
1Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{firstname.lastname}@iaas.uni-stuttgart.de

2Daimler AG, Stuttgart, Germany
{firstname.lastname}@daimler.com

Internet of Things Patterns for Communication
and Management

Lukas Reinfurt1,2, Uwe Breitenbücher1, Michael Falkenthal1,
Frank Leymann1, Andreas Riegg2

@article{reinfurt2019internet,
author = {Reinfurt, Lukas and Breitenb{\"u}cher, Uwe and Falkenthal,

Michael and Leymann, Frank and Riegg, Andreas},
title = {Internet of things patterns for communication and management},
booktitle = {Transactions on Pattern Languages of Programming IV},
pages = {139--182},
year = {2019},
doi = {10.1007/978-3-030-14291-9_5},
series = {Lecture Notes in Computer Science (LNCS)},
volume = {10600}
publisher = {Springer-Verlag}

}

:

Institute of Architecture of Application Systems

© 2019 Springer-Verlag.
The final authenticated version is available online at
https://doi.org/10.1007/978-3-030-14291-9_5

See also LNCS-Homepage: http://www.springeronline.com/lncs

mailto:{firstname.lastname}@iaas.uni-stuttgart.de
mailto:{firstname.lastname}@daimler.com

adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

Internet of Things Patterns

for Communication and Management

Lukas Reinfurt1,2(), Uwe Breitenbücher1, Michael Falkenthal1,

Frank Leymann1, Andreas Riegg2

1Institute of Architecture of Application Systems, University of Stuttgart, Stuttgart, Germany
{firstname.lastname}@iaas.uni-stuttgart.de

2Daimler AG, Stuttgart, Germany
{firstname.lastname}@daimler.com

Abstract. The Internet of Things is gaining a foothold in many different areas

and industries. Though offerings vary in their scope and implementation, they

often have to deal with similar problems: Constrained devices and networks, a

vast amount of different vendors and technologies, security and privacy issues,

etc. Over time, similar solutions for these problems appear, but the amount of

available information makes it hard to identify the underlying principles. We in-

vestigated a large number of Internet of Things solutions and extracted the core

principles into patterns. The eight patterns presented in this paper are: DEVICE

GATEWAY enables devices that do not support a networks technology to connect

to this network. DEVICE SHADOW allows other components to interact with offline

devices. RULES ENGINE enables non-programmers to create rules that trigger ac-

tions. DEVICE WAKEUP TRIGGER informs sleeping devices that they should wake

up. REMOTE LOCK AND WIPE allows lost or stolen devices to be secured. DELTA

UPDATE only sends data that has changed since the last communication. REMOTE

DEVICE MANAGEMENT enables remote device management with a client-server

architecture. VISIBLE LIGHT COMMUNICATION uses existing lights to send mes-

sages to other devices.

Keywords: Internet of Things · Patterns · Embedded and cyber-physical sys-

tems · Device management

1 Introduction

In the last years, the Internet of Things (IoT) has gathered more and more attention in

very different areas. It is driven by several developments, such as decreasing sensor and

device sizes, energy consumption, or cost of chips and sensors. Additionally, wide-

spread broadband connectivity and new communication technologies are also pushing

the IoT forward. A future where many things will be connected to the internet seems

increasingly palpable. This, in turn, would allow us to collect and analyze data about

practically all aspects of our lives. The gathered knowledge could then be used for

widespread improvements and automation.

mailto:%7d@iaas.uni-stuttgart.de
mailto:%7d@daimler.com

2

There are a few core components that are combined to realize IoT systems, as shown

in Figure 1. Central to the IoT are the things, which usually resemble some kind of

device. These devices are often limited in their capabilities due to cost, size, energy, or

technological constraints. The typical device contains a combination of sensors and/or

actuators, a processing component, some means of communication, and an energy sup-

ply. Sensors are used to translate changes in the environment to electrical signals,

whereas actuators are used to act on the environment by translating electrical signals

into some kind of physical action [1]. They are controlled by the processing component,

which can range from a simple circuit to complex chips. A device can also communi-

cate with other components through wired or wireless communication technologies.

These other components could be, for example, other devices or a backend server that

runs in a data center or in the Cloud. A backend server is usually used to aggregate and

process data from many devices. It uses this data to gain new insights and knowledge

as well as to send commands to the actuators connected to the devices. It is also used

to manage all the connected devices, e.g., for registering new devices, updating soft-

ware and firmware, or managing security credentials. It might also communicate with

other components, such as web services for analytics or data storage provided by other

companies.

Fig. 1. Components Overview

As the IoT is not particular to any specific industry or domain, many different move-

ments or solutions have developed over time that in some way incorporate the IoT.

These include Smart Homes, Smart Offices [2, 3], Smart Grids [4], or the Smart City

concept [5, 6], as well as initiatives like Industrie 4.0 in Germany [7], or the Industrial

Internet [8]. They all do essentially the same on a different scale: They integrate a man-

ifold of independent, distributed, and, sometimes, also physically accessible sensors in

3

public environments to achieve two things: (i) to enable analyzing the gathered data

and (ii) to use the processed analysis results to automate control of domain specific

actuators. All these solutions share some significant similarities but have been devel-

oped mainly in closed off silos in the past. Several standardization efforts have been

initiated that try to break up these silos on different levels. They include network con-

nectivity standards [9–12], protocols [13–15], device management [16–18] or device

communication frameworks [19–21]. It remains to be seen if all of these efforts can

lead to a more unified IoT.

Getting to grips with all these developments is a challenge for companies. Because

of the fragmented nature of the IoT space, it is not enough for them to look at different

providers, solutions, and technologies in one IoT sector. Instead, they have to look in

multiple separate sectors to find the most appropriate solution. Most corporations will

come in contact with the IoT on one or multiple levels. A company might realize that

it has to produce IoT-enabled products in the future to stay competitive. It might be

able to save costs by introducing Smart Factory or Smart Office capabilities. It might

find entirely new business opportunities that are connected to the IoT. When trying to

build a good IoT solution, IT architects and developers at these companies are faced

with the problems of:

 how to conceive application architectures to be robust for IoT challenges, i.e., how

to receive and process data from a huge amount of sensors at the same time,

 how to assure security in terms of communication of devices as well as physical

access to these devices,

 how to deal with energy and processing limitations of devices, and

 how to integrate multiple proprietary protocols supported by heterogeneous devices,

sensors, and actuators into an IoT platform.

However, the prerequisite to tackling these issues is to understand the core design prin-

ciples for developing IoT solutions. It is, therefore, valuable to extract and author a

collection of proven design principles from production ready IoT solutions, which are

already established in many IoT-platforms and related technologies.

Patterns have been used before to describe proven best practices that have stood the

test of time in a specific domain. Examples include patterns for architecture [22], Cloud

Computing [23], software design [24], or messaging systems [25]. Their abstraction of

very similar and often reoccurring solutions into a structured form can be helpful to

dissect and understand complex fields. They are also useful for comparing different

solutions and solution providers for suitability for a specific task. Last but not least they

can be used as a guideline for new implementations.

In this paper, which is an extended version of our former work that we have pre-

sented at the 21st European Conference on Pattern Languages of Programs (Eu-

roPLoP), we describe eight patterns for the IoT, as seen in Table 1. The new contribu-

tions of this extended version to the original paper [26] are the three patterns, marked

in Table 1 as new: DELTA UPDATE, REMOTE DEVICE MANAGEMENT, and VISIBLE

LIGHT COMMUNICATION. As these patterns are also interlinked with the five original

patterns, some minor adjustments have been made to the original patterns to reference

4

the new patterns. We also added a pattern map showing the relations between the pat-

terns in this paper, as well as an overview of the evolving IoT Pattern Language.

The patterns are aimed at IT architects and developers. We have abstracted them

from a systematic information collection process focusing on IoT-platforms and related

technologies. We believe that these patterns help IT architects and developers working

on IoT application with selecting, designing, and building better solutions. Although

these patterns are presented as IoT patterns, some of them may also be applicable in

other areas. For example, a RULES ENGINE may also be used in an IT system that does

not involve things connected over the internet. However, these patterns are listed here

as IoT patterns as they often play a vital role in IoT system.

Table 1. Overview of the presented patterns.

DEVICE GATEWAY

(p.11)

Some devices cannot directly connect to a network because

they do not support the required communication technolo-

gies. These devices can be connected through a gateway.

DEVICE SHADOW

(p.15)

Other components can interact with currently offline devices

by communicating with a persistently stored virtual represen-

tation of the device that is synchronized once the device re-

connects.

RULES ENGINE

(p.18)

Users can define simple rules without needing to program.

These rules tell the system with what action it should react to

incoming events.

DEVICE WAKEUP

TRIGGER (p.22)

A device that is not currently connected to the backend server

can be informed to do so by sending a message to a low-

power communication channel where the device listens for

such messages.

REMOTE LOCK AND

WIPE (p.26)

When a device is lost or stolen, its functionality can be re-

motely locked or data on it can be wiped, either fully or par-

tially, to protect it from possible attacks.

DELTA UPDATE (new)

(p.29)

Only the values that have changed since the last communica-

tion are sent in a message to reduce the required traffic.

REMOTE DEVICE

MANAGEMENT (new)

(p.32)

A central device management server allows remote manage-

ment by sending management commands to management cli-

ents located on the devices who translate and execute these

commands locally.

VISIBLE LIGHT

COMMUNICATION

(new)

(p.32)

Visible light is modulated to send messages, which can be

received by photodiodes or cameras. Normal use of the lights

is still possible.

5

These patterns do not stand alone but are part of an evolving pattern language, which

we want to expand in the future with more patterns in several categories. Figure 2 shows

the patterns presented in this paper in the context of a larger pattern language. Several

potential categories and additional well-founded pattern ideas are also shown. All these

pattern ideas are based on examples (several each) that we collected during the infor-

mation collection process.

Fig. 2. The presented patterns and other well-founded pattern ideas as part of an evolving IoT

pattern language.

6

Fig. 3. Relations between the patterns presented in this work.

The patterns presented here are interconnected with each other. Figure 3 shows a

pattern map, where each connection from one pattern to another pattern is labeled. Most

of these connections, e.g., can use or can run on, describe how one pattern can be op-

tionally enhanced or combined with another pattern. However, some connections, like

requires, describe that one pattern is a mandatory prerequisite to be able to apply an-

other pattern. These connections can therefore provide a guideline for a sensible reading

and application order of the patterns. The connections are described in more detail in

the patterns themselves.

The remainder of this paper is structured as follows: For a better comprehension, the

original contribution of our previous work [26] is repeated in Sections 2, 3, 4, 5.1-5.5,

and 6. Section 2 elaborates on how the patterns presented in this paper have been iden-

tified. Section 3 briefly describes the pattern format used for these patterns. Section 4

introduces definitions that are helpful in the scope of the IoT and that are frequently

used in the pattern descriptions. Sections 5.1-5.5 present the five IoT patterns that we

identified for the original paper [26]. Sections 5.6-5.8 contain the new patterns. Section

6 presents related work in the field of patterns and the IoT. Section 7 summarizes the

paper and gives an outlook on planned future research.

