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Abstract. As quantum computers are becoming real, they have the inherent po-
tential to significantly impact many application domains. In this paper we outline 
the fundamentals about programming quantum computers and show that quan-
tum programs are typically hybrid consisting of a mixture of classical parts and 
quantum parts. With the advent of quantum computers in the cloud, the cloud is 
a fine environment for performing quantum programs. The tool chain available 
for creating and running such programs is sketched. As an exemplary problem 
we discuss efforts to implement quantum programs that are hardware independ-
ent. A use case from quantum humanities is discussed, hinting which applications 
in this domain can already be used in the field of (quantum) machine learning. 
Finally, a collaborative platform for solving problems with quantum computers 
– that is currently under construction – is presented. 

Keywords: Cloud Computing, Quantum Computing, Hybrid Applications, 
Quantum Humanities. 

1 Introduction 

Quantum computing advanced up to a state that urges attention to the software com-
munity: problems that are hard to solve based on classical (hardware and software) 
technology become tractable in the next couple of years [54]. Quantum computers are 
offered for commercial use (e.g. IBM Q System One), and access to quantum computers 
are offered by various vendors like Amazon, IBM, Microsoft, or Rigetti via the cloud. 

However, todays quantum computers are error-prone. For example, the states they 
store are volatile and decay fast (decoherence), the operations they perform are not ex-
act (gate fidelity) etc. Consequently, they are “noisy”. And their size (measured in 
Qubits – see section 2.1) is of “intermediate scale”. Together, todays quantum comput-
ers are Noisy Intermediate Scale Quantum (NISQ) computers [61]. In order to perform 
a quantum algorithm reliably on a NISQ machine, it must be limited in size [41]. 
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Because of this, the overall algorithms are often hybrid. They perform parts on a 
quantum computer, other parts on a classical computer. Each part performed on a quan-
tum computer is fast enough to produce reliable results. The parts executed on a classi-
cal computer analyze the results, compute new parameters for the quantum parts, and 
pass them on to a quantum part. Typically, this is an iteration consisting of classical 
pre-processing, quantum processing, and classical post-processing.  

This iteration between classical parts and quantum parts reveals why the cloud is a 
solid basis for executing quantum applications: it offers classical environments as well 
as quantum computers (see before). 

What are viable applications on NISQ computers? For example, simulation of mol-
ecules in drug discovery or material science is very promising [26], many areas of ma-
chine learning will realize significant improvements [18], as well as solving optimiza-
tion problems [27]. 

The reminder of this paper is structured as following: Section 2 sketches the pro-
gramming model of quantum computers. Quantum computing in the cloud is introduced 
in section 3. How to remove hardware dependencies is addressed in section 4. Section 
5 outlines a use case from quantum humanities. A collaboration platform for developing 
and exploiting quantum applications is subject of section 6. Section 7 concludes the 
paper.  

This paper is based on [44] extended by a comprehensive use case for quantum ma-
chine learning from the digital humanities. 

2 Programming Model 

Next, we introduce the basics of the quantum programming model – see [55]. 

2.1 Quantum Registers 

The most fundamental notion of quantum computing is the quantum bit or qubit for 
short. While a classical bit can have either the value 0 or 1 at a given time, the value of 
a qubit |x⟩ is any combination of these two values: |x⟩=α∙|0⟩+β∙|1⟩ (to distinguish bits 
from qubits we write |x⟩ instead of x for the latter). This so-called superposition is one 
source of the power of quantum computing. 

The actual value of a qubit is determined by a so-called measurement. |α|2 and |β|2 

are the probabilities that – once the qubit is measured – the classical value “0” or “1”, 
respectively, results. Because either “0” or “1” will definitively result, the probabilities 
sum up to 1: |α|2+|β|2=1.  

Just like bits are combined into registers in a classical computer, qubits are combined 
into quantum registers. A quantum register |r⟩ consisting of n qubits has a value that is 
a superposition of the 2n values |0…0⟩, |0…01⟩, up to |1…1⟩. A manipulation of the 
quantum register thus modifies these 2n values at the same time: this quantum parallel-
ism is another source of the power of quantum computing. 
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2.2 Quantum Operations 

Figure 1 depicts two qubits α|0⟩+β|1⟩ and γ|0⟩ + δ|1⟩: because |α|2+|β|2 = |γ|2+|δ|2 = 1, 
each qubit can be represented as a point on the unit circle, i.e. as a vector of length 1. 
Manipulating a qubit results in another qubit, i.e. a manipulation U of qubits preserves 
the lengths of qubits as vectors. Such manipulations are called unitary transformations. 
A quantum algorithm combines such unitary transformations to manipulate qubits (or 
quantum registers in general). Since the combination of unitary transformations is again 
a unitary transformation, a quantum algorithm is represented by a unitary transfor-
mation too. 

