterns increases with the number of aggregated
solutions, since integration efforts add to the efforts of
elaborating each individual solution. Thus, to summarize the
discussion above, we need a means to support the required
refinement from a pattern’s abstract solution description to
directly applicable concrete solutions and their composition.

III. RELATED WORK
As patterns are human readable artifacts, the template

documenting a pattern contains solution sections presenting
solution knowledge as ordinary text [2][7][14][18]. This kind
of solution representation contains the general principle and
core of a solution in an abstract way. Common solution
sections of patterns do not reflect concrete solution instances
of the pattern. They only provide conceptual sketches of a
solution or describe the essence of the solution textually.
Thus, they just act like manuals to support a reader at
implementing a solution proper for his issues, but they do not
provide concrete solution artifacts.

Iterative pattern formulation approaches as shown by
Reiners et al. [19][21] and Falkenthal et al. [22] can enable
that concrete solution knowledge arising from running
projects is used to formulate patterns. Patterns are not just
final artifacts but are formulated based on initial ideas in an
iterative process to finally reach the status of a pattern.
Nevertheless, in these approaches concrete solution
knowledge only supports the formulation process of patterns
but is not stored in the form of concrete solution artifacts
explicitly to get reused when a pattern is applied.

Porter et al. [23] have shown that selecting patterns from
a pattern language is a question of temporal ordering of the
selected patterns. They show that combinations and
aggregations of patterns rely on the order in which the
patterns have to be applied. This leads to so called pattern
sequences which are partially ordered sets of patterns
reflecting the temporal order of pattern application. This
approach focuses on combinability of patterns, but not on the
combinability of concrete solutions.

Many pattern collections and pattern languages are stored
in digital pattern repositories such as presented by
Reiners [3], Fehling [24] and van Heesch [25]. Although
these repositories support readers in navigating through the
patterns they do not link concrete solutions with the patterns.
Therefore, readers have to manually recreate concrete
solutions each time when they want to apply a pattern.

Zdun [20] shows that pattern languages can be
represented as graphs with weighted edges. Patterns are the
nodes of the graph and edges are relationships between the
patterns. The weights of the edges represent the semantics of
the relationships as well as the effects of a pattern on the
resulting context of a pattern. These effects are called goals
and reflect the influence of a pattern on the quality attributes
of software architectures. While this approach helps to select
proper pattern sequences from a pattern language it does not
enable to find concrete solutions and connect them together.

Demirköprü [26] shows that Hoare logic can be applied
to patterns and pattern languages such that patterns are
getting enriched by preconditions and postconditions. By
considering this conditions, pattern sequences can be
connected into aggregates, respectively compositions of
patterns where preconditions of the first pattern of the
sequence are the preconditions of the aggregate and
postconditions of the last pattern in the sequence are
accordingly the postconditions of the aggregate. This

approach only tackles aggregation of patterns without
considering concrete solutions.

Fehling et al. [27][28] show that their structure of cloud
computing patterns can be extended to annotate patterns with
additional implementation artifacts. Those artifacts can
represent instantiations of a pattern on a concrete cloud
platform. Considering those annotations, developers can be
guided through configurations of runtime environments.
Although patterns can be annotated with concrete
implementation artifacts, this approach is only described in
the domain of cloud computing and must be extended to
other domains in order to introduce a means to ease pattern
usage and refinement in general.

Mirnig and Tscheligi [29] introduce a general pattern
framework based on set theory. This framework provides a
general theory of patterns in order to explicate knowledge in
pattern structures and relate patterns into pattern languages.
Their approach is general due to the definition of patterns
and pattern languages by means of set theory and, therefore,
provides a domain independent fundamental method to
create patterns and pattern languages. Further, they introduce
a conceptual mechanism by means of descriptors and targets
to combine patterns from different domains, respectively
pattern languages. Nevertheless, the approach only deals
with abstracted solution knowledge that is captured into
patterns and related into pattern languages. Hence, the
approach lacks support to deal with concrete solutions.
Besides, the approach only describes to combine patterns by
means of descriptors and targets in general, but it does not
clarify how patterns may work together in concrete use
cases. So, the approach does not include a method to resolves
functional and non-functional dependencies between patterns
to be applied together.

Krleža and Fertalj [30] integrate the concept of patterns
into the methodology of model driven architectures (MDA)
to assure higher model qualities. They show that patterns can
help to purposefully reduce the freedom of modeling in
software projects. Patterns are provided for the several
abstraction levels of the MDA approach. Further,
transformation rules guide users to automatically generate
artifacts of more specific levels of the MDA modeling space
by considering refinements of a pattern of a more abstract
level to a pattern on a more specific level. Thus, relations of
patterns in different abstraction levels reduce the number of
applicable transformation rules from one level to the other.
Further, applicable transformation rules also reduce the
number of suitable patterns to be applied on more specific
levels, vice versa. So, this design method supports users to
build consistent and continuous MDA models covering all
abstraction layers. But while patterns and transformation
rules are stored to be reused in several use cases, concrete
platform specific implementations of patterns are not stored
and related to their patterns to be reused directly. The
approach also lacks a means to automatically select proper
patterns based on criteria, which are defined by a user.

Breitenbücher et al. [31] introduce Automated
Management Idioms as technology and implementation
specific refinements of application management patterns.
These idioms can be applied automatically to manage cloud

applications by generating declarative descriptions of the
management tasks to be executed. Thus, in general they
tackle the same issues as Solution Implementations but only
for the domain of application management.

Barzen and Leymann [32] show a formalism to collect
concrete solution knowledge in the domain of costumes in
films in a structured way to derive costume patterns from the
captured concrete solutions. They introduce to use domain
specific ontologies to define valid properties and values to
describe concrete solutions of the domain. Concrete
solutions are classified by means of an equivalence function
to mine the essence of a set of concrete solutions. The so
captured essence in the form of an equivalence class of
concrete solutions makes up a pattern. Further, they
generalize the approach that it can be applied also in other
domains than costumes in films. Their approach clarifies the
correspondence of patterns and concrete solutions and
emphasizes the approach presented in this work.

Finally, Fehling et al. [33] show how the approach from
Barzen and Leymann [32] can be implemented by means of
pattern and solution repositories. Further, they show how
patterns and concrete solutions can be interrelated
comprehensively across both repositories. This is also a
concrete implementation of the approach presented in this
paper but only for the domain of costumes in films.

IV. SOLUTION IMPLEMENTATIONS: BUILDING BLOCKS
FOR APPLYING AND AGGREGATING CONCRETE SOLUTIONS

OF PATTERNS
In the above section, we summarized the state of the art

and identified that (i) concrete solutions are not connected to
patterns and that (ii) there are no approaches supporting the
aggregation of concrete solutions if multiple patterns have
to be applied together. Even though there are approaches to
derive patterns from concrete solution knowledge
iteratively [21][22], concrete solutions are not stored
altogether with the actual patterns nor are they linked to
them. Concrete solutions, thus, cannot be retrieved from
patterns without the need to work them out manually over
and over again for the same kind of use cases. Therefore, we
propose an approach that (i) defines concrete, implemented
solution knowledge as reusable building blocks, (ii) that
links these concrete solutions to patterns, and (iii) enables
the composition of concrete solutions.

A. Solution Implementations
We argue that concrete solutions are often lost during

the pattern writing process since patterns capture general
core solution principles in a technology and
implementation-agnostic way. In addition, applications of
patterns to form new concrete solutions are not documented
in a way that enables reusing the knowledge of refinement.
As a result, the details of the concrete solutions are
abstracted away and must be worked out again when a
pattern has to be applied to similar use cases. Thus, the
benefits of patterns in the form of abstractions lead to effort

when using them due to the missing information of concrete
realizations. We suggest keeping concrete solutions linked
to patterns in order to ease pattern application and enable
implementing new concrete solutions for similar use cases
based on existing, already refined, knowledge. These linked
solutions can be, for example, (i) the concrete solutions,
which were considered initially to abstract the knowledge
into a pattern, (ii) later applications of the pattern to build
new concrete solutions, or (iii) concrete solutions that were
explicitly developed to ease applying the pattern.

Concrete solutions, which we call Solution
Implementations (SI), are building blocks of concrete
solution knowledge. Therefore, Solution Implementations
describe concrete solution knowledge that can be reused
directly. In the domain of software development, Solution
Implementations provide code, which can be used directly
in the development of an own application. For example, a
PHP developer faced with the problem to implement the
Model-View-Controller Pattern (MVC pattern) [16] in an
application can reuse a Solution Implementation of the
MVC pattern written in PHP code. Especially, patterns may
provide multiple different Solution Implementations – each
optimized for a special context and requirements. So, there
could be a specific MVC Solution Implementation for PHP4
and another for PHP5, each one considering the
programming concepts of the specific PHP version. Another
Solution Implementation could provide a concrete solution
of the MVC pattern implemented in Java. Therefore, in this
case also a Java developer could reuse a concrete MVC
solution to save implementation efforts.

