
Institute of Architecture of Application Systems,
University of Stuttgart, Germany,

[firstname.lastname]@iaas.uni-stuttgart.de

Protecting Deployment Models in Collaborative
Cloud Application Development

The full version of this paper can be retrieved from
https://www.iariajournals.org/security

@article{Yussupov2019_ProtectingDeploymentModels,
author = {Yussupov, Vladimir and Falazi, Ghareeb

and Falkenthal, Michael and Leymann, Frank},
title = {{Protecting Deployment Models in Collaborative Cloud

Application Development}},
journal = {International Journal On Advances in Security},
year = {2019},
month = {June},
pages = {79--94},
publisher = {IARIA},
issn = {1942-2636}

}

Institute of Architecture of Application Systems

Vladimir Yussupov, Ghareeb Falazi, Michael Falkenthal, Frank Leymann

© 2019 This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 2.5 Generic License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc-sa/2.5/.

https://www.iariajournals.org/security
http://creativecommons.org/licenses/by-nc-sa/2.5/

Protecting Deployment Models in Collaborative Cloud Application Development

Vladimir Yussupov, Ghareeb Falazi, Michael Falkenthal, and Frank Leymann
Institute of Architecture of Application Systems

University of Stuttgart, Stuttgart, Germany
email: [firstname.lastname]@iaas.uni-stuttgart.de

Abstract—Profitability of industrial processes today depends on
well-timed utilization of new technologies. Development of cloud
applications combining cross-domain knowledge from multiple
collaborating parties is one common way to enhance manu-
facturing. Often, such collaborations are not centralized due
to outsourcing or rearrangements in organizational structures.
Moreover, manual deployment inefficiency and intellectual prop-
erty issues further tangle the development process of such appli-
cations. While the development of deployment models obviates
the necessity to manually deploy applications, a way to protect
sensitive data in exchanged deployment models is still needed. In
this work, we describe the specifics of modeling and enforcement
of security requirements for deployment models in the context
of decentralized collaborative cloud application development. We
provide a stepwise demonstration of how security requirements
can be specified and enforced in a collaborative development
scenario based on the TOSCA cloud standard. Furthermore,
we conceptualize the system architecture, provide details about
the implementation of certain approach-specific operations, and
discuss the limitations of the approach. Finally, we show the
feasibility of the presented concepts via an open-source prototype.

Keywords–Collaboration; Security Policy; Confidentiality; In-
tegrity; Deployment Model; Deployment Automation; TOSCA.

I. INTRODUCTION

In the recent years, processes and technologies fostering
manufacturing automation gained a lot of attention from
both, industry and academia. Often, an intricacy of industrial
processes leads to the fact that desired automation goals can
only be achieved using custom-tailored software solutions.
Frequently, such software is the result of a teamwork involving
multiple independent parties, e.g., representing different partic-
ipating organizations. As a prerequisite for collective software
development to be successful, often, various functional and non-
functional system requirements have to be satisfied. Security
and privacy of the data exchanged among involved parties
are critically important requirements that have to be properly
documented and enforced during the development lifecycle [1].

Numerous modern computing paradigms have great po-
tential for accelerating the 4th industrial revolution, often
referred to as Industry 4.0 [2]. One notable example is the
rapidly evolving field of cloud computing [3], which allows on-
demand access to potentially unbounded number of computing
resources. Combined together with ubiquitous sensors usage
in the context of the Internet of Things (IoT) [4], cloud
computing facilitates the development of composite, cross-
domain applications tailored specifically for automation and
optimization of manufacturing. Along with the clear advantages,
such emerging technologies introduce additional challenges
that need to be tackled. For instance, the overall complexity of
development processes might become a significant obstacle for
industries willing to benefit from cloud applications.

A typical cloud application today has a composite structure
consisting of multiple interconnected and heterogeneous compo-
nents [5]. Deploying such complexly-structured applications in
a manual fashion is error-prone and inefficient [6]. Therefore,
various deployment automation approaches exist. One well-
established automation technique relies on the concept of
deployment models that specify application structure along with
the necessary deployment information. Automated processing of
such models considerably reduces the deployment’s complexity
and minimizes required efforts. Another significant benefit,
which improves portability and reusability aspects of the applica-
tion development process, is that instead of separate application
components, standardized models can be exchanged [7].

Complexity and heterogeneity of application’s components
are among the reasons why a common cloud application
development scenario in the context of Industry 4.0 is a
collaboration [8] involving several multidisciplinary partners
responsible for separate parts of the application [5]. The
final goal of this collaboration is to combine all parts into
a complete and deployable cloud application. Collaborative
development can significantly benefit from the portability
and reusability properties of deployment models. However,
since not all parties are known in advance, e.g., due to task
outsourcing or changes in organizational structure, the issues of
intellectual property protection in decentralized settings arise.
For instance, confidential information like sensor measurements
and proprietary algorithms might be subject to various security
requirements, including protection from unauthorized access
and verification of its integrity. Therefore, modeling and
enforcement of such requirements aimed at specific parts of
deployment models, have to be supported.

In our previous work [1], we introduced a method for
modeling and enforcement of security requirements in deploy-
ment models that combines the ideas of sticky policies [9],
policy-based cryptography [10], and Cryptographic Access
Control (CAC) [11]. In this paper, we build upon our previous
work and discuss in more details, how security requirements
aimed at data protection in modeled cloud applications can
be expressed using security policies and which parts of
deployment models need to support the attachment of security
policies. Focusing more on the practical aspects, we provide
a stepwise demonstration of how the introduced approach
can be applied to a collaborative and standardized process
of deployment model development. To have a uniform way
of deployment modeling, we use the existing OASIS standard,
Topology and Orchestration Specification for Cloud Appli-
cations (TOSCA) [12], [13], which specifies an extensible,
provider-agnostic cloud modeling language [14]. To validate
our concepts, we implement them in OpenTOSCA [15], an
opensource ecosystem that allows modeling and execution of
TOSCA-compliant deployment models. Moreover, we include

a detailed description of the system architecture and elaborate
on the process of security requirements enforcement during
import and export of deployment models using our prototype.
The remainder of this paper is structured as follows. As in our
previous work [1], we first describe the fundamentals underlying
this work in Section II and discuss a motivational scenario
in Section III. In Section IV, we present concepts for modeling
and enforcement of security requirements in collaborative
deployment models development. In Section V, we apply the
concepts to a TOSCA-based deployment modeling process
and provide a demonstration of a TOSCA-based collaborative
development scenario using the example collaboration described
in the motivational scenario. The details about the prototypical
implementation in OpenTOSCA are discussed in Section VI.
In addition, we discuss the system’s architecture and describe
the specifics of import and export processes of deployment
models. Finally, in Section VII, we describe related work and
conclude this paper in Section VIII.

II. FUNDAMENTALS

In this section, we provide an overview of several important
concepts which serve as a basis for our work, namely:
(i) deployment automation of cloud applications by means
of deployment modeling approaches, (ii) usage of policies as
means to specify non-functional system requirements, (iii) and
a brief coverage of access control mechanisms.

A. Deployment Modeling
The compound application structure and increased integra-

tion complexity make it non-trivial to automate the deployment
of modern cloud applications [6]. The concept of deployment
modeling aims to tackle the automation problem, and there are
several known approaches including imperative and declarative
modeling [6], [16], [17]. Both paradigms are based on the
idea of creating a description, or deployment model, sufficient
enough for deploying a chosen application in an automated
fashion. What makes these modeling approaches different is the
way how corresponding deployment models are implemented.

In case of the declarative modeling [16], a deployment
model is a structural model that conveys the desired state and
structure of the application. Essential parts of the declarative
deployment model include a specification of application’s
components with respective dependencies and necessary con-
nectivity details. As a result, the model might contain binaries or
scripts responsible for running some application’s components,
e.g., a specific version of Apache Tomcat, or a predefined
Shell script for running a set of configuration commands. In
addition, a description of non-functional system requirements
in some form can be included into the model. Some examples
supporting this type of modeling include Chef [18] and Juju [19]
automation tools, as well as TOSCA. This type of models
relies on the concept of deployment engines, which are able to
interpret a provided description and infer a sequence of steps
required for successful deployment of the modeled application.

Compared to the declarative approach, the imperative
modeling [16] focuses on a procedure which leads to automatic
application deployment. More specifically, an imperative model
describes (i) a set of activities corresponding to the required
deployment tasks which need to be executed, and (ii) the
control and data flow between those activities. One robust
technique for this modeling style is to use a process engine,

e.g., supporting standards like Business Process Execution
Language (BPEL) [20] or Business Process Model and Nota-
tion (BPMN) [21], that can execute provided imperative models
in an automated fashion.

A combination of declarative and imperative approaches is
also possible. In general, creating both types of models requires
efforts from the modeler. However, the imperative modeling
approach is generally more time-consuming and error-prone,
since multiple heterogeneous components need to be properly
orchestrated. Moreover, the structure of the application might
change frequently which requires to modify imperative models.
To minimize required modeling efforts, imperative models
might be derived from the provided declarative models [6].

One important aspect of deployment models is that apart
from valid descriptions they also need to include various files
related to described software components and other parts of the
application, e.g., scripts, binaries, documentation and license
details. As a result, the term deployment model usually refers to
a combination of all the corresponding metadata and application
files required for automatically deploying a target application.

B. Policies
One well-known approach for separating non-functional

requirements from the actual functionalities of a target system
relies on the usage of policies [22]. Essentially, a policy
is a semi-structured representation of a certain management
goal [23]. The term management here is rather broad, as it
might refer to different aspects of management, e.g., high-
level corporate goals or more low-level, technology-oriented
management goals. For instance, from the system’s perspective,
performance, configuration, and security are among the classes
of non-functional requirements that can be described using
policies. Additionally, various policy specification languages
exist in order to simplify the process of describing such
requirements in a standardized manner [22]. From the high-level
view, policies only declare the requirements which then have
to be enforced using dedicated enforcement mechanisms [24].

