
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{wettinger, breitenbuecher, falkenthal, leymann}@iaas.uni-stuttgart.de

Collaborative Gathering and Continuous Delivery
of DevOps Solutions through Repositories

Johannes Wettinger, Uwe Breitenbücher,
Michael Falkenthal, Frank Leymann

@article{Wettinger2016,
author = {Johannes Wettinger and Uwe Breitenb{\"u}cher and

Michael Falkenthal and Frank Leymann},
title = {Collaborative Gathering and Continuous Delivery of

DevOps Solutions through Repositories},
journal = {Computer Science -- Research and Development},
number = {74},
volume = {22},
year = {2016}

}

:

Institute of Architecture of Application Systems

© 2016 Springer-Verlag.
The original publication is available at http://www.springerlink.com
See LNCS website: http://www.springeronline.com/lncs

Collaborative Gathering & Continuous Delivery
of DevOps Solutions through Repositories

Johannes Wettinger, Uwe Breitenbücher,
Michael Falkenthal, and Frank Leymann

Institute of Architecture of Application Systems, University of Stuttgart
{wettinger,breitenbuecher,falkenthal,leymann}@iaas.uni-stuttgart.de

Abstract Collaboration is a key aspect when establishing DevOps-
oriented processes because diverse experts such as developers and opera-
tions personnel need to efficiently work together to deliver applications.
For this purpose, highly automated continuous delivery pipelines are
established, consisting of several stages and their corresponding appli-
cation environments (development, test, production, etc.). The DevOps
community provides a huge variety of tools and reusable artifacts (i.e.
DevOps solutions such as deployment engines, configuration definitions,
container images, etc.) to implement such application environments. This
paper presents the concept of collaborative solution repositories, which are
based on established software engineering practices. While this helps to
systematically maintain and link diverse solutions, we further discuss how
discovery and capturing of such solutions can be automated. To utilize
this knowledge (made of linked DevOps solutions), we apply continuous
delivery principles to create diverse knowledge base instances through
corresponding pipelines. Finally, an integrated architecture is outlined
and validated using a prototype implementation.

Keywords: Continuous Delivery, DevOps, Knowledge, Solution Repository

1 Introduction

DevOps [2,9,14] is an emerging paradigm, which aims to improve the collabora-
tion between developers (‘dev’), operations personnel (‘ops’), and other parties
involved in software development and delivery processes. Typically, cultural and
organizational gaps between these groups appear, so different goals such as ‘push
changes to production quickly’ on the development side versus ‘keep production
stable’ on the operations side are followed. This often results in incompatible or
even opposing processes and mindsets. Continuous delivery [8] is often used as a
technical foundation to implement aligned DevOps-oriented processes in order
to significantly shorten software release cycles. Especially users, customers, and
other stakeholders in the fields of Cloud services, Web & mobile applications, and
the Internet of Things expect quick responses to changing demands and occurring
issues. Consequently, shortening the time to make new releases available becomes

2 Johannes Wettinger et al.

a critical competitive advantage. In addition, tight feedback loops involving users
and customers based on continuous delivery ensure building the ‘right’ software,
which eventually improves customer satisfaction, shortens time to market, and
reduces costs. An automated continuous delivery pipeline (also known as deploy-
ment pipeline) [8] is established to cover all required steps such as retrieving code
from a repository, building packaged binaries, running tests, and deployment
to production. Such an automated and integrated delivery pipeline improves
software quality, e.g. by avoiding the deployment of changes that did not pass
all tests. Moreover, the high degree of automation typically leads to significant
cost reduction because the automated delivery process replaces most of the man-
ual, time-consuming, and error-prone steps. Establishing a continuous delivery
pipeline means implementing an individually tailored automation system, which
considers the entire delivery process of a specific application. Along each pipeline
with its different stages, corresponding application environments (development,
test, production, etc.) are established.

The growing DevOps community provides a constantly increasing amount
and variety of individual approaches such as tools and reusable artifacts to
implement corresponding application environments. We refer to such tools and
artifacts as DevOps solutions because they are used in the entire DevOps lifecycle1.
Prominent examples are the Chef configuration management framework2, the
Jenkins3 continuous integration server, and Docker4 as an efficient container
virtualization approach. The open-source communities affiliated with these tools
publicly share reusable artifacts to package, deploy, and operate middleware
and application components. However, such artifacts are stored and maintained
in specific repositories such as Docker Hub, Chef Supermarket, and further
repository platforms such as GitHub. Consequently, many solutions are isolated
from each other. This leads to huge efforts to be spent in order to reuse such
solutions seamlessly because users have to search in plenty of different repositories.
This paper presents our work on a systematic approach to collaboratively gather
diverse DevOps solutions in solution repositories in order to continuously deliver
them in the form of different knowledge base instances. We partly build on a
previously published DevOps knowledge management approach [13]. In particular,
the major contributions of this paper can be summarized by (i) the concept
of collaborative solution repositories, (ii) an automated discovery and capturing
approach to populate these solution repositories, (iii) the concept of continuously
deliver knowledge base instances based on the solution repositories, and (iv) the
GatherBase architecture in conjunction with a prototype implementation to
evaluate the presented approaches.