 

Fig. 1. Depicting a qubit and its manipulation (see [44] Fig. 1) 

This geometric interpretation of qubits is extended to quantum registers: a quantum 
register with n qubits can be perceived as a unit vector in a 2n-dimensional vector space. 
A quantum algorithm is then a unitary transformation of this vector space. 

A quantum algorithm U takes a quantum register |r⟩ as input and produces a quantum 
register |s⟩=U(|r⟩) as output, with 

 

   

  

The actual result of the algorithm U is determined by measuring |s⟩. Thus, the result is 
 with probability . Obviously, different executions of U followed 

by a measurement to determine U’s result will produce different bit-strings according 
to their probability: A single execution of a quantum algorithm is like a random exper-
iment. Because of this, a quantum algorithm is typically performed many times to pro-
duce a probability distribution of results (see Figure 2 for an example) – and the most 
probable result is taken as “the” result of the quantum algorithm.  
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Fig. 2. Depicting a qubit and its manipulation (see [44] Fig. 2) 

2.3 Quantum Algorithms 

As shown in Figure 3, the core of a quantum algorithm is a unitary transformation – 
which represents the proper logic of the algorithm. Its input register |r⟩ is prepared in a 
separate step (which turns out to be surprisingly complex [60, 73, 76]). Once the unitary 
transformation produced its output |s⟩, a separate measurement step determines its re-
sult. 

 

Fig. 3. Basis structure of a quantum algorithm (see [44] Fig. 3) 

Optionally, some pre-processing or some post-processing is performed in a classical 
environment turning the overall algorithm into a hybrid one. Especially, many success-
ful algorithms in a NISQ environment make use of classical processing to reduce the 
execution time on a quantum computer: the goal is to avoid decoherence and gate faults 
by spending only a short amount of time on a noisy quantum machine. 

One example is a hybrid algorithm called Variational Quantum Eigensolver for de-
termining eigenvalues [59]. This can be done by using a parameterized quantum algo-
rithm computing and measuring expectation values, which are post-processed on a clas-
sical computer. The post-processing consists of a classical optimization step to compute 
new parameters to minimize the measured expectation values. The significance of this 
algorithm lies in the meaning of eigenvalues for solving many practical problems (see 
section 5.3). 

Another example is the Quantum Approximate Optimization Algorithm [24] that is 
used to solve combinatorial optimization problems. It computes a state on a quantum 
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machine the expectation values of which relate to values of the cost function to be max-
imized. The state is computed based on a parameterized quantum algorithm, and these 
parameters are optimized by classical algorithms in a post-processing step as before. 
Since many machine learning algorithms require solving optimization problems, the 
importance of this algorithm is obvious too (see section 5.3).  

An overview on several fundamental (non-hybrid) algorithms can be found in the 
work by Montanaro [51]. 

2.4 Quantum Software Stack 

Programming a quantum computer is supported by a software stack the typical archi-
tecture of which is shown in Figure 4. LaRose describes incarnations of this stack by 
major vendors [39]. Also, section 3 discusses details of some implementations. 

 
Fig. 4. Principle architecture of today’s quantum software stack (see [44] Fig. 4) 

The heart of the stack is a quantum assembler: it provides a textual rendering for key 
unitary transformations that are used to specify a quantum algorithm.  

Since a quantum assembler is very low level, quantum programming languages are 
offered that host the elements of the quantum assembler in a format more familiar to 
traditional programmers – but still, the assembler flavor is predominant. In addition, 
functions to connect to quantum machines (a.k.a. quantum processing unit QPU) and 
simulators etc. are provided. 

Quantum programming languages also come with libraries that provide implemen-
tations of often used quantum algorithms to be used as subroutines.  

A compiler transforms a quantum assembler program into an executable that can be 
run on a certain QPU. Alternatively, the compiler can transform the quantum assembler 
into something executable by a simulator on a classical CPU. 

2.5 Sample Research Questions 

The most fundamental question is about a proper engineering discipline for building 
(hybrid) quantum applications. For example: What development approach should be 
taken? How do quantum experts interact with software engineers? How are quantum 
applications tested and debugged? 
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3 Quantum as a Service 

Since quantum algorithms promise to speed up known solutions of several hard prob-
lems in computer science, research in the field of software development for quantum 
computing has increased in recent years. In order to achieve speedup against classical 
algorithms, quantum algorithms exploit certain quantum-specific features such as su-
perposition or entanglement [37].  The implementation of quantum algorithms is sup-
ported by the quantum software stack as shown in Figure 4. In this section, we give an 
overview of current tools for the development of quantum software. We further discuss 
deployment, different service models, and identify open research areas. 