The idea to specify security requirements in policies dates
back to at least the 1970s [22]. Depending on the level of details
security policies might specify, e.g., privacy requirements for
the whole system or for particular data objects. In information
exchange scenarios, security policies specified on the level of
data objects have to be ensured during the whole exchange
process [25]. For this reason, all receivers have to be aware
of specified policies and enforcement must happen, e.g., by
means of globally-available security mechanisms. Similarly,
deployment models in collaborative application development
are constantly exchanged and parts of them might be subject to
security policies. So-called sticky policies [25] is an approach
to propagate policies with the data they target. This approach
can be combined with cryptography in order to ensure that
data is accessed only when requirements specified in policies
are satisfied. Multiple approaches to combine sticky policies
with different cryptographic techniques such as public key
encryption or Attribute-Based Encryption (ABE) exist [26].

C. Access Control
A secure information system must prevent disclosure

(confidentiality) or modification (integrity) of sensitive data
to an unauthorized party and ensure that data are accessible
(availability) [24]. These requirements can be enforced by

assuring only authorized access to the system and its resources.
Commonly, this process is referred to as access control and there
exist multiple well-established access control mechanisms. For
example, in Discretionary Access Control (DAC) mechanism,
the access is defined based on the user’s identity. This results
in access rules that are specified specifically for this identity,
e.g., in the form of an access control matrix [27]. Another
well-known access control mechanism is called Role-Based
Access Control (RBAC) where access is granted or denied
based on the user roles and access rules defined for these roles.

One disadvantage of the aforementioned access control
mechanisms is that they commonly rely on some centralized
trusted authority, making it difficult to implement them in large
scale and open systems [11]. The idea of CAC is based on
well-known cryptographic mechanisms and regulates access
permissions based on the possession of encryption keys. In
CAC, the stored data are encrypted and can only be accessed
by those users who have the corresponding keys. One positive
advantage of this approach is that the data owner can grant
keys to other involved parties of his choice using established
key distribution mechanisms, thus enforcing the access control
without relying on the trusted third party.

III. MOTIVATIONAL SCENARIO

Developing distributed cloud applications and analytics
applications in the context of Industry 4.0 typically requires
combining numerous heterogeneous software components [28],
[29]. Commonly, this process implies a collaboration among
experts from various domains, such as data scientists, infras-
tructure integrators, and application providers. Furthermore,
resulting applications are often required to be deployable on
demand and, thus, are expected to be in the form of deployment
models that allow automating application provisioning [5], [30].

An example of a collaborative cloud application develop-
ment depicted in Figure 1 involves four participants responsible
for distinct parts of the application. When joined together, all
developed parts of the application, e.g., software components,
datasets, and connectivity information, comprise a complete and
provisioning-ready deployment model. In this scenario, the main
beneficiary who orders the application from a set of partners
and has exclusive rights on the resulting deployment model
is called the Application Owner. The Infrastructure Modeler
is responsible for integrating different components, such as
analytics runtime environments, databases, or application
servers. Moreover, two additional co-modelers are involved
in the development process, namely a Data Scientist and a
Dataset Provider. The former develops a certain proprietary
algorithm, whereas the latter provides a private dataset, e.g.,
comprised of sensor measurements obtained from a combination
of various cyber-physical systems used in production processes.

While the Application Owner has full rights on the resulting
deployment model, other participants might be subject to
security restrictions. For example, access to the dataset provided
by the Dataset Provider might need to be restricted to some of
the parties. Similarly, the Data Scientist might want to specify
security requirements on the provided algorithm. Since the final
infrastructure must include all corresponding sub-parts that were
provided directly or indirectly by participants, the Infrastructure
Modeler is responsible for preparation and shipping of the
finalized deployment model to the Application Owner who is
then able to create new instances of the application on demand.

Application
Owner

Dataset
Provider

1

Data
Scientist

Infrastructure
Modeler

Complete
Deployment

Model

Dataset Algorithm

Infrastructure Policies/Metadata

2

3

4

Figure 1. A collaborative application development scenario.

Generally, collaborative processes from various fields share
some common characteristics. For instance, according to Wang
et al. [31] such issues as (i) dynamically changing sets of
participants, (ii) the lack of centralization, (iii) intellectual
property and trust management issues, and (iv) heterogeneity
of exchanged data are important in collaborative development
of computer-aided design models. Likewise, the lack of
knowledge about all participants involved in collaborative
cloud application development makes it difficult to establish a
centralized interaction among them. Possible reasons include
outsourcing of development tasks and introduction of additional
participants due to rearrangements in organizational structures.
Since no strict centralization is possible, communication with
known participants happens in a peer-to-peer manner. Another
important aspect of collaborative cloud application development
is its iterative nature. Since exchanged deployment models
might be impartial or require several rounds of refinement, a
potentially complicated sequence of exchange steps is possible
for obtaining a final result. Therefore, deployment models need
to be exchanged in collaborations in a way that simplifies the
overall process and enforces potential security requirements.

A deployment model, generally, can be exchanged either in
a self-contained form or on a per-participant basis. In the former
case, the deployment model is self-contained and its content
is the same for all participants, whereas in the latter case its
content is fragmented according to some rules separately for
each participant. Sometimes, however, exchanging deployment
models on a per-participant basis interferes with the actual goals
of the collaboration. For example, in the exchange sequence
shown in Figure 1 the dataset is firstly passed directly to the
Application Owner by the Dataset Provider. For the integration
of the dataset into the final model, the Infrastructure Modeler
needs to model the required infrastructure, e.g., a Database
Management System (DBMS) and related tooling. As only
the Application Owner has full rights on all parts of the
application, the provided dataset has to be protected from
unauthorized access. Intellectual property issues become even
more complex in highly-dynamic scenarios when multiple

parties continuously exchange partially-completed deployment
models. Unfortunately, encrypting an entire deployment model
does not solve the problem since models might be intended
to remain partially-accessible by parties with limited access
rights. Apart from confidentiality problems, the authenticity
and integrity of passed deployment models and their parts
might be subject to verification requirements. For instance, the
Application Owner might need to check if an algorithm was
actually provided by the Data Scientist and no changes were
made by other parties. In such case, signing the hash value of an
entire deployment model is not suitable as integrity of individual
model’s parts have to be verified. Hence, it should be possible
to verify distinct parts of deployment models independently.

The aforementioned scenario highlights several important
issues in collaborative development of deployment models
which need to be solved, namely (i) confidentiality, authenticity,
and integrity requirements of each involved participant have to
be reflected in the model, (ii) various levels of granularity for
these requirements need to be considered, i.e., from full models
to their separate parts, and (iii) a method to enforce modeled
requirements in a peer-to-peer model exchange is needed.

IV. MODELING AND ENFORCEMENT OF SECURITY
REQUIREMENTS

Intellectual property in collaborations has to be protected
from both, external and internal adversaries with respect to
their relation to the process. The former describes any attacker
from outside of the collaboration, i.e., who is not participating
and is not reflected in any kind of agreements, e.g., Service
Level Agreements (SLAs). Conversely, the latter refers to a
dishonest party involved in the process. We focus on internal
adversaries and data protection issues involving known parties.

This section presents an approach to ensure the fulfillment
of security requirements in the collaborative development
of deployment models. Our approach relies on the well-
established concept of representing non-functional requirements
via policies [32], [33], [34], [35]. The semantics of security
requirements is analyzed to derive a set of action and grouping
policies. The former type represents cryptographic operations
allowing to enforce confidentiality and integrity requirements,
inspired by the idea of policy-based cryptography [10]. The
latter type simplifies grouping parts of models which are
subjects to action policies. Both policy types are data-centric
and attachment happens with respect to a certain entity or a
group of entities in the manner of sticky policies [25] to preserve
the self-containment property of deployment models. The access
control enforcement is inspired by the idea of CAC [11].

A. Assumptions
To focus on internal adversaries, we assume that participants

establish bidirectional secure communication channels for data
exchange and that the modeling environment of every involved
participant is secure. By modeling environment we mean any
software that simplifies the process of deployment modeling,
e.g., by providing functionalities like loading (import) and
packaging (export) of deployment models of different formats
or performing various kinds of model validation. We employ
an “honest but curious” [36], [37], [38] adversary model in
which adversaries are interested in reading the data, but avoid
modifications to remain undetected. Despite the absence of
modifications made by adversaries, authenticity and integrity

requirements still need to be modeled and enforced. For
instance, participants might want to track changes or verify the
origin of some specific part in the model.

When describing how data encryption can be modeled,
we assume that no double encryption is needed for distinct
parts of deployment models. We do not distinguish between
read and write rights when discussing access control based
on cryptographic key possession. Therefore, a participant with
the required key is assumed to have full access rights on
the corresponding entity. For efficiency reasons, we adopt
symmetric encryption for ensuring the confidentiality of data.

B. Security Policies in Collaborative Deployment Models

An assumption that data is exchanged in a secure manner
among the participants does not guarantee that all involved
parties can be trusted. Therefore, security requirements are
important even under the secure communication channels as-
sumption. Security requirements we focus on are: (i) protection
of data confidentiality in deployment models, and (ii) verifica-
tion of data integrity and authenticity of deployment models.
On the conceptual level, two distinct types of policies, namely
encryption policy and signing policy, can be distinguished. The
former is aimed to solve the confidentiality problem, whereas
the latter targets integrity-related requirements. However, having
a completely encrypted deployment model does not solve the
confidentiality problem, since a party with limited rights will not
be able to access the parts of the deployment model which were
intended to remain accessible. A similar problem might arise
for a signature of the complete packaged deployment model,
e.g., in a form of an archive, since it will not be possible to
check what exactly was changed unless all files are also signed
separately as a part of the process. More specifically, if only
the hash of an entire deployment model was signed, there will
be no way to distinguish which specific part of the model
is invalid. Therefore, we need to model security policies on
the level of atomic entities in deployment models to support
collaborations similar to the scenario described in Section III.

Naturally, if only parts of deployment models are subject
to confidentiality requirements, enforcement of encryption and
signing policies must affect only respective entities. In our
approach, an encryption policy attached to a certain entity
of the deployment model signals that it has to be encrypted.
In a similar manner, if a certain entity of the deployment
model needs to be signed, a corresponding signing policy
needs to be linked with it. In both cases, policies represent
actual keys that are going to be used for encryption or signing.
Since not all collaborations can rely on a centralized way to
manage policies, the deployment model has to be transferred
together with corresponding policies attached to its entities.
The keys bound to policies, however, cannot be embedded, as
deployment models will no longer remain suitable for sharing
with all possible participants in a self-contained fashion. In
such cases, either participants with proper access control rights
can receive such models, or the models have to be split on a
per-participant basis. Since not all scenarios favor participant-
wise model splitting, a policy needs to be linked with a specific
key in a decoupled manner to preserve self-containment of
a deployment model. As a side effect of decoupling keys
from policies, existing key distribution channels can be utilized
independently from deployment model exchange channels.

