
The OpenTOSCA Ecosystem – Concepts & Tools

Uwe Breitenbücher1, Christian Endres1, Kálmán Képes1, Oliver Kopp2,
Frank Leymann1, Sebastian Wagner1, Johannes Wettinger1, and Michael Zimmermann1

The paper has been published by SciTePress:
https://www.scitepress.org/PublicationsDetail.aspx?ID=2vC45wDfBew=&t=1

© 2016 SciTePress. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the SciTePress
website.

@article{Breitenbuecher2016_OpenTOSCAEcosystem,
author = {Uwe Breitenb{\"u}cher and Christian Endres and K{\'a}lm{\'a}n

K{\'e}pes and Oliver Kopp and Frank Leymann and Sebastian Wagner
and Johannes Wettinger and Michael Zimmermann},

title = {The OpenTOSCA Ecosystem – Concepts \& Tools},
journal = {European Space project on Smart Systems, Big Data, Future

Internet - Towards Serving the Grand Societal Challenges -
Volume 1: EPS Rome 2016},

year = {2016},
pages = {112--130},
isbn = {978-989-758-207-3},
doi = {10.5220/0007903201120130},
publisher = {SciTePress}

}

:

Institute of Architecture of Application Systems

1Institute of Architecture of Application Systems, University of Stuttgart, Germany,
[firstname.lastname]@iaas.uni-stuttgart.de

2Institute for Parallel and Distributed Systems, University of Stuttgart, Germany,
oliver.kopp@ipvs.uni-stuttgart.de

https://www.scitepress.org/PublicationsDetail.aspx?ID=2vC45wDfBew=&t=1

The OpenTOSCA Ecosystem – Concepts & Tools

Uwe Breitenbücher1, Christian Endres1, Kálmán Képes1, Oliver Kopp2,
Frank Leymann1, Sebastian Wagner1, Johannes Wettinger1, Michael Zimmermann1

1IAAS, 2IPVS, University of Stuttgart
Universitätsstraße 38, 70569 Stuttgart, Germany

{lastname}@informatik.uni-stuttgart.de

Abstract Automating the provisioning and management of Cloud applications is
one of the most important issues in Cloud Computing. The Topology and Orches-
tration Specification for Cloud Applications (TOSCA) is an OASIS standard for
describing Cloud applications and their management in a portable and interop-
erable manner. TOSCA enables modeling the application’s structure in the form
of topology models and employs the concept of executable management plans
to describe all required management functionality regarding the application. In
this paper, we give an overview of TOSCA and the OpenTOSCA Ecosystem,
which is an implementation of the TOSCA standard. The ecosystem consists of
standard-compliant tools that enable modeling application topology models and
automating the provisioning and management of the modeled applications.

1 Introduction

In recent years, Cloud Computing became highly market penetrating because of eco-
nomical and technical benefits, for example, elasticity, outsourcing, pay-per-use pricing
models, scalability, and self-service usage of services. Due the new mechanisms and
technologies, companies are enabled to reduce their IT operations costs while achieving
high automation and flexibility of IT systems [1]. But with high automation and flexi-
bility, more complexity has been introduced. Modern applications that realize complex
business functionality often require a wide and heterogeneous landscape of technolo-
gies. Especially, if application functionality is spread across multiple providers, the
complexity of automation increases, for example, in Multi-Cloud and Hybrid-Cloud
scenarios as well as in cyber-physical systems that combine Cloud technologies and
physical entities. Due to the (i) immense complexity of provisioning, configuring, and
managing such applications and (ii) the error-prone task of orchestrating the involved
heterogeneous components, a manual execution of these provisioning and management
tasks is not sufficient. Additionally, the manual provisioning and management of such
applications is time-consuming and, therefore, not appropriate in the domain of Cloud
Computing that requires automated management and on-demand features [2]. Thus,
automating the provisioning, configuration, and management of Complex Composite
Cloud Applications is a major issue in modern IT management [3].

However, automating the provisioning, configuration, and management of arbitrary
complex applications is one of the most difficult challenges in current Cloud Computing
research. This problem is impeded by the massive heterogeneity of Cloud services and
respective service providers, introducing challenges such as the variety of API designs
and data formats and the difficult integration of different components for composing
new services [4]. Especially, the interoperability of Cloud services offered by different
providers and their integration with existing middleware technology and configuration
management tooling is a major issue [3]. Therefore, the Topology and Orchestration
Specification for Cloud Applications (TOSCA) [5–7] has been standardized by OASIS
to tackle these issues. TOSCA is a standard aiming for a portable description of Cloud
application and automating their provisioning and management. The standard enables
modeling the application’s structure in the form of topology models and employs the
concept of executable management plans to describe all required management function-
ality, e.g., how to migrate a component between different infrastructures.

In many different research and industry projects, we developed the OpenTOSCA
Ecosystem1 that is an open-source implementation of the TOSCA standard that con-
sists of an integrated end-to-end toolchain to model applications using TOSCA and to
automatically provision and manage them. In this paper, we provide an overview of
the OpenTOSCA Ecosystem, the innovative research results, the developed concepts
and tools, and the planned future work in the domain of the Internet of Things (IoT).
We show how the OpenTOSCA Ecosystem works and how the different tools work
together. Moreover, we explain how the integration of declarative and imperative provi-
sioning is supported by the toolchain and how management processes can be modeled
easily based on the standard. As a result, the paper summarizes the results of the past
years regarding OpenTOSCA and enables understanding the big picture.