2 Pattern Identification Process

The patterns presented in this paper have been identified by collecting and reviewing

information from existing products and technologies following the pattern authoring

process defined by Fehling et al. [27]. They divide the pattern writing process into three

iterative phases: Pattern Identification, Authoring, and Application. They further divide

each phase into several steps [27]. The patterns presented here are the result of the first

two phases. The pattern language is currently applied in the SePiA.Pro1 project. In the

first step of the first phase, Domain Definition, we started by defining our understanding

1 http://projekt-sepiapro.de/en/ (last accessed on 13.06.2018)

http://projekt-sepiapro.de/en/

7

of the IoT domain by identifying common knowledge in this area. Some results of this

step are the IoT overview presented in Figure 1 and the terminology and definitions in

Section 4. In the next step, Coverage Consideration, we decided that we do not want to

be limited to a specific sector or user group when looking for IoT patterns. Thus, com-

mercial and open-source solutions for enterprises, developers, and end users alike were

included. The exact sources for each pattern are detailed in the respective pattern’s ex-

ample section and include:

 Product pages that describe the functionality of IoT solutions

 User manuals that explain how to use IoT solutions

 Technical documentation of IoT solutions intended for developers

 Standard documents of technologies used in IoT solutions

 Whitepapers of companies that provide IoT solutions

 Research Papers that investigate technologies used in IoT solutions

During the Information Format Design step, we decided to use Citavi2 to collect and

manage all information. Citavi’s quoting features can be used to extract information out

of all kinds of documents and store them in a database. These quotes can then be tagged

to assign them to a category, creating groups by similarity. These features where used

in step four, Information Collection. A random selection of possible sources was cre-

ated based on searches on Google and Google Scholar for IoT related keywords. These

sources were scanned briefly. If the content of a source seemed relevant, it was added

to the Citavi database and all relevant sections where marked as quotes and tagged,

using the same tags for similar quotes. In the final step of the first phase, Information

Review, the resulting collection of tagged quotes was reorganized. Some tags with

quotes describing very similar concepts were combined, some tags with quotes describ-

ing disparate concepts were split up. Each tag then represents a rough pattern indicator

or idea. Several tags belonging to a similar area were organized under a larger parent

category. This resulted in the hierarchy shown in Figure 2.

During the second phase, Pattern Authoring, each tag containing at least three dif-

ferent examples [28] was authored into a pattern. In the first step, Pattern Language

Design, the pattern format described in Section 3 was created based on other existing

formats (see Section 3). In the next step, Primitive Design, additional graphical features

commonly used in our patterns were defined. For example, each pattern’s problem and

solution section are put into a gray box to make them easy to find at a glance. Or, to

ensure a unified look of the pattern sketches, graphical primitives for commonly used

objects (such as Device or User) were created.

In the Composition Language Definition step, design rules for the pattern sketches

were created to further ensure a consistent look. This includes defining common colors,

line thicknesses, line types, etc. Then, in step four, Pattern Writing, the essence and

core principles contained in the considered sources were abstracted to form a high level,

provider independent description of the particular solution. Using these descriptions,

patterns were authored following the advice of [29–32]. Finally, in step five, Pattern

2 https://www.citavi.com/en (last accessed on 13.06.2018)

https://www.citavi.com/en

8

Language Revision, the links between the resulting patterns and pattern candidates (fu-

ture patterns that have not yet been fully formulated) were checked for completeness.

As this is an iterative process, phases and steps were revisited when new information

was found, feedback of workshops was implemented, or ideas for other improvements

appeared.

3 Pattern Format

This section describes the pattern format that is used to describe the patterns presented

in this paper. It is based on pattern formats, approaches, and guidelines described in

several publications about pattern writing or publications that contain patterns [23, 29–

33]. While some elements are required in every pattern description, others are optional

and are only used when necessary.

The Name is used to identify the pattern. Other names by which the pattern might

be known in the industry are listed under Aliases. Additionally, the Icon adds a graph-

ical representation of the pattern that is intended to be used in architecture diagrams or

sketches [23]. The Problem section captures the core problem that is resolved by the

pattern in an abstract manner, i.e., independent from a concrete domain or technology

since the general problem might exist in many different use cases. Thus, more technical

patterns [34] are out of the scope of this work. The Context then further describes the

circumstances in which the problem typically occurs, which might impose constraints

on the solution. Next, the Forces state the considerations that must be taken into ac-

count when choosing a solution to a problem. These can often be contradictory.

The Solution states the core steps to solve the problem and is often closed with a

sketch depicting the architecture of the solution. Then, the Result section elaborates the

solution in greater detail and describes the situation we find ourselves in after applying

the pattern. Variants of the pattern are listed if they do not differ enough to need their

own separate pattern description. Connections between patterns, such as patterns that

are often applied together or patterns that exclude each other can be listed in the Re-

lated Patterns section. A final Example section lists concrete examples that illustrate

the application of the pattern and could also contain links to concrete solution artifacts

as conceptually introduced in [35] and validated for different domains in [36].

4 Terminology and Definitions

In this section, we define the basic terminology used to describe the IoT Patterns fol-

lowing Bormann et al. [37], who presented a terminology for constrained-node net-

works. The terminology defines different (i) device types, (ii) device energy supply

types, and (iii) device operation modes. The following is a short summary to provide a

clear understanding of the presented patterns.

9

4.1 Device Types

Devices in the IoT can be categorized into groups according to their computational and

communication capabilities.

Unconstrained Devices have no significant constraints regarding their computational

and communication capabilities. They are able to run arbitrary software and can use

communication technology that is not specifically designed for low energy consump-

tion, limited storage, or limited performance.

Semi-Constrained Devices are constrained in their computational power and/or storage

space in such a way that they cannot use a common full protocol stack to communicate

over the internet. However, they can use protocol stacks that are specifically designed

for Semi-Constrained Devices, such as the Constrained Application Protocol (CoAP)3,

IPv6 over Low-power Wireless Personal Area Networks (6LoWPAN)4, or Open Plat-

form Communications Unified Architecture (OPC UA) Binary5. This enables them to

act as fully integrated peers in a network without the help of a gateway or similar com-

ponents. These nodes often also have a limited energy supply.

Constrained Devices are severely constrained in their computation, storage, and com-

munication capabilities, often caused or accompanied by strong limitations of their en-

ergy supply. Therefore, they do not have the resources to support direct internet com-

munication. Consequently, they use communication technology specifically designed

for Constrained Devices, such as Bluetooth Low Energy6, ZigBee7, or Z-Wave8.

4.2 Device Energy Supply Types

The energy supplies available for devices in the IoT can be divided into four groups.

Mains-Powered devices have no direct limitation to available energy, i.e., they are

plugged into a wall socket. Unless there is an outage, they can use all the power they

need.

Period Energy-Limited devices have a power source that has to be replaced or re-

charged in regular intervals, such as easily replaceable or rechargeable batteries or fuel

in some kind of generator.

3 https://tools.ietf.org/html/rfc7252 (last accessed on 13.06.2018)
4 https://tools.ietf.org/html/rfc4944 (last accessed on 13.06.2018)
5 https://opcfoundation.org/ (last accessed on 13.06.2018)
6 https://www.bluetooth.com/bluetooth-technology/radio-versions (last accessed 13.06.2018)
7 http://www.zigbee.org/ (last accessed on 13.06.2018)
8 http://www.z-wave.com/ (last accessed on 13.06.2018)

https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc4944
https://opcfoundation.org/
https://www.bluetooth.com/bluetooth-technology/radio-versions
http://www.zigbee.org/
http://www.z-wave.com/

10

Lifetime Energy-Limited devices contain a non-replaceable and non-rechargeable

power source, such as a battery that is directly soldered onto the circuit board. Once

this power source is depleted it cannot be easily replaced.

Energy Harvesting devices convert ambient energy into electrical energy. Ambient en-

ergy can be in form of radiant energy (solar, infrared, radio-frequency), thermal energy,

mechanical energy, or biomechanical energy. The energy available to the device de-

pends on the ambient energy available at the location of the device and might vary

significantly over time. Energy harvesting can supply a device with perpetual power in

some cases, but the available amount of energy is usually very small. Often, these de-

vices will be mostly sleeping while they collect enough energy for short bursts of ac-

tivity.

4.3 Device Operation Modes

Devices can operate in different modes depending on their communication frequency

and their need to save energy.

Always-On devices have no reason to change operation modes to save power. They can

stay connected and operational all the time.

Low-Power devices usually need to operate on small amounts of power but are still

required to communicate frequently. They will sleep for short periods of time between

communicating, but will generally stay connected to the network. This requires opti-

mized hardware and communication solutions.

Normally-Off devices will be asleep most of the time and reconnect to the network at

specific intervals to communicate (duty cycling).

11

5 Internet of Things Patterns

In this section, we present eight IoT Patterns that were identified following the proce-

dure described in Section 2. The format follows the definition presented in Section 3.

5.1 Device Gateway

Aliases: Gateway, Field Gateway, Intermediate Gateway, Physical Hub, Protocol Con-

verter.

Context: A number of devices have to be connected to a network. These might include

Constrained Devices or Semi-Constrained Devices that are limited in their processing

power and do not support the communication methods of the network. These might also

include Unconstrained Devices from legacy systems that cannot connect to the network

due to outdated technology. A backend server reachable over this network is intended

to process data from these devices.

Forces:

 Connectivity: Devices have to be connected to a network because you want to ac-

cess their data and functionality regularly. Doing this manually is not an option.

 Upgradability: Changing or building up a network so that it supports the commu-

nication technology required by the device is often not possible. You might not con-

trol the network, or the purpose of the network cannot be realized with the device’s

technology, e.g., you need a long-range network but the device only supports short-

range communication.

 Effort: Adding communication capabilities that are supported by the network to all

device types would mean a high investment in time and resources, or might not be

possible at all because of technological limitations.

 Diversity: Other devices with different communication technology might also have

to be connected to the same network and will face the same problem.

 Device Numbers: Your network can only support a certain amount of simultaneous

connections. The number of devices you want to connect exceeds this limit. Extend-

ing the network is not an option.

Problem: You want to connect many different devices to an al-

ready existing network, but some of them might not support the

networks communication technology or protocol.

Solution: Connect devices to an intermediary DEVICE GATEWAY that translates the

communication technology supported by the device to communication technology

of the network and vice-versa.

12

Result: A DEVICE GATEWAY is usually a dedicated hardware appliance that can trans-

late between a number of heterogeneous communication technologies. In many cases,

it will be located at the edge of the network, close to the devices that it connects to the

backend. It is possible to integrate a DEVICE GATEWAY into the backend, but this is

often not practical. It is often used to translate low-power short-range communication

to IP communication, so it has to be located close to these devices, whereas the backend

is usually located far away in a data center.

For communication translation, it has to support at least two, but more commonly

multiple communication technologies. On the interface towards the backend it usually

supports IP communication over Ethernet, Wi-Fi, or mobile networks. On the interfaces

towards the devices, it usually supports some kind of low energy communication tech-

nology. Depending on its application, it might also contain additional interfaces sup-

porting other protocols. A translation layer converts messages received from either the

backend or the devices to messages that can be sent to the respective opponent interface

and vice versa. To be able to route the messages to their intended receivers the messages

have to container some kind of identifier.

Fig. 4. Exemplary sketch of the DEVICE GATEWAY pattern used to transform to and from IP com-

munication.

Benefits:

 Connectivity: Devices that do not directly support the networks communication

technology can be connected to the network.

 Separation of Concerns: Device implementations can focus on only one arbitrary

protocol or technology, which makes them simpler. On the other hand, the DEVICE

GATEWAY can be optimized for protocol translation.

 Effort: One DEVICE GATEWAY can support multiple different communication tech-

nologies. The devices do not have to be modified.

13

 Cost: Many devices can be connected to a network via one DEVICE GATEWAY, with-

out needing to support multiple communication technologies over the whole net-

work, which saves costs.

 Reusability: It might be possible to reuse existing hardware as a DEVICE GATEWAY,

for example, smartphones or routers, which might further decrease the effort and

cost needed.

 Technological Limitations: Devices can use very limited communication technol-

ogy in the form of a specifically reduced software stack. Therefore, they can exploit

their limited power elsewhere, while still being able to connect to a network that

requires more sophisticated technology through a DEVICE GATEWAY.

 Additional Functionality: A DEVICE GATEWAY might have enough resources to be

able to implement additional functionality, such as management or monitoring ca-

pabilities, data aggregation or filtering, or enhanced security mechanisms.

 Resilience: A DEVICE GATEWAY with additional local functionality, like a RULES

ENGINE and a backup battery, can add a layer of resilience and keep local processes

running regardless of power or network outages and backend server failures.

Drawbacks:

 Connectivity: The DEVICE GATEWAY might become a single point of failure for the

network connectivity of the connected devices. Adding redundant DEVICE

GATEWAYS with a failover mechanism could alleviate this problem, but at an in-

creased cost.

 Security: As a single point of attack, the DEVICE GATEWAY also poses a security

risk. If compromised, an attacker could gain access to all attached devices or the

backend server.