For linking policies with particular keys, we need to
maintain unique identifiers for every key involved in the
collaboration. Since not all participants know each other, one
simple solution is to compute a digest of the key and use it
as an identifier or additionally combine it with several other
parameters such as algorithm details, participant identifier, etc.
Another option is to use identifiers which include some partner-
specific parts so that policies can be easily identified. Several
important points have to be mentioned here. Linking the policy
only with the unique key identifier is not enough for decryption
since the modeler needs to know the algorithm details to
perform decryption. Such information can be provided either
as properties of a policy itself or be a part of the key exchange.
Additionally, specifically for encryption there is no obvious
way to distinguish if the policy was already applied and the
data is in encrypted state when a deployment model is received.
Although the data format after encryption will not be identical
to the original entity’s format, checking this difference for every
modeled entity is not efficient. For this reason, a policy needs
to have an attribute stating that it was applied. Due to the usage
of symmetric encryption, generating a respective decryption
policy is unnecessary as it is identical to the encryption policy.

Conversely, the verification of signing policies differs from
the encryption process since private keys are used for signing
and certificate chains of one or more certificates containing the
public key and identity information are used for verification.
As a result, there are two options: to follow the encryption
approach and decouple certificates from policies, or, to embed
certificates into policies to simplify the verification process.
While certificates are meant for distribution, there is one caveat
in the embedding of certificates approach, however. Certificates
commonly have a validity period and verification must be able
to deal with the cases when certificates embedded into policies
are no longer valid. Since such verification is more an issue of
a proper tooling, the certificates are embedded into policies.

Unlike file artifacts, e.g., software components or datasets,
which are referenced from deployment models and supplied
alongside with them, some sensitive information, e.g., model’s
properties, might be directly embedded into models. For
instance, if user credentials for a third-party service have
to be passed from one modeler to another and no other
participant is allowed to see them, then these properties must be
encrypted. Sometimes such properties also need to be verified,
e.g., the Service Owner might want to check if the endpoint
information for a third-party service was actually modeled by
the Infrastructure Modeler. Therefore, an additional caveat
one has to consider is that not only distinct artifacts, but
also separate parts of artifacts might require encryption or
signing. The corresponding artifact in this case has to store
these properties with the modeled security requirements being
enforced, e.g., encrypted or signed.

Hence, we need two more policy types: encryption grouping
policy and signing grouping policy which contain lists of
properties within an artifact that have to be encrypted or signed,
respectively. From the conceptual point of view, the discussed
policies can be classified as action and grouping policies. The
former includes policies representing an action, i.e., encryption
or signing, whereas the latter identifies groups of entities which
require the action. As a result, the corresponding grouping
policies are linked with the desired action policies, i.e. with
actual keys which will be applied to selected properties.

Algorithms Data

Structure Policies

Deployment
model with
protected

data

Signature of
entire deployment

model

Figure 2. A conceptual model of the signed deployment model.

C. Integrity and Self-Containment of Deployment Models
When security policies are modeled and enforced, the

resulting deployment model contains a combination of en-
crypted and signed artifacts and properties. Integrity check
at this point allows to verify the state of modifications and
authenticity of entities modeled by other participants. However,
verification of the entire deployment model’s integrity including
modeled security policies and other attached metadata requires
an additional signature on the level of deployment model.

For this purpose we adopt a technique analogous to
signing of Java archives (JARs) [39]. Essentially, a packaged
deployment model is some sort of an archive containing grouped
artifacts. It is then possible to assume the presence of a meta
file similar to manifest in JARs, which provides the list of all
contents plus some additional information. In situations when
such a manifest file does not exist, it can easily be generated by
traversing the contents of a corresponding deployment model.

As both, integrity of the model’s parts that are targeted by
security requirements and integrity of the entire deployment
model have to be considered, an enhanced packaging format is
needed. The enhanced structure of a deployment model consists
of its original content as well as the content’s signature files. The
latter is achieved via a combination of: (i) a manifest file with
digests for every file, (ii) a signature file consisting of digests
for every digest given in the manifest file plus the digest of the
manifest file itself, and (iii) a signature block file consisting
of a signature generated by the modeler and the certificate
details. The resulting conceptual model is shown in Figure 2.
To make a signed deployment model distinguishable from
regular deployment models, the signature has to be generated
in a standardized fashion, e.g., it can be stored in a predefined
folder inside the package or entire deployment models can be
archived along with the generated signature information.

One important issue is that, technically, there is no fixed
concept of a deployment model in collaboration. Since parts of
cloud applications might be exchanged separately or merged
together, the definition of the exchanged deployment model
is changing throughout the process. Thus, it is mandatory to
preserve the self-containment of modeled security requirements
on the level of atomic entities. Firstly, security policies are
always included into the deployment model since they are
tightly-coupled with target entities. With respect to actual

Modeling Environment

1 2 3 4
Import/Create
Deployment

Model

Request and
Import Keys

Model
Security

Requirements

Export
Deployment

Model

optional

Figure 3. Actions of a collaborating participant.

entities, the problem is trivial in case of encryption since
locations of files or properties remain unchanged and only their
state changes. In other words, whether the encrypted entity is
exported from or imported into the modeling environment, the
information about encryption is always available. Conversely,
signatures of modeled entities have to be created as separate
files since embedding them might not always work. For instance,
embedding a signature into the application’s source code might
result in an incorrect behavior at runtime. This leads to a
requirement of generating and storing signatures in a self-
contained manner when signing policies enforcement happens.

In contrast, the signature of an entire deployment model
reflects a snapshot of its state at a particular point in time,
e.g., when the deployment model was packaged by a certain
participant. Semantically, this signature does not mean that all
content of the deployment model belongs to a signing party,
but only captures the state of the deployment model at export
time. In our approach, we use this external signature only
for integrity verification at import time, but do not explicitly
store it if verification was successful. However, if stored in
a centralized or decentralized manner, this type of signature
might form an expressive log of all export states which can
later be utilized for audit and compliance checking purposes.

D. Enforcement of Security Policies
As participants of a collaborative development process might

not know all involved parties, every side has to maintain a set
of permissions for known participants, e.g., in a form similar to
the access matrix model [24]. In our case, permissions have to
reflect which policies are available to which participant and are
therefore used for export and distribution of keys. One caveat
is that in long sequences of steps there will be cases when a
party does not know which rights with respect to the specific
key have to be defined for some of the involved parties. The
rules in such collaborations rely on various types of agreements,
such as SLAs, which define the lists of trusted parties. Hence,
we handle only explicitly mentioned access rights defined by
participants and forbid transitive trust [40] propagation.

To enforce security policies in collaborations, participants
have to follow a set of actions shown in Figure 3. A new or ex-
isting deployment model can be imported into the participant’s
modeling environment. Signatures are verified for an existing
deployment model before import. An entire model’s signature
is verified first and if verification is successful, all signed
entities are verified next. If certificate chains are embedded, all
certificates must be valid. The import is aborted in case some
signatures or certificates are invalid. A participant might request
keys needed for encrypted entities and if access is granted by the

Modeling
Environment

C

Modeling
Environment

A

Modeling
Environment

D

Modeling
Environment

B

Peer-to-Peer Key
Distribution Channel

Peer-to-Peer Model
Exchange Channel

Policy
Enforcement

Point

Figure 4. Model and key exchange in collaborations.

key owner, keys can be imported into the modeling environment
and used for decryption. The policy enforcement at export time
happens transparently for participants as entities always get
encrypted if the respective keys are present. Since decryption
is only possible when the key is available, the encryption at
export is ensured by the modeling environment.

Afterwards, participants can model additional security re-
quirements and export a modified deployment model. One issue
related to signatures and mutual modifications of the same entity
is whether to keep the obsolete signature information. Since the
original content of the entity has to be modified, we consider it
being a new entity which can be modeled separately eliminating
the problem of handling several signatures altogether. At export
time, all modeled requirements are enforced with respect to the
keys available in the modeling environment. The decrypted data
get encrypted again, in case the corresponding key is present and
the entity was decrypted previously. Only signatures modeled
by the participant who performs the export are generated. All
entities that were signed by others remain in a self-contained
state after import and thus are exported in a regular fashion.
One important point here is that all enforced signing policies
have to be verified before export. In case a violation is found,
the export can no longer proceed in the regular way.

Generated signatures must be linked with corresponding
modeling constructs. For instance, for every signed file the
corresponding signature files must be added as additional
linked references, e.g., following a predefined name format
“filename#sigtype.sig”. Signing properties requires a slightly
different approach. Since properties are parts of artifacts and are
subject to certain policies, their signatures have to be grouped
with respect to the policy. This results in generation of the
combined signature file and linking it with the artifact which
holds the signed properties. Signature of this file is, again,
generated similar to JAR files signing, but in this case the
generated artifact contains the details about signed properties.

Figure 4 shows communication infrastructure for col-
laboration described in Section III. As key distribution is
decoupled from the model exchange, two peer-to-peer channel
types are distinguished. Generally, not all participants need to
communicate with each other. For example, in an outsourcing
scenario, a contractor might grant rights to the ordering party
based on the contract rules and does not need to communicate

with others. Therefore, access permissions of the ordering
party have to also reflect access rules for the part of the
deployment model provided by the contractor. The access
to encrypted data is inquired by requesting a key using the
corresponding policy identifier. Without having a centralized
Policy Enforcement Point (PEP) [41], [42], every participant’s
modeling environment acts as a separate PEP which regu-
lates access control permissions based on inter-participant
agreements. Participants are responsible for maintaining proper
access control permissions including transitive cases.

V. STANDARDS-BASED SECURE COLLABORATIVE
DEVELOPMENT OF DEPLOYMENT MODELS

In this section we discuss the specifics of collaborative
development of deployment models using TOSCA. We first
start with a basic overview of TOSCA concepts and proceed
with an analysis of which modeling constructs in TOSCA
might require protection. As a next step, we describe how our
concepts can be applied to this cloud standard and present
a stepwise example demonstrating how collaborative TOSCA
development process might look like.