1 DevOps lifecycle: http://newrelic.com/devops/lifecycle
2 Chef: http://www.chef.io
3 Jenkins: http://jenkins-ci.org
4 Docker: http://www.docker.com

http://newrelic.com/devops/lifecycle
http://www.chef.io
http://jenkins-ci.org
http://www.docker.com

Collaborative Gathering & Continuous Delivery of DevOps Solutions 3

2 Collaborative Solution Repositories

Collaboration is a key aspect when implementing DevOps practices and con-
tinuous delivery in particular because diverse experts such as developers and
operations personnel are involved and thus need to collaborate. A broadly estab-
lished approach to enable collaboration in software development and operations
are shared repositories. Developers typically collaborate through code reposi-
tories based on established version control systems such as Git or Subversion.
Beside the source code of an application, such repositories contain tests, build
scripts, deployment plans, and further supplementary materials such as documen-
tation. Moreover, operations personnel maintains configurations through such
repositories, often in the form of structured documents using markup languages
such as XML, YAML, or JSON. Version-controlled repositories provide a high
degree of provenance and transparency because all participants can browse and
follow the history of a repository with all its changes. This does not only make
collaboration more effective, but also establishes a trustful environment because
also the smallest change is visible to all participants.

Typically, experts (developers, operations personnel, etc.) are familiar with
the approach of maintaining structured documents inside such repositories. While
experts are also familiar with the associated tools and languages such as Git,
XML, JSON, etc., the approach itself is typically based on standards (e.g. XML
or JSON) and de-facto standards (e.g. Git), so there is no strict vendor lock-in.
Consequently, each and every expert uses his favorite tooling (e.g. any Git client
and an XML editor) to effectively participate in collaborative processes, which
are centered around such repositories. Diverse participants can collaborate in a
decoupled manner because each of them owns a high degree of freedom when
building his local environment. This approach turned out to be successful in
the field of software development and operations, both inside and outside of
organizations. GitHub5 is a prominent example for a widely adopted open-source
platform and community, which is completely centered around repositories. Beside
basic repositories, such platforms typically provide feature-rich collaboration
techniques such as pull requests6 as well as collaborative review and discussion
capabilities.

Therefore, we adapt and apply this established approach to maintain solutions
and their metadata as structured documents inside version-controlled repositories.
The major goal is to use collaborative solution & metadata repositories (in short
solution repositories) as a foundation to establish and maintain a consolidated
knowledge base, which is made of many different solutions and their metadata.
Instead of the conventional idea of centering repositories around specific software
applications, a solution repository stores the metadata describing reusable solu-
tions and the solutions themselves (or references to these); these solutions are
used as building blocks of diverse application environments (development, test,
production, etc.), e.g. to implement continuous delivery pipelines. The previously
5 GitHub: http://www.github.com
6 Pull Requests: http://help.github.com/articles/using-pull-requests

http://www.github.com
http://help.github.com/articles/using-pull-requests

4 Johannes Wettinger et al.

discussed aspects and success factors of repositories (standards-driven, free choice
of tooling, etc.) equally apply to solution repositories. As a result, diverse experts
can participate in collaborative processes to maintain and utilize corresponding,
mostly application-agnostic solutions through a knowledge base, which is based
on solution repositories. A solution is made of the following parts, which are
specified through its metadata:

– A URI, which uniquely identifies the solution.
– A set of labels to specify the solution’s capabilities.
– A set of links to other solutions or labels (i.e. the ‘solution boundary’) to

express requirements, conflicts, and recommendations.
– Arbitrary properties (key-value pairs) to further characterize the solution

and attach additional content such as parameters, files, references, etc.

In order to represent such solutions and their metadata as structured docu-
ments in repositories in a normalized form, established markup languages such
as XML, JSON, YAML, or Markdown are utilized. Schema definitions can be
utilized to define a concrete serialization for specific languages such as JSON
schema or XML schema. The following listing outlines an example for representing
metadata of a solution as structured document using JSON:

1 {
2 " u r l " : " https : / / supermarket . c h e f . i o / cookbooks / apache2 / v e r s i o n s / 3 . 0 . 0 " ,
3 " l a b e l s " : [
4 { " i s " : " Executable / S c r i p t / Chef Cookbook " } ,
5 { " p r o v i d e s " : " Middleware /Web Server /Apache HTTP Server " }
6] ,
7 " l i n k s " : [
8 { " r e q u i r e s _ h o s t " : " I n f r a s t r u c t u r e / Operating System/ Linux /Debian " } ,
9 . . .