By connecting Solution Implementations to patterns,
users do not have to redesign and recreate solutions every
time a pattern is applied. The introduced Solution
Implementations provide a means to capture existing fine-
grained knowledge linked to the abstract knowledge
provided by patterns. So, users can look at the connected
Solution Implementations once a pattern is selected and
reuse them directly. To distinguish between pattern’s
abstract solutions and Solution Implementations, we point
out that the solution section of patterns describes the core
solution principles in text format and the Solution
Implementations represent the real solution objects – which
may be in different formats (often depending on the problem
domain), e.g., executable code in software development or
real clothes in the domain of costumes. Thus, while patterns
are documented commonly in natural text, their Solution
Implementations depend mainly on the domain of the
pattern language and can occur in various forms. Since
many specific Solution Implementations can be linked to a
pattern, we need a means to select proper Solution
Implementations of the pattern to be applied.

B. Selection of Solution Implementations from Patterns
Once a user selects a pattern, he is faced with the

problem to decide which Solution Implementation solves
his problem in his context properly. To enable selecting

proper Solution Implementations of a pattern we introduce
Selection Criteria (sc), which determine when to use a
certain Solution Implementation. The concept of keeping
Solution Implementations linked to the corresponding
pattern and supporting the selection of a proper Solution
Implementation is shown in Figure 1. Selection Criteria are
added to relations between Solution Implementations and
patterns. Selection Criteria may be human readable or
software interpretable descriptions of when to select a
Solution Implementation. They provide a means to guide
the selection using additional meta-information not present
in the Solution Implementation itself.

To exemplify the concept, we give an example of
Solution Implementations from the domain of building
architecture. In this domain addressed by Christopher
Alexander [2][34], a Solution Implementation would be, for
instance, a real entrance of a building or a specific room
layout of a real floor, which are described in detail, e.g., by
blueprints, and linked to the corresponding pattern [2][34].
To find the most appropriate Solution Implementation for a
particular use case, Selection Criteria such as the cost of the
architectural Solution Implementation or the used material
can be considered. For example, two Solution
Implementations for the pattern mentioned above that deals
with room layouts might differ in the historical style they
are built. Thus, based on such criteria, the refinement of a
pattern’s abstract solution can be configured by specifying
desired requirements and constraints.

To summarize the concept of Solution Implementations
it has to be pointed out that solutions in the domain of
patterns are abstract descriptions that are agnostic to

concrete implementations and written in ordinary text or
sketches that illustrate the essential solution principle to
support readers. In contrast to this abstract description, we
grasp Solution Implementations as concrete solution
artifacts, which provide concrete implementation
information for particular use cases of a pattern. Solution
Implementations are linked to patterns where Selection
Criteria are added to the relation between the pattern and the
Solution Implementation to guide pattern users during the
selection of Solution Implementations.

C. Aggregation of Solution Implementations
The concepts of Solution Implementations and Selection

Criteria enable to reuse concrete solutions, which are linked
to patterns. But most often problems have to be solved by
combining multiple patterns. Therefore, we also need a
means to combine Solution Implementations of patterns to
solve an overall problem altogether. For this purpose,
Solution Implementations connected to patterns can have
additional interrelations with other Solution
Implementations of other patterns affecting their
composability. For example, Solution Implementations in
the domain of software development are possibly
implemented in different programming languages.
Therefore, there may exist various Solution
Implementations for one pattern in different programming
languages, remembering the above example of the PHP and
Java Solution Implementations of the MVC pattern. To be
combined, both Solution Implementations often have to be
implemented in the same programming language.

This leads to the research question “How to compose
Solution Implementations selected from multiple patterns
into a composed Solution Implementation?”

Patterns are often stored and organized in digital pattern
repositories. These repositories, such as presented by
Reiners [3], Fehling [24] and van Heesch [25], support users
in searching for relevant patterns and navigating through the
whole collection of patterns, respectively a pattern language
formed by the relations between patterns. To support
navigation through pattern languages, these relations can be
formulated at the level of patterns indicating that some
patterns can be “combined” into working composite
solutions, some patterns are “alternatives”, some patterns
can only be “applied in the context of” other patterns, etc.

P’# P’’# P’’’#

SI#

(s,g,…)# (s’,g’,…)#

(sc1,…)# (sc2,…)# (sc3,…)# (sc4,…)# (sc5,…)#

P’1#
SI#P’2# SI#P’’1# SI#P’’’1# SI#P’’’2#

P:#Pa4ern#
s:#Seman9cs#
g:#Goal#

…:#further#Weights#
sc:#Selec9on#Criteria#
⊕:#Aggrega9on#Operator#

SI:#Solu9on#Implementa9on#

⊕# ⊕#1 2

Figure 2. Aggregating Solution Implementations (SI) along the sequence of selected patterns (P).

P"

(sc,…)" (sc’,…)" (sc”,…)"

SI1" SI2" SI3"

Figure 1. Solution Implementations (SI) connected to a pattern (P)
are selectable under consideration of defined Selection Criteria (sc).

Zdun [20] has shown that pattern languages can be
formalized to enable automated navigation through pattern
languages based upon semantic and quality goal constraints
reflecting a pattern’s effect once it is applied. This also
enables combining multiple patterns based on the defined
semantics. The approach supports the reader of a pattern
language to select proper pattern sequences for solving
complex problems that require the application of multiple
patterns at once. But, once there are Solution
Implementations linked to patterns this leads to the
requirement to not only compose patterns but also their
concrete Solution Implementations into overall solutions.

We extend the approach of Zdun to solve the problem of
selecting appropriate patterns to also select and aggregate
appropriate Solution Implementations along the selected
sequence of patterns, which is also called solution path.

To assure that Solution Implementations are building
blocks composable with each other, we introduce the
concept of an Aggregation Operator, as depicted in
Figure 2. The Aggregation Operator is the connector
between several Solution Implementations. It provides the
logic to apply two Solution Implementations in
combination. Thus, Solution Implementations can just be
aggregated if a proper Aggregation Operator implements the
necessary adaptations to get two Solution Implementations
to work together. Adaptions may be necessary to assure that
Solution Implementations match together based on their
preconditions and postconditions. Preconditions and
postconditions are functional and technical dependencies,
which have to be fulfilled for Solution Implementations. In
Figure 2, the three patterns P!, P!!and P!!! show a sequence
of patterns, which can be selected through the approach of
Zdun considering semantics (s) of the relations, goals (g) of
the patterns and further weights. Solution Implementations
are linked with the patterns and can be selected according to
the Selection Criteria introduced in the section above.
Furthermore, there are two Solution Implementations
associated with pattern P! but only Solution Implementation
SI!"! can be aggregated with Solution Implementation SI!""!
of the succeeding pattern P!! due to the Aggregation
Operator between those two Solution Implementations.
There is no Aggregation Operator implemented for SI!"!, so
that it cannot be aggregated with SI!""!, but, nevertheless, it
is a working concrete solution of P!. So, in the scenario
depicted in Figure 2 an Aggregation Operator has to be
available to aggregate SI!"! and SI!""!.

In general, Aggregation Operators have to be available
to compose Solution Implementations for complex problems
requiring the application of multiple patterns. Solution
Implementations aggregated with such an operator are
concrete implementations of the aggregation of the selected
patterns. Aggregated Solution Implementations are,
therefore, concrete building blocks solving problems
addressed by a pattern language.

Aggregation Operators depend on the connected
Solution Implementations, i.e., they are context-dependent
due to the context of the Solution Implementations. In
contrast to the context section of a pattern, which is used
together with the problem section to describe the
circumstances when a pattern can be applied, the Solution
Implementations’ context is more specific in terms of the
concrete solution. For example, if an Aggregation Operator
shall connect two Solution Implementations consisting of
concrete PHP code, the Aggregation Operator itself could
also be concrete PHP code wrapping functionality from both
Solution Implementations. If the Solution Implementations
to aggregate are Java class files, e.g., an Aggregation
Operator could resolve their dependencies on other class
files or libraries and load all dependencies. Afterwards it
could configure the components to properly work together
and execute them in a Java runtime. In this case an
Aggregation Operator is also a runnable program, which
implements the logic to combine Java class files
automatically. In other domains like building architecture or
costumes in films, where Solution Implementations are not
concrete programming code but tangible objects, an
Aggregation Operator could provide the logic to combine
two Solution Implementations by a description of sequential
tasks that have to be performed manually.