3.1 Tooling 

Several platforms implementing the introduced quantum computing stack have been 
released in recent years [39]. This includes platforms from quantum computer vendors, 
such as Qiskit [64] from IBM or Forest [62] from Rigetti, as well as platforms from 
third-party vendors such as ProjectQ [78] or XACC [48].  

 
Fig. 5. Example of a quantum circuit (see [44] Fig. 5) 

The quantum algorithms are described by so-called quantum circuits which are struc-
tured collections of quantum gates. These gates are unitary transformations on the quan-
tum register (see section 2.3).  Each platform provides a universal set of gates that can 
be used to implement any quantum algorithm. Figure 5 shows a simple example of such 
a circuit. It uses two qubits (each represented as a horizontal line), both of which are 
initialized as |0⟩. A classical two-bit register c is used for the results of measurement 
and depicted as one single line. The Hadamard gate (H), which creates an equal super-
position of the two basis states |0⟩ and |1⟩, is applied to the qubit at quantum register 
position 0. Then, the Controlled Not gate (CNOT) is applied to the qubits at quantum 
register positions 0 and 1, whereby the former acts as control-bit and a NOT operation 
is applied to the second qubit iff the control qubit is |1⟩. Finally, measurement gates are 
added to both qubits stating that these qubits will be measured and the resulting values 
will be stored in the classical bit register. 

The different platforms support different quantum programming languages, which 
are embedded in classical host languages, such as PyQuil from Forest embedded in 
Python, or Qiskit embedded in Python, JavaScript, and Swift. The platforms provide 
libraries with methods for implementing a quantum circuit. The listing below shows a 
code snippet example of the creation and execution of the circuit from Figure 5. The 
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first line imports the library. Then, a circuit object is created to accumulate the gates in 
sequential order. Gate H is added to the circuit in line 4 and the CNOT gate is added to 
the circuit in line 5. Finally, measurement is added to the circuit in line 9. After the 
circuit is built, a concrete backend is chosen in line 11, which can be either a local 
simulator, a simulator in the cloud, or a QPU. The execution of the circuit is initiated 
in line 14. This execute method requires the circuit, the chosen backend, and the number 
of shots as input. As stated in section 2.2, a quantum algorithm is normally executed 
multiple times and the number of executions can be configured using the shots param-
eter. 

1  from SDK import lib 
2  # create circuit and add gates 
3  circuit = lib.Circuit() 
4  circuit.H(0) 
5  circuit.CNOT(0, 1) 
6  # ... 
7  # many more 
8  # ... 
9  Circuit.measure() 
10 # choose QPU 
11 Backend = lib.getBackend(‘...’) 
12 # compile circuit and send to QPU 
13 result = lib.execute(circuit, backend, shots) 

The circuit is then converted to quantum assembler language by the complier of the 
respective platform, e.g., to OpenQASM for QPUs of IBM, or Quil [77] for QPUs of 
Rigetti. In section 4.4 quantum compilers are introduced in more detail. The compiled 
code is sent to the selected backend. The execution itself normally is job-based, mean-
ing that it will be stored in a queue before it gets eventually executed. The result, as 
mentioned before, is a probability distribution of all measured register states and must 
be interpreted afterwards. 

Although the vendor-specific libraries are embedded in high-level programming lan-
guages, the implementation of quantum algorithms using the universal sets of gates 
requires in-depth quantum computing knowledge. Therefore, libraries sometimes al-
ready provide subroutines for common quantum algorithms, such as the Variational 
Quantum Eigensolver, or Quantum Approximate Optimization Algorithm. LaRose [39] 
compares different libraries with regards to their provided subroutines. However, these 
subroutines can often not be called without making assumptions about their concrete 
implementation and the used QPU. 

Currently, most platforms are provided by the quantum computer vendors and are, 
thus, vendor-specific. However, there are also vendor-agnostic approaches, such as Pro-
jectQ or XACC that both are extensible software platforms allowing to write vendor-
agnostic source code and run it on different QPUs. Section 4 gives more details on the 
hardware-agnostic processing of quantum algorithms. 
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3.2 Deployment and Quantum Application as a Service 

 
Several quantum computer vendors provide access to their quantum computers via the 
cloud. This cloud service model can be called Quantum Computing as a Service 
(QCaaS) [65]. Also cloud providers, such as Amazon, Microsoft, or 1Qbit, have taken 
QCaaS offerings to their portfolio. The combination of quantum and traditional com-
puting infrastructure is essential for the realization of quantum applications. As already 
shown in Figure 3, a quantum computer is typically not used on its own but in combi-
nation with classical computers: the latter are still needed to store data, pre- and post-
process data, handle user interaction etc. Therefore, the resulting architecture of a quan-
tum application is hybrid consisting of both quantum and classical parts.  