 Complexity: Another layer of components is introduced that has to be managed and

maintained. This becomes even more difficult if multiple kinds of gateways are used.

 Cost: The DEVICE GATEWAY usually has to support multiple communication tech-

nologies and, thus, needs more processing power, which makes it expensive. In ad-

dition, if devices are distributed, possibly multiple DEVICE GATEWAYS are required

to connect all of them. Costs might be reduced by using a modular DEVICE GATEWAY

design, where only the required technologies can be added with extension boards.

 Compatibility: Some technologies might be incompatible on a conceptual level. A

DEVICE GATEWAY might only be able to create a partial translation between these

technologies, or it might not be able to translate between certain technologies at all.

Variants: Common variants of a pure DEVICE GATEWAY usually include some kind of

local processing power. Some examples are listed below. They are not mutually exclu-

sive and can be combined.

 Aggregating Device Gateway: Besides translating communication technologies

this gateway also aggregates the messages it receives from the devices in some

meaningful way. For example, it might average the temperature readings of several

devices and send it on once a minute. This is usually done to reduce the number of

individual messages that have to be sent to the backend.

14

 Local Processing Device Gateway: In addition to translating communication tech-

nologies, this gateway also contains some local processing functionality, which

could mirror or replace functionality located in the backend. For example, it could

contain a local RULES ENGINE, which decides some actions directly on the gateway.

This is usually done to minimize communication with the backend and therefore

reduce latency or to insulate from connection loss between gateway and backend.

Related Patterns:

 MESSAGE GATEWAY: The MESSAGE GATEWAY pattern is similar to the DEVICE

GATEWAY, but describes how one or more gateways can be used to combine several

different messaging technologies in a single machine [38].

 ADAPTER: The DEVICE GATEWAY can be seen as a physical version of the ADAPTER

pattern that describes how two incompatible interfaces can work together by con-

verting one interface to the other [24].

 RULES ENGINE: A DEVICE GATEWAY might contain a RULES ENGINE to trigger ac-

tions locally. This can prevent unnecessary round trips to a remote server and might

decrease latency.

 REMOTE DEVICE MANAGEMENT: A DEVICE GATEWAY might act as a management

client for Constrained Devices connected to it when using the Remote Client variant

of REMOTE DEVICE MANAGEMENT.

Examples: Central hubs are a common occurrence in the product portfolios of home

automation companies. Here, they often act as an indispensable central point for inte-

grating and managing the actual home automation devices. Examples are the Samsung

SmartThings Hub [39] which supports ZigBee, Z-Wave, and IP, or the Wink Hub [40]

that additionally supports Bluetooth Low Energy and Lutron Clear Connect 9. The

SmartThings Hub v2 also introduced local processing capabilities, which is also sup-

ported by other DEVICE GATEWAYS like the THNGHUB [41]. Various companies offer

development kits and appliances to implement DEVICE GATEWAYS for industrial use,

such as Intel, Dell, or Nexcom [42–44]. The Eclipse Kura project is an Open Source

framework for building the software side of DEVICE GATEWAYS [45]. Zachariah et al.

[46] proposed to use smartphones with Bluetooth Low Energy as universal gateways

for other devices. In a way, smartphones are already used as DEVICE GATEWAYS for

many wearable devices, like fitness trackers or smartwatches, which completely rely

on the smartphone to communicate the data they collected to the backend. Many IoT

platform documentations mention physical hubs or field gateways as a way to connect

devices to their platforms that cannot connect to the internet on their own, even though

they do not offer any products or solutions in this space [47–51]. Thus, these follow the

idea of DEVICE GATEWAYS.

9 http://www.lutron.com/en-US/Residential-Commercial-Solutions/Pages/Residential-

Solutions/IntegrationConnectivity.aspx (last accessed on 13.06.2018)

http://www.lutron.com/en-US/Residential-Commercial-Solutions/Pages/Residential-Solutions/IntegrationConnectivity.aspx
http://www.lutron.com/en-US/Residential-Commercial-Solutions/Pages/Residential-Solutions/IntegrationConnectivity.aspx

15

5.2 Device Shadow

Aliases: Thing Shadow, Virtual Device

Context: Devices, such as Constrained Devices, Semi-Constrained Devices, and Un-

constrained Devices, might operate in Normally-Off, Low-Power, or Always-On modes.

Either because of their operation modes or because of external circumstances, these

devices might be offline at various times.

Forces:

 Availability: Sending commands to or reading state from offline devices is not pos-

sible.

 Timeliness: Waiting for currently offline device to come online again to send or

receive data in a synchronous fashion can lead to long idle times and should be

avoided.

 Consistency: Often a slightly out-of-date state is better than no state.

Result: By storing persistent virtual representations of the devices on the backend

server and communicating only through those, device communication can be decou-

pled. This allows reading device state as well as sending device commands even if the

device is offline. Essential to this is a persistent storage on the backend that can store

virtual device representations reliably for many devices and that can handle read and

write access from multiple sources. If commands are saved, they should be queued,

unless only the newest command is regarded as relevant. When a device reconnects to

the backend, which can happen according to a schedule or based on certain events, it

can retrieve and process the stored command and update the last known state. To let

other components know that a device is online, a flag can be stored with the device

shadow. When a device connects or gracefully disconnects it enables or disables this

Problem: Some devices will be only intermittently online in or-

der to save energy or because of network outages. Other com-

ponents want to interact with them but do not know when they

will be reachable.

Solution: Store a persistent virtual representation of each device on some backend

server. Include the latest received state from the device, as well as commands not

yet sent to the device. Do all communication from and to the device through this

virtual version. Synchronize the virtual representation with the actual device state

when the device is online.

16

flag itself. Otherwise, the flag is set to false after a certain time of inactivity or by an-

other mechanism, for example by the last will and testament of the Message Queue

Telemetry Transport (MQTT)10 protocol.

Conceivably, DEVICE SHADOW functionality could also be implemented on

DEVICE GATEWAYS to allow localized decoupling between devices connected to one

DEVICE GATEWAY. This would bring the benefits of a DEVICE SHADOW to these de-

vices, even if the Gateway might be disconnected from the rest of the network from

time to time. A problem here could be that a DEVICE GATEWAY might not be able to

provide the reliable persistent storage that is needed.

Fig. 5. Sketch of the DEVICE SHADOW pattern.

Benefits:

 Unified Handling: The communication with devices can be handled as if they are

Always-On, even if they really are not. Therefore, time autonomy between backend

and devices is established.

 Additional Functionality: If all communication goes through a DEVICE SHADOW,

additional functionality can be implemented, such as batch messaging, filtering, or

caching.

 Security: By only communicating with a single, well-known target, security can be

increased, because devices can categorically deny communication attempts from any

other source.

10 http://mqtt.org/ (last accessed on 13.06.2018)

http://mqtt.org/

17

Drawbacks:

 Eventual Consistency: The virtual device representation is only eventually con-

sistent with its actual state.

 Synchronization Issues: State updates could be lost if a new state update is written

to the device shadow that is based on a state that is older than the current last known

state. One way to avoid such issues is versioning the states and using OPTIMISTIC

OFFLINE LOCK [52]. Other issues include transactional synchronization and issues

depending on the semantics of the synchronized data.

 Obsolescence: By the time an offline device reconnects and receives stored com-

mands, these commands might have become obsolete. In the same way, sensor val-

ues or other data send by the device to the Device Shadow may be too old to be

useful by the time the device synchronizes. To avoid stale commands and data, the

MESSAGE EXPIRATION pattern [25] can be used.

 Quality of Service: If all communication is forced through the backend server, la-

tency and decreased availability for communication that could be done locally can

be a problem.

Related Patterns:

 Remote Proxy: Gamma et al. describe remote proxy as one application of the

PROXY pattern. Here, the remote proxy locally represents an object in another ad-

dress space to hide the fact that the object is remote [24]. DEVICE SHADOW can be

seen as a device specific version of a remote proxy.

Examples: AWS IoT stores a persistent virtual version of each connected device that

includes the last reported state and the desired future state of the device. This allows

applications to read and write device state irrespective of the actual availability of the

device [53, 54]. Azure IoT Suite stores device models in a device registry that is an

eventually consistent view of device data [55]. Kii IoT Platform’s Thing Interaction

Framework saves the latest state of registered things on the backend server. Applica-

tions that request a device’s state get the state stored on the server [56].

18

5.3 Rules Engine

Aliases: Action Engine, Trigger Conditions

Context: A wide range of differing messages from devices and other components are

received at the backend server. These might include measurements from sensors, errors,

a heartbeat, registration information, etc. These messages can arrive regularly or irreg-

ularly. There are different kinds of actions that have to be executed depending on the

type of the received message, its content, the time it is received, or other factors.

Forces:

 Flexibility: The actions to trigger might change over time, new actions might be

added, old ones removed, or you might want to temporarily test or disable an action.

Hard-coding them into some software component would be possible, but is not flex-

ible enough.

 Data Sources: In some cases, additional data apart from the device message might

be needed to decide if a particular action should be taken.

 Diversity: The type of action to be triggered can vary significantly depending on the

circumstances. In some cases, you might want to add an entry into a log file or send

an email. In other cases, you might want to route a message to another service for

further processing or store it in some kind of database.

Result: A RULES ENGINE contains a set of rules and actions that should be executed if

a particular rule is met. Usually, these rules and associated actions are user definable

through a graphical user interface on the backend server, which allows non-program-

mers to implement and manage these rules. But an API may provide developers with

more flexible options. Another possibility is to provide a domain specific language

(DSL) for creating the rules. During operation, each incoming message is compared

against these rules. If a rule matches, the associated action is triggered. RULES ENGINES

Problem: Throughout its operation, a system receives a wide

range of messages from devices and other components. You

want to react in different ways to these messages.

Solution: Pass all messages received from devices through a RULES ENGINE. Allow

non-programmers to define and manage rules using a graphical user interface. Pro-

vide an API for programmers. Use these rules to evaluate the content of incoming

messages or metadata about the message against a set of comparators. Allow exter-

nal data sources to be included in these comparisons. Let users associate a set of

actions with these rules. Apply each rule on each message and trigger the associated

actions if a rule matches.

19

are often located on a central backend server but can also be located on a DEVICE

GATEWAY.

The rules usually allow comparing incoming data to static values, historical data,

data from other sources, or a combination thereof. Different comparators allow a user

to check if incoming data is, e.g., equal to, unequal to, larger than, or smaller than a

certain value, or if it contains a certain value. Regular expressions or SQL statements

might be allowed for comparisons that are more complex. Rule matching for a particu-

lar message could be stopped after the first match, or it could be continued until all rules

are evaluated. It could also be possible to let a rule trigger only once and never again,

or only once in a specific time window.

Actions can vary in their scope and complexity. Simple actions might trigger some

functionality that is built into the platform that is used, such as sending an alert to a

user. They might also act as a router that passes data on to services on the same backend

server or to external services of other companies for further processing. One rule could

only trigger one action, but it could also be possible to associate multiple actions to one

rule that then could be executed in serial or in parallel.

Fig. 6. Sketch of the RULES ENGINE pattern.

Benefits:

 Flexibility: Rules can be flexibly added, changed, temporarily disabled, or removed,

because they are not hard-coded into software.

 Ease of Use: A graphical user interface allows non-programmers to manage rules.

 Configurability: The RULES ENGINE usually offers a wide range of options for how

to evaluate the rules and trigger the actions, but users without extensive program-

ming knowledge can configure simple rules.

20

 Automation: A RULES ENGINE allows creating automatic responses for certain sit-

uations.

 Analytics: A RULES ENGINE might track certain values to enable monitoring and

analytics on the messages it receives and the rules and actions that are or are not

triggered.

Drawbacks:

 Suitability: Depending on the functionality offered by the inbuilt rules and actions,

a RULES ENGINE might not be suitable for certain complex transformation or routing

tasks. A possible way to mitigate this drawback is to support user defined rules and

actions via some scripting language.

 Configurability: While simple rules are easy to configure, complex rules might re-

quire more insight or special training.

 Security: A compromised or misconfigured RULES ENGINE can be a security risk.

 Single Point of Failure: If all messaged are passed through a RULES ENGINE it be-

comes a single point of failure.