Thus, an Aggregation Operator composes and adapts
multiple Solution Implementations considering their
contexts. However, since Solution Implementations of
patterns from varying domains are rather different, they
have to be aggregated using specific Aggregation Operators.
Because different pattern languages deal with different
contexts, they can contain different Aggregation Operators
to compose Solution Implementations. The validation
section will take a closer look at the Aggregation Operators
in different domains.

V. VALIDATION WITH PRACTICAL USE CASES
To validate the concept of Solution Implementations,

this section conducts detailed use cases focusing on the
application of Solution Implementations in the domains of
cloud application architecture, cloud management, costumes
in films, user interaction design, and software engineering.
These use cases show the practical impact of the presented
approach by discussing the application of Solution
Implementations, Selection Criteria, and Aggregation
Operators in the mentioned domains.

A. Use Case 1: Cloud Application Architecture

General Use Case: Business logic is implemented in a
component while instances of the component have to be
provisioned and decommissioned based on actual
workloads. Provisioning and decommissioning shall be
managed by another component.

Concrete Scenario: Solution Implementations provide
snippets of Amazon Cloud Formation Templates [35],

which are manipulated by an Aggregation Operator in order
to receive a combined configuration file for Amazon’s
Cloud.

To explain the concept of Solution Implementations in
the domain of cloud computing patterns, the example
depicted in Figure 3 shows the three patterns stateless
component, stateful component, and elastic load balancer
from the pattern language and catalogue of Fehling
et al. [17][27]. The stateless component and stateful
component patterns describe how an application component
can handle state information. They both differentiate
between session state – the state with the user interaction
within the application and application state – the data
handled by the application, for example, customer addresses
etc. While the stateful component pattern describes how this
state can be handled by the component itself and possibly be
replicated among multiple component instances, the
stateless component pattern describes how state information
is kept externally of the component implementation to be
provided with each user request or to be handled in other
data storage offerings. The elastic load balancer pattern
describes how application components can be scaled out,
i.e., how performance is increased or decreased through
addition or removal of component instances, respectively.
Decisions on how many component instances are required
are made by monitoring the amount of requests to the
managed components. The elastic load balancer pattern is
related to both of the other depicted patterns as it
conceptually describes how to scale out stateful components
and stateless components: while stateless components can
be added and removed rather easily, internal state may have
to be extracted from stateful components upon removal or
synchronized with new instances upon addition.

As depicted in Figure 3, the stateless component and
stateful component pattern both provide Solution
Implementations, which implement these patterns for Java
web applications packaged in the web archive (WAR)
format that are hosted on Amazon Elastic Beanstalk [36],
which is part of Amazon Web Services (AWS) [37]. In this
scenario, both Solution Implementations provide a
configuration file that describes the provisioning on a
certain platform. This configuration file must be adapted by
specifying the actual application files to be deployed. The
elastic load balancer has three Solution Implementations
realizing the described management functionality for
stateful components and stateless components for WAR-
based applications on Amazon Elastic Beanstalk and
Microsoft Azure [38]. The Selection Criteria “WAR is
deployed on Microsoft Azure”, respectively “WAR is
deployed on Elastic Beanstalk” support the user to choose
the proper Solution Implementation. For example, if SI1.2 is
selected, the user knows that this results in a concrete load
balancer in the form of a deployed WAR file on Elastic
Beanstalk. Since a load balancer scales components, it needs
concrete instances of either stateless component or stateful
component to work with. Thus, the user can select a proper
Solution Implementation for the components based on his
concrete requirements considering the Selection Criteria of
the relations between the patterns stateless component and
stateful component and their Solution Implementations. To
ensure that Solution Implementations are composable, i.e.,
that they properly work together, they refine and enrich the
pattern relationships to formulate preconditions,
respectively postconditions on the Solution Implementation
layer. The preconditions and postconditions of the elastic
load balancer Solution Implementations, therefore, capture
which related pattern – stateless component or stateful
component – they expect to be implemented by managed

SI2.1&
postcondi/on:&&
Implements)Stateful)Component)
postcondi/on:&&
WAR)on)Elas4c)Beanstalk&&&
&

SI1.1&

precondi/on:&&
Implements)Stateless)Component&

SI1.2&

precondi/on:&&
Implements)Stateless)Component)
precondi/on:&&
WAR)on)Azure)

precondi/on:&&
WAR)on)Elas4c)Beanstalk&&&
&

SI3.1&
postcondi/on:&&
Implements)Stateless)Component)
postcondi/on:&&
WAR)on)Elas4c)Beanstalk&&&
&

precondi/on:&&
Implements)Stateful)Component)

Stateful&
Component&

Elas/c&Load&Balancer& Stateless&
Component&

(s,g,…)&

(s’,g’,…)&

(sc=&WAR&is&
deployed&on&
MicrosoI&Azure)&

(sc’=&WAR&is&deployed&on&&
Elas/c&Beanstalk)&

(sc’’=&WAR&is&deployed&on&&
Elas/c&Beanstalk)&

(sc’’’=&WAR&is&deployed&on&&
Elas/c&Beanstalk)&

(sc’’’’=&WAR&is&deployed&on&&
Elas/c&Beanstalk)&

SI1.3& ⊕&

⊕&
precondi/on:&&
WAR)on)Elas4c)Beanstalk)

1

2

Figure 3. Solution Implementations in the domain of cloud application architecture linked to patterns and aggregated by Aggregation Operators.

components. Furthermore, they capture the supported
deployment package – WAR in this example – and runtime
environment for which they have been developed: SI3.1 of
stateless component has the postcondition “WAR on Elastic
Beanstalk” while SI1.2 of elastic load balancer is enriched
with the precondition “WAR on Elastic Beanstalk” and SI1.1
with “WAR on Azure”. The previously introduced
Aggregation Operator interprets these dependencies and, for
example, composes SI3.1 and SI1.2. During this task, the
configuration parameters of the solutions are adjusted by the
operator, i.e., the elastic load balancer is configured with the
address of the stateless component to be managed. As some
of this information may only become known after the
deployment of a component, the configuration may also be
handled during the deployment.

In the following, this example is concretely
demonstrated by an AWS Cloud Formation template [35]
generated by the discussed Aggregation Operator. The
template is shown in Listing 1. An AWS Cloud Formation
template is a configuration file, readable and processable by
the AWS Cloud to automatically provision and configure
cloud resources. For the sake of simplicity, the depicted
template in Listing 1 shows only the relevant parts, which
are adapted by the Aggregation Operator. To run the
example scenario on AWS, three parts are needed within the
AWS Cloud Formation template to reflect the aggregation
of SI3.1 and SI1.2: (i) an elastic load balancer (MyLB), which
is able to scale components, (ii) a launch configuration
(MyCfg), which provides configuration parameters about an
Amazon Machine Image (AMI) containing the
implementation of stateless component as well as a runtime
to execute the component in the form of an AWS Elastic
Compute Cloud (EC2) [39] instance and, (iii) an autoscaling
group (MyAutoscalingGroup) to define scaling parameters

used by the elastic load balancer and the wiring of the
elastic load balancer and the launch configuration.

MyLB defines an AWS elastic load balancer for scaling
Hypertext Transfer Protocol (HTTP) requests on port 80.
Further, MyCfg defines the AMI ami-statelessComponent in
the property ImageId, which is used for provisioning new
instances by an elastic load balancer. The autoscaling group
MyAutoscalingGroup wires the stateless component
instances and the elastic load balancer at the depicted
adaption points one and two by means of referencing the
property LaunchConfigurationName to MyCfg and
LoadBalancerNames to MyLB, respectively. Since all the
mentioned properties are in charge of enabling an elastic
load balancer instance to automatically scale and load
balance instances of components contained in an AMI, an
Aggregation Operator can dynamically adapt those
properties based on the selected Solution Implementations
to be aggregated. So, presuming that ami-
statelessComponent contains an implementation of SI3.1, an
Aggregation Operator can aggregate SI3.1 and SI1.2 by
adapting the mentioned properties at the depicted adaption
points and, therefore, provides an executable configuration
template for AWS Cloud Formation.

The same principles can be applied to aggregate SI1.3
and SI2.1 because of their matching preconditions and
postconditions. By adapting the ImageId of the
LaunchConfiguration to an AMI, which runs an AWS EC2
instance with a deployed stateful component, the
Aggregation Operator can aggregate SI1.3 and SI2.1.

Further, SI1.1 has precondition “WAR on Azure” and is,
therefore, incompatible with SI2.1 and SI3.1, i.e., SI1.1 cannot
be combined with these Solution Implementations due to
their preconditions and postconditions. The selection of a
Solution Implementation, therefore, may restrict the number

Listing 1. Adaption Points configured by an Aggregation Operator in an extract from an AWS Cloud Formation template to aggregate configuration
snippets of elastic load balancer and stateless component.