A. TOSCA Application Model
TOSCA [12] is a cloud application modeling standard

which allows to automate the deployment and management
of applications. The structure of a TOSCA application is
characterized by descriptions of its components with corre-
sponding connectivity information, modeled as a directed,
attributed, and not necessarily connected graph. In TOSCA
terminology the entire application model is called a Service
Template, whereas the connectivity information is a subpart of
it and referred to as a Topology Template. The management
information in TOSCA terms is called Management Plans.
This information is necessary for execution and management of
applications throughout their lifecycle and can be represented,
e.g., as BPEL [20] or BPMN [21] models. A simplified
TOSCA topology of a Python cloud service [5] is shown
in Figure 5. It consists of several nodes representing software
components which are connected with directed edges describing
the relationships among them.

TOSCA differentiates between entity types and entity
templates, where the term entity might refer to distinct TOSCA
entities such as nodes, relationships, artifacts, or policies. Such
separation eases reusing modeled TOSCA entities, since the
semantics is always defined in the corresponding type. For
instance, the node representing a vSphere hypervisor in Figure 5
is a template of a certain type, or, more specifically, a certain
Node Type. The term “vSphere” written in braces in Figure 5
is the name of this node type. It describes a generic setup
of a vSphere virtualization platform and defines all required
configuration properties. Correspondingly, the term “vSphere-
Hypervisor” written without braces represents a particular
instance of the “vSphere” Node Type and in TOSCA terms is
referred to as a Node Template. Apart from defining common
properties, any Node Type might provide definitions of interface
operations required for managing its instances. For example, a
virtual machine node might need to implement management
operations such as “start”, “stop”, and “restart” that allow
controlling the state of the virtual machine. Implementations
of the operations can be provided in various ways, e.g., in a
form of Java web applications or shell scripts.

hostedOn dependsOn

Python-Service
(PythonApp)

DA: Service.py

[…]

Python-Interpreter
(Python_2.7)

[…]

Flink-Framework
(Flink_1.0.3)

Port = 80
[…]

Ubuntu-OS
(Ubuntu16.04VM)

RAM = 8GB
[…]

vSphere-Hypervisor
(vSphere)

IP = 192.168.1.13
User = ‘admin’
Pwd = $ecret

[…]

IA: ManageVM.war

MySQL-DB
(Database)

[…]
DBName = DB145

DBUser = ***
DBPwd = ***

connectsTo

MySQL-DBMS
(MySQLDBMS5.7)

[…]

Ubuntu-OS
(Ubuntu16.04VM)

RAM = 8GB
[…]

IA: ManageVM.war

DA: Dataset.sql

Figure 5. A simplified TOSCA model of a cloud application.

For deployment and management of the cloud service, all
required artifacts have to be modeled, e.g., the application
files and implementations of management interface operations.
The artifact entity in TOSCA can be of two types, namely
deployment artifacts (DA) and implementation artifacts (IA).
The former defines an executable required for materialization of
a node instance. The latter is a representation of an executable
which implements a certain interface management operation.

One of the main goals of deployment models is to make
cloud applications portable and reusable. For this reason
TOSCA introduces a self-contained packaging format called
Cloud Service Archive (CSAR). Essentially, it is an archive
containing all application-related data necessary for automated
deployment and management, including, e.g., the model defini-
tions, artifact files, policies and other metadata. In addition, it
contains a TOSCA.meta file which describes files in the archive
similarly to a manifest file in JARs.

B. Security Requirements for TOSCA Entities
Several TOSCA modeling constructs can be associated

with confidential information or be subject to integrity checks.
Modeled application files, i.e., artifacts in TOSCA terms, are an
obvious example. All artifacts are always modeled as Artifact
Templates of desired Artifact Types in TOSCA, e.g., a Java
web application artifact is a template of the Web application
Archive (WAR) Artifact Type. While Artifact Types are generic
entities which do not store any sensitive data, Artifact Templates
include actual application files. However, in the TOSCA
specification there is no standard way to describe security
requirements using policies for Artifact Templates. To provide
such modeling capabilities, an extension to TOSCA is needed.
Since properties are defined at the level of Types in TOSCA,
e.g., Node Types, it is useful to have a mechanism allowing
to enforce security requirements at this level. Semantically,
this would mean that encryption or signing policies have to be
applied to all Node Templates of a certain Node Type. TOSCA
does not offer a standard way of attaching policies to specific
properties, thus a proper way to enforce protection of properties
at the level of Node Types is needed as well. In both cases,
some form of extension to TOSCA is needed. In the next
subsection, we demonstrate how such extensions can be made
without introducing non-compliant changes to the standard.

C. TOSCA Policy Extensions
Due to the highly-extensible nature of TOSCA, we introduce

several extension points to support the attachment of security
policies to the aforementioned TOSCA entities. All policies
are defined in a dedicated extension element which belongs
to a chosen entity. A simplified XML snippet in Figure 6
shows extension policies for Artifact Templates and Node
Types from Figure 5. One important point here is to use a
separate namespace for newly-introduced extensible elements,
but for the sake of brevity we omit namespaces in demonstrated
XML snippets. For Artifact Templates, a security policy is
attached in a separate element directly to the Artifact Template.
Essentially, an Artifact Template is a container grouping related
files in a form of file references. We treat Artifact Templates
as atomic entities meaning that policies are applied to all
referenced files which makes the semantics of modeled security
requirements clearer. In cases when some referenced files need
to be distributed without enforcement of policies, they can be
modeled as separate Artifact Templates.

A combination of two policy types has to be defined in
a dedicated extension element for encryption and signing of
properties. A modeler has to specify a list of property names that
must be encrypted or signed as well as to attach a corresponding
action policy. These extensions allow participants to model
desired security requirements for parts of the CSAR.

The introduced extensions, however, do not offer modeling
capabilities for signing the entire CSAR. These two notions of
integrity might contradict with each other, since a party having
parts of the cloud service belonging to other parties is required
to sign them as well. Hence, we separate the integrity check
for a specific part of the model from an integrity check of the
entire CSAR leaving the latter outside of TOSCA modeling.

Essentially, Policy Types and Templates representing action
and grouping policies do not require significant modeling
efforts. The Encryption Policy Type defines a key’s hash
value, an algorithm, and a key’s size as its properties. In the
corresponding Policy Template, these properties are populated
using the respective key’s data. Similarly, the Signing Policy
Type has public key’s hash and related certificate chain as its
properties, filled in using the given key. Certificate chain can be
embedded, e.g., in a form of a Privacy Enhanced Mail (PEM)
encoded string in case of X509 [43] certificates. The only
property defined in grouping policies is a space-separated list
of property names. This Policy Type is abstract and is not
directly bound to any specific entity. Therefore, the tooling
is responsible for verification of the consistency of specified
property names in attached policies.

D. Ensuring the Self-Containement Property of CSARs
Enforcement of modeled encryption requirements does not

produce additional entities, but only modifies the existing
ones. However, in case of enforcing signing requirements, new
files are generated, i.e., the corresponding signature files for
properties or files of Artifact Templates. These generated files
have to be associated with the deployment model to ensure that
the resulting CSAR contains all files and the deployment model
represents these newly-generated files properly. Preservation
of a CSAR’s self-containment property after enforcement of
modeled policies requires embedding the signature information
for artifacts and properties into the corresponding entities. More
specifically, when a signature for an artifact is created, it has

<ArtifactTemplate name=“Python-Service" ...>
<Policies>
<Policy applied="false" name="encryption"

policyType="csar:EncryptionPolicyType"
policyRef="csar1:c0e9a0e7".../>

</Policies>
<ArtifactReferences>
<ArtifactReference ref=".../Service.py"/>

</ArtifactReferences>
</ArtifactTemplate>
...
<NodeType name="vSphere" ...>
<PropertiesDefinition>...</PropertiesDefinition>
<Policies>
<Policy ... name="signing" .../>
<Policy ... name="signedprops" .../>

</Policies>
</NodeType>

Figure 6. Example of TOSCA extension policies specification in XML.

to be placed along with other files referenced in the artifact.
For the signature of properties, one artifact containing all
properties’ signatures needs to be generated and attached to
the corresponding Node Template. Following this approach,
modeled entities remain self-contained even in case they are
being reused in other Service Templates.

E. Step by Step Collaborative Development Example in TOSCA
For a stepwise demonstration, we consider that the appli-

cation topology shown in Figure 5 is being collaboratively
developed following the same scenario and exchange sequence
among the four participants as depicted in Figure 1. This
example is not meant to be a thorough guideline for a given
collaboration scenario, but rather it aims to demonstrate how
certain security requirements can be modeled and enforced
throughout the collective TOSCA-based model development.

As discussed in Section III, the four different participants
involved in this scenario are: (i) an Application Owner who
orders an application, (ii) a Dataset Provider who provides a
private dataset, (iii) a Data Scientist who provides a proprietary
algorithm, (iv) and an Infrastructure Modeler who defines the
infrastructure. The output expected from this collaboration is a
complete application topology which is depicted in Figure 5.
In the motivational scenario, essentially both the dataset
provider and the data scientist are only responsible for single
nodes in the topology that represent a private dataset and a
proprietary algorithm respectively. The participant-specific and
infrastructure-specific nodes are combined by the infrastructure
modeler in a complete and deployable application topology,
which can afterwards be used by the application owner.

Prior to the beginning of the exchange sequence shown
in Figure 1, an application deployment model does not exist
yet, hence, one of the participants needs to instantiate it. Since
the application owner is the main driver for this collaboration,
we assume that the deployment model is first instantiated by
the application owner. For the sake of brevity, we omit the
discussion on how an empty deployment model is instantiated.