10] ,
11 " p r o p e r t i e s " : {
12 "name " : " apache2 Chef cookbook " ,
13 " r e v i s i o n " : " 3 . 0 . 0 " ,
14 " d e s c r i p t i o n " : " I n s t a l l s and c o n f i g u r e s a l l a s p e c t s o f apache2 . . . " ,
15 " mainta iner " : { " name " : " s v a n z o e s t " , " emai l " : " . . . " } ,
16 " l i c e n s e " : " Apache 2 . 0 " ,
17 " i n f o _ u r l " : " https : / / supermarket . c h e f . i o / cookbooks / apache2 " ,
18 " package_url " : " https : / / supermarket . c h e f . i o / api /v1/ cookbooks / apache2

/ . . . / 3 . 0 . 0 / download " ,
19 " r e p o s i t o r y _ u r l " : " https : / / github . com/ svanzoest −cookbooks / apache2 " ,
20 " readme " : " . . . " ,
21 " c h e f _ r e c i p e s " : {
22 " apache2 " : " Main Apache c o n f i g u r a t i o n " ,
23 " apache2 : : l o g r o t a t e " : " Rotate apache2 l o g s " ,
24 " apache2 : : mod_alias " : " Apache module ’ a l i a s ’ with c o n f i g f i l e " ,
25 . . .
26 } ,
27 . . .
28 }
29 }

However, this is just a single alternative how to represent a solution using
JSON. Another example based on XML is available on GitHub7. Similar to
application source code, these structured documents can be collaboratively
maintained and shared using version-controlled repositories, i.e. collaborative
7 XML sample: https://gist.github.com/jojow/03f368aad0326273e8b5

https://gist.github.com/jojow/03f368aad0326273e8b5

Collaborative Gathering & Continuous Delivery of DevOps Solutions 5

solution & metadata repositories. As discussed previously, diverse experts can
use their favorite tooling to create, edit, and update these documents. Labels
are a key concept to classify and link solutions among each other. On the one
hand, labels are utilized to specify characteristics (e.g. being an executable of
type Chef Cookbook) and capabilities (e.g. providing an Apache HTTP Server)
of a solution. On the other hand, links can refer to labels instead of solutions,
e.g. to express requirements that can be satisfied by different solutions, providing
corresponding capabilities (e.g. providing a Debian operating system). These
labels are organized using a label taxonomy, i.e. a label hierarchy. The taxonomy
is not static, but needs to be changed if, for instance, new categories of solutions
appear, or existing categories of solutions are refined. Therefore, an ongoing and
collaborative taxonomy evolution is happening. For this reason the label taxonomy
is also maintained through structured documents inside solution repositories.
The following listing shows an example for the middleware dimension of the label
taxonomy, rendered using YAML:

1 Middleware :
2 Runtime :
3 p r o p e r t i e s :
4 a l i a s :
5 − $parent /Runtime Environment
6 Java :
7 p r o p e r t i e s :
8 a l i a s :
9 − $parent /Java Runtime Environment

10 − $parent /JRE
11 Sca la :
12 Groovy :
13 G r a i l s :
14 Python :
15 Jython :
16 p r o p e r t i e s :
17 r e q u i r e s :
18 − Middleware /Runtime/JRE
19 Ruby :
20 JRuby :
21 p r o p e r t i e s :
22 r e q u i r e s :
23 − Middleware /Runtime/JRE
24 PHP:
25 Node . j s :
26 . . .
27
28 Web Server :
29 Nginx :
30 Apache HTTP Server :
31 p r o p e r t i e s :
32 a l i a s :
33 − $parent /Apache HTTPD
34
35 Data Store :
36 p r o p e r t i e s :
37 a l i a s :
38 − $parent / Database
39 Object Store :
40 In−Memory :
41 R e l a t i o n a l :
42 MySQL:
43 MariaDB :
44 PostgreSQL :
45 Document−o r i e n t e d :

6 Johannes Wettinger et al.

46 MongoDB :
47 CouchDB :
48 Key−Value :
49 Redis :
50 p r o p e r t i e s :
51 a l i a s :
52 − Middleware /Cache/ Redis
53 − Middleware /Data Store /In−Memory/ Redis
54 − Middleware / Messaging / Redis
55 Riak :
56 Cassandra :
57 . . .