"MyAutoscalingGroup" : {
 "Type" : "AWS::AutoScaling::AutoScalingGroup",
 "Properties" : {
 …
 "LaunchConfigurationName" : { "Ref" : "MyCfg"},
 "LoadBalancerNames" : [{ "Ref" : "MyLB" }]
 …
 }
}

"MyCfg" : {
 "Type" : "AWS::AutoScaling::LaunchConfiguration",
 "Properties" : {
 "ImageId" : { "ami-statelessComponent" },
 "InstanceType" : { "m1.large" },
 }
}

"MyLB" : {
 "Type" : "AWS::ElasticLoadBalancing::LoadBalancer",
 "Properties" : {
 "Listeners" : [{
 "LoadBalancerPort" : "80",
 "InstancePort" : "80",
 "Protocol" : "HTTP"
 }],
 }
}

 1

 2

of matching Solution Implementations of the succeeding
pattern since postconditions of the first Solution
Implementation have to match with preconditions of the
second. This way, the space of concrete solutions is reduced
based on the resulting constraints of a selected Solution
Implementation. To elaborate a solution to an overall
problem described by a sequence of patterns exactly one
Solution Implementation has to be selected for each pattern
in the sequence considering its selection criteria to match
non-functional requirements, as well as postconditions of
the former Solution Implementation.

B. Use Case 2: Cloud Application Management

General Use Case: An application component has to be
migrated to a cloud environment and downtime is
acceptable during the migration. In the cloud environment,
the number of component instances shall be automatically
increased and decreased considering workloads.

Concrete Scenario: Solution Implementations provide
concrete solutions by means of executable workflow
snippets, which are combined by an Aggregation Operator.
This aggregated solution in the form of a combined
workflow snippet automatically deploys the application on
Amazon’s Cloud offering Elastic Beanstalk and configures
the automated scaling.

In this use case, we show how the presented approach
can be applied in the domain of cloud application
management. Therefore, we describe how applying
management patterns introduced in [17][40] to cloud

applications can be supported by reusing and aggregating
predefined Solution Implementations in the form of
executable management workflows.

In the domain of cloud application management,
applying the concept of patterns is quite difficult as the
refinement of a pattern’s abstract solution to an executable
management workflow for a certain use case is a complex
challenge: (i) mapping abstract conceptual solutions to
concrete technologies, (ii) handling the technical complexity
of integrating different heterogeneous management APIs of
different providers and technologies, (iii) ensuring non-
functional cloud properties, (iv) and the mainly remote
execution of management tasks lead to immense technical
complexity and effort when refining a pattern in this domain.
The presented approach of Solution Implementations enables
to provide completely refined solutions in the form of
executable management workflows that already consider all
these aspects. Thus, if they are linked with the corresponding
pattern, they can be selected and executed directly without
further adaptations. This reduces the (i) required
management knowledge and (ii) manual effort to apply a
management pattern significantly. To apply the concept of
Solution Implementations to this domain, two issues must be
considered: (i) selection and (ii) aggregation of Solution
Implementations in the form of management workflows.

To tackle these issues, we employ the concept of
Management Planlets, which was introduced in our former
research on cloud application management
automation [41][42]. Management planlets are generic
management building blocks in the form of workflows that
implement management tasks such as installing a web server,
updating an operating system, or creating a database backup.

SI1.1%

precondi.on:%%
WAR$file$
postcondi.on:%%
WAR!on$Microso/$Azure%%%
%

SI2.1%

precondi.on:%%
WARonElas4c$Beanstalk$
postcondi.on:%%
WAR$scaled%%%
%

Forkli6%Migra.on% Elas.city%Management%

Process%

(sc=%WAR%is%deployed%on%%

Microso6%Azure)%

SI1.2%

precondi.on:%%
WAR$file$
postcondi.on:%%
WARonElas4c$Beanstalk%%%
%

SI2.2%

precondi.on:%%
...$
postcondi.on:%%
...%%%
%

(sc’=%WAR%is%deployed%on%%

Elas.c%Beanstalk)%

(sc’’=%WAR%is%scaled)% (sc’’’=%…)%

(s,g,…)%

⊕%

Management Planlets

Resulting workflow

Figure 4. Management Planlets are Solution Implementations in the domain of cloud management linked to patterns and aggregated
by an Aggregation Operator.

Each planlet exposes its functionality through a formal
specification of its effects on components, i.e., its
postconditions, and defines optional preconditions that must
be fulfilled to execute the planlet. Therefore, each specific
precondition of a planlet must be fulfilled by postconditions
of other planlets. Thus, planlets can be combined to
implement a more sophisticated management task, such as
migrating an application or its components. If two or more
planlets are combined, the result is a Composite Management
Planlet (CMP), which can be recursively combined with
other planlets again: the CMP inherits all postconditions of
the orchestrated planlets and exposes all their preconditions,
which are not fulfilled already by the composed planlets.
Thus, management planlets provide a recursive aggregation
model to implement management workflows. Based on these
characteristics, Planlets are ideally suited to implement
management patterns in the form of concrete Solution
Implementations. We create Solution Implementations that
implement a pattern’s refinement for a certain use case by
orchestrating several Planlets to an overall Composite
Management Planlet. This CMP implements the required
functionality in a modular fashion as depicted in Figure 4.

As stated above, selection and aggregation of Solution
Implementations must be considered, the latter if multiple
patterns are applied together. For example, Figure 4 shows
two management patterns: (i) forklift migration [40] –
application functionality is migrated with allowing downtime
and (ii) elasticity management process [17] – application
functionality is scaled based on experienced workload. Both
patterns are linked to two Solution Implementations, each in
the form of Composite Management Planlets that implement
the corresponding management logic as executable
workflows. The forklift migration pattern provides two
Solution Implementations: one migrates a Java-based web
application (packaged as WAR file) to Microsoft Azure [38],
another to Amazon Elastic Beanstalk [35]. Thus, if the user
selects this pattern and chooses the Selection Criteria
defining that a WAR application shall be migrated to Elastic
Beanstalk, SI1.2 is selected. Whether this Solution
Implementation is applicable at all depends on the context: if
the application to be migrated is a WAR application, then the
Solution Implementation is appropriate and the associated
Planlet migrates the WAR application to Beanstalk. Equally
to this pattern, the elasticity management process pattern
shown in Figure 4 provides two Solution Implementations:
one provides executable workflow logic for scaling a WAR
application on Elastic Beanstalk (SI2.1). In this scenario, the
workflow simply configures the automated scaling feature,
which is natively supported by Amazon Beanstalk. Thus, if
these two patterns are applied together, the selection of SI1.2
restricts the possible Solution Implementations of the second
pattern, as only SI2.1 is applicable (its preconditions match
the postconditions of SI1.2). As a result, the selection of
appropriate Solution Implementations can be reduced to the
problem of (i) matching Selection Criteria to postconditions
of Solution Implementations and (ii) matching preconditions
and postconditions of different Solution Implementations to
be combined.

After Solution Implementations of different patterns have
been selected, the second issue of aggregation has to be
tackled to combine multiple Solution Implementations in the
form of workflows into an overall management workflow
that incorporates all functionalities. Therefore, we
implemented a single Aggregation Operator for this pattern
language as described in the following: to combine multiple
Solution Implementations, the operator integrates the
corresponding workflows as subworkflows [43]. The control
flow, which defines the order of the Solution
Implementations, i.e., the subworkflows, is determined based
on the patterns’ solution path depicted in Figure 2. So in
general, if a pattern is applied before another pattern, also
their corresponding Solution Implementations are applied in
this order.

C. Use Case 3: Costumes in Films

General Use Case: An actor or an actress playing the role of
a superhero that hides his strength by means of boring
clothes in his daily live has to be dressed with several
costumes. The superhero needs the ability to easily
exchange his every day clothes with the superhero costume.

Concrete Scenario: Solution Implementations are provided
by means of concrete costumes, which are manually
aggregated into one costume.

In the domain of costumes in films, costume patterns can
be defined as a proven solution to the design problem for
communicating a certain character such as a sheriff or an
outlaw by their clothes [12]. A costume transports a lot of
information about a character like character traits, moods and
social standing, as well as information on the setting of the
film. Costume patterns capture the convention of this
communication. Like in the other domains, when working
with the costume patterns the costume designer needs to
spent significant effort to implement the abstract solution
description provided by the pattern for a concrete context.
When starting to search for the right costumes needed for a
certain film, the patterns are of great help by providing the
essence of the convention on how to dress characters like the
typical superhero or a shy guy in means of being understood
and recognized easily by the spectators. For example, the
superhero costume probably contains items of clothes like a
cape, tight-fitting pants, and a shirt that emphasize the
muscles and allow free movements together with a unique
logo of this hero. The shy guy, on the other hand, is mostly
communicated by a costume of rather pale colors and is
dressed in a slightly too big modest suit hiding his face
behind big glasses. As this solution is rather abstract, it needs
refinement when being applied.