 Effort: Creating and maintaining good rules might be a lot of work. Creating a mar-

ketplace for rules could be one solution to decrease effort and duplication and in-

crease efficiency.

Related Patterns:

 PRODUCTION RULE SYSTEM: As described by Fowler [57], a PRODUCTION RULE

SYSTEM organizes logic into a set of rules, where each rule has a condition and an

action. While the PRODUCTION RULE SYSTEM is just a formalism to represent and

organize logic into rules and conditions, the RULES ENGINE is the component that

controls the execution of these rules.

 CONTENT BASED ROUTER: A RULES ENGINE can be seen as an extended CONTENT

BASED ROUTER as described by Hohpe et al. [25]. A CONTENT BASED ROUTER ex-

amines only the message content and then routes the message to exactly one system.

A RULES ENGINE can route to multiple systems based on the message content, other

data, or a combination thereof.

 REMOTE DEVICE MANAGEMENT: A RULES ENGINE can be used on the manage-

ment server to automate certain management tasks.

Examples: The AWS IoT Platform includes a RULES ENGINE that can transform and

deliver inbound messages to other devices or Cloud services. Its rules can be applied to

multiple data sources at once and multiple actions can be triggered in parallel. The rules

can be created in an SQL-like syntax [53]. IBM IoT Real-Time Insights has an action

engine that lets users define automated responses to detected conditions. Inbuilt actions

include sending an email, triggering an IFTTT11 recipe, or executing a Node-RED12

workflow. Arbitrary other web services can be included with webhooks [58]. Many

other IoT Platforms also include a Rules Engine [56, 59–63]. There are also standalone

11 https://ifttt.com/ (last accessed on 13.06.2018)
12 http://nodered.org/ (last accessed on 13.06.2018)

https://ifttt.com/
http://nodered.org/

21

services like Waylay, IFTTT, and Zapier or apps like Stringify that offer RULES ENGINE

functionality without a complete IoT platform [64–67]. Some RULES ENGINES, like

EVRYTHNG’s Reactor, can be located on DEVICE GATEWAYS to enable low latency

message processing close to the devices [41].

22

5.4 Device Wakeup Trigger

Aliases: Update Trigger, Device Triggering

Context: You have a Constrained Device or Semi-Constrained Device that is Lifetime

Energy-Limited or Period Energy-Limited and operates in a Low-Power or Normally-

Off mode. You have a backend server where the device is registered, i.e., the server

knows its identity and other metadata. From time to time, you have a situation where

you want to contact the sleeping device immediately. For example, this could be the

case if a critical security fix has to be applied, if you need current sensor values or send

commands for one-off time critical situations, or if the device has been lost or stolen

and you want to use REMOTE LOCK AND WIPE immediately.

Forces:

 Irregularity: You need to establish a connection at non-regular times.

 Predictability: You do not know the point in time when you need to connect to the

device in advance.

 Timeliness: The device might reconnect on its own, but you cannot wait that long.

 Power Consumption: The device has to maintain low power consumption in terms

of entering Low-Power or Normally-Off operation modes to save energy.

Result: A triggerable device can be in a Low-Power or Normally-Off 13 operation

mode, where most of its functionality is dormant. However, it is still listening on a

specific communication channel for triggering messages using a low energy communi-

cation module. When a server wants to wake up a device, it has to know the device and

this channel in advance. Therefore, a prerequisite for the DEVICE WAKEUP TRIGGER is

that the device has previously registered some kind of identifier and its listening chan-

nel with the backend server. This can either be done manually when the server or the

13 The device can be NORMALLY-OFF when a passive trigger mechanism, such as passive RFID

is used [68].

Problem: Some devices might go into a sleep mode to conserve

energy and only wake up from time to time to reconnect to the

network. During sleep, they are not reachable on their regular

communication channels. In some instances, other components

may have to contact a sleeping device immediately.

Solution: Implement a mechanism that allows the server to send a trigger message

to the device via a low energy communication channel. Have the device listening

for these triggering messages and immediately establish communication with the

server when it receives such a message.

23

device is provisioned, or it could be done automatically by the device when it com-

municates with the server.

If the server wants to initiate communication with a triggerable device, it looks up

the device in its registry and uses the stored information to send a trigger message to

the channel that the device is listening on. The trigger message can contain a payload,

e.g., to trigger some specific action on the device after the wake-up. Depending on the

content and the existence of a payload, the triggered device might react in two ways:

(i) If a payload was sent, it can process it and send a response to the server without

establishing a long lasting connection (piggybacked response). (ii) If no payload was

sent or the payload indicates that further communication is needed, the device can es-

tablish a long lasting connection to the server and wait for further instructions. The

maximum time to wait for further instructions can be configured by a timeout, either

directly on the device or in the payload of the wake-up message.

Fig. 7. Sketch of the DEVICE WAKEUP TRIGGER pattern.

Benefits:

 Efficiency: If no constant connection has to be kept alive, it allows the device to

operate in a Low-Power or Normally-Off mode where the only active component is

a low energy communication module listening for trigger messages.

 Responsiveness: Even though the device can be in a Low-Power or Normally-Off

operation mode most of the time, it can be triggered to reconnect at any time if

needed.

Drawbacks:

 Efficiency: At least the communication module has to be active to listen for trigger-

ing messages. To maximize efficiency, a very low power communication module

should be used to listen for trigger messages. There are also passive RFID-based

24

modules that eliminate this drawback but at a loss of range compared to active mod-

ules [68].

 Cost: There might be costs associated with sending a trigger message, for example,

when using SMS to trigger devices.

 Infrastructure: New infrastructure might be needed on the server side for a low

energy communication channel, which is only used for device triggering.

 Effort: The device needs a second communication circuit which increases cost and

complexity.

 Responsiveness: Although it is possible to wake up the device when needed, the

wakeup procedure itself takes some time that should be accounted for.

 Security: The wakeup triggering channel is another vector for potential attacks on

the device. For example, a denial of service (DoS) attack could be used to repeatedly

wake up a device and, thus, quickly drain its battery.

Related Patterns:

 CORRELATION IDENTIFIER: A CORRELATION IDENTIFIER can be used when sending

and replying to a DEVICE WAKEUP TRIGGER so that the server from which the trigger

message originated knows to which trigger message the answer it received be-

longs [25].

 VISIBLE LIGHT COMMUNICATION: One way to implement a low-energy communi-

cation channel for a DEVICE WAKEUP TRIGGER is a circuit with a photodiode and

VISIBLE LIGHT COMMUNICATION.

Examples: There have been several studies proposing active and passive wake-up re-

ceivers [68]. In general, active receivers provide remote wakeup capabilities at higher

ranges while using some energy, while passive receivers use no energy but sacrifice

range. One example is RFID, which is passive and low range. It’s range can be extended

by adding a power source to the receiver and, thus, turning it into active RFID [68, 69].

Device Triggering was introduced in release 11 of the 3rd Generation Partnership Pro-

ject (3GPP) as a way to allow server initiated communication with UMTS or LTE de-

vices when their IP address is not known. SMS is used as triggering mechanism, but a

direct response to the payload is not supported [70]. 3GPP2 also supports Device Trig-

gering using SMS, broadcast SMS, or IP transport [71]. OneM2M uses these mechanics

to trigger devices to wake them up, to force them to establish a connection to the server,

or when their IP address is not known [72]. Starsinic et al. [73] argue that LTE devices

always have an IP address and using SMS as triggering mechanism makes applications

using a DEVICE WAKEUP TRIGGER more platform dependent, because they always need

to support SMS. Additionally, the lack of direct response to a trigger message requires

devices to always establish a connection, which may be inefficient in cases where a

simple reply to the trigger messages would have been sufficient. They propose an IP-

based triggering method that is LTE backwards compatible and utilizes UDP packages.

It supports direct responses to triggering messages, for example by using CoAP con-

firmable data packages. Open Mobile Alliance Lightweight Machine to Machine

(OMA LWM2M) supports an update trigger mechanism where the server can wake up

devices via SMS. An LWM2M client can disconnect if it does not receive a message

25

after a certain time but stays reachable via SMS. The LWM2M server queues operations

for the client while it is offline. The server can send an update trigger message via SMS

to the client. After the client received the SMS it reconnects and receives the queued

operations [17]. The CPE WAN Management Protocol, also known as TR-069, in-

cludes a mechanism called asynchronous auto-configuration server-initiated notifica-

tions. It allows a configuration server to instruct a device to establish a connection with

the server when a new configuration is available [18]. Examples of products are the

PawTrax pet trackers. They stay in a sleep mode to save energy until activated by SMS.

As a piggyback response, they send the current location of the pet, but they can also be

switched to periodically send the location to an app or web platform [74].

26

5.5 Remote Lock and Wipe

Aliases: Remote Factory Reset, Remote Locking, Remote Wiping

Context: A device is connected to a backend server and is in danger of being lost or

stolen. This might be the case because it is installed at an easily accessible public loca-

tion, or a remote and unmonitored location. The device might have functionality that

must not be accessed by a thief. It might also contain classified data that has to be kept

protected. The data might or might not be encrypted. The device might be retrievable

when it is lost or stolen, but it might also vanish forever.

Forces:

 Long-term Data Security: If the device is irretrievably stolen, an attacker might

have ample time to break encryptions if data on the device is encrypted.

 Fine-grained Control: Depending on the situation, the type of device and the con-

tent on the device, different actions might be necessary in the case of loss or theft.

 Reversibility: A lost or stolen device might eventually be returned, so any actions

taken should be reversible if possible.

 Remote Control: Since the device is no longer physically available, the activation

of additional security mechanisms has to work remotely.

Result: To be able to offer REMOTE LOCK AND WIPE functionality, a device has to be

a managed device that is connected to a management backend, which is a component

on the backend server that can remotely execute management functionality on the de-

vice. This can be achieved by applying REMOTE DEVICE MANAGEMENT. Once an au-

thorized user successfully authenticated to the backend, he or she can choose between

different lock or wipe options depending on the circumstances. Which exact options

are provided depends on the particular device. The device should provide a list of lock-

able or deletable data and functionality to the backend server.

Problem: Some devices might be lost or stolen. You want to

prevent attackers from misusing the functionality of the device,

or from gaining access to the data on the device or to the net-

work through the device.

Solution: Make the device a managed device that can receive and execute manage-

ment operations from the backend server. Allow authorized users to use the backend

server to trigger functionality on the device that can delete files, folders, applica-

tions or memory areas, revoke or remove permissions, keys, and certificates, or en-

able additional security feature. Execute triggered functions as soon as the device

receives them and provide acknowledgment to the backend.

27

In some circumstances, it might be enough to disable only some functionality but

leave on location tracking to facilitate the retrieval of a lost or stolen device. The user

might also only erase certain sensitive data to prevent data theft. In more severe cases,

he or she might reset the device to its factory state, which would leave it operational

but without any data on it. He or she might also completely disable the device to make

it unusable.

Wiping data can be done by utilizing existing functionality to delete files and folders,

or by directly deleting certain memory areas. Data can also be encrypted with a key

stored on the device, which is used by applications to access this data. When this key

is deleted, access to this data is effectively revoked. Functionality can be locked by

revoking permissions, keys, or certificates that are required for execution, or by ena-

bling security checks that were previously not enabled. Functionality could also be

completely removed by deleting the associated code from the device. Once the re-

quested operations are executed, the device should send back an acknowledgment to

the backend server if possible.

Fig. 8. Sketch of the REMOTE LOCK AND WIPE pattern.

Benefits:

 Long-Term Data Security: Wiping sensitive data from the device prevents an at-

tacker from stealing the data, even when he has enough time to circumvent some

kind of encryption.

 Fine-grained Control: Partially or fully locking or wiping and full factory reset

allow reactions appropriate to the situation and the sensitivity of the data on the de-

vice, or its functionality.

 Reversibility: Locked device functionality can be unlocked if the device is re-

trieved.

28

 Remote Action: To execute lock and wipe functionality the device does not have to

be under physical control. It only has to be connected to the backend so that the lock

and wipe functionality can be triggered.