Beside the label hierarchy, the taxonomy contains alias labels (e.g. Apache
HTTPD is an alias for Apache HTTP Server), which can be used alternatively to
their primary labels. This is to cover and map different naming conventions and
established terms used by different communities. Furthermore, requirements can
be attached as properties to a label. This makes sense in case all solutions that
are associated with a particular label inherently own a specific requirement. For
example, all solutions providing JRuby8 require a Java Runtime Environment.

To sum up, solution repositories in conjunction with structured documents
enable effective collaboration among diverse experts. The entire approach is based
on established practices and tooling how software developers and operations per-
sonnel collaborate in modern environments. However, fully manually maintaining
all parts of these repositories does not scale due to the huge amount and variety
of solutions. Especially the solutions’ metadata quickly become outdated because
solutions could be developed by different people than the maintainers of solution
repositories. To tackle this issue and to simplify the maintenance of solution
repositories, the following Sect. 3 presents an approach to automate the discovery
of certain solutions and store them in solution repositories. Furthermore, there
is another challenge that needs to be addressed, namely how to query and effi-
ciently utilize the knowledge base, which is based on the previously discussed
solution repositories. While managing structured documents stored in potentially
distributed solution repositories nicely works for collaboratively maintaining the
knowledge base, these repositories typically do not provide fine-grained query
mechanisms to utilize the knowledge base in an efficient manner. Moreover, con-
sistency checks are not made, e.g. by verifying whether the given documents are
structured properly and the utilized labels actually comply to the label taxonomy.
Therefore, Sect. 4 presents an automated approach (i) to check the involved
solution repositories for consistency, and (ii) to generate a consolidated instance
of the knowledge base, providing a query interface.

3 Automated Discovery and Capturing of Solutions

Figure 1 presents an overview of the auto-gather9 pipeline to automate the dis-
covery and capturing of solutions. The pipeline consists of five stages: (i) during

8 JRuby: http://jruby.org
9 Automated gathering of solutions

http://jruby.org

Collaborative Gathering & Continuous Delivery of DevOps Solutions 7

Discover Retrieve

Solution	
Repositories

Extract

Existing	
Solutions

Targeted	
discovery	of	
solutions

EnrichNormalize

Figure 1. Overview of auto-gather pipeline

discover stage, existing solutions from different sources such as Chef Supermar-
ket10 and Docker Hub11 are identified. (ii) The retrieve stage consumes solution
references, mostly URLs, which are produced by the discover stage. These refer-
ences are then resolved by retrieving the raw solutions. The retrieval can happen
through diverse channels such as HTTP, Git, Bazaar, Rsync, etc., depending
on where a particular solution is located. (iii) During extract stage, relevant
metadata are extracted and derived from previously retrieved raw solutions.
(iv) The normalize stage aligns their representation with the specified metadata
representation, e.g. based on JSON documents as discussed in Sect. 2. (v) Finally,
during enrich stage, metadata are refined, e.g. by applying document classifi-
cation techniques [12] for assigning labels to solutions to better characterize
their capabilities. A simple classification approach would be to match keywords
between the label taxonomy and the metadata of a solution. These normalized
and enriched metadata are eventually stored in solution repositories. Obviously,
the solution repositories may be accessed during enrich stage to retrieve the
current label taxonomy, which enables the assignment of additional labels to
retrieved solutions for classification purposes.

The auto-gather pipeline is not meant to replace the mostly manual collabora-
tive approach based on solution repositories, which was presented in Sect. 2. The
two approaches are rather complementary, so the auto-gather pipeline populates
solution repositories in an automated manner, while diverse experts are still able
to collaboratively maintain additional or refine existing solutions. This hybrid
approach is a significant improvement over just manually maintaining solution
repositories as discussed in Sect. 2: the automated gathering of solutions makes
the entire approach scale much better because large amounts of solutions can be
automatically discovered and captured.

Although the solution repositories, partly populated automatically and manu-
ally, provide a collaborative foundation for a comprehensive knowledge base, there
are still two major issues: (i) the solutions stored inside the repositories are not
checked for consistency, e.g. whether their representation complies with a given
10 Chef Supermarket: https://supermarket.chef.io
11 Docker Hub: https://hub.docker.com

https://supermarket.chef.io
https://hub.docker.com

8 Johannes Wettinger et al.

Aggregate Test

Solution	
Repositories

BuildOptimize Deploy

Knowledge	
Base

Instance

Figure 2. Overview of deliver-kb pipeline

schema or the utilized labels are actually valid regarding the label taxonomy.
(ii) Fine-grained query mechanisms are missing; however, these are required to
utilize the knowledge base in an efficient manner. To tackle these issues, Sect. 4
presents an automated approach for performing consistency checks and generating
consolidated instances of the knowledge base with a proper query interface.