Therefore, in our approach, we suggest the concept of
Solution Implementations for connecting the patterns with
concrete solutions, meaning descriptions of concrete
costumes occurring in films. Since the real tangible costumes
are hardly ever kept and stored after the production of a film
and since the communicative effect of a costume is retained
in films the Solution Implementations are the costumes seen
on screen. The descriptions to capture the Solution

Implementations contains detailed information on the items
of clothes, their material and color, a collection of pictures of
the costume as well as contextual information like character
traits of the role or its stereotype [32]. Such Solution
Implementations can be stored in a Solution Implementation
repository [33].

Figure 5 illustrates how the superhero pattern, for
example, can be connected to the concrete Solution
Implementation that the character “Superman” wears in the
movie “Superman” (Director: Richard Donner, 1978) or how
the shy guy pattern can point to the costumes of the character
“Clark Kent” in the same movie. But next to the Solution
Implementation of the Superman costume, various other
Solution Implementations could be connected to the pattern
“Superhero” like the Batman or Spiderman costume. Since
every pattern can be connected to various Solution
Implementations, it is necessary to select the suitable
Solution Implementation for the right context. To support
finding the right Solution Implementation, the introduced
concepts of Selection Criteria as well as defining the pre- and
postcondition of the Solution Implementation is also
adaptive in the domain of costumes. To find suitable
Solution Implementations, i.e., concrete costumes for a
concrete film, the Selection Criteria as well as the defined
pre- and postcondition of the Solution Implementation can
ensure that the costume makes sense in a certain scene. For
example, if the Shy Guy pattern shall be applied for Clark
Kent in a cold winter scene, other costumes must be taken
than if the pattern has to be applied for a scene in summer.

While the concepts of the Solution Implementations, the
Selection Criteria, and defined pre- and postconditions are
very promising in the domain of costumes, the concept of
Aggregation Operators is not always needed: when using a
costume pattern to find the right costume, the application of
this pattern usually needs just one Solution Implementation
and in difference to fragments of code, they are mostly
connected together by the storyline and only seldom in a
physical way. Nonetheless, there are some situations were
physical Aggregation Operators are needed. For example,
when multiple costume patterns are applied together to one
character at once, the corresponding Solution
Implementations also need an aggregation and, therefore,
need a physical Aggregation Operator. Figure 5 depicts how
in the film “Superman” the Solution Implementations of the
superhero pattern (SI1: Superman) and a Solution
Implementation of the shy guy pattern (SI2: Clark Kent) are
aggregated together using the Aggregation Operator to build
a costume that contains both characters and allows the
transformations from one to the other (we omitted Selection
Criteria for the sake of simplicity). The necessary
adaptations to get those two Solution Implementations to
work together would contain actions like making sure that
the costume on top needs to be a bit bigger to hide the other,
where to store the cape so it is not seen, and how to modify
the suite so it does not get torn when being ripped off, for
example. We also point out, that in this case, the concept of
the Aggregation Operator cannot be automated because the
adaption of the costumes in order to fit together has to be
done manually by a costume designer.

Clark Kent
“Superman” 1987

!

Superman
“Superman” 1987

Double Identity: Clark Kent and Superman
“Superman” 1987

!

SI1! SI2!⊕!

Superhero! Shy!Guy!

Figure 5. Concrete costumes occurring in the film “Superman” (1987) as Solution Implementations (SI1, SI2) of the costume patterns Superhero and
Shy Guy are aggregated by an Aggregation Operator.

D. Use Case 4: User Interaction Design

General Use Case: Users need the ability to sign up for
accounts of a website. Thus, the users need to provide a
password and the sign up process shall only start if the
strength of the entered password is validated as strong
enough. If a user enters a weak password, he has to be
notified that the password needs to be improved.

Concrete Scenario: Solution Implementations provide
concrete HyperText Markup Language (HTML) and
JavaScript snippets used for designing user interfaces. The
final user interface is constructed by aggregating a sequence
of Solution Implementations by manipulating associated
HTML code.

Patterns are a well-known concept in the domain of user
interaction design. A broad number of publications exist that
introduce patterns for good user interface designs and user
interaction concepts [5][44 - 47]. This use case shows how
the approach of Solution Implementations is applied in this
domain and, especially, how Solution Implementations from
a series of four patterns are aggregated into one combined
concrete solution.

As designing user dialogs on websites is a very common
issue, many patterns are published that deal with the problem
how to design and arrange control elements on a website.
Nevertheless, it is still a time consuming effort for a web
designer to implement the solution concepts provided by
patterns – especially if the concrete website needs to
combine several patterns in order to design a complex web
interface for users. This is due to the manifold of possible
concrete solutions because of the vast number of available
technologies to implement websites and control structures.
To mention some common technologies today, there are
PHP [13], HTML [48], JavaScript [49], Java Servlets [50],
JavaServer Pages [51], JavaServer Faces [52],
Angular.js [53], jQuery [54], Spring [55], Ruby on
Rails [56], Google Web Toolkit [57] and many more.
Although websites are rendered using HTML, the different
technologies often employ specific concepts to implement a

user interface. Unfortunately, this is mostly not plain HTML
but a complex combination of server side logic and
JavaScript libraries on the browser. In addition, some
technologies employ technology-specific constructs and
domain-specific languages on server side to specify the
control elements of a user interface, which is then
transformed into HTML code and the corresponding
JavaScript libraries. This means that a developer has to be
familiar with language-specific constructs and concepts,
complex libraries, and how to combine them in order to
refine a pattern’s conceptual solution to a concrete
implementation. As a result, implementations have to be
redeveloped for every technology and use case leading to
huge manual efforts.

In the following, we investigate this statement in more
detail and assume that a web designer has to implement a
website where users can sign up an account by entering a
user name and a password. The sign up process shall only
start if a safe password is entered (for the sake of simplicity
we omit the second password field, which is usually
provided for reentering the password to ensure that a user
keys in the right password). Therefore, the website has to
indicate the strength of the currently entered password.
Further, if the user tries to sign up with a weak password, the
website should notice him or her about the necessity of a
stronger password. This is a very common use case since
almost every web shop in the World Wide Web provides
such functionality in order to store user specific
configurations of the site or the user data for delivery,
payment, and invoicing.

In order to realize a website to create accounts, a web
designer can use user interaction patterns from [5]. Patterns
that are appropriate for the mentioned use case are depicted
in Figure 6: registration, password field, password strength
meter and, finally, input error message. The registration
pattern describes that a registration form needs control
elements to input a user name and a password as well as a
button to submit the sign up request. The password field
pattern describes that input fields for passwords should not
show the password in plaintext. Nevertheless, they should

⊕!

⊕!

Registra*on! Password!!

Field!

Password!

Strength!Meter!

Input!Error!

Message!

(s’,g’,…)! (s’’,g’’,…)!(s,g,…)!

SI1.1!

SI1.2!

postcondi*on:!!
Plain&HTML&implementa/on&with&
registra/on&form&

postcondi*on:!!
PHP&implementa/on&
with®istra/on&form!

(sc=!Plain!HTML!
implementa*on!
extended!by!!

registra*on!form)!

(sc=!PHP!implementa*on!!
extended!by!!registra*on!!
form)!

SI2.1!

SI2.2!

precondi*on:!!
PHP&implementa/on&with®istra/on&form&
postcondi*on:!!
Hidden&characters&
at&password&field&

postcondi*on:!!
Hidden&characters&
at&password&field!

(sc=!Characters!of!
input!field!are!hidden)!

(sc=!Characters!of!input!!
field!are!hidden!

precondi*on:!!
Plain&HTML&implementa/on&
with®istra/on&form!

!

1

2
SI3.1!

postcondi*on:!!
Validated&strength&of&password&
in&password&field!

(sc=!Input!field!for!password!!
is!validated)!

precondi*on:!!
Hidden characters
at password field
!

⊕!3
SI4.1!

postcondi*on:!!
Error&message&on&HTML&site&
in&case&of&invalid&input&

(sc=!Error!message!is!provided!
considering!valida*on!of!an!!
HTML!input!form)!

precondi*on:!!
Validated strength of
password in password field
!