In the first part of this collaboration, the dataset provider
enriches the deployment model with the dataset-specific in-
formation and sends it back to the application owner, who
then passes this part of the model to the infrastructure modeler.
Since the dataset is private and must only be accessed by the

MySQL-DB
(Database)

[…]
DBName =
DBUser =
DBPwd =

DA: Dataset.sql

Python-Service
(PythonApp)

DA: Service.py

[…]

Figure 7. Application topology consisting of two decoupled Node Templates
that represent the dataset and algorithm with encryption requirements.

application owner, the dataset provider must provide it in a
secured form. Thus, to protect the dataset from unauthorized
access, it must be encrypted. In addition, the dataset provider
might want to sign the dataset to ease its integrity verification.
The MySQL-DB Node Template shown in Figure 5 represents a
MySQL database node that is hosted on the MySQL Database
Management System (DBMS). In our example, the private
dataset is provided as a SQL dump file and is attached as a
DA to the node. Note, that apart from the DA, the MySQL
database node has properties such as a database name or access
credentials, some of which might be set by different participants.
For instance, a name for the database might be present in the
dump file, therefore, the dataset provider might specify this
property and, optionally, decide to protect it. We assume that
only the artifact corresponding to the dataset has to be protected
for the MySQL-DB node as depicted in Figure 7.

In the second part of collaboration, the data scientist
models and enforces the encryption requirements for the
Deployment Artifact of the Node Template, which represents
the algorithm, and passes it to the infrastructure modeler. As the
application owner is the only authorized user of the algorithm,
the encryption requirements are similar to the ones of the
dataset. At this point, the application topology consists of two
decoupled Node Templates, namely MySQL-DB and Python-
Service as shown in Figure 7. Since both steps are about
enforcing encryption requirements for corresponding Deploy-
ment Artifacts, the process of modeling and enforcing these
requirements is similar. A participant, i.e., the dataset provider
or the data scientist, needs to: (i) create a TOSCA Policy
Template of type “Encryption Policy”, (ii) attach a TOSCA
Policy, i.e., an instance of the corresponding Policy Template,
to the corresponding Artifact Template, (iii) optionally include
other information, and (iv) export the resulting CSAR and
pass it to the next participant. As encryption Policy Templates
are uniquely associated with symmetric keys, the respective
participants must generate keys first and afterwards generate
corresponding Policy Templates. Moreover, the rules for sharing
keys need to be stored and maintained, e.g., in the form of
access control lists. In our example, though, the key sharing
rules are trivial, as only the application owner is able to access
the private contents of the application’s topology. Simplified
examples of Encryption Policy Type and Template are shown
in Figure 8. While the Encryption Policy Type only specifies
the schema for properties, e.g., a property keyHash is of type
xsd:string, the corresponding Policy Template references an
actual key. Therefore, the properties in the Policy Template
shown in Figure 8 contain the details about the key, i.e., its hash
value and the algorithm name. Depending on the algorithm used
and the desired level of details, the number of properties might

<PolicyType name="EncryptionPolicyType" ...>
<PropertiesDefinition>
<properties>
<key>keyHash</key>
<type>xsd:string</type>

</properties>
<properties>
<key>algorithm</key>
<type>xsd:string</type>

</properties>
...

</PropertiesDefinition>
</PolicyType>

<PolicyTemplate name="4def0020237351e59...“
type="EncryptionPolicyType"...>

<Properties>
<keyHash>4def0020237351e59...</keyHash>
<algorithm>AES</algorithm>
...

</Properties>
</PolicyTemplate>

Figure 8. Simplified example of TOSCA Encryption Policy Type and
Template specification in XML.

<PolicyType name="SignedPropertiesPolicyType“ ...>
...
<PropertiesDefinition>
<properties>
<key>propertyNames</key>
<type>xsd:string</type>

</properties>
</PropertiesDefinition>

</PolicyType>

<PolicyTemplate name=“vSphereSignedProperties“
type="SignedPropertiesPolicyType“...>

<Properties>
<propertyNames>IP User Pwd</propertyNames>

</Properties>
</PolicyTemplate>

Figure 9. Example of TOSCA Signing Grouping Policy Type and its Template
specification for vSphere-Hypervisor Node Template’s properties in XML.

be increased, e.g., to include the key size in bits. Moreover,
the attachment of policies to respective Artifact Templates
looks similar to the example shown in Figure 6. The modeled
encryption requirements are enforced at export time, which
results in encryption of the Artifact Template’s files using the
referenced key and changing the value of the corresponding
policy’s applied attribute to true.

In the final part of the collaboration scenario, the in-
frastructure modeler enriches the application topology with
infrastructure-related nodes and sets up all the necessary proper-
ties required for deploying this application in an automated way.
One important point here is that the model can be further refined
in case additional requirements arise afterwards. This means
that any participant might need to add or remove something
from the model after the original exchange sequence. Therefore,
all sensitive information, such as access credentials or endpoints,
might require to be encrypted and signed by the infrastructure
modeler to allow the application owner to ensure that the
application will be deployed according to the SLAs.

hostedOn

dependsOn

Python-Service
(PythonApp)

DA: Service.py

[…]

Python-Interpreter
(Python_2.7)

[…]

Flink-Framework
(Flink_1.0.3)

Port = 80
[…]

Ubuntu-OS
(Ubuntu16.04VM)

RAM = 8GB
[…]

vSphere-Hypervisor
(vSphere)

IP = 192.168.1.13
User = ****
Pwd = ****

[…]IA: ManageVM.war

MySQL-DB
(Database)

[…]
DBName = DB145

DBUser = usr
DBPwd = db1234

connectsTo

MySQL-DBMS
(MySQLDBMS5.7)

[…]

Ubuntu-OS
(Ubuntu16.04VM)

RAM = 8GB
[…]

IA: ManageVM.war

DA: Dataset.sql

DA:
SignedPropsData

Data Scientist

Dataset Provider

Infrastructure Modeler

Signing Policies

Encryption Policies

Figure 10. A complete deployment model with enforced security requirements.

To demonstrate how encryption and signing requirements
can be combined, we assume that the infrastructure modeler
must encrypt and sign the properties for the vSphere-Hypervisor
Node Template, thus, ensuring that the application will be
deployed to the correct location. For instance, the user creden-
tials data must be encrypted and both, user credentials and IP
address information need to be signed. With these requirements,
the resulting set of policies related to the vSphere-Hypervisor
Node Template consists of: (i) encryption policy, (ii) encryption
grouping policy, (iii) signing policy, and (iv) signing grouping
policy. This set of policies, as discussed in Section V-B,
is attached to the vSphere Node Type to guarantee that all
templates of this type will have these requirements enforced.
The attachment of policies happens similar to the example
Node Type policy specification snippet shown in Figure 6. Two
attached policies represent respective keys, namely encryption
and signing policies. The former is linked with a symmetric
key used for encryption, and the latter is linked with a key-
pair. The purpose of grouping policies is to combine sets of
properties targeted for the same action, i.e., encryption or
signing. Figure 9 depicts a simple specification of a signing
grouping Policy Type and the corresponding Policy Template
for grouping the desired properties of vSphere-Hypervisor
Node Template. Chosen property names are listed in the
form of a space-separated list; therefore, the Policy Type
contains only one property of type xsd:string. The Policy
Template instantiates this property with a list of property
names related to the vSphere-Hypervisor Node Template. Note,
that separate grouping policies are specified for encryption
and signing requirements to allow distinguishing them and
looking for overlaps. In cases when property lists overlap, the
signing operations need to be performed twice, before and after
encryption. This allows keeping the information about plain
properties’ hash values. This is one technical nuance that can
simplify verification of properties at export time for parties
authorized to access their values, since values can be checked
prior to encryption. After enforcing modeled requirements, the
infrastructure modeler possesses the complete version of the
deployment model, which is now ready to be passed to the

application owner. Figure 10 depicts the complete deployment
model with enforced encryption and signing requirements from
all involved participants. Generated signature files related to
properties are attached to the model to keep it self-contained.
Files that are required to be encrypted keep their original names,
but are not accessible anymore without being decrypted.

VI. PROTOTYPE

In this section we describe the prototypical implementation
of the presented concepts. The prototype is implemented during
the course of SePiA.Pro1, a project that tackles the issues
of optimizing industrial automation processes in the context
of Industry 4.0. Our prototype is based on the OpenTOSCA
ecosystem, an open source toolchain for development and
execution of TOSCA-compliant cloud applications. The Open-
TOSCA ecosystem consists of such tools as Winery [44],
[45], OpenTOSCA Container [15], and Vinothek [46]. Winery
is a TOSCA-compliant modeling environment that supports
graphical and text-based modeling of deployment models and
offers additional functionalities including, e.g., GUI-based plan
modeling capabilities. OpenTOSCA Container is an execution
environment for TOSCA-based deployment models, which
offers a rich set of functionalities including, e.g., deployment
model execution, and a GUI for managing and monitoring the
application instances that is based on Vinothek concepts.

A. Overview
Winery is the core part for implementation of the presented

concepts, as most of them are coupled with the modeling
process. Winery is a feature-rich modeling environment for
TOSCA-compliant applications. The prototype is open source
and available via Github [47]. As discussed in Section IV,
in our approach every modeler is required to use a local
Winery instance due to the absence of a centralized environment.
Since keys are used for the enforcement of policies, Winery
is extended to support key management functionalities. This
includes storing, deletion, and generation of symmetric and

1http://projekt-sepiapro.de/en/

asymmetric keys. For key storage we rely on the usage of Java’s
Java Cryptography Extension KeyStore (JCEKS) for storing all
imported keys together. Assuming that Winery runs in a local
and secure environment of a distinct party, registering keys in
it is not problematic since keys never leave the modeler’s
environment. This approach, however, has to be extended
to support multiple-owner Winery instances. Corresponding
policies are generated based on the selected keys. For key
distribution, a partner-wise specification of access control lists
for security policies is added to Winery. Every participant needs
to maintain a list of partner-specific rules negotiated by means
of agreements in collaborations. Therefore, whenever a key is
requested by some party, the key access rights are defined based
on the local rules in Winery. All functionalities are accessible
via the corresponding REST over HTTP endpoints.