4 Continuous Delivery of the Knowledge Base

As discussed previously, solution repositories enable the systematic gathering
and maintenance of diverse solutions and their metadata in a collaborative
manner. However, solutions and metadata inside such repositories are simply
represented as file-based structured documents as explained in Sect. 2. This
approach is similar to managing application-specific source code files through
such repositories. Consequently, neither consistency checks are performed when
adding or modifying files, nor fine-grained query mechanisms are provided to find
and identify appropriate solutions for a certain scenario. These deficiencies are
tackled by adapting established continuous integration and continuous delivery
practices [8], because they solve similar issues when dealing with source code
repositories for specific software applications. As an example, a continuous delivery
pipeline runs various tests to check the correctness and consistency of newly
committed and modified source code. Moreover, such a pipeline continuously
delivers updated instances of the corresponding application through automated
builds and deployments. Figure 2 outlines an overview of the deliver-kb12 pipeline,
which makes use of these key concepts to continuously deliver updated instances
of the knowledge base. With this approach, the ‘eat your own cooking’ principle
is applied by utilizing and adapting the key concepts of continuous delivery
pipelines to deliver instances of a knowledge base, which themselves are used to
implement continuous delivery pipelines for specific applications.

The stages of the deliver-kb pipeline are similar to the various stages of
common continuous delivery pipelines. However, they are adapted to fit the needs
12 Deliver knowledge base

Collaborative Gathering & Continuous Delivery of DevOps Solutions 9

of implementing continuous delivery of a knowledge base instead of a specific
software application. For this purpose the initial aggregate stage consolidates
solutions captured in potentially multiple solution repositories. Reasons why
solutions may be distributed across different solution repositories can be diverse:
beside plain separation of concerns, some solutions may be private, while others
are public or at least shared among several organizations. Optionally, filters could
be applied in this stage, e.g. to exclude certain solutions, which should not be
part of the resulting knowledge base. During optimize stage, the aggregated set
of solutions can be refined in various ways. For example, duplicate solutions
can be eliminated to avoid polluting the knowledge base. Furthermore, the
labels describing requirements and capabilities of solutions can be normalized by
replacing alias labels by their primary ones. The test stage covers the previously
mentioned consistency checks. This may include schema-based validation of
solutions’ metadata as well as checking whether the utilized labels are valid
regarding the label taxonomy. Then, the linked set of solutions are rendered and
packaged as content of the knowledge base during build stage. This is similar to
building the binaries of an application, which can then be deployed in the next
step, i.e. during deploy stage.

The deployment eventually results in concrete instances of the knowledge base.
These instances, which are created through the deliver-kb pipeline, provide query
mechanisms to process requests and produce responses, containing or pointing to
appropriate solutions. The technical foundation of such a knowledge base instance
can be diverse. To make a few examples, an instance could be provided as (i) a
relational database in conjunction with a REST API, (ii) a Web-based GUI with
a full-text search engine as back-end, (iii) a graph database with a corresponding
query API, or (iv) an RDF store with a SPARQL query interface. Multiple
deliver-kb pipelines can be established to deploy different kinds of knowledge base
instances, which may be targeted to different groups of users. Similar to deploying
software applications to different environments (development, test, production,
etc.), knowledge base instances can be deployed to different environments, too.
For example, a developer can run a minimal instance locally on his developer
machine, whereas an organization may run a full-blown and scaled out instance
in its private cloud environment.

The presented approach of continuous delivery of diverse knowledge base in-
stances, backed by collaborative solution repositories is based on several concepts,
which are successfully established to collaboratively develop and operate applica-
tions. Automated continuous delivery pipelines and source code repositories are
two key building blocks in this context. However, any knowledge base naturally
owns the risk of getting outdated, especially if the covered scope of knowledge
changes quickly. The knowledge base discussed in this work is based on a huge
variety of DevOps solutions maintained through solution repositories. These
solutions provide building blocks for establishing continuous delivery pipelines as
well as implementing deployment automation. Since the DevOps community is
not only growing, but also very active and disruptive, it is a challenge to keep up
with constantly updating and newly emerging solutions. Consequently, the risk