⊕!4

Figure 6. Solution Path of four User Interaction Patterns with related Solution Implementations, which are aggregated by Aggregation Operators.

indicate to the user how many characters have been entered.
Further, the password strength meter pattern describes how
the strength of a password, i.e., if it is secure or not, can be
validated and how a user can be notified about the strength.
Finally, the input error message pattern provides a solution
how to notify a user about invalid inputs in input fields. It
also defines that the website should inform which input field
contains the invalid data.

In order to create a concrete solution based on the
selected patterns, Solution Implementations have to be
selected from all patterns of the solution path. The
registration pattern and the password field pattern provide
Solution Implementations that extend a plain HTML website
(SI1.1) or a website coded in PHP (SI1.2) as indicated by the
Selection Criteria “Plain HTML implementation extended by
registration form” and “PHP implementation extended by
registration form”, respectively. Since the password field
shall be protected to avoid unintended discoveries of entered
passwords by viewers, either SI2.1 or SI2.2 have to be
combined with SI1.1 or SI1.2. This is possible since pre- and
postconditions of both pairs of Solution Implementations
match and Aggregation Operator 1 exists to combine SI1.1
with SI2.2 as well as Aggregation Operator 2 for SI1.2 and
SI2.1. Since for the following patterns of the solution path –
password strength meter and input error message – no
Solution Implementations are available in the example
depicted in Figure 6, which can be combined with the PHP
alternative of password field, we assume that SI1.1 and SI2.2
are selected. Therefore, SI3.1 and SI4.1 are also selected
because also Aggregation Operators exist to combine them
with the previous Solution Implementations along the
solution path.

In order to investigate how the Aggregation Operators
manipulate the plain HTML file, all aggregations along the
solution path are depicted in Figure 7 from left to right. On

the left side of this figure, the user interface is illustrated as
provided by SI1.1. The user interface contains two input fields
with their labels “Name” and “Password” as well as a button
to submit the sign up request. The password in the second
input field still shows the entered characters in plain text.
Beneath the sketched user interface, an excerpt of the HTML
code provided by the Solution Implementation is shown. The
bold letters indicate the registration form with its control
elements. After Aggregation Operator 2 has combined SI1.1
and SI2.2, the input field for the password is manipulated to
hide entered characters and only show how many characters
are keyed in by means of stars. In plain HTML, this can be
achieved by changing the type of the input field from text to
password as depicted in the second code snippet in bold
letters. Thus, the Aggregation Operator configures the type
of the existing input field.

The password strength meter provided by SI3.1 extends
the HTML file by validation logic implemented in an
additional JavaScript file. Besides the logic to determine if
an entered password is secure or not, the JavaScript file also
contains code to display the strength meter by means of a bar
and a label. The more the bar is filled, the more secure the
entered password is. To integrate this functionality,
Aggregation Operator 3 manipulates the HTML file so that
the JavaScript file is loaded, as depicted with the top bold
letters in the third code snippet from left. The bottom bold
letters in this code snippet shows that the password strength
meter is placed between the password field and the submit
button as illustrated in the sketch upon the code snippet. To
wire the password strength meter with the password input
field, the Aggregation Operator has to be configured in order
to parameterize the password strength meter with the id of
the password input field. The resulting HTML file can be
modified by the web designer manually, if the position of the
password strength meter does not suit the needs of the

⊕!4 ⊕!⊕!
Some!Name!Name:

3,14159265!Password:

Sign!up!

Some!Name!Name:

**********!Password:

Sign!up!

Some!Name!Name:

**********!Password:

Sign!up!

Strength:
good

Some!Name!Name:

****!Password:

Sign!up!

Strength:
weak

!!Please!provide!stronger!
password!to!sign!up!!!

2
3

<html>'
...'
<form&action=“reg.html”>&
<input&id=“name”&type=“text”>&
<input&id=“pw”&type=“text”>&
<input&type=“submit”&&

&value=“Sign&up”>&
</form>&
...'
</html>'

<html>'
...'
<form'action=“reg.html”>'
<input'id=“name”'type=“text”>'
<input'id=“pw”'type=“password”>'
<input'type=“submit”''

'value=“Sign'up”>'
</form>'
...'
</html>'

<html>'
...'
<script&src=“strengthMtr.js”>&
...'
<form'action=“reg.html”>'
<input'id=“name”'type=“text”>'
<input'id=“pw”'type=“password”>'
<strengthMeter&validate=“pw”>'
<input'type=“submit”''

'value=“Sign'up”>'
</form>'
...'
</html>'

<html>'
...'
<script'src=“strengthMtr.js”>'
<script&src=“inputErrMsg.js”>&
...'
<form'action=“reg.html”>'
<inputErrMessage>&
<input'id=“name”'type=“text”>'
<input'id=“pw”'type=“password”>'
<strengthMeter'validate=“pw”>'
<input'type=“submit”''

'value=“Sign'up”>'
</form>'
...'
</html>'

Figure 7. Aggregation Operators combine Solution Implementations by adapting HTML code.

website structure etc.
Finally, also SI4.1, which provides logic to show input

error messages, is combined into the HTML file by means of
Aggregation Operator 4. As with Aggregation Operator 3,
the HTML code is adapted to load an additional JavaScript
file, which contains the code of the input error message field
as depicted with the top bold letters in the HTML snippet far
right in Figure 7. Further, the visualization of the input error
message field is put into the form so that it can show the
validation results of the input fields. Of course, also this must
be configured manually as only the web designer knows
which error messages shall be displayed.

This use case shows that the concept of Solution
Implementations can help to implement concrete solutions of
several patterns together. Since user interfaces mostly
incorporate many control elements, Solution
Implementations can lead to immense reduction of effort in
contrast to combine them manually. Especially if a developer
has to deal with a vast of different technologies as mentioned
above and, therefore, many specific implementation concepts
for each of these technologies, Solution Implementations can
provide a means to easily reuse available solutions for new
use cases. Nevertheless, user interface design is often an act
of creativity so that standardized implementations, as
provided by Solution Implementations and Aggregation
Operators, need to be adapted. But also in such cases, the
presented concept can provide starting points with runnable
code that then can be adapted creatively to meet the
challenges of a non-standard user interface.

E. Use Case 5: Object-Oriented Software Engineering

General Use Case: A software engineer needs to combine an
implementation of the Model View Controller Pattern with
user interface patterns.

Concrete Scenario: An Aggregation Operator combines
Solution Implementations of the Model View Controller
pattern and the Pulldown Button Pattern in the form of Java
classes. So, Solution Implementations from different pattern
domains, i.e., different pattern languages are aggregated by
means of an Aggregation Operators by adapting Java code.

When developing software systems, it is a common
practice to first design the architecture of the software. In the
architecture phase, design decisions are made, which are on
an abstracter level in contrast to the concrete implementation
problems, because they deal with general questions about the
structure of software. In the domain of software architecture,
patterns are a pervasive means to discuss design decisions
and to describe the architecture of software systems [7].
They often affect later implementations, since the abstract
structure of the software has to be implemented by concepts
of the used technology. If Solution Implementations are
provided for such patterns, the application of these patterns
can be eased in order to save efforts to work them out
manually for new use cases.

As already mentioned in the former use cases, patterns
are also very common in the domain of user interaction
design. Especially patterns describing control elements of
user interfaces are often used. Thus, such patterns deal with
problems that are very close to concrete implementations,
since they often provide sketches that show how control
elements should look like and how they should be arranged
on a user interface [5].

This last use case shows how Solution Implementations
of patterns from the two different domains of object-oriented
design and user interaction design can be combined using
our concept of Solution Implementations. Therefore, we
show how an Aggregation Operator composes Solution
Implementations of the pattern Model View Controller
(MVC) [16], which is from the domain of object-oriented
software architecture, and the Pulldown Button pattern [5],
which is from the domain of user interaction design. The
MVC pattern describes how the user interface of a program
can be separated from its domain logic in order to prevent
that changes of the user interface affect the implementation
of the domain logic. Therefore, the user interface is
encapsulated into a view entity, while the domain logic is
provided by a model entity. The controller receives user
interactions and triggers processing of domain logic based on
the user’s inputs. The pulldown button pattern provides a
means to select exactly one value from a list of values. This
list is only shown when a user clicks on the control element.
If he or she selects a value from the list, the list is hidden
again and only the selected value is visible.

Model&View&
Controller&

Pulldown&
Bu1on&

(s,g,…)&

SI1.1&
postcondi>on:&&
Model,'View'
and'Controller'Java'Classes'

(sc=&MVC&template&for&Java)&

SI2.1&
precondi>on:&&
Model,'View'
and'Controller'Java'Classes'

(sc=&Pulldown&Bu1on&
for&Java)&

postcondi>on:&&
Pulldown'Bu6on'on'
View'wired'with'Controller'

⊕&

Figure 8. An Aggregation Operator combines Solution Implementations of the patterns Model View Controller and Pulldown Button.