The deployment logic of the quantum part is currently included in the source code 
as shown in the code snippet from section 3.1. For running a quantum application (i) 
the respective platform has to be installed on a classical computer, (ii) the circuit must 
be implemented, (iii) the backend has to be selected, and (iv) the circuit must be exe-
cuted. Therefore, we propose another service model that we call Quantum Application 
as a Service (QaaS), which is depicted in Figure 6. The QaaS offering wraps all appli-
cation and deployment logic of a quantum application, including the quantum circuit as 
well as data pre- and post-processing, and provides an application programming inter-
face (API) that can then be used for the integration with traditional applications, e.g., 
web applications or workflows. 

 
Fig. 6. Quantum Application as a Service (QaaS) and Quantum Computing as a Service (QCaaS) 
(see [44] Fig. 6) 

The traditional application passes input data to the API. However, this input data must 
be properly encoded in order to initialize the quantum register for the following com-
putation [40]. This data encoding, the construction of an appropriate quantum circuit, 
its compilation, and the deployment is all handled by the service. For the execution of 
the circuit itself a QCaaS offering can be used. A hardware-agnostic processing of 
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quantum algorithms would also enable the flexible selection of different QCaaS as fur-
ther discussed in section 4. The result of this execution is interpreted by the quantum 
application and finally returned to the traditional application.  

This concept would enable to separate quantum applications from traditional appli-
cations, particularly with regard to their deployment. Furthermore, the integration of 
quantum computing features can be eased since QaaS enables to use common technol-
ogies of service-based architectures. 

3.3 Sample Research Questions 

To realize the proposed concept, the driving question is: How are hybrid quantum-clas-
sical applications deployed? In addition, the integration of quantum applications with 
traditional applications must be considered. This raises further questions. For example: 
What are the details of quantum algorithms, and especially their input and output for-
mats? What are efficient encodings of input data? And for which parts of an application 
can a speedup be achieved? 

4 Removing Hardware Dependencies 

In this section, we motivate the need for removing the dependencies of quantum algo-
rithms from quantum hardware and vendor-specific quantum programming languages. 
Afterwards, we present a method for the processing of hardware-independent quantum 
algorithms. Further, we sketch existing approaches to compile quantum algorithms to 
executables, optimize them, and show open research questions for selecting and dis-
tributing the quantum algorithms over suitable quantum and classical hardware. 

 
Fig. 7. Processing of hardware-independent quantum algorithms (see [44] Fig. 7) 

4.1 Problem 

Due to the rapid development and improvement of quantum computers [54], it is im-
portant to keep implementations of quantum algorithms as hardware-independent and 
portable as possible, to enable the easy exchange of utilized quantum machines. Novel 
quantum algorithms are mostly specified and published in the abstract quantum circuit 
representation [80]. Therefore, to execute them, they must be implemented using the 
quantum programming language of a specific vendor (see section 3.1). However, the 
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quantum programming languages are not standardized and are usually only supported 
by a small subset or even only one quantum hardware vendor [39]. Therefore, the im-
plementation of a quantum algorithm utilizing a specific quantum programming lan-
guage can lead to a vendor lock-in. To circumvent this problem, a standardized, ma-
chine-readable, and vendor-agnostic representation for quantum circuits is required, 
which can be automatically translated into the representations of the different vendor-
specific quantum programming languages (see section 2.4).  

Furthermore, after specifying a quantum algorithm using a certain quantum pro-
gramming language, the utilized qubits and gates must be automatically mapped to 
qubits, gates, and measurements that are provided by the quantum machine to keep 
them independent of different quantum machines of a specific vendor [13]. 

4.2 Hardware-Independent Processing 

In this section, we present a method for the processing of hardware-independent quan-
tum algorithms, which is based on the works of Häner et al. [29] and McCaskey et al. 
[48]. First, the required steps are presented and afterwards the following sections intro-
duce available research works that can be integrated into the approach and provide an 
overview of open research questions for the different steps. 

The required processing steps for hardware-independent quantum algorithms are 
sketched in Figure 7. The inputs and outputs of the different steps are depicted by the 
arrows connecting them. First, the quantum algorithm is defined utilizing a vendor-
agnostic quantum programming language, which should be standardized and comprise 
all relevant parts of quantum algorithms [48]. Then, a hardware-independent optimiza-
tion can be performed (see section 4.5), which, e.g., deletes unnecessary qubits or 
gates [29]. 