Drawbacks:

 Reversibility: Wiped data and a factory reset cannot be reversed. A backup mecha-

nism could be used to be able to restore at least some data.

 Connectivity: The device has to be connected to receive the REMOTE LOCK AND

WIPE commands. A DEVICE WAKEUP TRIGGER could be used to get the device to

connect to the backend server.

 Security: If attackers gain access to the REMOTE LOCK AND WIPE functionality they

could lock devices for ransom or wipe or disable them to cause damage. Proper au-

thentication and authorization mechanisms, as well as end-to-end encryption, should

be used at all times.

Related Patterns:

 REMOTE DEVICE MANAGEMENT: REMOTE LOCK AND WIPE is a specific use case

of REMOTE DEVICE MANAGEMENT.

 DEVICE WAKEUP TRIGGER: A DEVICE WAKEUP TRIGGER could be used to get the

device locked or wiped as soon as possible if it is currently not connected to the

backend server.

Examples: Functionality to remotely locate, lock or wipe a phone is common on mod-

ern smartphones. Android phones can be located, set to ring, locked, or erased remotely

with the Android Device Manager website or app [75]. Apple offers similar function-

ality through the iCloud [76, 77]. Options for other kinds of devices do also exist. The

OMA LWM2M standard specifies a Lock and Wipe object. It supports functionality

for partially or fully locking a device, for partially or fully wiping data on a device, and

for doing a factory reset. These operations can be performed with or without user con-

firmation or notification [17]. The Kii IoT Platform allows users to lock and unlock

devices over their web interface. When locked, the device is not able to access its data

resources in the Cloud, while the owner and admin users still have access to these re-

sources [78]. TR-069 and the IBM IoT Foundation Platform both support remote fac-

tory reset functionality [18, 79].

29

5.6 Delta Update

Aliases: Delta State, Delta Records

Context: You have devices with which you communicate using messages. The network

they use to communicate has limited bandwidth. You want to add new devices to the

network but you do not want to overwhelm the network. You cannot extend or change

the network.

Forces:

 Message Size: You want to reduce the size of messages to fit more messages in

existing connections but you do not want to lose any information.

 Compression: Compression alone does not give the desired results or using com-

pression is impossible because you use severely Constrained Devices.

 Structure: Messages can have structured or unstructured content but in your case

they have a common structure with multiple identifiable fields.

 Repetition: The messages may contain values that have been sent before without a

change.

Result: DELTA UPDATES reduce message size without losing information as they con-

tain only the data that has changed since the last communication, but not more. As such,

they need messages to have a common structure, which has multiple identifiable fields

whose values do not change at once. Examples are devices that periodically send mul-

tiple sensor values. Other examples are backend servers that send configuration mes-

sages to devices to adjust their settings. If such messages are sent with values that have

not changed, DELTA UPDATES reduce their size by omitting these unchanged values.

To send a DELTA UPDATE, the sender first has to calculate the delta, as shown in

Figure 9, step 1 and 4. The sender does this based on the data it wants to be sent, for

example, a set of sensor values or configuration parameters. The delta is the difference

between the latest full data set and the last data set that the sender communicated. Thus,

the sender has to store two or more full data sets: The current data set and the last

Problem: You want to reduce the size of messages containing

sensor data without losing any information.

Solution: Store the last message sent. Calculate the delta from the current data to

this message. Also, calculate a hash of the current full data set. Send only the delta

and the hash to the receiver. Let the receiver merge the delta with its current state

and check, if it matches the received hash.

30

communicated data set for each communication partner. The exact algorithm for calcu-

lating the delta depends on the format of the data set. The resulting delta is empty if

there were no changes to the data since the last communication. The delta is equal to

the current data set if every value changed since the last update. If a value disappeared

since the last update, the DELTA UPDATE has to include this change. One solution is to

mark such a value with a reserved word to let the receiver know it has to delete this

value.

Besides the delta, the sender calculates the hash value of its current full data set. It

sends this value together with the delta to the intended receiver, as shown in step 2 and

5. The receiver merges the delta into its latest version of the dataset, as shown in step 3

and 6. The exact algorithm for merging the delta depends on the format of the data set.

To make sure the data is consistent the receiver calculates the hash value of the resulting

merged data set. If this hash value is equal to the hash value in the DELTA UPDATE the

update was successful. Otherwise, the receiver asks the sender for a full update to syn-

chronize their states.

The communication frequency for DELTA UPDATES varies depending on the use

case. One way is to send DELTA UPDATES periodically at fixed intervals, regardless of

changes. If there have been no changes since the last update, an empty Delta State mes-

sage is comparable to a heartbeat and is thus no unnecessary overhead. Another way is

to send DELTA UPDATES event-based. In this case, the sender emits a DELTA UPDATE

when an event occurs, for example, if a sensor value has changed. A third way is to

send a DELTA UPDATE once a parameter reaches a threshold. This limits communica-

tion to those situations where a relevant change has happened.

Fig. 9. Sketch of the DELTA UPDATE pattern.

31

Benefits:

 Message Size: Messages are smaller as they no longer contain any unnecessary data.

 Information: Messages do not loose information. They still contain the data that

has changed since the last communication and only omit data which has not changed.

 Bandwidth: The decreased message size lowers the bandwidth required on involved

components, such as devices, DEVICE GATEWAYS, etc.

 Energy Consumption: Communication is the biggest energy consumer on Con-

strained Devices. DELTA UPDATES are smaller than full updates and thus devices

need less time to send them. This, in turn, allows devices to switch off communica-

tion modules for longer periods, which lowers their energy consumption.

Drawbacks:

 Suitability: DELTA UPDATES may not be suited for data that does not contain an

identifiable structure which allows an algorithm to create and merge in deltas.

 Data Consistency: If messages containing DELTA UPDATE get lost, and the receiver

merges a later message, the updates from the lost message are not present in the

dataset. This leaves the receiver in an inconsistent state. To prevent this, use hash

values to check for data consistency or reliable messaging technologies for transpor-

tation.

 Increased Storage: The sender has to store the last sent data set for each of its com-

munication partners. Depending on the number of communication partners, this in-

creases the storage space required by orders of magnitude. Constrained Devices with

severe storage limitations may not have the required storage space.

 Incompatibility: Sending DELTA UPDATES leads to problems with communication

patterns where receivers are not directly addressable. For example, a PubSub net-

work distributes one message to multiple receivers. If a hash check fails and the

receiver requests a full update, the network distributes the update to every receiver.

If one hash check fails with each update this leads to more messages than before.

Therefore, if multiple receivers are involved, they need a way to communicate with

senders directly in case of data inconsistencies.

Examples: Libelium [80] mentions DELTA UPDATE in its Waspmote programmer

guide. They describe sending only changed data as one way to lower the power con-

sumption of the communication module. The OMA LWM2M standard [81] describes

a client registration update operation. When executed, this operation sends the param-

eters that have changed since the last update. The Kaa IoT platform [82] uses delta

messages to send configuration updates to endpoints. They make sure the data is con-

sistent by comparing hashes between endpoint and server.

32

5.7 Remote Device Management

Aliases: Device Management

Context: You have a large number of devices, which need to be managed throughout

their lifecycle. From time to time, you have to update the firmware or software installed

on the device, or adjust configuration values. The locations of the devices are remote,

or hard- or dangerous-to-reach.

Forces:

 Location: You have devices located in remote or dangerous areas. The placement

of the devices makes management on location difficult.

 Scalability: You have to manage a large number of devices. Manual work does not

scale for these numbers.

 Outsourcing: Device management is not part of your core business. You want the

ability to have a third party to do the device management for you.

 Security: Managing devices includes handling sensitive information such as pass-

words. You want this information to stay secure.

Result: REMOTE DEVICE MANAGEMENT enables a remote party to execute management

procedures on devices. If desired, even a third party is able to manage the devices.

Otherwise, the device user, operator, owner, vendor, or a combination of them handles

management. For example, router modems provided by internet service providers to

customers include functionality, which enables the provider to set up the router re-

motely. However, users are able to override these settings with a local web interface or

remote management interfaces accessible via the web or mobile apps.

Available management operations vary from device to device. The ability to create,

read, update, and delete configuration values remotely enables managers to initially

configure devices and adjust them to changing surroundings. Functionality for down-

loading and updating firmware and software on the device keeps versions up-to-date

and allows quick reaction to security vulnerabilities. Besides, it allows the introduction

of new features after you have installed the device. Other functionalities, such as remote

rebooting and factory resets, are helpful for troubleshooting.

Solution: Set up a management server on the backend. Add management clients to

the device which you want to manage. Send management command from the server

to the client and have the client execute these commands locally on the device.

Problem: You want to manage a large number of devices re-

motely.

33

REMOTE DEVICE MANAGEMENT provides this remote management functionality

with a client-server architecture. It involves three key components as shown in Figure

10: One or several management server, management clients, and a connection between

them. The management servers are used to send management commands to the man-

agement clients. They handle authentication and authorization to ensure that only users

or applications with proper authorization are able to trigger management commands.

Other components are able to trigger management commands if a management server

offers an external application programming interface (API). Users access the server

through a graphical user interface, which allows them access to the management oper-

ations. The management server has the ability to store multiple device configurations

and to give an overview of manageable devices. Users select existing configurations or

create new ones, change them if needed, and apply them to one or more devices.

The messages containing the management commands are sent using a device man-

agement protocol. It is a bi-directional protocol where the server sends a command and

receives a response when the device has processed the command. These commands are

not timed out because the server cannot predict the time that a device needs to process

a command. It has to be secure since management messages involve confidential data.

End-to-end encryption is one solution that offers this security. Usually, there are many

different devices connected to one management server and these devices may support

different management protocols. Thus, the management server also has to be able to

support different management protocols. This can be done with a plugin architecture,

where a common internal representation of the management commands is translated

into the required management protocols.

A device management model defines the parameters and functions, which are man-

ageable and executable by the management server. It comprises a set of generic features

common to devices, such as changing configuration values, updating the firmware, or

doing a factory reset. Besides, vendors are able to extend and customize it for vendor-

specific functionality.

The management client is a piece of software, which runs directly on a device and

receives management messages from the server. The client translates the generic mes-

sage format into the specific actions, which are necessary to execute the management

operations on the device. It executes these operations on the device and sends a response

to the server. A device managed by such a client is a Managed Device.

34

Fig. 10. Sketch of the REMOTE DEVICE MANAGEMENT pattern.

Benefits:

 Remote Management: Managers do not have to physically go to a device to change

its configuration.

 Decoupling: The employed management protocol and model can hide differences

between devices. This decouples the device management commands on the server

from their implementation on the devices.

 Regular Updates: REMOTE DEVICE MANAGEMENT enables managers to apply reg-

ular updates to firmware and software on devices. This reduces the risk of devices

with outdated and insecure software on them.

 Bulk Management: Managers do not have to manage devices individually. REMOTE

DEVICE MANAGEMENT enables bulk management of devices, where the server ap-

plies changes to a large number of devices.

 Automation: Managers do not have to trigger management operations manually. A

RULES ENGINE allows automatic management by triggering management operations,

for example, when a device connects for the first time.

Drawbacks:

 Security: The management server, the clients, and the communication between them

create new attack vectors. One solution to limit exposure is to use outbound-only

communication for devices where they start communication and do not accept con-

nection requests.

 Scalability: Sending bulk management operations to a large number of devices with-

out limitations overwhelms networks with limited bandwidth. Bulk campaigns pre-

vent this as they divide large bulk operations into smaller parts and issue these com-

mands in stages. Besides, if the server sends pending notifications to a device that

reconnects after a longer period of time, the number of notifications may overwhelm

35

the device. One solution is to queue these notifications and have the device retrieve

them one by one when it is ready.

 Connectivity: Constrained Devices cannot keep up connections because of power

constraints. A DEVICE WAKEUP TRIGGER is one solution to tell devices when they

need to connect to the server.

 Compatibility: Multiple device management standards exist and vendors create

custom implementations. Managing a heterogeneous group of devices requires a de-

vice management solution that handles different standards. However, this is complex

to implement.