2 The TOSCA Standard – The OASIS Topology and Orchestration
Specification for Cloud Applications

In this section, we introduce the fundamentals of the Topology and Orchestration Spec-
ification for Cloud Applications (TOSCA). In Section 2.1, an overview of TOSCA is
given. Section 2.2 describes the concepts and the metamodel of TOSCA. To realize
automated management functionality, the utilized mechanisms can be categorized into
imperative and declarative provisioning approaches that are described in Sections 2.3
and 2.4. For more details, we refer interested readers to the TOSCA Specification [5],
the TOSCA Primer [6], and the TOSCA Simple Profile [7]. A compact overview of
TOSCA is given by Binz et al. [8, 9].

2.1 An Overview of TOSCA

In current Cloud Computing, there is a plethora of services that realize cloud applica-
tions. These services need to be managed and orchestrated to realize complex business
functionality. But without a model to describe the Cloud application to be provisioned,

1 https://www.github.com/OpenTOSCA

https://www.github.com/OpenTOSCA

TOSCA Runtime
Environment, e.g.,

OpenTOSCA

 Deployment &
Management

Types Topology
Model

TOSCA CSAR

Management
Plans

Artifacts

Figure 1: TOSCA Overview

there is no possibility to realize the management and orchestration in an automated man-
ner. The Topology and Orchestration Specification for Cloud Applications (TOSCA) [5]
tackles these issues by providing a metamodel and packaging format. The main building
blocks of a TOSCA model are shown in Figure 1 and can be summarized as follows:
TOSCA enables (i) modeling application topology models that describe the structure
of the Cloud application to be provisioned. The topology model is a directed, possibly
cyclic graph consisting of typed nodes, which describe the application’s components,
and typed edges between these nodes, which, in turn, describe the relationships and
dependencies between these components. To specify the semantics of components and
their relationships, (ii) type definitions can be described in TOSCA. To provision and
manage an application, (iii) different kinds of artifacts are required, for example, in-
stallation scripts or SQL files. Management functionality, for example, how to scale
the application or how to migrate a component from one provider to another provider,
can be described using so called (iv) management plans, which are executable process
models, e.g., scripts or workflows [10]. To package all these different models, artifacts,
and management plans, TOSCA defines a Cloud Service Archive (CSAR) that serves
as portable packaging format. Standard-compliant CSARs can be consumed by any
TOSCA Runtime Environment to deploy and manage the described application. Thus,
portability is achieved by using a standardized metamodel and a standardized packag-
ing format. A TOSCA Runtime Environment that can be used to consume such CSARs
is provided by the OpenTOSCA Ecosystem presented in this paper.

Implementations

Topology Template

Node Type

P
ro

p
er

ti
es

In
te

rf
ac

es

type for

type for

Service Template

Artifact Artifact

Artifact

Relationship Type

P
ro

p
er

ti
es

Management Plans

Figure 2: TOSCA Concepts

2.2 TOSCA Concepts & Metamodel

This section describes the underlying TOSCA concepts as well as its metamodel. Fig-
ure 2 shows the main building blocks of a TOSCA model. In TOSCA, components de-
scribed by the topology model are called Node Templates while relationships are called
Relationship Templates, the respective types are called Node Types and Relationship
Types. These type definitions specify the semantics of the respective templates as well
as their properties and interfaces. For example, a Node Template of Node Type PHP is
connected via an Relationship Template of Relationship Type SQL with a Node Tem-
plate of Node Type MySQL database. The topology model is called Topology Template.

On the right side of Figure 2, the reusability of TOSCA-based descriptions and ar-
tifacts is addressed. Node and Relationship Type definitions enable modeling common
properties of components and dependencies. For example, an Apache Web Server pro-
vides the properties HTTP-Port, username, password, and others. Node Types and Rela-
tionship Types specify Management Interfaces, that provide a set of operations that can
be invoked to manage the respective component. For example, an Apache Web Server
Node Type may provide an interface that offers a deployApplication operation. This op-
eration can be called by the TOSCA Runtime Environment or by Management Plans to
manage a certain application instance. The type definitions support inheritance, so hi-
erarchies of abstraction can be modeled. Both kinds of types need artifacts to enable its
operation, for example, installation scripts or the implementation of the aforementioned
deployApplication operation of the web server. Therefore, Node and Relationship Types
are implemented using so called Node Type- and Relationship Type Implementations.
These implementations contain all artifacts required to operate the corresponding type.

Artifacts are called Artifact Templates in TOSCA and can be classified as follows: (i)
Deployment Artifacts implement business functionality, for example, the binary files of
an Apache Web Server that are required to run this component. On the other hand, (ii)
Implementation Artifacts implement management functionality that is required to exe-
cute the defined management operations. For example, an Implementation Artifact of
a Web Server is an install script that installs the Web Server on an operating system.
These latter artifacts are mostly used by TOSCA Runtime Environments and Manage-
ment Plans to execute component-specific management logic.

In Figure 2 at the lower end, Management Plans are depicted. These plans imple-
ment management functionality for the application, for example, for provisioning the
application (called Build Plan), to scale components or to migrate the application to an-
other Cloud provider. Management Plans are typically implemented using the workflow
technology [10], which provides certain standardized languages such as BPEL [11] or
BPMN [12]. Leveraging these concepts, TOSCA standardized also a packaging format
called Cloud Service Archive (CSAR). This CSAR contains all aforementioned elements
and, thereby, provides a self-contained package containing all files required for operat-
ing the application. Through the standardization, the format ensures portability of the
contained models and artifacts. As a result, CSARs can be consumed by any standard-
compliant TOSCA Runtime Environment to operate the described application.

2.3 Imperative Provisioning

For provisioning instances of the modeled application, TOSCA distinguishes between
two approaches: (i) imperative provisioning and (ii) declarative provisioning [4, 6]. In
this section, we explain the imperative approach that is based on executing a Manage-
ment Plan that creates a new instance of the modeled application.