The resulting prototype supports modeling of security
requirements using Winery’s built-in XML editors for the corre-
sponding TOSCA entities. Winery stores the modeled TOSCA
entities in a decoupled manner, which makes a concept of CSAR
important only at export or import time. More specifically, at
import time CSARs are disassembled into distinct entities to
prevent storing duplicates. In a similar fashion, at export time
CSARs are assembled from all the entities that are included
in the chosen Service Template. This results in an issue that
TOSCA meta files are not explicitly stored and are generated
on-the-fly. As described in Section IV, the enforcement of
modeled security policies at export time for selected TOSCA
entities, e.g., Service Templates or Artifact Templates, happens
in case specified keys are present in the system. Signatures for
files in Artifact Templates are generated, and then referenced
as additional files in the same Artifact Templates. If the files of
Artifact Templates are subject to both, encryption and signing
requirements, then the signatures of plain and encrypted files
are attached. This allows verifying the integrity of target files
to any involved participant independently of whether the files
are encrypted or not. Signatures for properties are grouped
as a separate Artifact Template of type “Signature” which
is attached to the respective Node Template. This way of
referencing newly-generated files ensures the self-containment
property of deployment models. In addition, if policies were
applied, the corresponding attribute is set to signify this fact.
After encryption and signing requirements are enforced, an
external signature of a CSAR is generated using a so-called
master key, which is specified by the modeler for the whole
environment as discussed in Section IV. The corresponding
certificate or chain of certificates for this external signature is
embedded into the CSAR and is used for verification at import
time. The external signature is verified first at import time
and is not stored if verification succeeds, since the CSAR is
decomposed into distinct separately-stored entities. Furthermore,
the import is aborted in case if the integrity check was not
successful. In situations when keys requested by a modeler
were provided, they can be imported and used for decryption
of entities. Finally, only the participant who has an entire set
of keys is able to decrypt and deploy the final application.
Afterwards, the deployment and execution in the OpenTOSCA
Container happens in a regular manner, since the CSAR contains
the original deployment model.

To provide readers with a better view, in the following
subsection we discuss an architecture of the prototype and
explain several specific details related to the described concepts.

GUI

Topology
Modeler

Management
UI

TOSCA XML
Editor

REST API

CSAR
Importer

CSAR
Exporter

Security
Primitives

ACL Manager Key Manager

Policy
Enforcer

B
u

si
n

es
s

Lo
gi

c
La

ye
r

W
eb

-b
as

ed
G

U
I

TOSCA Types
& Templates

Artifacts Key Store

File-based Repository N
et

w
o

rk
 &

D
at

a
La

ye
r

P2P Key Exchange
Channel

Figure 11. Architectural overview of the prototypical implementation.

B. System Architecture
Figure 11 shows an architectural overview of Winery

focusing on the components relevant to the prototype. At the
topmost layer, Winery provides a Web-based graphical user
interface (GUI) that consists of multiple sub-modules among
which the following are of interest to the prototype: (i) The
Topology Modeler is a sub-module that allows users to visually
design various nodes and their interconnections as parts of
a desired TOSCA deployment model. Using this component
one is able to instantiate Node Types into Node Templates
and populate their properties appropriately. Furthermore, this
sub-module allows attaching various artifacts to these nodes
and form a topology out of them using suitable Relationship
Templates, all with simple UI operations such as Drag and
Drop (c.f. Section V-A). On the other hand, (ii) the TOSCA
XML Editor allows manually altering declarations of various
TOSCA constructs. This editor is used, for example, to define
the necessary Encryption and Signing Policy Types and attach
instances of them to Node Types and Artifact Templates
(c.f Section V-C). Finally, (iii) the Management UI allows users,
among other things, to request the export of CSARs which
would enforce the corresponding policies, and the import of
CSARs which would trigger the process of verifying signed
entities against the embedded certificate chains.

The GUI is merely an interface for the actual operations
residing in the Winery backend which are accessible via a
REST API. In Figure 11, these operations are grouped into the
Business Logic Layer which contains an extensive set of sub-
modules: (i) The CSAR Exporter is responsible for assembling
the resulting portable CSAR out of the corresponding TOSCA
templates and the artifacts attached to them. It is also respon-
sible for enforcing the policies attached to these constructs.
To this end, the CSAR Exporter utilizes another sub-module,
namely (ii) the Policy Enforcer which applies policies by
encrypting the properties and artifacts that have an Encryption
Policy attached, and generating a signature for them if a Signing
Policy is attached. On the other hand, the provisioning of
cryptographic keys used for encryption and signing is done
by (iii) the Key Manager. Moreover, (iv) the CSAR Importer
is responsible for disassembling a CSAR file and importing
its constituent components into the local repository. It is also
responsible for verifying the integrity and authenticity of the

CSARExporter FileBasedRepository PolicyEnforcer

getFiles(serviceTemplateId)

files

enforcePolicies(files)

[encryption policy attached]
enforceEncPolicy(entity)

[signing policy attached]
enforceSigPolicy(entity)

allFiles=
(files, encrypted_files, signature_files)

metaFile =
generateMetaFile(allFiles)

externalSig =
generateExternalSig(metaFile)

csar = package
(allFiles, metaFile, externalSig)

loop [foreach entity with attached policy]

Figure 12. A simplified process of securely exporting a CSAR.

imported CSAR by comparing the contents of the signed entities
with the associated signatures and only performing the import
if no violations are detected. As a supporter for the other
components, (v) the Security Primitives sub-module utilizes the
Bouncy Castle Crypto APIs [48] to provide various necessary
cryptographic operations, such as symmetric and asymmetric
encryption, key and certificate generation and content signing
and verification. Finally, as mentioned earlier, (vi) the Access
Control List (ACL) Manager specifies the rules that govern the
relationships the local participant has with the other participants.
This is necessary to determine who is authorized to obtain secret
keys used to encrypt sensitive parts of the deployment model.

As discussed earlier, the actual exchange of keys happens
at a lower level using a secure P2P Channel which is not
part of the actual prototype. Besides key exchange, the bottom
layer of Figure 11 is responsible for the permanent storage
of the modeled and imported TOSCA entities, as well as the
associated implementation and deployment artifacts. The JCE
KeyStore also resides at this layer. Storage of these objects
happens using a File-based Repository.

In the following subsection, we see how the introduced
sub-modules interact together to achieve the operations of
exporting and importing a CSAR that utilizes the described
TOSCA Policy Extension (c.f. Section V-C).

C. Secure Export of CSARs
As we have discussed earlier, the enforcement of the

introduced policies happens during the creation of a CSAR, i.e.,
the CSAR export operation. Moreover, during this operation
the CSAR’s external signature is also generated. Figure 12
shows a simplified UML sequence diagram that explains how
involved modules from the introduced system architecture
interact together in order to perform the export operation: after
receiving a request from the Management UI (not shown in

(1) TOSCA.meta

TOSCA-Meta-Version: 1.0
CSAR-Version: 1.0
Created-By: Winery 2.0.0-SNAPSHOT
Entry-Definitions: Definitions/servicetemplates__myST.tosca

Name: Definitions/artifacttemplates__Flink_Simple_IA.tosca
Content-Type: application/vnd.oasis.tosca.definitions
SHA-256: 23de581ea….6913cf18

(2) TOSCA.sf

Manifest-Signature-Version: 1.0
Created-By: Winery 2.0.0-SNAPSHOT
SHA-256: b02b67a33….efb2cfb9

Name: Definitions/artifacttemplates__Flink_Simple_IA.tosca
SHA-256: 9386d4e2b….865b538e

SHA256

SHA256

SHA256
With
RSA

Private
Key

Public
Key

Participant’s Master
Signing Key-Pair

(3) TOSCA.sig (4) TOSCA.crt

embed

Figure 13. The process of generating the external CSAR signature files at
export time.

this figure) the CSAR Exporter starts the process via traversing
the TOSCA Topology specified by the Service Template and
requesting pointers to the corresponding TOSCA definition
files, as well as the files associated with them, from the File-
based Repository. Afterwards, a request is sent to the Policy
Enforcer to perform the enforcement. It does so by searching
the set of TOSCA definition files for Node Types or Artifact
Templates with attached policies, then encryption and signing
policies are enforced as discussed earlier. To this end, the Policy
Enforcer utilizes the functionalities provided by the Security
Primitives sub-module (not shown in the figure). The result
of policy enforcement is a changed set of files that has some
encrypted content and/or additional signature files. In the next
step, the CSAR Exporter populates the TOSCA.meta file by
traversing the set of files and creating an entry for each of
them. Finally, the external signature is generated starting from
the TOSCA.meta file and the resulting CSAR file is created
by packaging all files in a single compressed archive.

Figure 13 demonstrates the overall procedure of generating
the external signature of the CSAR, which starts from pro-
cessing the TOSCA.meta file and which, as mentioned earlier,
follows the JAR signing process. The TOSCA.meta file is used
to describe the contents of a CSAR and consists of: (i) a
header section, which provides general information about the
deployment model such as who created it and the path of the
TOSCA definition file associated with the Service Template,
and (ii) a body section that lists all files contained in the
CSAR along with their exact location and MIME file type. We
enhance the body section of the TOSCA.meta file with a digest
subsection for each contained file that helps in guaranteeing its
integrity. In this prototype, we use the SHA-256 [49] function
to calculate digests. In the next step, a signature file (TOSCA.sf)
is generated using the TOSCA.meta file. While the purpose of
the TOSCA.meta file is to guarantee the integrity of the CSAR,

ManagementUI CSARImporter FileBasedRepository

importCsar(csar)

extractInTempDir(csar)

(entries, TOSCA.meta, TOSCA.sf,
TOSCA.sig,TOSCA.crt)

verifySigFile(TOSCA.sf,TOSCA.sig,TOSCA.crt)

verifyMetaFile(TOSCA.meta,TOSCA.sf)

verifyIntegrity(entry,TOSCA.meta)

[entry has signing policy attached]
verifySignature(entry)

storeFilesInRepository(entries)

success

loop [foreach entry in entries]

Figure 14. A simplified process of securely importing a CSAR showing only
the successful control flow.

the purpose of TOSCA.sf file is guaranteeing the integrity of
the TOSCA.meta file itself. To this end, the TOSCA.sf file has a
header section that includes a digest of the whole TOSCA.meta
file, and a body section with subsections corresponding to
the ones in the TOSCA.meta file. However, in this case each
subsection contains a digest of the whole matching subsection
in the TOSCA.meta file. Furthermore, to ensure the overall
integrity, the TOSCA.sf file is signed using the master signing
private key of the participant who issued the CSAR export.
As a result, a block signature file (TOSCA.sig) is generated.
Finally, a certificate (TOSCA.crt), which contains the master
signing public key of the participant, is also included in the
archive to provide future importers with the possibility to verify
the signature. The participant’s master signing key-pair resides,
like other keys, in the Key Store repository that can be accessed
by other components via the Key Manager sub-module.