Based on the optimized quantum algorithm, suitable quantum hardware is selected 
in the next step. For this, important properties characterizing the quantum algorithm, 
such as the required number of qubits or the utilized gate set, are retrieved [79]. Due to 
the limited quantum hardware in the NISQ era [61], this information is important and 
can be used to select a quantum computer that can successfully execute the quantum 
algorithm. Furthermore, this selection can be based on different metrics, such as the 
error-probability, the occurring costs, or the set of vendors that are trusted by the by the 
user [48]. 

After the selection of the quantum hardware to execute an algorithm, the algorithm 
must be translated from the vendor-agnostic quantum programming language to the 
quantum assembler of a vendor that supports the execution on the selected quantum 
hardware [48]. Next, it can be compiled to an executable for the selected quantum hard-
ware. For this, the available vendors usually provide suitable compilers (see section 
4.4) [39].  During the compilation process, hardware-dependent optimizations are per-
formed. Finally, the executable can be deployed and executed on the selected quantum 
machine (see section 3.2).  
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4.3 NISQ Analyzer 

The NISQ Analyzer [69] is a component which analyzes quantum algorithms and ex-
tracts the important details, such as the number of required qubits or the utilized gate 
set [79]. Therefore, the quantum algorithm specified in the hardware-independent quan-
tum programming language can be used as an input for the NISQ Analyzer. However, 
the analysis of quantum algorithms and the precise estimation of resource requirements 
are difficult problems [71]. For example, the required gates for the initial data encoding 
[40] or the overhead due to required error correction codes [38] must be considered. 
Additionally, the resource requirements for oracle implementations are often ignored 
but lead to a large overhead that should be noted [70]. Thus, tooling support is required 
that extracts all relevant characteristics of quantum algorithms and provides them to the 
other components, such as the quantum compiler.  

4.4 Quantum Compiler 

The quantum compiler is in charge of performing the mapping from the quantum as-
sembler representing a quantum algorithm to an executable for a concrete quantum 
computer [13, 30]. The mapping of gates and measurements that are physically imple-
mented by a quantum computer can be performed directly. However, gates and meas-
urements that are not physically available have to be mapped to a “subroutine” consist-
ing of physical gates and measurements [30]. For example, if a measurement using a 
certain basis is not implemented, the quantum state must be transferred into a basis for 
which a measurement is provided by the quantum hardware and the measurement must 
be done in this basis. The utilized subroutines strongly influence the execution time and 
error probability of the calculation, as they add additional gates and measurements [35, 
78]. Hence, suited metrics and algorithms to select the required subroutines are im-
portant to reduce the overhead of the mapping (see section 4.5). Additionally, the qubits 
must be mapped to available physical qubits, which influences the quantum algorithm 
execution as well, due to different characteristics of the qubits, such as decoherence 
time or connectivity [87]. However, the available quantum compilers are mostly ven-
dor-specific [39], and therefore, compile the quantum algorithm implementations de-
fined in the quantum assembler of a certain vendor to the executable for concrete quan-
tum hardware that is provided by this vendor. Other quantum compilers define their 
own quantum assembler language to specify quantum algorithms and map them to ex-
ecutables for a certain quantum computer as well [36]. Thus, the dependency on the 
vendor- or compiler-specific quantum assembler language cannot be removed by these 
kinds of quantum compilers. Hence, quantum compilers must be integrated into the 
approach for processing hardware-independent quantum algorithms (see Figure 7). 

4.5 Optimization of Quantum Algorithms 

Quantum algorithms can be optimized in two ways: (i) hardware-independent or (ii) 
hardware-dependent [29]. For the hardware-independent optimization, general optimi-
zations at the quantum circuit level are performed, according to a cost function, such as 
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the circuit size or the circuit depth [80]. In contrast, hardware-dependent optimization 
takes hardware-specific characteristics, such as the available gate set of the target quan-
tum computer or the decoherence time of different qubits, into account [34]. Hence, 
this optimization is often combined with the compilation to an executable for a certain 
quantum computer.  

In the following, we sketch some existing works regarding the optimization of quan-
tum algorithms. Heyfron and Campbell [30] propose a quantum compiler that reduces 
the number of T gates, while using the Clifford + T gate set. They show that the cost of 
the T gate is much higher than for the other Clifford gates, and therefore, they improve 
the circuit costs by decreasing the T count. Itoko et al. [34] present an approach to 
improve the hardware-dependent mapping from the utilized qubits and gates in the 
quantum algorithm to the provided qubits and gates of the quantum computer during 
the compilation process. Maslov et al. [47] propose an approach that is based on tem-
plates to reduce the circuit depth, which means the number of gates that are executed 
in sequence on the qubits. A template is a subroutine that can be used to replace func-
tionally equivalent circuit parts by more efficient ones in terms of different metrics like 
cost or error probability. Hence, they introduce a method to detect and replace suitable 
circuit parts with templates. 