Related Patterns:

 REMOTE LOCK AND WIPE: REMOTE LOCK AND WIPE uses REMOTE DEVICE

MANAGEMENT to implement security features. It allows authorized managers to re-

motely lock or wipe a device when it is no longer physically reachable due to loss or

theft.

Variants:

 Remote Client: Severely Constrained Devices do not have the capabilities to run a

resource-intensive management client. In such a case, other more capable devices in

their vicinity host the client for them. For example, a DEVICE GATEWAY running a

management client manages the Constrained Devices connected to it.

Examples: Multiple IoT platforms include remote device management functionality.

IBM’s Watson IoT platform includes a device management service. It communicates

via a device management protocol based on Message Queuing Telemetry Transport

(MQTT) with management agents located on the devices. The available management

operations include location updates, firmware updates, as well as reboot and factory

reset functionality [83]. Oracle mentions lifecycle management in its IoT Cloud Service

documentation [84].

Multiple specifications and standards for device management exist. The Broadband

Forum created the Customer Premise Equipment (CPE) Wide Area Network (WAN)

Management Protocol, known as TR-069, for remote management of end-user devices.

It includes an auto-configuration server, which automatically and dynamically provi-

sions and configures devices based on criteria. These criteria include device specific

requirements or general criteria, such as vendor, model, or software version. Besides,

the protocol has software and firmware management, monitoring, and diagnostics func-

tionality [18].

The Open Mobile Alliance (OMA) defines the Device Management (DM) protocol

for remote management of mobile devices. It includes functionality for provisioning,

configuration, software upgrades, and fault management. A DM server controls these

functions on the DM clients. It has the ability to trigger sessions, but the clients start

the sessions themselves. The protocol defines a common core parameter set, but ven-

dors who need specific functionality are able to extend the protocol [16].

OMA Lightweight Machine to Machine (LWM2M) is a protocol optimized for re-

mote management of Constrained Devices. An LWM2M server communicates with

36

LWM2M clients to reach management goals. These goals include device bootstrapping,

registration, and management [81].

Nokia Motive Connected Device Platform is one solution that combines TR-069,

OMA DM, and OMA LWM2M and other protocols into a single device management

system. The platform automatically detects and configures devices. It is able to manage

devices attached through gateways. Besides, its functionality includes remote firmware

and software updates, diagnostics, fault management, and REMOTE LOCK AND WIPE

[85, 86].

37

5.8 Visible Light Communication

Aliases: LiFi, Free-space Optical, Optical Wireless

Context: Today, wireless communication uses the radio spectrum, which is a part of

the electromagnetic spectrum, because of its beneficial properties. Humans cannot per-

ceive this spectrum and its waves are not harmful to the environment. Depending on

their frequency, they travel long distances and through objects. Organizations that man-

age the radio spectrum further divide it into frequency bands for specific purposes, for

example, broadcasting, air, and marine communication, or radar. This leaves a limited

amount of frequencies for wireless communication technologies such as WiFi or Blue-

tooth. As more and more devices communicate wirelessly, these limited radio bands

become increasingly crowded. This is problematic in areas with dense connectivity,

such as office or apartment buildings, or high traffic public areas.

Forces:

 Wireless: You have to use wireless communication because devices are mobile or

because using cables is not an option.

 Limited Spectrum: The radio spectrum used for wireless communication is limited

and increasingly crowded.

 Safety: Wireless communication technology has to be safe to use near humans and

other lifeforms. Besides, the technology has to minimize adverse effects on machin-

ery that is sensible to electromagnetic effects.

 Security: Wireless communication has to be secure to avoid attackers from eaves-

dropping or tampering with messages.

 Speed: You need communication speed comparable to wireless communication

technologies such as Bluetooth or WiFi.

 Cost: You want to keep costs for wireless communication low.

 Infrastructure: Building up a new wireless communication network requires in-

vestment into infrastructure.

 Communication Distance: Communication technologies have different distances

at which they are usable. Finding a suitable technology often requires trade-offs in

other areas.

Solution: Use visible light for short distance wireless communication. Modulate

messages into the light by turning the light on and off. Do it fast to not impede

normal light usage and to be invisible to the human eye.

Problem: You need to use wireless communication in a

crowded area, but the limited radio spectrum and the interfer-

ence from many other devices lead to performance problems,

which you want to avoid.

38

Result: VISIBLE LIGHT COMMUNICATION (VLC) uses light in the visible spectrum be-

tween 380 to 720nm wavelength to transport messages. A sender encodes a message

into a sequence of binary states, similar to Morse code. It sends out the sequence by

turning a light source on and off in rapid succession, thereby modulating the sequence

into the light. A receiver near the light decodes the sequence and reads the message.

Senders for VISIBLE LIGHT COMMUNICATION make use of existing infrastructure. A

large amount of today’s wireless communication happens in densely populated and fre-

quented areas, in particular in buildings. In these areas, light fixtures are densely de-

ployed and suitably positioned for data transmission. Lights using Light Emitting Di-

odes (LED) are now increasingly used as light sources because of their beneficial prop-

erties. LEDs are cheap and reliable and support the rapid modulation which encoding

messages into the light requires. Using other components, such as lasers, is an option,

but is not a concern of this pattern.

Multiple options exist for the form factor of the sender. One option is to integrate

the sender into the fixture, but this requires large infrastructure investments. Another

option is to have the sender as a separate part and connect it to the fixture, which allows

retrofitting of VISIBLE LIGHT COMMUNICATION capabilities. A third option is to inte-

grate the sender directly into LED lights.

The sender encodes messages into the lighting with intensity modulation. The mod-

ulation is not visible to the human eye since its frequency exceeds the flicker fusion

threshold. Lights are dimmable by changing the relative periods of light and darkness.

It is even workable to communicate data while the human eye perceives the light as off.

Thus, VISIBLE LIGHT COMMUNICATION does not impede normal light functionality.

The receiver consists of a photodiode and a circuit for decoding the messages. An-

other option is to use a camera, for example, on a smartphone. Photodiodes support

high-speed data reception while their framerate limits cameras to lower speeds. Cam-

eras are able to extract data from multiple senders at once, which makes them great for

positioning. They support positioning in three dimensions, including orientation, with

high accuracy. Both photodiodes and cameras work with indirect light reflected from a

surface, but direct line of sight to the sender is helpful. LED lights with integrated pho-

todiodes act as both sender and receiver and thus enable bi-directional communication.

Hybrid systems exist which combine VISIBLE LIGHT COMMUNICATION with other

wireless communication technologies, such as WiFi or Bluetooth. In these scenarios,

the traditional wireless communication technologies act as backup when light commu-

nication is not working because of obfuscation. On the flip side, VISIBLE LIGHT

COMMUNICATION frees up the wireless spectrum.

39

Fig. 11. Sketch of the VISIBLE LIGHT COMMUNICATION pattern.

Benefits:

 Datarate: The datarate benefits from the speed of light and is, thus, higher than in

other wireless communication technologies that use radio waves.

 Cost: VISIBLE LIGHT COMMUNICATION uses low-cost off-the-shelf LEDs. Besides,

it reuses existing lighting infrastructure, further reducing infrastructure cost. Energy

cost is lower because the light has a dual functionality as it now additionally trans-

ports data.

 Power: Lights have a direct connection to power lines and, thus, do not need extra

power sources. Besides, this allows you to combine them with Powerline Commu-

nication, where data is communicated over electrical wires [87].

 Directional Propagation: Directional propagation of light allows high spatial reuse

and larger total network capacity.

 Interference: The visible light spectrum does not interfere with the radio spectrum.

Opaque materials are one way to control and limit self-interference.

 Safety: Unlike other wireless communication technology, VISIBLE LIGHT

COMMUNICATION does not cause electromagnetic interference. This makes it safe in

areas where such interference is harmful and where authorities have banned other

technologies, such as airplanes or hospitals. Besides, visible light does not pose a

health risk.

 Security: Eavesdropping needs line-of-sight to the light source or a surface it illu-

minates. By confining the VISIBLE LIGHT COMMUNICATION to one room, security is

controllable. Besides, security problems are identifiable as the communication chan-

nel is visible to the eye.

 Localization: Receivers are able to locate themselves using VISIBLE LIGHT

COMMUNICATION. They use the strength of the received signal to calculate the dis-

tance to the transmitter.

40

Drawbacks:

 Distance: Long distance VISIBLE LIGHT COMMUNICATION becomes increasingly

complicated to implement. Focused light needs to hit the receiver, which long dis-

tance solutions achieve with lasers and mechanical stabilization systems. This in-

creases the cost and complexity of such solutions.

 Infrastructure: For VISIBLE LIGHT COMMUNICATION to play out its advantages, a

suitable light infrastructure has to exist. In areas that do not need lighting, this is not

given. You also need the components that modulate the lights if they do not already

exist.

 Line of Sight: Direct line of sight is not needed, but beneficial. In situations where

direct line of sight is not given at times, performance suffers. If no line of sight to a

surface illuminated by a transmitter exists, communication does not work.

 Security: Using visible light as communication medium may pose new security

risks. It may also be possible to launch attacks to disrupt communication, for exam-

ple by using additional lights to overwhelm the receivers, similar to denial of service

(DoS) attacks.

Related Patterns:

 DEVICE WAKEUP TRIGGER: VISIBLE LIGHT COMMUNICATION is one option to im-

plement a DEVICE WAKEUP TRIGGER. In this case, a device uses a photodiode and a

simple detection circuit to catch trigger messages sent using the lights in its environ-

ment.

Examples: Bell patented the idea of using optical signals for communication in 1880

[88]. Research in this general field, called Free Space Optical (FSO) communication,

has steadily advanced the technology. FSO is now used in multiple forms and applica-

tions, including infrared remote controls and communication with spacecrafts and sat-

ellites [89]. In recent years, the availability and increased usage of low-cost LEDs have

made a particular form of FSO, VISIBLE LIGHT COMMUNICATION, a practical option.

Realizing VLC using modified off-the-shelf LED bulbs is workable [90]. Photodi-

odes and cameras work as receivers and both are addressable with the same signal.

Besides, photodiodes enable always-on VLC receivers that are suitable as a low-energy

channel to receive DEVICE WAKEUP TRIGGER. The power available to Energy Harvest-

ing devices is insufficient for using LEDs as uplink for VLC. An alternative is to use

retro-reflective materials to reflect light from the transmitter and other light sources to

form an uplink. An LCD-shutter modulates messages into the reflected light [91].

OpenVLC [92] is a project that offers an open-source VLC research platform based on

off-the-shelf components.

Disney researches LED to LED communication between toys. Pointing a magic

wand with a VLC enabled LED at a dress activates the lights in the dress. A smartphone

add-on placed in the headphone jack or other VLC enabled lights control the lights of

a toy police car [93].

Light-Fidelity (LiFi) [94] extends VLC by adding common wireless networking fea-

tures. These include bi-directional multiuser communication and seamless handover

41

between cells. PureLiFi [95] offers commercial solutions, such as the LiFi-XC system.

It consists of access points that modulate existing light fixtures and stations which plug

into laptops via USB.

Qualcomm Lumicast [96] is a commercial technology, which uses VLC for indoor

mobile device positioning where GPS is not available. They offer a software framework

that allows developers to access the location information in their apps. Position accu-

racy is higher than with methods that use WiFi or Bluetooth. Besides, the framework

offers orientation determination and three-dimensional positioning. It allows using aux-

iliary positioning methods as a backup. Other companies offer VLC services based on

Lumicast, such as Acuity’s BiteLight [97].

The Institute of Electrical and Electronics Engineers (IEEE) has created the 802.15.7

standard for VLC [98]. It describes a physical and media access control layer for short-

range optical wireless communication. IEEE designed the standard for audio and video

services, mobility, and compatibility with existing light infrastructure. During design,

they considered impairments due to noise and eye safety.

6 Related Work

The concept of patterns, as introduced by Alexander et al. [22] is of course nothing

new. Over the years, many publications either included new patterns for a specific field

or talked about the pattern creation process in general. A selection of the latter was

already mentioned in Section 3 and includes [23, 29–33]. Additional publications in-

clude [27, 99, 100]. Further, research about efficient pattern application via pattern re-

finement and concrete solutions organized in solution repositories emerges [34, 36].