In general, Management Plans can be implemented to automate management func-
tionality. They automate high-level management tasks, such as migrating a component,
by orchestrating the low-level management operations provided by the Node Templates
of the topology model. These low-level operations typically encompass small func-
tionality, for example, a Linux operating system Node Template offers a management
operation to execute a shell script or to install a package whose name is passed as input
parameter of the operation. Such management operations can be implemented using
various kinds of technologies. For example, using shell scripts as mentioned before
or through executable programs. Management operations described by the topology
model may also only wrap an existing publicly available service or API, for example,
an Amazon EC2 Node Template may provide an operation to create a new virtual ma-
chine, whose implementation is just the management API of Amazon. To orchestrate
these management operations, Management Plans can be implemented using process
execution technologies like scripts or workflows [10]. However, due to features such
as reliability, recovery, and compensation, the workflow technology provides a robust
execution environment for such process models. In addition, especially the existence
of standardized workflow modelling and execution languages such as BPEL [11] and
BPMN [12] enable the creation of portable plans that can be executed on any standard-
compliant workflow engine that supports the respective workflow language.

Imperative TOSCA
Runtime Environment

CSAR Workflow Engine

Figure 3: Imperative provisioning with TOSCA

Management Plans are contained in CSARs and are processed by TOSCA Run-
time Environments. Following the distinction introduced above, runtime environments
can be categorized by imperative and declarative environments. An Imperative TOSCA
Runtime Environment supports executing Management Plans contained in CSARs, e.g.,
for provisioning an instance of the application by executing the contained Build Plan.
Therefore, an imperative environment requires an internal process execution engine as
shown in Figure 3. In this figure, a workflow engine is employed to execute Manage-
ment Plans that are modeled as workflows. After consuming the CSAR, the environ-
ment extracts all plans and deploys them onto the engine. As a result, the plans can be
invoked to execute the respective functionality, for example, provisioning the modeled
application. Management Plans may implement arbitrary functionality by orchestrating
all kinds of scripts, programs, APIs, etc. Therefore, using Management Plans enables
the full customization of automated provisioning of even more complex applications.

2.4 Declarative Provisioning

In the previous section, we explained how TOSCA can be used to provision arbitrary
complex applications using the imperative approach. This approach enables describing
arbitrary management logic in the form of explicit, executable process models that are
contained in the CSAR. However, creating Management Plans requires manual effort
and technical expertise, especially, if the management task to be executed or the applica-
tion is complex [3]. However, some simple management tasks, such as the provisioning
of applications that mainly employ common components, can be executed without the
need to model a Management Plan [4]. In this section, we describe how the provisioning
of Cloud applications can be executed automatically only by interpreting the topology
model, thus, without the need to create Build Plans. Following the TOSCA standard,
we call this provisioning flavour declarative provisioning [6].

CSAR

Declarative
TOSCA Runtime Environment

Interpreter

Figure 4: Declarative Provisioning with TOSCA

Contrary to the imperative approach, with the declarative provisioning approach
the topology model gets interpreted by a Declarative TOSCA Runtime Environment,
as shown in Figure 4. The runtime environment extracts the topology model including
all type definitions and interprets the application’s structure. Based on internal plugins,
the provisioning of components can be executed following the semantically-defined
dependencies between the components. For example, if component A has a hosted-on-
dependency to component B, component B has to be provisioned first. Therefore, based
on the semantics of type definitions, the order of provisioning activities can be cal-
culated and executed using the management operations provided by Node Templates.
To enable this, the TOSCA Primer [6] defines the so called Lifecycle Interface, which
defines the semantics of the management operations install, configure, start, stop, and
terminate. Based on Implementation Artifacts that implement these operations, imper-
ative Management Plans as well as declarative TOSCA Runtime Environments are able
to provision the individual components by executing these artifacts. How the provi-
sioning order can be calculated can be found in Breitenbücher et al. [4]. As a result, a
Declarative TOSCA Runtime Environment has to be able to interpret the application’s
structure for processing the CSAR in the declarative manner.

The declarative approach enables modelers to focus on the application’s structure
without the need of creating Build Plans that orchestrate the management operations
offered by Node Templates. Thus, this approach is much easier [4]. However, the ap-
proach is limited in terms of the application’s complexity and works only for simple
applications that employ common, semantically-defined component types. If a com-
plex application consisting of custom components has to be provisioned, the imperative
approach has to be used since arbitrary management logic can be modeled.

However, both approaches do not mutually exclude each other. There are concepts
and technologies that are able to generate imperative Management Plans out of declara-
tive models, e.g., [13–15]. In the scope of the OpenTOSCA Ecosystem, we developed
a Build Plan Generator that consumes topology models and generates Build Plans [4].
Thus, this forms a hybrid approach that combines the benefits of both worlds.

TOSCA
Modelling Tool

TOSCA
Runtime

 Deploy & Manage Model Instantiate

Amazon

PHP

Apache

Self-Service
Portal

Figure 5: An Overview of the OpenTOSCA Ecosystem

3 The OpenTOSCA Ecosystem

In this section, we present an overview of the OpenTOSCA Ecosystem that mainly con-
sists of the following tools: The TOSCA modeling tool Winery [16], the TOSCA Run-
time Environment OpenTOSCA Container [17], and the TOSCA Self-Service Portal
Vinothek [18]. Figure 5 shows how these three tools work together and how they build
an ecosystem to (i) model, (ii) deploy, (iii) manage, and (iv) instantiate TOSCA-based
applications. The entire OpenTOSCA Ecosystem2 including all tools is an open-source
implementation and publicly available on GitHub3 and Eclipse4.

The interplay of the three main tools is as follows. Winery is a standard-compliant
TOSCA modeling tool that enables creating topology models using a graphical web-
based editor. Moreover, Winery provides a backend system to create and maintain Node
Types, Relationship Types, and other entities defined by the TOSCA metamodel. Win-
ery supports exporting CSARs that contain all required files to deploy and manage the
corresponding application using the OpenTOSCA Container.