10 Johannes Wettinger et al.

of an outdated knowledge base is a real problem in this context. The presented
approach tackles this risk with two approaches: (i) the automated discovery and
capturing of solutions (Fig. 1) keeps at least parts of the underlying solution repos-
itories updated. (ii) By creating knowledge base instances through automated
delivery pipelines (Fig. 2), these instances are always built and deployed based
on the latest revisions of the involved solution repositories. This helps to avoid
the creation and usage of instances, which provide an outdated set of solutions.
However, these two approaches do not help to keep the manually maintained
parts of the solution repositories and generated knowledge base instances updated.
This risk is mitigated by the significant overlap between potential producers
and consumers of the knowledge base. Developers, operations personnel, and
further experts utilize, i.e. consume the knowledge base, but they also produce
contents and add it to the knowledge base in the form of updated and newly
added solutions. This overlap keeps users of the knowledge base motivated to also
contribute contents to the underlying repositories because they are immediately
interested in keeping the quality of the resulting knowledge base high. Otherwise
the knowledge base becomes less usable for them over time. Another motivation
for contributing solutions may be the fact that such solutions increase their
visibility to foster reuse by other experts. With this approach, the knowledge
base and the underlying shared solution repositories foster collaboration between
different kinds of experts, thereby implicitly supporting recently emerging soft-
ware development paradigms such as DevOps [2]. As discussed previously, the
presented approach utilizes established concepts and tooling such as structured
documents maintained through version-controlled repositories and automated
delivery pipelines. Consequently, the barrier for contributing to solution reposito-
ries and the resulting knowledge base is relatively low for potential users such as
developers and operations personnel. This fact also helps to lower the actual risk
of an outdated knowledge base.

5 GatherBase Architecture & Prototype Implementation

The previous sections discussed several key concepts, which are required to achieve
collaborative and automated gathering of solutions. The presented concepts are
described in an abstract manner, so they can be applied and implemented in
various ways. This section aims to present an integrated architecture, namely the
GatherBase architecture, which covers all previously discussed concepts from
gather ing solutions in solution repositories to creating diverse instances of the
knowledge base. Figure 3 shows an overview of the GatherBase architecture,
which is fully plugin-based to be highly modular and extensible. The upper part
(above solution repositories) covers the auto-gather pipeline described in Sect. 3
for the automated gathering of solutions. Three kinds of job processors connected
by corresponding job queues provide a loosely coupled architecture, covering the
stages of the auto-gather pipeline. Specialized discovery job processors cover the
discover stage. As an example, the Chef cookbook discoverer performs a targeted
discovery of Chef cookbooks, which are provided through the Chef Supermarket.

Collaborative Gathering & Continuous Delivery of DevOps Solutions 11

Deploy

Build

Test

Optimize

Retrieval
Job	Pro-
cessors

Solution	
Repositories

Knowledge	
Base

Instance	2

HTTP
Retriever

Git
Retriever

Label
Taxonomy

Aggregate Reader Filter ...

Deduplicator Label	
Normalizer

Schema	
Validator

Label
Validator

Elasticsearch

Amazon	EC2

…

Discovery
Job	Pro-
cessors

Chef	Cookbook	
Discoverer

Juju	Charm	
Discoverer …

Handle
Job	Pro-
cessors

Classifier …

Retrieval	Job
Queue

Handle	Job
Queue

...

...

...

...

Knowledge	
Base

Instance	1

Web	UI

MySQL	DB
REST	API

Dev	Machine
Docker

Experts

Writer

...

Pipeline	1

Pipeline	2

Figure 3. Overview of GatherBase architecture

12 Johannes Wettinger et al.

The discovery may be triggered in various ways. A straightforward approach
would be to run each discoverer periodically at certain time intervals to check for
updated and newly added solutions. Alternatively, an event-based approach may
be followed, e.g. by a discoverer subscribing to a specific source, which notifies
the discoverer about changes. Consequently, the corresponding discoverer can
react to incoming change notifications instead of periodically polling for updates.

Each discoverer produces a separate retrieval job for each discovered artifact
or solution and puts the job into the retrieval job queue. Jobs in this queue are
asynchronously consumed by retrieval job processors, which cover the retrieve
stage of the pipeline. Depending on where a specific solution is stored, a cor-
responding retriever is invoked. If, for instance, a particular Chef cookbook is
stored in a Git repository, the Git retriever is used to fetch the cookbook.

For each successfully retrieved solution, a separate handle job is put into
the handle job queue. This queue is asynchronously consumed by diverse handle
job processors, in short handlers, which cover the stages extract, normalize, and
enrich. Some handlers are run for all solutions, others are only run for specific
kinds of solutions. As an example, a ZIP file handler is utilized to extract the
contents of a solution during extract stage. Then, a Chef metadata handler may be
used (specifically for Chef cookbooks only) to transform Chef-specific metadata
into a normalized representation during normalize stage. The classifier uses the
label taxonomy to categorize a given solution by adding labels to the solution to
specify its capabilities. This happens during enrich stage. Finally, the writer puts
the normalized and enriched solution metadata – bundled with the solution itself
or a reference to it – into a solution repository. To determine which handlers
are run for a specific handle job, a set of rules is defined as configuration to be
evaluated at runtime. As a result, an individual chain of handlers is dynamically
identified at runtime for each handle job. For instance, a simplified handler chain
for a Chef cookbook may be as follows: ZIP file handler → Chef metadata handler
→ classifier → writer.