4.6 Sample Research Questions 

For the definition and processing of hardware-independent quantum algorithms and the 
selection of suitable quantum hardware, different research questions must be solved, 
some of which are presented in the following.  

The definition of an abstract hardware-independent quantum programming language 
is important to remove the hardware dependencies of quantum algorithms. Therefore, 
sample research questions are: What elements are required to define quantum algo-
rithms? How should suited modeling tooling support look like? What subroutines are 
important and should be provided as libraries?  

To automatically select the best available quantum hardware for a quantum algo-
rithm, suited tooling support must be developed. Hence, open research questions are: 
What characteristics of quantum algorithms are important for the hardware selection? 
How can these characteristics be retrieved automatically? What are suited metrics and 
algorithms for the hardware selection? What are the interesting optimization goals? 

The hardware-dependent and -independent optimization of quantum algorithms are 
especially important in the NISQ era. Therefore, interesting research questions are: 
What are new or improved optimization algorithms? What data about quantum hard-
ware is relevant for the optimization and how can it be obtained? 

By comparing the performance of different quantum compilers, the compiler with 
the best optimization result or best execution time can be selected.  Hence, sample re-
search questions are: What are suited benchmarks for the comparison of quantum com-
pilers? How can the optimality of the compiled executable be verified with respect to 
different optimization goals, like the number of required gates or the number of fault 
paths? 
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5 Quantum Humanities: A Use Case from Quantum 
Machine Learning 

Determining how quantum computing can solve problems in machine learning is an 
active and fast-growing field called quantum machine learning [75]. In this section we 
give a use case from the digital humanities [10] that shows how quantum machine 
learning can be applied.  

5.1 Quantum Humanities 

As the following use case will stress, there are promising application areas for quantum 
computing not only in industry or natural science but also in the humanities. We coined 
the term quantum humanities for using quantum computing to solve problems in this 
domain [9]. It aims at exploiting the potentials offered by quantum computers in the 
humanities, raise research questions, and describe problems that may benefit from ap-
plying quantum computers. Figure 8 gives an overview of the process and algorithms 
(see section 5.3-5.5) used to analyze the data from our project called MUSE.  
 

 
Fig. 8. MUSE data analysis (see [44] Fig. 9) 

5.2 MUSE 

MUSE [7, 52] aims at identifying costume patterns in films. Costume patterns are ab-
stract solutions of how to communicate certain stereotypes or character traits by e.g. 
the use of specific clothes, materials, colors, shapes, or ways of wearing. To determine 
the conventions that have been developed to communicate for example a sheriff or an 
outlaw, MUSE developed a method and a corresponding implementation to support the 
method to capture and analyze costumes occurring in films.  

The method consists of five main steps: (1) defining the domain by an ontology, (2) 
identifying – based on strict criteria – the films having most impact within the domain, 
(3) capturing all detailed information about costumes in films in the MUSE repository, 
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(4) analyzing this information to determine costumes that achieve a similar effect in 
communicating with the recipient, and (5) abstracting these similarities to costume pat-
terns [4, 7]. This method has been proven to be generic by applying it in our parallel 
project MUSE4Music [6].  

Ontology. To structure costume parameters that have a potential effect on the recipient 
of a film a detailed ontology was developed [4, 5]. As a basis for this ontology, several 
taxonomies have been devised, which structure sub-domains such as kinds of clothing, 
materials, functions or conditions. An example of such a taxonomy can be seen in Fig-
ure 9: The taxonomy of colors structures a relevant subset of colors in hierarchical form 
(see section 5.4 on how these taxonomies contribute to determine of similarity measures 
between costumes). 

 

 
 

Fig. 9. Taxonomy of colors (based on [5]) 

The ontology brings these taxonomies together and adds relations (e.g. worn above, 
tucked inside, wrapped around etc.) on how base elements (e.g. trousers, shirts, boots 
etc.) are combined into an overall outfit. The 3151 nodes of the ontology induce the 
schema of the MUSE repository. The repository facilitates the structured capturing of 
all relevant information about the films, their characters and their costumes. 

Data Set. The MUSE data set currently (July 2020) contains more than 4,900 costumes 
out of 58 films, consisting of more than 27,000 base elements, 60,000 primitives (e.g. 
collar, sleeves, buttons, etc.), 151,000 color selections and 171,000 material selections.  