The OpenTOSCA Container is a standard-compliant TOSCA Runtime Environment
that is able to consume CSARs for deploying the therein modeled application. The run-
time environment supports the imperative provisioning and management approach (see
Section 2.3) by enabling the execution of BPEL-based workflow models [11]. Beside
Build Plans, the runtime is able to execute arbitrary Management Plans to manage a
certain application instance. Moreover, the OpenTOSCA Container also supports the

2 http://www.iaas.uni-stuttgart.de/OpenTOSCA/
3 https://www.github.com/OpenTOSCA
4 https://projects.eclipse.org/projects/soa.winery

https://projects.eclipse.org/projects/soa.winery
http://www.iaas.uni-stuttgart.de/OpenTOSCA/
https://www.github.com/OpenTOSCA

BPMN4TOSCA
Plan Modeler

Topology
Modeler

Element
Manager

Types Artifacts Templates

Winery Repository

Build
Plan Generator

Figure 6: Winery Architecture

declarative provisioning approach (see Section 2.4). Thus, the container provides a Hy-
brid TOSCA Runtime Environment that supports both provisioning flavors. To provide
an easy and intuitive user interface for end users, the OpenTOSCA Ecosystem offers the
web-based self-service portal Vinothek. This portal offers all applications that are in-
stalled in the OpenTOSCA Container and enables end users instantiating new instances
of an application by just clicking on a provisioning button.

In the following sections, we describe the three tools and the advanced research
concepts they support in detail. At first, we introduce Winery (Section 3.1), followed
by the OpenTOSCA Container (Section 3.2), and the Vinothek (Section 3.3). In the
final section, we give an overview of the developed prototypes (Section 3.4).

3.1 The TOSCA Modeling Tool Winery

Winery [16] is a graphical, web-based TOSCA modeling tool developed at the Univer-
sity of Stuttgart. Figure 6 entails the architecture of Winery consisting of the Topology
Modeler, Element Manager, BPMN4TOSCA Modeler, and a BPEL Build Plan Gen-
erator, which are connected to the Winery repository component holding all TOSCA
related elements such as TOSCA Templates, Types, and Artifacts.

The Topology Modeler provides a graphical editor to create TOSCA topology mod-
els based on the visual topology modeling language Vino4TOSCA [19]. Figure 7 depicts
the user interface of this component that allows users to drag and drop Node Tem-
plates from a palette into an editor area. Relationship Templates of a certain type can be
drawn by clicking on the dropped Node Templates. Moreover, the Topology Modeler
supports completing partially modelled topology models [20]. The Element Manager
provides a system for creation, manipulation, and deletion of all TOSCA entities, for
example, Node Types and Implementation Artifacts. The current graphical user inter-
face of the Element Manager is depicted in Figure 8. The Element Manager supports
exporting topology models as CSARs: Winery packages all required artifacts of the

Figure 7: The Winery Topology Modeler showing a topology model of two Raspberry
Pis communicating over a message broker hosted on a virtual machine

topology into one self-contained CSAR package [21]. In addition, Winery provides ad-
vanced tooling such as the automated creation of the TOSCA Lifecycle Interface for
new Node Types and the Implementation Artifact Generator, which is able to generate
Java-based Web Service skeletons that implement the operations defined on a TOSCA
Node Type. Thus, users are able to model their topologies in a top-down manner by
defining Node Types and their operations including the management interfaces. For im-
plementing these interfaces, the user can request to generate the Java skeletons and im-
plement the intended management logic inside these services. The whole asynchronous
Web Service implementation is generated automatically and the service is packaged
using Maven5. This significantly eases the implementation of management operations
since these asynchronous Java Web Services are directly supported by the Management
Bus of the OpenTOSCA Container (see Section 3.2). In addition, the Element Manager
provides a Build Plan Generator that is able to interpret topology models in order to
fully automatically generate a corresponding Build Plan using the standardized work-
flow language BPEL [11]. Generated plans are also packaged into the CSAR during the
export. Thus, this enables (i) using plain imperative TOSCA Runtime Environments
since all the required logic for provisioning is contained in the CSAR. Moreover, this
(ii) forms a hybrid provisioning approach as the generated plans can be customized ar-
bitrarily, if necessary. As a result, this concept combines the benefits of both worlds:
simple applications can be provisioned fully automatically by generating Build Plans.
However, if a complex application shall be provisioned, a generated Build Plan may
serve only as starting point and needs to be modified to handle custom requirements.
Details about this plan generation can be found in Breitenbücher et al. [4].

5 https://maven.apache.org/

https://maven.apache.org/

Figure 8: The Winery Element Manager showing the editing options of a Node Type

To support imperatively describing the provisioning of TOSCA topology models,
Winery allows modelers the specification of imperative TOSCA management plans.
Therefore, the modeling tool provides an editor to model imperative plans using the
workflow language BPMN4TOSCA [22]. BPMN4TOSCA is an extension of the Busi-
ness Process Modeling and Notation 2.0 (BPMN) [12] and introduces new domain-
specific elements for manipulating TOSCA application instances. Thus, the extension
is a BPMN dialect for the TOSCA standard providing special types of activities that
enable directly invoking management operations provided by Node Templates and han-
dling properties of Node and Relationship Templates in terms of instance data. Thus,
BPMN4TOSCA aims for simplifying the development of management plans and is
supported by a graphical editor contained within Winery [23]. Moreover, we are cur-
rently finishing a BPMN4TOSCA to BPEL Transformer that enables executing created
BPMN4TOSCA models in the OpenTOSCA container, which currently supports BPEL
as main workflow language. This component transforms BPMN4TOSCA-specific ac-
tivities (e.g., the TOSCA Node Management Task [22]) into BPEL activities that imple-
ment exactly the semantics of the corresponding BPMN4TOSCA element.