The middle part of Fig. 3 positions the solution repositories as link between
auto-gather pipeline building blocks (upper part) and deliver-kb pipeline building
blocks (lower part). Beside solutions and their metadata, these repositories contain
the label taxonomy, which is, for example, used by the classifier to categorize
solutions according to the taxonomy. In addition to the auto-gather pipeline,
solutions in repositories can be maintained and refined by experts manually.

The lower part (below solution repositories) covers the deliver-kb pipeline
described in Sect. 4 for the creation of concrete knowledge base instances. For
each stage, a set of modules is provided, which are used to establish different
variants of the pipeline, depending on the kind of knowledge base instance
that should be created. Figure 3 outlines two example pipelines that can be
implemented by combining different sets of modules across the pipeline stages
to eventually create diverse knowledge base instances. Pipeline 1 uses reader
and filter during aggregate stage to fetch selected solutions from the solution
repositories. The deduplicator is utilized during optimize stage to remove duplicate
solutions. Moreover, the label normalizer replaces alias labels by primary labels

Collaborative Gathering & Continuous Delivery of DevOps Solutions 13

according to the label taxonomy. Next, during test stage, the schema validator
checks whether the solutions’ metadata are represented properly according to
given schema definitions such as an XML schema definition for solution metadata
documents, which are expressed using XML. The label validator checks the
utilized labels (for expressing requirements and capabilities of solutions) against
the label taxonomy to ensure whether they are valid labels. Once the test stage
finished successfully, the knowledge base instance is built during build stage. In
case of pipeline 1, an Elasticsearch13 instance is populated with the contents of the
knowledge base, providing the back-end of the knowledge base instance. Moreover,
a Web UI is packaged as front-end together with the populated Elasticsearch
back-end to ease the interaction with the knowledge base instance. Finally, the
packaged instance is deployed using Docker on a developer’s machine during
deploy stage.

Pipeline 2 outlines a second example: the stages aggregate, optimize, and
test are pretty similar to pipeline 1 in terms of the utilized modules. However,
the filter is omitted in this case, i.e. all solutions stored in the repositories are
considered. The build and deploy stages are completely different: in this case
a MySQL database instance is populated with the contents of the knowledge
base. A REST API is packaged together with the MySQL back-end to provide a
Web-based query interface for the underlying knowledge base. This knowledge
base instance is then deployed to Amazon EC2 14 to run as a cloud-based service.
Many other variants of the pipeline could be established using this architecture.
Such a pipeline can then either be triggered on each commit to one of the solution
repositories, or it can be triggered on demand or periodically at certain time
intervals.

Our prototype implementation is based on a set of modules, which are
implemented using Node.js. These modules are integrated to implement pipeline 2
that is outlined in Fig. 3. Resulting knowledge base instances, which are produced
by this pipeline, provide an Elasticsearch back-end that can be queried using
Elasticsearch’s JSON-based domain-specific query language15.

6 Related Work

As outlined previously, our presented approach to collaboratively gather and
continuously deliver DevOps solutions through repositories is based on several
established software engineering concepts. These include collaborative repositories
and continuous delivery pipelines [8] for software applications. Beside these basic
concepts, the automated discovery and capturing of solutions as discussed in
Sect. 3 utilizes concepts and tooling from general-purpose Web crawling [7,3].
Our presented approach differs from general-purpose crawlers because it aims for
targeted gathering of specific kinds of solutions. Consequently, the discovery and
capturing components are much more specialized, so the quality of the results is
13 Elasticsearch: https://www.elastic.co/products/elasticsearch
14 Amazon EC2: https://aws.amazon.com/ec2
15 Sample query: https://gist.github.com/jojow/edb262290d1acb406e36

https://www.elastic.co/products/elasticsearch
https://aws.amazon.com/ec2
https://gist.github.com/jojow/edb262290d1acb406e36

14 Johannes Wettinger et al.

higher. However, technically, a lot of established Web crawling-related techniques,
libraries, and other tooling can be reused to build specialized components for
discovering and capturing solutions.

Furthermore, domain-specific knowledge management approaches appear
in various fields. Architectural knowledge management [1,5,11] is a prominent
example to enable the systematic capturing and reuse of architecturally relevant
knowledge, which helps to build and refactor software applications. Ontology-
based knowledge engineering and its relationship to software engineering [10] is
another related approach. While some of these approaches aim to promote specific
tooling to establish and use a domain-specific knowledge base, our presented
approach focuses on decoupling knowledge creation and maintenance (through
solution repositories) from knowledge utilization (through continuously delivered
knowledge base instances). This allows for creating different kinds of knowledge
base instances for diverse use cases. Moreover, the underlying concepts are well
established in software development and operations, so experts do not have to
get familiar with novel tooling or workflows: they can reuse their favorite tooling
such as their Git client, JSON editor, etc. to create and maintain knowledge
similarly to creating and maintaining source code. ‘Knowledge as code’ is coined
as a term in this context to emphasize that knowledge should be treated similar
to regular source code. Beside our presented approach, further modern practices
to knowledge management exist, which follow the notion of ‘knowledge as code’,
such as managing structured Markdown documents in Git repositories16.