Some patterns for topics in IoT or related areas exist. Eloranta et al. [101] describe

patterns for building distributed control systems for moving machinery used for forest-

ing, mining, construction etc. These patterns focus on aspects of reliability and fault-

tolerance within these large machines but are not concerned with communication be-

tween small, Constrained Devices [101]. Qanbari et al. [102] present four patterns for

edge application provisioning, deployment, orchestration, and monitoring. In addition

to their narrow focus on edge applications, these patterns use existing technologies like

Docker and Git, which are not suited for all Constrained Devices.

Publications in other contexts exist that contain patterns that are applicable in the

IoT domain. The Messaging Patterns by Hohpe et al. [25] contain several patterns that

can be used to describe communication aspects in the IoT. For example, the COMMAND

MESSAGE and EVENT MESSAGE patterns fit neatly with the two types of messages that

are exchanged in the IoT, namely messages that are sent to devices that contain a com-

mand, e.g., to activate some kind of actuator, and messages that are sent from devices

to the backend for further processing by other components, e.g., sensor values. Other

patterns that are applicable include EVENT-DRIVEN CONSUMER, PUBLISH-SUBSCRIBE

CHANNEL, or GUARANTEED DELIVERY. However, these patterns only cover some as-

pects of IoT communication.

The Cloud Computing Patterns by Fehling et al. [23] also contain some patterns that

are applicable in the IoT domain. For example, a variant of the WATCHDOG pattern can

42

be found on DEVICE GATEWAYS where it resets the system when it detects a problem

with a critical component [103]. The EXACTLY-ONCE DELIVERY and AT-LEAST-ONCE

DELIVERY patterns apply to device communication, for example when the MQTT pro-

tocol is used. The different workload patterns could be used to describe workloads gen-

erated by device messages and the LOOSE COUPLING pattern discusses principles to

decouple devices from other components that consume their data or trigger some actu-

ator functionality of the device, respectively. Again, these patterns only cover some

aspects that are relevant for IoT.

7 Summary and Outlook

The vision of the IoT has existed for a few years now. While not fully realized yet,

recent developments have added numerous solutions, technologies, and standardization

efforts to various areas of this field. However, their ever-increasing number and heter-

ogeneity make it hard to grasp the underlying principles. To help to understand this

complex field, we presented IoT patterns, which summarize recurring solutions to var-

ious problems in the IoT space. In our original work [26], we presented five patterns:

DEVICE GATEWAY, which enables devices which do not support the technology of a

network to communicate with this network, DEVICE SHADOW, which allows other com-

ponents to interact with offline devices, RULES ENGINE, which enables non-program-

mers to design rules which trigger actions, DEVICE WAKEUP TRIGGER, which notifies

sleeping devices when they should wake up, and REMOTE LOCK AND WIPE, which al-

lows lost or stolen devices to be secured.

In this extended version of our original work [26], we added three new patterns:

DELTA UPDATE, which only sends data which has changed since the last communica-

tion, REMOTE DEVICE MANAGEMENT, which allows remote device management using

a client-server architecture, and VISIBLE LIGHT COMMUNICATION, which modulates

visible light to send messages to devices. These patterns already show relations between

them and the new patterns added in this extended version also added new relations.

They also hint at other patterns that have not yet been published. We are working on

expanding this pattern catalog into a full pattern language by adding new patterns and

investigating relations between these patterns. In the future, this pattern language will

guide developers towards useful pattern combinations, give companies a tool to evalu-

ate different IoT providers and solutions, and help other interested readers to understand

the different aspects of the IoT.

Acknowledgements. We would like to thank our shepherd Marko Leppänen for the

discussions and comments that helped to improve this paper. This work was partially

funded by the BMWi projects NEMAR (03ET4018B), SmartOrchestra (01MD16001F)

and SePiA.Pro (01MD16013F).

43

References

1. Anjanappa, M., Datta, K., Song, T.: Introduction to Sensors and Actuators. In:

Bishop, R.H. (ed.) The Mechatronics Handbook, pp. 327–340. CRC Press, Boca

Raton, Florida (2002)

2. Röcker, C.: Services and Applications for Smart Office Environments - A Sur-

vey of State-of-the-Art Usage Scenarios. International Journal of Social, Behav-

ioral, Educational, Economic, Business and Industrial Engineering 4, 51–67

(2010)

3. Le Gal, C., Martin, J., Lux, A., Crowley, J.L.: SmartOffice: Design of an Intelli-

gent Environment. IEEE Intelligent Systems 16, 60–66 (2001)

4. Kopp, O., Falkenthal, M., Hartmann, N., Leymann, F., Schwarz, H., Thomsen,

J.: Towards a Cloud-based Platform Architecture for a Decentralized Market

Agent. In: Cunningham, D., Hofstedt, P., Meer, K., Schmitt, I. (eds.)

INFORMATIK 2015, P-246, pp. 69–80. Gesellschaft für Informatik e.V. (GI),

Bonn (2015)

5. Nam, T., Pardo, T.A.: Conceptualizing Smart City with Dimensions of Technol-

ogy, People, and Institutions. In: Proceedings of the 12th Annual International

Digital Government Research Conference: Digital Government Innovation in

Challenging Times, pp. 282–291. ACM, New York, NY (2011)

6. Su, K., Li, J., Fu, H.: Smart City and the Applications. In: 2011 International

Conference on Electronics, Communications and Control (ICECC), pp. 1028–

1031. IEEE, Piscataway, NJ (2011)

7. Kagemann, H., Wahlster, W. and Helbig, J.: Recommendations for implement-

ing the strategic initiative INDUSTRIE 4.0, http://www.acatech.de/filead-

min/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Mate-

rial_fuer_Sonderseiten/Industrie_4.0/Final_report__Industrie_4.0_accessible.pdf

(2013)

8. Industrial Internet Consortium: Overview, http://www.iiconsortium.org/pdf/IIC-

Overview-11-24-15.pdf (2015)

9. ZigBee Alliance: Control your World, http://www.zigbee.org/

10. Z-Wave Alliance: The Internet of Things is powered by Z-Wave, http://z-

wavealliance.org/

11. Bluetooth: Bluetooth Technology Website, https://www.bluetooth.com/what-is-

bluetooth-technology/how-it-works

12. Thread Group: Home, http://www.threadgroup.org/

13. IETF: The Constrained Application Protocol (CoAP),

https://tools.ietf.org/html/rfc7252 (2014)

14. OASIS: MQTT Version 3.1.1. OASIS, http://docs.oasis-

open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf (2014)

15. OPC Foundation: Unified Architecture - OPC Foundation, https://opcfounda-

tion.org/about/opc-technologies/opc-ua/

16. Open Mobile Alliance: OMA Device Management Protocol. Open Mobile Alli-

ance, http://www.openmobilealliance.org/release/DM/V2_0-20150122-C/OMA-

TS-DM_Protocol-V2_0-20150122-C.pdf (2015)

44

17. Open Mobile Alliance: Lightweight M2M - Lock and Wipe Object (LwM2M

Object - LockWipe), http://technical.openmobilealliance.org/Technical/Re-

lease_Program/docs/LWM2M_LOCKWIPE/V1_0-20150217-C/OMA-TS-

LWM2M_LockWipe-V1_0-20150217-C.pd (2015)

18. Bernstein, J. and Spets, T.: DSL Forum TR-069. CPE WAN Management Proto-

col, https://www.broadband-forum.org/technical/download/TR-069.pdf (2004)

19. AllSeen Alliance: AllSeen Alliance, https://allseenalliance.org/

20. Open Interconnect Consortium: Open Interconnect Consortium, http://openinter-

connect.org/

21. Object Management Group: Data Distribution Service (DDS),

http://www.omg.org/spec/DDS/1.4/PDF/ (2015)

22. Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language: Towns, Build-

ings, Construction. Oxford University Press, New York (1977)

23. Fehling, C., Leymann, F., Retter, R., Schupeck, W., Arbitter, P.: Cloud Compu-

ting Patterns. Fundamentals to Design, Build, and Manage Cloud Applications.

Springer, Wien (2014)

24. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, Reading, Massachusetts

(1995)

25. Hohpe, G., Woolf, B.: Enterprise Integration Patterns. Designing, Building, and

Deploying Messaging Solutions. Addison-Wesley, Boston, Massachusetts

(2004)

26. Reinfurt, L., Breitenbücher, U., Falkenthal, M., Leymann, F., Riegg, A.: Internet

of Things Patterns. In: Proceedings of the 21st European Conference on Pattern

Languages of Programs (EuroPLoP). ACM (2016)

27. Fehling, C., Barzen, J., Breitenbücher, U., Leymann, F.: A Process for Pattern

Identification, Authoring, and Application. In: Proceedings of the 19th European

Conference on Pattern Languages of Programs (EuroPLoP). ACM, New York,

NY (2015)

28. Coplien, J.O.: Software Patterns. SIGS, New York, NY (1996)

29. Meszaros, G., Doble, J.: Metapatterns: A Pattern Language for Pattern Writing.

In: Third Pattern Languages of Programming Conference. Addison-Wesley

(1996)

30. Wellhausen, T., Fießer, A.: How to write a pattern? A rough guide for first-time

pattern authors. In: Proceedings of the 16th European Conference on Pattern

Languages of Programs. ACM, New York, NY (2012)

31. Harrison, N.B.: Advanced Pattern Writing. Patterns for Experienced Pattern Au-

thors. In: Pattern languages of program design 5, 5, pp. 433–452. Addison-Wes-

ley, Upper Saddler River, NJ (2006)

32. Harrison, N.B.: The Language of Shepherding. A Pattern Language for Shep-

herds and Sheep. In: Pattern languages of program design 5, 5, pp. 507–530. Ad-

dison-Wesley, Upper Saddler River, NJ (2006)

33. Fehling, C., Barzen, J., Falkenthal, M., Leymann, F.: PatternPedia - Collabora-

tive Pattern Identification and Authoring. In: PURPLSOC (In Pursuit of Pattern

Languages for Societal Change): The Workshop 2014, pp. 252–284. epubli

GmbH, Berlin (2015)

45

34. Falkenthal, M., Barzen, J., Breitenbücher, U., Fehling, C., Leymann, F., Had-

jakos, A., Hentschel, F., Schulze, H.: Leveraging Pattern Application via Pattern

Refinement. In: Proceedings of the International Conference on Pursuit of Pat-

tern Languages for Societal Change (PURPLSOC) (2016)

35. Falkenthal, M., Barzen, J., Breitenbücher, U., Fehling, C., Leymann, F.: From

Pattern Languages to Solution Implementations. In: Proceedings of the Sixth In-

ternational Conferences on Pervasive Patterns and Applications (PATTERNS

2014), pp. 12–21. IARIA, Wilmington, DE (2014)

36. Falkenthal, M., Barzen, J., Breitenbücher, U., Fehling, C., Leymann, F.: Effi-

cient Pattern Application: Validating the Concept of Solution Implementations

in Different Domains. International Journal on Advances in Software 7, 710–726

(2014)

37. Bormann, C., Ersue, M. and Keranen, A.: Terminology for Constrained-Node

Networks, http://www.rfc-editor.org/rfc/pdfrfc/rfc7228.txt.pdf (2014)

38. Eloranta, V.-P., Koskinen, J., Leppänen, M. and Reijonen, V.: Patterns for the

Companion Website, http://media.wiley.com/product_ancil-

lary/55/11186941/DOWNLOAD/website_patterns.pdf

39. SmartThings: Architecture, http://docs.smartthings.com/en/latest/architecture/in-

dex.html

40. Wink: Wink Hub, http://www.wink.com/products/wink-hub/

41. EVRYTHNG: THINGHUB Local Cloud Gateway, https://evrythng.com/wp-

content/uploads/THNGHUB-data-sheet.pdf

42. Intel: Intel IoT Gateways, https://www-ssl.intel.com/content/www/us/en/embed-

ded/solutions/iot-gateway/overview.html

43. Dell: Dell IoT solutions, http://www.dell.com/learn/us/en/04/oem/oem-internet-

of-things

44. Nexcom: IoT Gateway, http://www.nexcom.com/Products/industrial-computing-

solutions/iot-solutions/iot-gateway

45. Eclipse Foundation: Kura - Open Source Framework for IoT,

http://www.eclipse.org/kura/

46. Zachariah, T., Klugman, N., Campbell, B., Adkins, J., Jackson, N., Dutta, P.:

The Internet of Things Has a Gateway Problem. In: Proceedings of the 16th In-

ternational Workshop on Mobile Computing Systems and Applications - Hot-

Mobile '15, pp. 27–32. ACM, New York, NY (2015)