In addition, we are currently working on an importer for the TOSCA Simple Profile,
which is a new TOSCA serialization format in YAML [7] (see Section 4). Moreover,
we are developing new Node Types and new Relationship Types for the domain of IoT
and for extending the Cloud portfolio. First IoT-related Node and Relationship Types
are shown in Figure 7: The depicted topology model implements a simple use case
consisting of two Raspberry Pis communicating over the Mosquitto MQTT Message
Broker, which is hosted on a virtual machine running inside an OpenStack.

OpenTOSCA Container

Plan
Engine

WSO2 BPS

deploy

Tomcat

deploy

invoke via HTTP

Management
Bus

REST Plugin

Script Plugin

SOAP Plugin

IA
Engine

IA

IA

IA

WAR Plugin

Script Plugin

AAR Plugin

WAR
IA

BPEL Plugin

invoke via
SOAP / HTTP

Plan
Generator

Models &
Instance DB

Endpoints
DB

CSAR

Figure 9: OpenTOSCA Container Architecture

3.2 The OpenTOSCA Container

In this section, we describe the TOSCA Runtime Environment of the OpenTOSCA
Ecosystem, which is called OpenTOSCA Container [17]. The container is able to pro-
cess CSARs in a declarative and imperative manner, thus, providing a hybrid provision-
ing environment that is seamlessly integrated with Winery.

The general processing of the container can be described as follows. The Open-
TOSCA Container enables the automated provisioning of Cloud applications that are
modeled using TOSCA and packaged as CSARs. To realize the provisioning, the con-
tainer analyses the contained TOSCA model and invokes the contained Build Plan to
instantiate a new application instance of the contained TOSCA model. If there is no
Build Plan available, the container generates a Build Plan on its own by using the Plan
Generator component and invokes this plan for provisioning the application. During the
lifetime of the application, the container enables managing application instances by in-
voking Management Plans contained in the respective CSAR, for example, to scale ap-
plication components. Management Plans can be either modeled manually using Win-
ery or generated for provisioning, as mentioned above. Thus, the OpenTOSCA Con-
tainer supports both imperative and declarative application provisioning approaches.

OpenTOSCA Container Architecture In Figure 9, an overview of the OpenTOSCA
Container architecture is depicted. The container mainly consists of the following com-
ponents, which are explained in detail in the following subsections: The Implementation
Artifact Engine (IA Engine) is responsible for processing the Implementation Artifacts
contained within the CSAR. Similarly, the Plan Engine is responsible for the processing
of Management Plans. The Management Bus [24, 25] is a communication middleware
inside the container that enables plans to invoke different kinds of management opera-
tions through a unified interface. The Plan Generator [4] allows generating imperative
Build Plans based on declarative TOSCA models. Also, the OpenTOSCA Container
needs data storages to manage information about, for example, known CSARs or avail-
able service endpoints. These information are stored in two independent databases: the
TOSCA Models & Instance Database and the Endpoints Database.

Implementation Artifact Engine Management Plans implement management logic
that has to be automated for a certain application, for example, a Migration Plan spec-
ifies all activities, their execution order, and the data flow between the activities to
migrate a component from one infrastructure to another. To implement these activities,
Management Plans may orchestrate various kinds of software and services, for example,
scripts or APIs of Cloud providers. These low-level operations are often not contained
in the Management Plans themselves and, usually, are located in the application’s target
environment, for example, a creation mechanism for virtual machines that is exposed by
a hypervisor as API or an installation script for the Apache Tomcat application server
that has to be executed on the target virtual machine. To realize the execution of such
management operations, TOSCA provides the notion of Implementation Artifacts that
implement the management operations provided by Node Templates (see Section 2.2).
Implementation Artifacts are contained in the CSAR that is passed to the OpenTOSCA
Container and processed by the Implementation Artifact Engine. They can be divided
in either local or remote Implementation Artifacts [24]. In OpenTOSCA, Local Im-
plementation Artifacts are SOAP-based Web Application Archives (WARs)6 that are
executed by the OpenTOSCA Container by deploying them on a local Apache Tomcat
Servlet Container7. For being invokable by plans, endpoints of the deployed Implemen-
tation Artifacts are stored in the Endpoints Database. Contrary, Remote Implementation
Artifacts are, for example, shell scripts that are executed in the application’s target envi-
ronment. Therefore, such Implementation Artifacts are not deployed locally by the Im-
plementation Artifact Engine but are just stored in the Models and Instance Database,
which can be accessed by plans via an API. To enable appropriate processing according
to the Implementation Artifact types, the Implementation Artifact Engine implements
an extensible plugin-system with a plugin for each Implementation Artifact type. At the
moment, the OpenTOSCA Container and its Implementation Artifact Engine contains
plugins to support the processing of Java Web Application Archives (WARs) and Axis
Archives (AARs). To support other types of Implementation Artifacts, the provided
plugin interface of the engine enables an easy development of new plugins.

6 Skeletons for this kinds of Implementation Artifacts can be automatically generated using
Winery, see Section 3.1.

7 https://tomcat.apache.org/

https://tomcat.apache.org/

Plan Engine Similar to the Implementation Artifact Engine, the Plan Engine is respon-
sible for the processing of the Management Plans contained in a CSAR. Since plans im-
plement imperative provisioning and management logic for the application inside the
CSAR, plans need to be invokable and executable. Therefore, the OpenTOSCA Con-
tainer employs a local workflow engine, namely the WSO2 Business Process Server
(BPS)8, which is used by the Plan Engine to deploy BPEL-based Management Plans
and to make them executable. TOSCA proposes modeling plans using workflow lan-
guages since they provide a robust process execution environment, cf. Section 2.3.
However, as there are different kinds of languages available, the Plan Engine provides
a plugin-system for adding support for other languages, for example, BPMN, too.