D. Secure Import of CSARs

The import of a protected CSAR into the modeling environ-
ment comprises two steps: (i) firstly, it must trigger verifications
of CSAR’s integrity and authenticity, and afterwards (ii) the
regular task of storing constituent TOSCA entities and other
artifacts in the local repository must be accomplished. This is
depicted in Figure 14: upon a request from the Management UI
the CSAR Importer module begins the process of importing the
CSAR by asking the File-based Repository to create a temporary
directory in which the archive content is extracted. As we have
seen in the previous section, in addition to the regular entries,
the contents of the CSAR include the TOSCA.meta file as well
as the external signature files, i.e., TOSCA.sf, TOSCA.sig, and
TOSCA.crt. The importer then performs a check to verify the
integrity and authenticity of the signature file (TOSCA.sf) by
performing the digital signature verification process using the

TOSCA.sig and TOSCA.crt files. Next, the importer verifies the
integrity of the TOSCA.meta file by comparing its overall digest
as well as the digests of its subsections to the corresponding
entries in the TOSCA.sf file. Afterwards, the regular CSAR
entries are enumerated, and an integrity check is performed
for each one of them by calculating its digest and comparing
it to the corresponding digest listed in the TOSCA.meta file.
A further authenticity check is performed if the entry is a
Node Type, or an Artifact Template with an associated Signing
Policy in which case the included signature is verified. If all
previous validity checks pass, the contents of the CSAR are
imported into the File-based Repository and the Management
UI is notified about the success of the operation. Otherwise, the
import is aborted, and a proper error message is returned to the
Management UI. Similar to what we have seen in the export
process, the Security Primitives sub-module is utilized by the
CSAR Importer to perform required cryptographic tasks.

VII. RELATED WORK

The problem of data protection in outsourcing and collab-
oration scenarios appears in works related to different fields.
Multiple works attempt to tackle security-related problems
using centralized approaches. Wang et al. [31] present a
method for protecting the models in collaborative computer-
aided design (CAD), which extends RBAC mechanism by
adding notions of scheduling and value-adding activity to
roles. Authors propose to selectively share data to prevent
reverse engineering. However, no clear description how to
enforce the proposed model is given. Cera et al. [50] introduce
another RBAC-based data protection approach in collaborative
design of 3D CAD models. Models are split into separate
parts based on specified role-based security requirements to
provide personalized views using a centralized access control
mechanism. Li et al. [32] propose a security policy meta-
model and the framework for securing big data on the level
of Infrastructure as a Service (IaaS) cloud delivery model
using sticky policies concept. Policies are loosely-coupled
with the data and the framework relies on a trusted party
which combines policy and key management functionalities
and enforces the access control. Huang et al. [51] introduce a
set of measures allowing to protect patients data in portable
electronic health records (EHRs). Authors propose a centralized
system which combines de-identification, encryption, and digital
signatures as means to achieve data privacy. Li et al. [36]
describe an approach based on the Attribute-Based Encryption
which helps to protect patient’s personal health records in the
cloud. In this approach, data is encrypted using keys that are
generated based on the owner-selected set of attributes and
then published to the cloud. Users can only access the data in
case they possess corresponding attributes, e.g., profession or
organization. More specifically, users are divided into several
security domains and the attributes for these domains are
managed by corresponding attribute authorities. Decryption
keys, therefore, can be generated independently from data
owners by the respective attribute authorities.

A number of approaches focus on the data encryption in
outsourcing scenarios. Miklau and Suciu [52] introduce an
encryption framework for protecting XML data published on the
Internet. Contributions of the work include a policy specification
language available in the form of queries and a model allowing
to encrypt single XML documents. Access control is enforced

based on key possession. Vimercati and Foresti [53] discuss
fragmentation-based approaches for protecting outsourced
relational data. The authors elaborate on several techniques
allowing to split up the given data based on some constraints
into one or more fragments and store them in a way to
protect confidentiality and privacy. For instance, data can be
split into two parts and stored on non-communicating servers.
Whenever constraints cannot be satisfied for some attributes,
the encryption is used. In the follow-up work, Vimercati et
al. [54] present a way to enforce selective access control using
the cryptography-based policies. Authors propose to use key
derivation mechanisms to simplify the distribution of keys.

To the best of our knowledge, none of the discussed
approaches successfully tackles our problem of deployment
models protection in collaborative application development
scenarios. Most of the discussed approaches rely on the idea
of a trusted party which can regulate the access control. While
it is desirable to have a central authority, in many cases it
is unrealistic, leading to a need for peer-to-peer solutions.
Moreover, having focus only on separate security requirements
like encryption or strong assumptions about the underlying data
make these approaches not suitable for the described problems.

VIII. CONCLUSION AND FUTURE WORK

In this work, we showed how security requirements can
be modeled and enforced in collaborative development of
deployment models. We identified sensitive parts in deployment
models and proposed a method which allows protecting
them based on a combination of existing research work. For
validation of the presented concepts, we applied them to
TOSCA, an existing OASIS standard, which specifies a provider-
agnostic cloud modeling language. The resulting prototypical
implementation is based on Winery, the modeling environment,
which is a part of the OpenTOSCA ecosystem, an open source
collection of applications supporting TOSCA.

One issue in our approach that has to be optimized is the way
keys are distributed. We rely on the fact, that not all participants
need to exchange keys which, however, does not solve the
scalability problem. If N keys were used for encryption,
eventually all of them will be used in key distribution. For
improving the efficiency, the key derivation techniques, e.g.,
described by Vimercati et al. [54], can be used to reduce the
number of keys that need to be exchanged. Another problem
for future work is the generalization of the adversary model.
Since deployment models can be intentionally corrupted by
an adversary, there is a strong need to store the provenance
information which describes deployment model’s states at every
export with respect to a certain collaboration. Having such
provenance information stored in some accessible form makes
it possible to track the entire collaboration history with all
the deployment model states that were existing throughout
the process. For this reason, one might employ a centralized
system, which will also simplify the policy enforcement and key
distribution processes, or store the provenance in a decentralized
fashion, e.g., by utilizing the blockchain technology [55].

In a previous work [7], we tackled the issue of guaranteeing
accountability of collaborative development of deployment
models by registering fingerprints of the various states a
deployment model goes through while being developed in
the blockchain. These fingerprints serve as a guarantee for
the integrity and authenticity of the model when being passed

from one participant to the next. Furthermore, we stored the
actual contents of these models in a decentralized file storage
addressable using the aforementioned fingerprints. This creates
an immutable history of verifiable deployment model states.
A problem with that approach is the public nature of the
decentralized storage where the contents of deployment models
are stored. This makes the sensitive information that might
exist within these models accessible to the public. The obvious
solution to this is encryption, thus in a future work, we plan
to combine both approaches in order to have a collaboration
process which guarantees both security and accountability.

Currently, the grouping policies in the prototype cannot be
linked with the corresponding encryption or signing policies,
hence it is not possible to model several groups of properties
signed or encrypted using different keys. In future work, we plan
to extend the implementation to support more complex scenarios
and increase the overall usability of the modeling process using
Winery and its respective components. Finally, there is a pitfall
for cases when files are modeled in the form of references, e.g.,
if they reside on a remote server. Encrypting and signing such
files completely changes the verification semantics as only the
references are checked. This is not safe since the actual content
behind the reference can be changed multiple times by the
data owner without changing the reference itself. Moreover, the
usage of references invalidates the self-containment property
of deployment models. In future work, referenced files need to
be materialized at export time which solves this problem and
preserves deployment models in a self-contained state.

ACKNOWLEDGMENT

This work is partially funded by the BMWi project
SePiA.Pro (01MD16013F).

REFERENCES

[1] V. Yussupov, M. Falkenthal, O. Kopp, F. Leymann, and M. Zimmermann,
“Secure Collaborative Development of Cloud Application Deployment
Models,” in Proceedings of The 12th International Conference on Emerg-
ing Security Information, Systems and Technologies (SECURWARE
2018). Xpert Publishing Services, September 2018, pp. 48–57.

[2] M. Hermann, T. Pentek, and B. Otto, “Design principles for industrie
4.0 scenarios,” in 2016 49th Hawaii International Conference on System
Sciences (HICSS). IEEE, 2016, pp. 3928–3937.

[3] P. M. Mell and T. Grance, “Sp 800-145. the NIST definition of cloud
computing,” Gaithersburg, MD, United States, Tech. Rep., 2011.

[4] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer networks, vol. 54, no. 15, 2010, pp. 2787–2805.

[5] M. Zimmermann, U. Breitenbücher, M. Falkenthal, F. Leymann, and
K. Saatkamp, “Standards-based function shipping – how to use tosca for
shipping and executing data analytics software in remote manufacturing
environments,” in Proceedings of the 2017 IEEE 21st International
Enterprise Distributed Object Computing Conference (EDOC 2017).
IEEE Computer Society, 2017, pp. 50–60.

[6] U. Breitenbücher et al., “Combining declarative and imperative cloud
application provisioning based on tosca,” in Proceedings of the IEEE
International Conference on Cloud Engineering (IEEE IC2E 2014).
IEEE Computer Society, March 2014, pp. 87–96.

[7] G. Falazi, U. Breitenbücher, M. Falkenthal, L. Harzenetter, F. Leymann,
and V. Yussupov, “Blockchain-based Collaborative Development of
Application Deployment Models,” in On the Move to Meaningful Internet
Systems. OTM 2018 Conferences (CoopIS 2018), ser. Lecture Notes in
Computer Science, vol. 11229. Springer, 2018, pp. 40–60.

[8] T. Kvan, “Collaborative design: what is it?” Automation in construction,
vol. 9, no. 4, 2000, pp. 409–415.

[9] G. Karjoth, M. Schunter, and M. Waidner, “Platform for enterprise
privacy practices: Privacy-enabled management of customer data,” in
International Workshop on Privacy Enhancing Technologies. Springer,
2002, pp. 69–84.

[10] W. Bagga and R. Molva, “Policy-based cryptography and applications,”
in International Conference on Financial Cryptography and Data Security.
Springer, 2005, pp. 72–87.