Both patterns are depicted in Figure 8. For the sake of
simplicity, there is just one Solution Implementation
provided for each pattern – SI1.1 and SI2.1. Both Solution
Implementations provide concrete solutions in the form of
Java code as illustrated by the corresponding Selection
Criteria. The postcondition of SI1.1 “Model, View and
Controler Java Classes” shows that this Solution
Implementation consists of Java classes that implement the
MVC paradigm. Further, the precondition of SI2.1 matches
the mentioned postconditions of SI1.1, so both can be
aggregated to form a combined solution.

The aggregation of both Solution Implementations is
depicted as a Unified Modeling Language (UML) class
diagram in Figure 9 [58]. The figure shows on the left that
the pulldown button class is associated with the view class of
the MVC Solution Implementation SI1.1. To achieve this
aggregation, the Aggregation Operator manipulates the java
code of the view class so that an instance of the pulldown
button is created and shown when the view is launched. Bold
letters on the right in Figure 9 highlight the adaptions of the
java code. So, this use case shows that the concept of
Solution Implementations also allows combining solution
knowledge from different pattern domains, since MVC is
categorized as an architectural pattern, while pulldown
button is a pattern from user interaction design. As they
appear in different pattern languages, this use case
demonstrates that Solution Implementations of patterns
originally provided by different pattern languages can be
applied together based on the presented approach. Of course,
the aggregation must be adapted manually to place the
pulldown button at the desired position and to select the
appropriate view and so on. However, the actual aggregation,
i.e., copying the corresponding java code, defining the
required Java libraries, and linking the affected classes can
be done by an Aggregation Operator automatically – and this
already eases applying those patterns together in reality.

VI. PROTOTYPES
To prove the approach’s technical feasibility, we

implemented a pattern repository prototype that aims to
capture patterns and their cross-references in a domain-
independent way to support working with patterns [33][59].
Based on semantic wiki-technology, it enables capturing,
management, and search of patterns. To adapt to different
pattern domains, the pattern format is freely configurable.

The pattern repository already contains various patterns from
different domains such as cloud computing patterns [17],
cloud data patterns [60], and costume patterns [12] to
demonstrate the generic flexibility of our approach. The
cross-references between the patterns enable an easy
navigation through the pattern languages. Links like “apply
after” or “combined with” connect the patterns, which results
in a pattern language. The pattern repository does not only
contain the patterns and their cross-references, but can be
connected to a second repository containing Solution
Implementations. We realized a Solution Implementation
repository [33][61] for the domain of costume patterns to
prove the interoperability of these two kinds of repositories.
Here, for example, the concrete costumes of a sheriff
occurring in a film are represented as the Solution
Implementation of a sheriff costume pattern. By connecting
the pattern to a Solution Implementation as a concrete
solution of the abstracted solution of the pattern, the
application of the pattern in a certain context is facilitated.
Although the implemented solution repository for costumes
in films is specifically tailored to store Solution
Implementations from this domain, the concept of combining
pattern repositories and solution repositories as described in
[33] can easily be reused to create repositories for the other
use cases to store code, HTML files, Cloud Formation
Templates, or workflows.

To test the concept of Aggregation Operators, we
prototyped the combination of several concrete Solution
Implementations in the domain of cloud management
patterns (use case 2). This domain is very appropriate, as the
aggregation can be automated completely: we employed our
workflow generator [41] to automatically combine different
Management Planlets to an overall workflow implementing a
solution to a problem that requires the use of multiple
patterns. The input for this generator is a partial order of
(composite) management planlets, i.e., Solution
Implementations that have to be orchestrated into an
executable workflow. This partial order is determined by the
relations of combined patterns: if one pattern is applied after
another pattern, also their Solution Implementations, i.e.,
Management Planlets, have to be executed in this order. The
workflow generator creates BPEL-workflows while
Management Planlets are also implemented using BPEL. As
BPEL is a standardized workflow language, the resulting
management plans are portable across different engines and

Figure 9. Aggregated Solution Implementations of MVC and Pulldown Button in UML as well as adaptions of Java code by the Aggregation Operator.

cloud environments supporting BPEL as workflow language,
which is in line with the TOSCA standard [62][63][64].
Thus, this prototype shows that in certain domains,
Aggregation Operators can be realized in an automated
fashion. However, as seen in costumes, this is not always the
case and in many other domains manual effort has to be
spent for the aggregation.

VII. CONCLUSION AND FUTURE WORK
In this paper, we introduced the concept of Solution

Implementations as concrete instances of a pattern’s solution.
We showed how Solution Implementations can enrich
patterns and pattern languages and how this approach can be
integrated into a pattern repository. To derive concrete
solutions for problems that require the application of several
patterns we proposed a mechanism to compose these
solutions from concrete solutions of the required patterns by
means of Aggregation Operators. We concretized the general
concept of Solution Implementations by five detailed use
cases in the domains of cloud application architecture, cloud
management, costumes in films, user interaction design and
software engineering. We partially verified the approach by
means of a prototype of an integrated pattern repository.

Currently, we extend the implemented repository for
solution knowledge in the domain of costume design to
capture Solution Implementations more efficiently. This
repository integrates patterns and linked Solution
Implementations in this domain and we enlarge the amount
of costume Solution Implementations. We are also going to
extend the presented approach to not only work on Solution
Implementation sequences but also on aggregations of
concrete solution instances not ordered temporally due to
pattern sequences of a solution path. Since Solution
Implementations are composed by Aggregation Operators,
we are going to enhance our pattern repositories to also store
and manage the Aggregation Operators. Finally, we will
investigate Aggregation Operators in domains besides the
above mentioned to formulate a general theory of Solution
Implementations and Aggregation Operators.

ACKNOWLEDGMENT
This work was partially funded by the Co.M.B. project of

the DFG under the promotional reference LE 2275/5-1.

REFERENCES
[1] M. Falkenthal, J. Barzen, U. Breitenbücher, C. Fehling, and F.

Leymann, “From pattern languages to solution
implementations,” Proceedings of the Sixth International
Conference on Pervasive Patterns and Applications
(PATTERNS), pp. 12–21, May 2014.

[2] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I.
Fiksdahl-King, and S. Angel, “A pattern language: towns,
buildings, constructions,” Oxford University Press, 1977.

[3] T. Iba and T. Miyake, “Learning patterns: a pattern language
for creative learners II,” Proceedings of the 1st Asian
Conference on Pattern Languages of Programs (AsianPLoP
2010), pp. I-41 – I-58, March 2010.

[4] F. Salustri, “Using pattern languages in design engineering,”
Proceedings of the International Conference on Engineering
Design, pp. 248–362, August 2005.

[5] M. van Welie, A pattern library for interaction design,
http://www.welie.com, last accessed on 2014.11.28.

[6] R. Reiners, Bridge Pattern Library, http://bridge-pattern-
library.fit.fraunhofer.de/pattern-library/, last accessed on
2014.11.28.

[7] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, “Pattern-oriented software architecture, volume 1: a
system of patterns,” Wiley, 1996.

[8] M. Fowler, “Patterns of enterprise application architecture,”
Addison-Wesley, 2003.

[9] T. Brunner and A. Zimmermann, “Pattern-oriented enterprise
architecture management,” Proceedings of the Fourth
International Conference on Pervasive Patterns and
Applications (PATTERNS), pp. 51–56, July 2012.

[10] C. Fehling, F. Leymann, R. Retter, D. Schumm, and W.
Schupeck, “An architectural pattern language of cloud-based
applications,” Proceedings of the 18th Conference on Pattern
Languages of Programs (PLoP), pp. A-20–A-30,
October 2011.

[11] J. Yoder and J. Barcalow, “Architectural Patterns for
Enabling Application Security,” Pattern Languages of
Program Design 4, pp. 301–336, 2000.

[12] D. Schumm, J. Barzen, F. Leymann, and L. Ellrich, “A
pattern language for costumes in films,” Proceedings of the
17th European Conference on Pattern Languages of Programs
(EuroPLoP), pp. C4-1–C4-30, July 2012.

[13] PHP, PHP: Hypertext Preprocessor, http://php.net, last
accessed on 2014.11.28.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design
patterns: elements of reusable object-oriented software,”
Addison-Wesley, 1995.

[15] G. Hohpe and B. Wolf, “Enterprise integration patterns:
designing, building, and deploying,” Addison-Wesley, 2004.

[16] T. Reenskaug, “The original MVC reports,”
https://heim.ifi.uio.no/~trygver/2007/MVC_Originals.pdf, last
accessed on 2014.11.28.