Management Bus Various kinds of Implementation Artifacts may be used to imple-
ment a certain management operation: On the one side, Web Services typically are
used to offer infrastructure functionalities in the form of APIs, for example, to offer
operations for creating virtual machines. On the other side, scripts and configuration
management tools such as Chef [26] are often used to implement the TOSCA Lifecycle
Interface [6], for example, to implement the install operation of a Web Server as shell
script that is executed on the operating system that shall host the Web Server. Thus, if
Management Plans need to orchestrate diverse operation implementations, they have to
deal with the low-level, technical details of their invocation [3]. As a result, Manage-
ment Plans become complex models that are hard to create and even harder to maintain.
Due to this issues, we developed the OpenTOSCA Management Bus, which provides
a uniform interface for invoking different kinds of Implementation Artifacts. In Open-
TOSCA, we offer a SOAP/HTTP-based API that can be easily invoked using BPEL
workflow models. Thus, plans themselves only invoke the operation via this API while
all technical details about the actual execution of the associated Implementation Arti-
fact is handled and hidden by the bus. The bus chooses also the right Implementation
Artifact according to the operation that shall be invoked. To enable extensibility, the
Management Bus implements a plugin-system, which currently provides plugins for in-
voking SOAP/HTTP and HTTP-based Web Services, shell scripts, Chef [26], and An-
sible [27]. The Management Bus also supports the asynchronous communication used
by the Java-based Web Services generated using the modeling tool Winery (cf. Sec-
tion 3.1). Details about the Management Bus can be found in Wettinger et al. [24, 25].

Plan Generator We described the OpenTOSCA Container as a TOSCA Runtime En-
vironment that is capable of imperative and declarative provisioning (cf. Section 2.3
and Section 2.4). Whilst the imperative provisioning is realized by utilizing Build Plans
that are shipped within the CSAR, the declarative provisioning is realized using the
Plan Generator. The Plan Generator is an integrated processor of declarative TOSCA
topology models and generates an imperative BPEL-based Build Plan. Details about
this plan generation are described in Breitenbücher et al. [4]. As depicted in Figure 9,
generated Build Plans are passed to the Plan Engine, which makes them executable by
deploying them onto the local workflow engine as described in Section 3.2.

8 http://wso2.com/products/business-process-server/

http://wso2.com/products/business-process-server/

(a) The Vinothek Overview page shows the
available applications.

(b) The Vinothek Application Details page
shows the details of the Moodle application.

Figure 10: Screenshots of the OpenTOSCA Vinothek

3.3 The Self-Service Portal Vinothek

Beside a TOSCA Runtime Environment, the OpenTOSCA Ecosystem also provides
a self-service portal that can be easily used by end users to provision new instances
of CSARs installed in the OpenTOSCA Container. This self-service portal is called
Vinothek [18] and provides a simple, web-based graphical user interface shown in Fig-
ure 10a. The Vinothek lists all installed CSARs and provides detailed information when
selecting one of them as shown in Figure 10b. Further, within this view, the provision-
ing of the displayed application can be triggered by clicking on a simple button. Also,
required input parameters, for example, credentials, can be provided, too.

The Vinothek is implemented according to the web-based Client-Server architec-
ture. In Figure 11, the architecture is depicted. The graphical user interface (GUI) is
implemented using Java Server Pages and HTML5. The RESTful API delegates the
HTTP-requests received from the GUI to the TOSCA Application Lifecycle Manager,
which handles the provisioning of applications. To enable integrating different TOSCA
Runtime Environments, the requests are delegated to the TOSCA Runtime Integration
Layer, which integrates various runtimes via plugins. Additionally to the processing of
provisioning tasks, the TOSCA Runtime Integration Layer is responsible for gathering
information from the connected TOSCA Runtimes, for example, the available CSARs
and when the provisioning of an application instance is finished. Currently, there is only
one plugin available for integrating the OpenTOSCA Container. Thus, the self-service
portal Vinothek serves as an abstraction layer for end users, since a simple user interface
can be used to start a provisioning instead of invoking Build Plans manually.

In addition to the TOSCA specification, we extended the CSAR format to con-
tain additional information in the form of meta-information encompassing, e.g., icons,
screenshots, and descriptions about the modeled application as shown in Figure 10b.

Vinothek

RESTful API

TOSCA Application Lifecycle Manager API

GUI

OpenTOSCA
Container

TOSCA Runtime OpenTOSCA
Container Plugin

Other Plugin. . .

TOSCA Runtime Integration Layer

Figure 11: The Vinothek Architecture Overview (adapted from [18]).

3.4 Prototype

All components of the OpenTOSCA Ecosystem are released under the open-source
license Apache 2.0 [28], except Winery, which is released under both the Eclipse Public
License (EPL) [29] and the Apache 2.0 License. The OpenTOSCA Ecosystem can be
obtained from GitHub9 and Eclipse10.

Winery is implemented in Java 1.7 and is available as Web Application Archive
(WAR). The whole Winery project is split into the Winery Repository itself and the
Topology Modeler, both are implemented as separate Web applications. The repository
is accessible through a RESTful interface, for which the project also entails a client
library. The GUI components access data trough the RESTful interface and expose the
graphical Web interface implemented with JavaScript and Java Server Pages (JSP). The
BPMN4TOSCA Modeler11 and BPMN4TOSCA to BPEL Transformer12 are not part of
the main release of Winery, as they are not part of the Eclipse project. The modeler is a
prototypical implementation that allows modeling a subset of BPMN4TOSCA, mainly
the BPMN4TOSCA tasks themselves, start/end events, and basic gateways. The trans-
former, which is currently completed, can take models specified using the modeler and
transform them into BPEL models that are executable using the WSO2 BPS.