47. Amazon Web Services: AWS IoT FAQs, https://aws.amazon.com/iot/faqs/

48. Microsoft: Azure and IoT, https://azure.microsoft.com/en-us/documentation/arti-

cles/iot-hub-what-is-azure-iot/

49. Microsoft: Azure IoT Hub guidance, https://azure.microsoft.com/en-us/docu-

mentation/articles/iot-hub-guidance/

50. Comarch Technologies: Comarch IoT Platform. In the pursuit of becoming

smart, http://technologies.comarch.com/wp-content/uploads/2015/10/CT_IoT-

white-paper_22092015_WEB.pdf (2015)

51. Bosch Software Innovations: The Bosch IoT Suite. Technology for a Connected

World, https://www.bosch-si.com/media/en/bosch_si/iot_platform/bosch-iot-

suite_product-brochure.pdf (2015)

46

52. Fowler, M., Rice, D., Foemmel, M., Hieatt, E., Mee, R., Stafford, R.: Patterns of

Enterprise Application Architecture. Addison-Wesley, Boston, Massachusetts

(2002)

53. Amazon Web Services: How the AWS IoT Platform Works, https://aws.ama-

zon.com/iot/how-it-works

54. Amazon Web Services: Device Shadows Documents, http://docs.aws.ama-

zon.com/iot/latest/developerguide/thing-shadow-document.html

55. Microsoft: Overview of device management with IoT Hub, https://docs.mi-

crosoft.com/en-us/azure/iot-hub/iot-hub-device-management-overview

56. Kii: State Registration and Retrieval, http://documenta-

tion.kii.com/en/starts/thingifsdk/model/states/

57. Fowler, M.: Domain-Specific Languages. Addison-Wesley, Upper Saddle River,

NJ (2011)

58. IBM: Getting started with IoT Real-Time Insights, http://www.ng.blue-

mix.net/docs/services/iotrtinsights/index.html

59. myDevices: myDevices Connected Device Platform for the Internet of Things,

https://www.mydevices.com/platform

60. Wind River: Wind River Helix Device Cloud, http://www.windriver.com/prod-

ucts/product-overviews/wr-device-cloud_overview.pdf (2015)

61. Comarch Technologies: Digital Lifestyle & IoT Solutions,

http://www.comarch.com/files-com/file_91/Comarch-Digital-Lifestyle-and-IoT-

Solution-283522.pdf (2015)

62. Ayla Networks: Ayla Architecture. Focusing on the 'Things' and Their Manufac-

turers, https://www.aylanetworks.com/wp-content/uploads/2015/06/Ayla_Archi-

tecture_White_Paper_preview.pdf (2015)

63. EVRYTHNG: Evrythng Platform Overview, https://evrythng.com/wp-con-

tent/uploads/EVRYTHNG-IoT-Platform-Overview.pdf

64. waylay.io: Waylay.io Documentation, https://docs.waylay.io/usage/tasks-and-

templates/

65. IFTTT: IFTTT, https://ifttt.com/

66. Zapier: Connect Your Apps and Automate Workflows, https://zapier.com/

67. Stringify: Home - Stringify, https://www.stringify.com/

68. Ba, H., Parvin, J., Soto, L., Demirkol, I., Heinzelman, W.: Passive RFID-based

Wake-Up Radios for Wireless Sensor Networks. In: Wirelessly Powered Sensor

Networks and Computational RFID, pp. 113–129. Springer (2013)

69. Ruzzelli, A.G., Jurdak, R., O'Hare, G.M.P.: On the RFID wake-up impulse for

multi-hop sensor networks. In: The 1st ACM Workshop on Convergence of

RFID and Wireless Sensor Networks and their Applications (SenseID) at the 5th

ACM International Conference on Embedded Networked Sensor Systems (ACM

SenSys 2007) (2007)

70. ETSI: 3GPP TS 23.682. Architecture enhancements to facilitate communications

with packet data networks and applications, http://www.etsi.org/de-

liver/etsi_ts/123600_123699/123682/12.04.00_60/ts_123682v120400p.pdf

(2015)

71. 3GPP2: Network Enhancements for Machine to Machine (M2M),

http://www.3gpp2.org/public_html/specs/X.S0068-0_v1.0_M2M_Enhance-

ments_20140718.pdf (2014)

47

72. oneM2M: Functional Architecture, http://www.onem2m.org/images/files/deliv-

erables/TS-0001-Functional_Architecture-V1_6_1.pdf (2015)

73. Starsinic, M., Mohamed, A.S.I., Lu, G., Seed, D., Aghili, B., Wang, C., Pal-

anisamy, S., Murthy, P.: An IP-Based Triggering Method for LTE MTC De-

vices. In: 2015 Wireless Telecommunications Symposium (WTS). IEEE (2015)

74. PawTrax: Welcome to PawTrax, http://www.pawtrax.co.uk/

75. Google: Remotely ring, lock, or erase a lost device - Accounts Help, https://sup-

port.google.com/accounts/answer/6160500

76. Apple: iCloud: Use Lost Mode, https://support.apple.com/kb/PH2700

77. Apple: iCloud: Erase your device, https://support.apple.com/kb/PH2701

78. Kii: Disable/Enable Things, http://documenta-

tion.kii.com/en/guides/thingifsdk/thingsdk/thing-client/things-status/

79. IBM: Device Management Operations - Device Actions, https://console.blue-

mix.net/docs/services/IoT/devices/device_mgmt/requests.html#requests

80. Libelium: Waspmote Programming Guide (2015)

81. Open Mobile Alliance: Lightweight Machine to Machine Technical Specifica-

tion, http://technical.openmobilealliance.org/Technical/Release_Pro-

gram/docs/LightweightM2M/V1_0-20151030-C/OMA-TS-LightweightM2M-

V1_0-20151030-C.pd (2015)

82. CyberVision: Configuration - Kaa - Kaa documentation, http://docs.kaapro-

ject.org/display/KAA/Configuration

83. IBM: About Watson IoT Platform, https://console.bluemix.net/docs/ser-

vices/IoT/iotplatform_overview.html#about_iotplatform

84. Oracle: Using Oracle Internet of Things Cloud Service, http://docs.ora-

cle.com/cloud/latest/iot/IOTGS/IOTGS.pdf

85. Nokia: Nokia Motive connected device platform, http://resources.alcatel-lu-

cent.com/asset/196246 (2016)

86. Nokia: Motive Connected Device Platform. Release 6.0, http://resources.alcatel-

lucent.com/asset/196247 (2016)

87. Komine, T., Nakagawa, M.: Integrated system of white LED visible-light com-

munication and power-line communication. IEEE Transactions on Consumer

Electronics 49, 71–79 (2003)

88. Bell, A.G.: Apparatus for Signaling and Communicating, called Photophone

(1880)

89. Sevincer, A., Bhattarai, A., Bilgi, M., Yuksel, M., Pala, N.: LIGHTNETs: Smart

LIGHTing and Mobile Optical Wireless NETworks – A Survey. IEEE Commu-

nications Surveys & Tutorials 15, 1620–1641 (2013)

90. Schmid, S., Richner, T., Mangold, S. and Gross, T.R.: EnLighting: An Indoor

Visible Light Communication System Based on Networked Light Bulbs,

https://s3-us-west-1.amazonaws.com/disneyresearch/wp-content/up-

loads/20160615205959/EnLighting-An-Indoor-Visible-Light-Communication-

System-based-on-Networked-Light-Bulbs-Paper.pdf

https://s3-us-west-1.amazonaws.com/disneyresearch/wp-content/uploads/20160615205959/EnLighting-An-Indoor-Visible-Light-Communication-System-based-on-Networked-Light-Bulbs-Paper.pdf
https://s3-us-west-1.amazonaws.com/disneyresearch/wp-content/uploads/20160615205959/EnLighting-An-Indoor-Visible-Light-Communication-System-based-on-Networked-Light-Bulbs-Paper.pdf
https://s3-us-west-1.amazonaws.com/disneyresearch/wp-content/uploads/20160615205959/EnLighting-An-Indoor-Visible-Light-Communication-System-based-on-Networked-Light-Bulbs-Paper.pdf

48

91. Li, Jiangtao, Lie, Angli, Shen Guobin, Li, L., Sun, C., Zhao, F.: Retro-VLC: En-

abling Battery-free Duplex Visible Light Communication for Mobile and IoT

Applications. In: Manweiler, J., Choudhury, R.R. (eds.) Proceedings of the 16th

International Workshop on Mobile Computing Systems and Applications (Hot-

Mobile 2015), pp. 21–26. ACM, New York, NY (2015)

92. Wang, Q., Donne, D. de, Giustiniano, D.: Demonstration Abstract: Research

Platform for Visible Light Communication and Sensing Systems. In: Proceed-

ings of the 15th ACM/IEEE International Conference on Information Processing

in Sensor Networks (IPSN). IEEE (2016)

93. Schmid, S., Ziegler, J., Gross, T.R., Hitz, Manuela, Psarra, Afroditi, Corbellini,

G. and Mangold, S.: (In)visible Light Communication: Combining Illumination

and Communication, https://s3-us-west-1.amazonaws.com/disneyresearch/wp-

content/uploads/20140915070828/Pub_InvisibleLightCommunication_Sig-

graph14_paper.pdf

94. Haas, H., Yin, L., Wang, Y., Chen, C.: What is LiFi? Journal of Lightwave

Technology 34, 1533–1544 (2016)

95. pureLiFi: LiFi-XC, https://purelifi.com/lifi-products/

96. Jovicic, A.: Qualcomm Lumicast : A high accuracy indoor positioning system

based on visible light communication, https://www.qualcomm.com/media/docu-

ments/files/lumicast-whitepaper.pdf (2016)

97. Acuity: Illuminating the In-Store Experience. Indoor Positioning Services Using

LED Lighting Benefit Shoppers and Retailers, http://www.acuitybrands.com/-

/media/Files/Acuity/Solutions/Services/Indoor%20Positioning%20White%20Pa-

pers/indoor%20positioning%20white%20paperrevised%20110315%20pdf.pdf

(2016)

98. IEEE: Part 15.7: Standard for Short-Range Wireless Optical Communication us-

ing Visible Light (2011)

99. Reiners, R., Falkenthal, M., Jugel, D., Zimmermann, A.: Requirements for a

Collaborative Formulation Process of Evolutionary Patterns. In: Proceedings of

the 18th European Conference on Pattern Languages of Programs (EuroPlop).

ACM, New York, NY (2013)

100. Falkenthal, M., Barzen, J., Breitenbücher, U., Brügmann, S., Joos, D., Leymann,

F., Wurster, M.: Pattern Research in the Digital Humanities: How Data Mining

Techniques Support the Identification of Costume Patterns. In: Proceedings of

the 10th Symposium and Summer School On Service-Oriented Computing

(SummerSOC 2016). Springer (2016)

101. Eloranta, V.-P., Koskinen, J., Leppänen, M., Reijonen, V.: Designing distributed

control systems. A pattern language approach. Wiley, Hoboken, NJ (2014)

102. Qanbari, S., Pezeshki, S., Raisi, R., Mahdizadeh, S., Rahimzadeh, R., Behinaein,

N., Mahmoudi, F., Ayoubzadeh, S., Fazlali, P., Roshani, K., et al.: IoT Design

Patterns: Computational Constructs to Design, Build and Engineer Edge Appli-

cations. In: Proceedings of the First International Conference on Internet-of-

Things Design and Implementation (IoTDI), pp. 277–282. IEEE (2016)

103. Eclipse Foundation: Kura Documentation - Introduction,

http://eclipse.github.io/kura/intro/intro.html

All links have been last accessed on 13.06.2018