[17] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P.
Arbitter, “Cloud computing patterns,” Springer, 2014.

[18] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, “Pattern-oriented software architecture volume 1: a
system of patterns,” Wiley, 1996.

[19] R. Reiners, R. Halvorsrud, A. Wegner Eide, and D. Pohl, “An
approach to evolutionary design pattern engineering,”
Proceedings of the 19th international Conference on Pattern
Languages of Programs, October 2012, scheduled for 2014.

[20] U. Zdun, “Systematic pattern selection using pattern language
grammars and design space analysis,” Software: Practice and
Experience, vol. 37, pp. 983–1016, 2007.

[21] R. Reiners, “A pattern evolution process – from ideas to
patterns,” Lecture Notes in Informatics – Informatiktage
2012, pp. 115–118, March 2012.

[22] M. Falkenthal, D. Jugel, A. Zimmermann, R. Reiners, W.
Reimann, and M. Pretz, “Maturity assessments of service-
oriented enterprise architectures with iterative pattern
refinement,” Lecture Notes in Informatics - Informatik 2012,
pp. 1095–1101, September 2012.

[23] R. Porter, J. O. Coplien, and T. Winn, “Sequences as a basis
for pattern language composition,” in Science of Computer
Programming, Special issue on new software composition
concepts, vol. 56, pp. 231–249, April 2005.

[24] C. Fehling, F. Leymann, R. Mietzner, and W. Schupeck, “A
collection of patterns for cloud types, cloud service models,
and cloud-based application architectures,”
http://www.cloudcomputingpatterns.org, last accessed on
2014.11.28, University of Stuttgart, Report 2011/05, Mai
2011.

[25] U. van Heesch, Open Pattern Repository,
https://code.google.com/p/openpatternrepository/, last
accessed on 2014.11.28.

[26] M. Demirköprü, “A new cloud data pattern language to
support the migration of the data layer to the cloud,” in
German “Eine neue Cloud-Data-Pattern-Sprache zur
Unterstützung der Migration der Datenschicht in die Cloud,”
University of Stuttgart, diploma thesis no. 3474, 2013.

[27] C. Fehling, F. Leymann, J. Rütschlin, and D. Schumm,
“Pattern-based development and management of cloud
applications,” Future Internet, vol. 4, pp. 110–141, 2012.

[28] C. Fehling, F. Leymann, R. Retter, D. Schumm, and W.
Schupeck, “An architectural pattern language of cloud-based
applications,” Proceesings of the 18th Conference on Pattern
Languages of Programs (PLoP), pp. A-20 – A-21, Oct. 2011.

[29] A. G. Mirnig and M. Tscheligi, “Building a general pattern
framework via set theory: towards a universal pattern
approach,” Proceedings of the Sixth International Conference
on Pervasive Patterns and Applications (PATTERNS), pp. 8–
11, May 2014.

[30] D. Krleža and K. Fertalj, “A method for situational and
guided information system design,” Proceedings of the Sixth
International Conference on Pervasive Patterns and
Applications (PATTERNS), pp. 70–78, May 2014.

[31] U. Breitenbücher, T. Binz, O. Kopp, and F. Leymann,
“Automating cloud application management using
management idioms,” Proceedings of the Sixth International
Conference on Pervasive Patterns and Applications
(PATTERNS), pp. 60–69, May 2014.

[32] J. Barzen and F. Leymann, “Costume languages as pattern
languages,“ accepted at Pursuit of Pattern Languages for
Societal Change, unpublished.

[33] C. Fehling, J. Barzen, M. Falkenthal, and F. Leymann,
“PatternPedia - collaborative pattern identification and
authoring,“ accepted at Pursuit of Pattern Languages for
Societal Change, unpublished.

[34] C. Alexander, “The timeless way of building,” Oxford
University Press, 1979.

[35] Amazon, AWS Cloud Formation, http://aws.amazon.com/
cloudformation/, last accessed on 2014.11.28.

[36] Amazon, Elastic Beanstalk, http://aws.amazon.com/
elasticbeanstalk/, last accessed on 2014.11.28.

[37] Amazon, Amazon Web Services, http://aws.amazon.com, last
accessed on 2014.11.28.

[38] Microsoft, Microsoft Azure, http://azure.microsoft.com, last
accessed on 2014.11.28.

[39] Amazon, AWS EC2, http://aws.amazon.com/ec2/, last
accessed on 2014.11.28.

[40] C. Fehling, F. Leymann, S. T. Ruehl, M. Rudek, and S.
Verclas “Service migration patterns – decision support and
best practices for the migration of existing service-based
applications to cloud environments,” Proceedings of the IEEE
International Conference on Service Oriented Computing and
Applications (SOCA), in press, December 2013.

[41] U. Breitenbücher, T. Binz, O. Kopp, and F. Leymann,
“Pattern-based runtime management of composite cloud
applications,” Proceedings of the 3rd International
Conference on Cloud Computing and Service Science
(CLOSER), pp. 475–482, May 2013.

[42] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, and M.
Wieland, “Policy-Aware Provisioning of Cloud
Applications,” in SECURWARE. Xpert Publishing Services,
August 2013, pp. 86–95.

[43] O. Kopp, H. Eberle, and F. Leymann, “The subprocess
spectrum,” Proceedings of the 3rd Business Process and
Services Computing Conference (BPSC), pp. 267–279,
September 2010.

[44] J. Tidwell, “Designing interfaces – patterns for effective
interaction design,” O’Reilly, 2011.

[45] D. K. van Duyne, J. A. Landay, and J. Hong, “The design of
sites: patterns for creating winning websites,” Prentice Hall,
2007.

[46] J. Borchers, “A pattern approach to interaction design,” John
Wiley & Sons, 2001.

[47] Yahoo Developer Network, Yahoo design pattern library,
https://developer.yahoo.com/ypatterns/, last accessed on
2014.11.28.

[48] World Wide Web Consortium, HTML 4.01 Specification,
http://www.w3.org/TR/html401/, last accessed on 2014.11.28.

[49] Ecma International, ECMAScript Language Specification,
http://www.ecma-international.org/ecma-262/5.1/, last
accessed on 2014.11.28.

[50] Oracle, Java Servlet Technology,
http://www.oracle.com/technetwork/java/index-jsp-
135475.html, last accessed on 2014.11.28.

[51] Oracle, JavaServer Pages Technology,
http://www.oracle.com/technetwork/java/javaee/jsp/index.htm
l, last accessed on 2014.11.28.

[52] Oracle, JavaServer Faces Technology,
http://www.oracle.com/technetwork/java/javaee/javaserverfac
es-139869.html, last accessed on 2014.11.28.

[53] Google, Angular.js, https://angularjs.org, last accessed on
2014.11.28.

[54] jQuery, jQuery, http://jquery.com, last accessed on
2014.11.28.

[55] Spring, Spring Framework, http://projects.spring.io/spring-
framework/, last accessed on 2014.11.28.

[56] Rails, Ruby on Rails, http://rubyonrails.org, last accessed on
2014.11.28.

[57] Google, Google Web Toolkit, http://www.gwtproject.org, last
accessed on 2014.11.28.

[58] Object Management Group, Unified Modeling Language,
http://www.uml.org, last accessed on 2014.11.28.

[59] N. Fürst, “Semantic wiki for capturing design patterns,” in
German “Semantisches Wiki zur Erfassung von Design-
Patterns,” University of Stuttgart, diploma thesis no. 3527,
2013.

[60] S. Strauch, V. Andrikopoulos, U. Breitenbücher, S. Gómez
Sáez, O. Kopp, and F. Leymann, “Using patterns to move the
application data layer to the cloud,” Proceedings of the 5th
International Conference on Pervasive Patterns and
Applications (PATTERNS), pp. 26–33, May 2013.

[61] D. Kaupp, “Application of semantic wikis for solution
documentation and pattern identification,” in German
“Verwendung von semantischen Wikis zur
Lösungsdokumentation und Musteridentifikation,” University
of Stuttgart, diploma thesis no. 3406, 2013.

[62] OASIS, Topology and Orchestration Specification for Cloud
Applications Version 1.0, http://docs.oasis-
open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html, last
accessed on 2014.11.28.

[63] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann,
“TOSCA: portable automated deployment and management
of cloud applications,” in Advanced Webservices, A.
Bouguettaya, Q. Z. Sheng, F. Daniel, Eds., Springer, pp. 527–
549, 2014.

[64] U. Breitenbücher, T. Binz, K. Képes, O. Kopp, F. Leymann,
and J. Wettinger, “Combining Declarative and Imperative
Cloud Application Provisioning based on TOSCA,” in IC2E.
IEEE, March 2014, pp. 87–96.