9 https://www.github.com/OpenTOSCA
10 https://projects.eclipse.org/projects/soa.winery
11 https://github.com/winery/BPMN4TOSCAModeler
12 https://github.com/winery/BPMN4TOSCA2BPEL

https://github.com/winery/BPMN4TOSCAModeler
https://github.com/winery/BPMN4TOSCA2BPEL
https://www.github.com/OpenTOSCA
https://projects.eclipse.org/projects/soa.winery

The OpenTOSCA Container is built on top of the OSGi framework13, a component-
based model for Java applications. The functions of the container can be accessed
through a RESTful HTTP API, which provides operations for the upload of TOSCA
CSARs, their processing, provisioning, and management. For the container to operate
as expected, the Implementation Artifact and Plan Engines employ an Apache Tomcat
and a WSO2 BPS, respectively. The self-service portal Vinothek is a single Web appli-
cation implemented in Java using Java Server Pages. It is connected to the OpenTOSCA
Container via the RESTful API.

4 Future Work

In this section, we describe the planned future work and ongoing research activities
regarding TOSCA and the OpenTOSCA Ecosystem.

Support YAML Profile The TOSCA committee released a TOSCA Simple Profile for
the data serialization format YAML [7]. The goal of the Simple Profile is to reduce the
learning curve and ease the adoption of TOSCA to model Cloud applications. There-
fore, the YAML rendering of TOSCA maps to a subset of the original TOSCA Spec-
ification. Future work entails the support for TOSCA models defined with the YAML
Simple Profile, which calls for the development of a transformation component.

Integration of a IoT-Message Broker In order to support rapidly emerging IoT ser-
vices, we plan to integrate an IoT-Message Broker into the OpenTOSCA Container.
Besides the invocation of application operations as outlined in Section 3.2, this will en-
able OpenTOSCA to support (i) the messaging pattern publish and subscribe as well as
(ii) diverse IoT communication protocols, such as MQTT [30] or CoAP [31]. Moreover,
we plan to apply our work on security policies to this domain [32].

Integration of a BPMN Engine To implement the imperative provisioning approach,
the OpenTOSCA Container supports BPEL. We are working on extending the Open-
TOSCA Ecosystem to support BPMN 2.0. This enhances the usability of the ecosystem
because developers can choose which workflow language they prefer to use.

Application Bus Beside the OpenTOSCA Management Bus, which provides a cen-
tral, unified component for invoking arbitrary kinds of Implementation Artifacts imple-
menting management operations, we are working on a service bus that enables an easy
communication between components contained in TOSCA models. Moreover, this bus
will allow the invocation of modeled operations through a unified interface. However,
these operations provide business functionality instead of management functionality.
Since TOSCA does not support defining interfaces for invoking business functionality,
we will extend the standard accordingly for this purpose.

13 https://www.osgi.org

https://www.osgi.org

Integration with Docker Docker is an actively emerging open-source technology for
packaging applications using containers. We are currently working on Node Types that
support Docker Deployment Artifacts as well as on a Docker Engine Node Type. To
enable the automated provisioning and integration with conventional non-containerized
components, we extend the OpenTOSCA Plan Generator to handle such containers.
Consequently, the huge and continuously growing ecosystem of publicly shared Docker
containers14 can be utilized as building blocks of TOSCA-based topology models. In
addition, OpenTOSCA’s Implementation Artifact Engine is being extended to support
Docker Implementation Artifacts. This allows for creating Implementation Artifacts us-
ing arbitrary technologies, exposing technology-agnostic interfaces such as RESTful or
SOAP Web service APIs. Furthermore, Docker Compose, Docker Machine, and Docker
Swarm are utilized to further simplify and streamline the bootstrapping of instances of
the OpenTOSCA Ecosystem on diverse infrastructures such as developer machines, on-
premise servers, and Cloud environments.

Acknowledgements

This work is partially funded by the BMWi projects CloudCycle (01MD11023), Migrate!
(01ME11055), SePiA.Pro (01MD16013F), and SmartOrchestra (01MD16001F).

References

1. Leymann, F.: Cloud Computing: The Next Revolution in IT. In: Proc. 52th Photogrammetric
Week, Wichmann Verlag (2009) 3–12

2. Fehling, C., Retter, R.: Composite as a Service: Cloud Application Structures, Provisioning,
and Management. it - Information Technology Special Issue: Cloud Computing (2011) 188–
194

3. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., Wettinger, J.: Integrated Cloud Appli-
cation Provisioning: Interconnecting Service-Centric and Script-Centric Management Tech-
nologies. In: Proceedings of the 21st International Conference on Cooperative Information
Systems (CoopIS 2013), Springer (2013) 130–148

4. Breitenbücher, U., Binz, T., Képes, K., Kopp, O., Leymann, F., Wettinger, J.: Combining
Declarative and Imperative Cloud Application Provisioning based on TOSCA. In: Proceed-
ings of the IEEE International Conference on Cloud Engineering (IC2E), IEEE (2014) 87–96

5. OASIS: Topology and Orchestration Specification for Cloud Applications Version 1.0 (2013)
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html.

6. OASIS: Topology and Orchestration Specification for Cloud Applications (TOSCA) Primer
Version 1.0 (2013) http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-
v1.0-cnd01.html.

7. OASIS: TOSCA Simple Profile in YAML Version 1.0 – Committee Specification 1.0
(2016) http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/cs01/TOSCA-
Simple-Profile-YAML-v1.0-cs01.html.

8. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: TOSCA: Portable Automated Deploy-
ment and Management of Cloud Applications. In: Advanced Web Services. Springer (2014)
527–549

14 https://hub.docker.com

http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/cs01/TOSCA-Simple-Profile-YAML-v1.0-cs01.html
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-v1.0-cnd01.html
https://hub.docker.com
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/cs01/TOSCA-Simple-Profile-YAML-v1.0-cs01.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-v1.0-cnd01.html

9. Binz, T., Breiter, G., Leymann, F., Spatzier, T.: Portable Cloud Services Using TOSCA.
IEEE Internet Computing (2012) 80 – 85

10. Leymann, F., Roller, D.: Production Workflow: Concepts and Techniques. Prentice Hall PTR
(2000)

11. OASIS: Web Services Business Process Execution Language (BPEL) Version 2.0. (2007)
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

12. Object Management Group, Inc.: Business Process Model and Notation (BPMN) Version
2.0. (2011) http://www.omg.org/spec/BPMN/2.0/.

13. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F.: Pattern-based Runtime Management
of Composite Cloud Applications. In: Proceedings of the 3rd International Conference on
Cloud Computing and Services Science (CLOSER 2013), SciTePress (2013) 475–482

14. El Maghraoui, K., Meghranjani, A., Eilam, T., Kalantar, M., Konstantinou, A.: Model Driven
Provisioning: Bridging the Gap Between Declarative Object Models and Procedural Provi-
sioning Tools. In: Proceedings of the 7th International Middleware Conference (Middleware
2006), Springer (2006) 404–423

15. Eilam, T., Elder, M., Konstantinou, A., Snible, E.: Pattern-based Composite Application
Deployment. In: Proceedings of the 12th International Symposium on Integrated Network
Management (IM 2011), IEEE (2011) 217–224

16. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery – A Modeling Tool for TOSCA-
based Cloud Applications. In: Proceedings of the 11th International Conference on Service-
Oriented Computing (ICSOC 2013), Springer (2013) 700–704

17. Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Leymann, F., Nowak, A., Wagner, S.: Open-
TOSCA - A Runtime for TOSCA-based Cloud Applications. In: Proceedings of the 11th

International Conference on Service-Oriented Computing (ICSOC 2013), Springer (2013)
692–695

18. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F.: Vinothek – A Self-Service Portal for
TOSCA. In: Proceedings of the 6th Central-European Workshop on Services and their Com-
position (ZEUS 2014), CEUR-WS.org (2014) 69–72

19. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., Schumm, D.: Vino4TOSCA: A Visual
Notation for Application Topologies based on TOSCA. In: On the Move to Meaningful
Internet Systems: OTM 2012 (CoopIS 2012), Springer (2012) 416–424

20. Hirmer, P., Breitenbücher, U., Binz, T., Leymann, F.: Automatic Topology Completion of
TOSCA-based Cloud Applications. In: Proceedings des CloudCycle14 Workshops auf der
44. Jahrestagung der Gesellschaft für Informatik e.V. (GI), GI (2014) 247–258

21. Wettinger, J., Breitenbücher, U., Kopp, O., Leymann, F.: Streamlining DevOps Automa-
tion for Cloud Applications using TOSCA as Standardized Metamodel. Future Generation
Computer Systems (2016) 317–332

22. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: BPMN4TOSCA: A Domain-Specific
Language to Model Management Plans for Composite Applications. In: Proceedings of
the 4th International Workshop on the Business Process Model and Notation (BPMN 2012),
Springer (2012) 38–52

23. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F., Michelbach, T.: A Domain-Specific
Modeling Tool to Model Management Plans for Composite Applications. In: Proceedings of
the 7th Central European Workshop on Services and their Composition (ZEUS 2015), CEUR
Workshop Proceedings (2015) 51–54

24. Wettinger, J., Binz, T., Breitenbücher, U., Kopp, O., Leymann, F., Zimmermann, M.: Unified
Invocation of Scripts and Services for Provisioning, Deployment, and Management of Cloud
Applications Based on TOSCA. In: Proceedings of the 4th International Conference on Cloud
Computing and Services Science (CLOSER 2014), SciTePress (2014) 559–568

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.omg.org/spec/BPMN/2.0/

25. Wettinger, J., Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: Streamlining cloud man-
agement automation by unifying the invocation of scripts and services based on TOSCA.
International Journal of Organizational and Collective Intelligence (IJOCI) (2014) 45–63

26. Taylor, M., Vargo, S.: Learning Chef: A Guide to Configuration Management and Automa-
tion. O’Reilly (2014)

27. Hochstein, L.: Ansible: Up and Running. O’Reilly Media, Inc. (2014)
28. The Apache Software Foundation: Apache License, Version 2.0 (2016) http://www.apache.

org/licenses/LICENSE-2.0.
29. The Eclipse Foundation: Eclipse Public License - Version 1.0 (2016) https://www.eclipse.

org/legal/epl-v10.html.
30. OASIS: OASIS Message Queuing Telemetry Transport (MQTT) TC – OASIS

(2014) https://www.oasis-open.org/news/announcements/mqtt-version-3-1-1-becomes-an-
oasis-standard.

31. Bormann, C.: CoAP – Constrained Application Protocol – Overview (2016) http://coap.
technology/.

32. Waizenegger, T., Wieland, M., Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Leymann,
F., Mitschang, B., Nowak, A., Wagner, S.: Policy4TOSCA: A Policy-Aware Cloud Service
Provisioning Approach to Enable Secure Cloud Computing. In: On the Move to Meaningful
Internet Systems: OTM 2013 Conferences, Springer (2013) 360–376

All links were last followed on July 4th, 2016.

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://coap.technology/
https://www.oasis-open.org/news/announcements/mqtt-version-3-1-1-becomes-an-oasis-standard
https://www.eclipse.org/legal/epl-v10.html
https://www.eclipse.org/legal/epl-v10.html
https://www.oasis-open.org/news/announcements/mqtt-version-3-1-1-becomes-an-oasis-standard
http://coap.technology/