The concept of solution repositories was previously introduced in a different
context, namely in the domain of pattern research [6]. While in this field a
solution repository is used to store and manage concrete artifacts that implement
abstract patterns [4,6], our approach also comprises knowledge artifacts such as
fine-grained documentation and technical manuals, which are not immediately
executable.

7 Conclusions

The previously presented GatherBase architecture provides a comprehensive
approach to implement the collaborative and automated gathering of solutions
as discussed in this paper. As a key prerequisite and enabler for this approach,
we presented the concept of collaborative solution repositories (Sect. 2), which
are based on established practices how software developers and other experts
efficiently collaborate through repositories. Moreover, we discussed an automated
discovery and capturing approach to populate these solution repositories (Sect. 3)
as another key concept to make the entire approach scale much better. The third
fundamental building block is continuous delivery of knowledge base instances
based on the solution repositories (Sect. 4). Finally, we evaluated these concepts
in an integrated manner through the discussed GatherBase architecture and
its prototype implementation (Sect. 5).

16 https://www.cloudbees.com/blog/knowledge-code-sourcing-your-knowledge

https://www.cloudbees.com/blog/knowledge-code-sourcing-your-knowledge

Collaborative Gathering & Continuous Delivery of DevOps Solutions 15

In terms of future work we aim to extend the scope of the presented approach.
The GatherBase architecture as well as its underlying concepts are domain-
independent. Therefore, the presented architecture can be adapted in future work
to gather and reuse solutions in other domains. Examples may include solutions
to implement business processes or solutions to build and connect devices as
part of the Internet of Things. Moreover, we aim to establish a rich ecosystem of
modules to be used for implementing continuous delivery pipelines for diverse
knowledge base instances. This is then the foundation for the next step, namely
to systematically evaluate which kinds of knowledge base instances are suitable
for which usage scenarios.

Acknowledgments This work was partially funded by the DFG project SitOPT
(610872) and the BMWi project SmartOrchestra.

References
1. Babar, M.A., Dingsøyr, T., Lago, P., van Vliet, H.: Software architecture knowledge

management. Springer (2009)
2. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective. SEI Series

in Software Engineering, Addison-Wesley Professional (2015)
3. Boldi, P., Codenotti, B., Santini, M., Vigna, S.: Ubicrawler: A Scalable Fully

Distributed Web Crawler. Software: Practice and Experience 34(8), 711–726 (2004)
4. Falkenthal, M., Barzen, J., Breitenbücher, U., Fehling, C., Leymann, F.: Efficient

Pattern Application: Validating the Concept of Solution Implementations in Dif-
ferent Domains. International Journal On Advances in Software 7(3&4), 710–726
(2014)

5. Farenhorst, R., de Boer, R.C.: Knowledge management in software architecture:
State of the art. In: Software Architecture Knowledge Management, pp. 21–38.
Springer (2009)

6. Fehling, C., Barzen, J., Falkenthal, M., Leymann, F.: PatternPedia - Collaborative
Pattern Identification and Authoring. In: PURPLSOC: Pursuit of Pattern Languages
for Societal Change. pp. 252–284. epubli GmbH (2015)

7. Heydon, A., Najork, M.: Mercator: A Scalable, Extensible Web Crawler. World
Wide Web 2(4), 219–229 (1999)

8. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation. Addison-Wesley Professional (2010)

9. Hüttermann, M.: DevOps for Developers. Apress (2012)
10. Studer, R., Benjamins, V.R., Fensel, D.: Knowledge engineering: principles and

methods. Data & knowledge engineering 25(1), 161–197 (1998)
11. Tang, A., Avgeriou, P., Jansen, A., Capilla, R., Babar, M.A.: A comparative study

of architecture knowledge management tools. Journal of Systems and Software
83(3), 352–370 (2010)

12. Trinkle, P.: An Introduction to Unsupervised Document Classification (2009)
13. Wettinger, J., Andrikopoulos, V., Leymann, F.: Automated Capturing and System-

atic Usage of DevOps Knowledge for Cloud Applications. In: Proceedings of the
International Conference on Cloud Engineering (IC2E). IEEE (2015)

14. Wettinger, J., Breitenbücher, U., Kopp, O., Leymann, F.: Streamlining DevOps
Automation for Cloud Applications using TOSCA as Standardized Metamodel.
Future Generation Computer Systems 56, 317–332 (2016)