[11] A. Harrington and C. Jensen, “Cryptographic access control in a
distributed file system,” in Proceedings of the 8th ACM symposium
on Access control models and technologies. ACM, 2003, pp. 158–165.

[12] OASIS, Topology and Orchestration Specification for Cloud Applications
(TOSCA) Version 1.0, Organization for the Advancement of Structured
Information Standards (OASIS), 2013.

[13] OASIS, Topology and Orchestration Specification for Cloud Applications
(TOSCA) Primer Version 1.0, Organization for the Advancement of
Structured Information Standards (OASIS), 2013.

[14] A. Bergmayr et al., “A systematic review of cloud modeling languages,”
ACM Comput. Surv., vol. 51, no. 1, Feb. 2018, pp. 22:1–22:38.

[15] T. Binz et al., “Opentosca – a runtime for tosca-based cloud applications,”
in Service-Oriented Computing. Berlin, Heidelberg: Springer, 2013,
pp. 692–695.

[16] C. Endres et al., “Declarative vs. imperative: Two modeling patterns for
the automated deployment of applications,” in Proceedings of the 9th

International Conference on Pervasive Patterns and Applications. Xpert
Publishing Services (XPS), Feb. 2017, pp. 22–27.

[17] U. Breitenbücher, K. Képes, F. Leymann, and M. Wurster, “Declarative
vs. imperative: How to model the automated deployment of iot
applications?” in Proceedings of the 11th Advanced Summer School on
Service Oriented Computing. IBM Research Division, Nov. 2017, pp.
18–27.

[18] Chef. [Online]. Available: https://www.chef.io/ [retrieved: July, 2018]

[19] Juju. [Online]. Available: https://jujucharms.com/ [retrieved: July, 2018]

[20] OASIS, Web Services Business Process Execution Language (WS-BPEL)
Version 2.0, Organization for the Advancement of Structured Information
Standards (OASIS), 2007.

[21] OMG, Business Process Model and Notation (BPMN) Version 2.0,
Object Management Group (OMG), 2011.

[22] R. Boutaba and I. Aib, “Policy-based management: A historical
perspective,” Journal of Network and Systems Management, vol. 15,
no. 4, Dec 2007, pp. 447–480.

[23] R. Wies, “Using a classification of management policies for policy spec-
ification and policy transformation,” in Integrated Network Management
IV. Springer, 1995, pp. 44–56.

[24] P. Samarati and S. C. di Vimercati, “Access control: Policies, models,
and mechanisms,” in International School on Foundations of Security
Analysis and Design. Springer, 2000, pp. 137–196.

[25] S. Pearson and M. Casassa-Mont, “Sticky policies: An approach for
managing privacy across multiple parties,” Computer, vol. 44, no. 9,
2011, pp. 60–68.

[26] Q. Tang, On Using Encryption Techniques to Enhance Sticky Policies
Enforcement, ser. CTIT Technical Report Series. Netherlands: Centre
for Telematics and Information Technology (CTIT), 2008, no. WoTUG-
31/TR-CTIT-08-64.

[27] B. W. Lampson, “Protection,” ACM SIGOPS Operating Systems Review,
vol. 8, no. 1, 1974, pp. 18–24.

[28] M. Falkenthal et al., “Opentosca for the 4th industrial revolution:
Automating the provisioning of analytics tools based on apache flink,”
in Proceedings of the 6th International Conference on the Internet of
Things, ser. IoT’16. New York, NY, USA: ACM, 2016, pp. 179–180.

[29] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann, TOSCA: Portable
Automated Deployment and Management of Cloud Applications. New
York, NY: Springer New York, 2014, pp. 527–549.

[30] M. Zimmermann, F. W. Baumann, M. Falkenthal, F. Leymann, and
U. Odefey, “Automating the provisioning and integration of analytics
tools with data resources in industrial environments using opentosca,” in
Proceedings of the 2017 IEEE 21st International Enterprise Distributed
Object Computing Conference Workshops and Demonstrations (EDOCW
2017). IEEE Computer Society, Oct. 2017, pp. 3–7.

[31] Y. Wang, P. N. Ajoku, J. C. Brustoloni, and B. O. Nnaji, “Intellectual
property protection in collaborative design through lean information
modeling and sharing,” Journal of computing and information science
in engineering, vol. 6, no. 2, 2006, pp. 149–159.

[32] S. Li, T. Zhang, J. Gao, and Y. Park, “A sticky policy framework for
big data security,” in 2015 IEEE First International Conference on Big
Data Computing Service and Applications (BigDataService). IEEE,
2015, pp. 130–137.

[33] T. Waizenegger et al., “Policy4TOSCA: A Policy-Aware Cloud Service
Provisioning Approach to Enable Secure Cloud Computing,” in On
the Move to Meaningful Internet Systems: OTM 2013 Conferences.
Springer, Sep. 2013, pp. 360–376.

[34] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, and M. Wieland,
“Policy-aware provisioning of cloud applications,” in Proceedings of the
7th International Conference on Emerging Security Information, Systems
and Technologies (SECURWARE). Xpert Publishing Services (XPS),
2013, pp. 86–95.

[35] A. A. E. Kalam et al., “Organization based access control,” in IEEE
4th International Workshop on Policies for Distributed Systems and
Networks, 2003. Proceedings. POLICY 2003. IEEE, 2003, pp. 120–
131.

[36] M. Li, S. Yu, K. Ren, and W. Lou, “Securing personal health records
in cloud computing: Patient-centric and fine-grained data access control
in multi-owner settings,” in International conference on security and
privacy in communication systems. Springer, 2010, pp. 89–106.

[37] F. Li, B. Luo, and P. Liu, “Secure information aggregation for smart
grids using homomorphic encryption,” in 2010 First IEEE International
Conference on Smart Grid Communications (SmartGridComm). IEEE,
2010, pp. 327–332.

[38] S. Ruj and A. Nayak, “A decentralized security framework for data
aggregation and access control in smart grids,” IEEE transactions on
smart grid, vol. 4, no. 1, 2013, pp. 196–205.

[39] Oracle. Understanding signing and verification. [Online]. Available: https:
//docs.oracle.com/javase/tutorial/deployment/jar/intro.html [retrieved:
July, 2018]

[40] J. Huang and M. S. Fox, “An ontology of trust: formal semantics
and transitivity,” in Proceedings of the 8th international conference on
electronic commerce: The new e-commerce: innovations for conquering
current barriers, obstacles and limitations to conducting successful
business on the internet. ACM, 2006, pp. 259–270.

[41] M. Falkenthal et al., “Requirements and Enforcement Points for Policies
in Industrial Data Sharing Scenarios,” in Proceedings of the 11th

Advanced Summer School on Service Oriented Computing. IBM
Research Division, 2017, pp. 28–40.

[42] F. W. Baumann, U. Breitenbücher, M. Falkenthal, G. Grünert, and
S. Hudert, “Industrial data sharing with data access policy,” in Cooper-
ative Design, Visualization, and Engineering. Springer International
Publishing, 2017, pp. 215–219.

[43] M. Cooper et al. Internet X.509 Public Key Infrastructure: Certification
Path Building. [Online]. Available: https://tools.ietf.org/html/rfc4158
[retrieved: July, 2018]

[44] O. Kopp, T. Binz, U. Breitenbücher, and F. Leymann, “Winery – A
Modeling Tool for TOSCA-based Cloud Applications,” in Proceedings
of the 11th International Conference on Service-Oriented Computing
(ICSOC 2013). Springer, Dec. 2013, pp. 700–704.

[45] Winery. [Online]. Available: https://eclipse.github.io/winery/ [retrieved:
July, 2018]

[46] U. Breitenbücher, T. Binz, O. Kopp, and F. Leymann, “Vinothek – a
self-service portal for tosca,” in Proceedings of the 6th Central-European
Workshop on Services and their Composition (ZEUS 2014). CEUR-
WS.org, Feb. 2014, Demonstration, pp. 69–72.

[47] Prototypical implementation of the secure csar concepts. [Online].
Available: https://github.com/OpenTOSCA/winery/releases/tag/paper%
2Fvy-secure-csar [retrieved: July, 2018]

[48] Bouncy Castle Crypto APIs. [Online]. Available: http://bouncycastle.org/
[retrieved: Dec., 2018]

[49] W. Penard and T. van Werkhoven, On the Secure Hash Algorithm family,
2008, ch. 1, pp. 1–18.

[50] C. D. Cera, T. Kim, J. Han, and W. C. Regli, “Role-based viewing en-

https://www.chef.io/
https://jujucharms.com/
https://docs.oracle.com/javase/tutorial/deployment/jar/intro.html
https://docs.oracle.com/javase/tutorial/deployment/jar/intro.html
https://tools.ietf.org/html/rfc4158
https://eclipse.github.io/winery/
https://github.com/OpenTOSCA/winery/releases/tag/paper%2Fvy-secure-csar
https://github.com/OpenTOSCA/winery/releases/tag/paper%2Fvy-secure-csar
http://bouncycastle.org/

velopes for information protection in collaborative modeling,” Computer-
Aided Design, vol. 36, no. 9, 2004, pp. 873–886.

[51] L.-C. Huang, H.-C. Chu, C.-Y. Lien, C.-H. Hsiao, and T. Kao, “Privacy
preservation and information security protection for patients’ portable
electronic health records,” Computers in Biology and Medicine, vol. 39,
no. 9, 2009, pp. 743–750.

[52] G. Miklau and D. Suciu, “Controlling access to published data using
cryptography,” in Proceedings of the 29th international conference on
Very large data bases-Volume 29. VLDB Endowment, 2003, pp. 898–
909.

[53] S. D. C. di Vimercati and S. Foresti, “Privacy of outsourced data,” in
IFIP PrimeLife International Summer School on Privacy and Identity
Management for Life. Springer, 2009, pp. 174–187.

[54] S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and
P. Samarati, “Encryption policies for regulating access to outsourced
data,” ACM Transactions on Database Systems (TODS), vol. 35, no. 2,
2010, p. 12.

[55] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. [Online].
Available: http://bitcoin.org/bitcoin.pdf [retrieved: July, 2018]

http://bitcoin.org/bitcoin.pdf