In the sense of the open data initiative, this data set is freely available to be used and 
analyzed [53]. It provides a well-structured and labelled data set that allows several 
analysis techniques to be applied.  
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Data Analysis. As a first approach to analyze the data to identify those significant ele-
ments a costume designer uses to achieve a certain effect, a two-step analysis process 
was introduced [19]. The first step applies data mining techniques – mainly association 
rule mining – to determine hypotheses about which elements are used to communicate 
a certain stereotype, for example. The second step aims at refining and verifying such 
hypotheses by using online analytical processing (OLAP) techniques [23] to identify 
indicators for costume patterns.  

To improve the process of building hypotheses that hint to potential costume patterns 
we are currently extending the analysis of the MUSE data by various techniques from 
machine learning. Each costume is described by a huge number of properties. Simply 
mapping each property of a costume to a feature, the resulting feature space would be 
of huge dimension. Therefore, feature extraction, namely principle component analysis 
(PCA), multidimensional scaling (MDS) and autoencoders, are applied to reduce the 
dimension of the feature space without losing important information. To group those 
costumes together, that achieve the same effect, different cluster algorithms, such as 
maximum cut, k-means etc. are applied and evaluated. As there are new costumes fre-
quently stored into the database the usage of classification algorithms is investigated to 
enable classifying these costumes. 

Currently, this approach is implemented on a classical computer with classical ma-
chine learning algorithms. But since quantum computing can contribute to solve several 
problems in machine learning – as shown in the following section – it is promising to 
improve the approach accordingly [8]. 

5.3 Potential Improvements 

Several machine learning algorithms require the computation of eigenvalues or apply 
kernel functions: these algorithms should benefit from improvements in the quantum 
domain. Many machine learning algorithms are based on optimization, i.e. improve-
ments in this area like Quantum Approximate Optimization Algorithm QAOA should 
imply improvements of those machine learning algorithms.  

Whether or not such improvements materialize is discussed in several papers that 
compare sample classical and quantum machine learning algorithms, e.g. [11, 14, 28]. 

Data Preparation. The data captured in MUSE are categorical data mostly. Since most 
machine learning algorithms assume numerical data, such categorical data must be 
transformed accordingly: this is a complex problem. 

For example, the different colors of pieces of clothes could be assigned to integer 
numbers. But the resulting integers have no metrical meaning as required by several 
machine learning algorithms. Instead of this, we exploited the taxonomy that structures 
all of our categorical data by applying the Wu and Palmer metric [85] to derive dis-
tances between categorial data (for more details see section 5.4).  

As described above, costumes have a large number of features, thus, this number 
must be reduced to become tractable. We experiment with feature extraction based on 
restricted Boltzmann machines [31, 32] as well as with principal component analysis, 
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embeddings and autoencoders (see section 5.5). Feature selection based on deep Boltz-
mann machines [81] may also be used.  

Eigenvalues. Principal component analysis strives towards combining several features 
into a single feature with high variance, thus, reducing the number of features. For ex-
ample, in Figure 10 the data set shown has high variance in the A axis, but low variance 
in the B axis, i.e. A is a principal component. Consequently, the X and Y features of 
the data points are used to compute A values as a new feature, reducing the two features 
X and Y into a single feature A.  

 
Fig. 10. Principal component of a data set (see [44] Fig. 8) 

The heart of this analysis is the calculation of the half axes and their lengths of the 
ellipse “best” surrounding the data set. This is done by determining the eigenvalues of 
the matrix representing the ellipse. Computing eigenvalues can be done on a quantum 
computer much faster than classically by means of quantum phase estimation and var-
iational quantum eigensolvers. Thus, Quantum principal component analysis [45] is an 
algorithm we will use in our use case. 

Quantum Boltzmann Machines. Zhang, Li and Zhu [86] provided a quantum algo-
rithm of a quantum restricted Boltzmann machine. In a use case, it has shown perfor-
mance superior to a classical restricted Boltzmann machine.  

Similarly, Amin et al. et al. [2] described an approach for both, quantum Boltzmann 
machines as well as quantum restricted Boltzmann machines. They report that the quan-
tum restricted Boltzmann machine outperforms the classical restricted Boltzmann ma-
chine for small size examples.  

Thus, quantum Boltzmann machines are candidates for our use case, especially be-
cause they can be exploited in clustering and classification tasks. 

Clustering. Several quantum clustering algorithms and their improvements over clas-
sical algorithms are presented by Aimeur, Brassard and Gambs [1]. Since clustering 
can be achieved by solving Maximum Cut problems, some attention has been paid to 
solve MaxCut on quantum computers.   

For example, Crooks [17] as well as Zhou et al. [88] use QAOA to solve MaxCut 
problems on NISQ machines. A similar implementation on a Rigetti quantum computer 
has been described by Otterbach et al. [58]. Thus, quantum clustering is promising.  
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Classification. Support vector machines (SVM) are established classifiers. Rebentrost, 
Mohseni and Lloyd [66] introduce quantum support vector machines and show an ex-
ponential speedup in many situations.  

Schuld, Sinayskiy and Petruccione [74] present a quantum version of the k-nearest 
neighbor algorithm, and an implementation of a classifier on IBM Quantum Experience 
[72]. A hybrid classifier has been introduced by Schuld and Killoran [73]. 

The use of kernels in machine learning is well-established [33] and kernels are used 
in case non-linear separable data must be classified. A hybrid classifier that makes use 
of kernels is given by Schuld and Killoran [73]. Ghobadi, Oberoi and Zahedinejhad 
[25] describe classically intractable kernels for use even on NISQ machines. Thus, 
quantum classifiers are promising.  

5.4 Categorical Data 

Before the potential improvements of quantum machine learning outlined above can be 
applied to our use case, we need to address the problem of categorical data, since most 
of the MUSE data is categorical and the relevant algorithms use numerical data. As our 
use case can be seen as paradigmatic for further use cases from quantum humanities, 
addressing the problem of categorical data will be discussed in more detail in this sec-
tion. 

Categorical data is data with a finite set of values, e.g. enumerations of strings. If it 
has a canonical order it is called ordinal data, otherwise it is called nominal data. Ordi-
nal data can be compared with “greater than” or “less than”, for example, while nominal 
data only support comparisons with “equal” and “not equal”. Calculations on categori-
cal data, even if it is numerical, have in general no meaning. For example, what is the 
maximum value of a set of colors? What is the sum of ZIP codes? What is the average 
of the two dress sizes M and XXL?  

As stated above, many algorithms in machine learning expect metrical data as input, 
i.e. numerical data that support calculations and comparisons in a meaningful manner. 
For example, the average of a set of salaries can be computed, its mean value etc. and 
the result has a well-understood semantics. Such calculations are often performed to 
compute the distance of data points in a feature space, e.g. to determine clusters of data 
points or whether a new data point belongs to a known cluster.  

Thus, to benefit from corresponding algorithms, categorical data has to be trans-
formed into metrical data. A very basic transformation may assign a natural number to 
a categorical data item like “red ↦ 1” and “blue ↦ 5”. But algorithms would then infer 
that “red < blue” which is not meaningful. There are transformations that avoid such 
problems (like one-hot-encoding) by assigning each different values of a categorical 
parameter to a new dimension in a feature space. As a consequence, if a parameter (like 
ZIP code) has many different values or if many categorical parameters must be pro-
cessed, such encodings create feature spaces with very high dimensions — which de-
mand huge processing power.  

Embeddings try to solve this problem by mapping a high-dimensional feature space 
F into a significantly lower-dimensional space. The latter space is the normed vector 
space (ℝ!, ∥⋅∥), where n ≪ dim F and ∥⋅∥ is any proper norm on ℝ!. The embedding 
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is a map 𝜑 : F →  ℝ! such that the distance ||x − y|| between two points x = 𝜑(a) and y 
= 𝜑(b) approximately corresponds to the similarity of the original data points a, b ∈ F.  

Measuring Similarity of Parameters with Tree-Structured Domains. 
Definition: For a finite set M a similarity measure on M is a map 𝑠:𝑀 ×𝑀 → ℝ with 
the following properties: 

i. s(i,j) = s(j,i)  (symmetry) 
ii. s(i,i) ≥ s(j,i)  (maximal similarity) 
iii. s(i,j) ≥0  (positivity) 
iv. s(i,i) = 1 (self-identity) 

where i, j are arbitrary elements in M. Often, sij is written instead of s(i,j). □  
For example, when analyzing text corpora, the cosine similarity is typically used that 

assigns the cosine between two vectors each of which represents a document [46] as 
similarity of two documents. In case the domain of a categorical parameter is structured 
by means of a taxonomy (or more general, by means of a tree) the Wu-Palmer similarity 
measure [85] can be used. To define this measure, we remind three definitions.  

 
Definition: A finite graph G = (N, E) is called a tree iff the following holds:  

i. G is directed 
ii. card E = card N − 1 
iii. ∃! w ∈ N :  din(w) = 0 

The node w is called root of G (din(n) is the number of incoming edges of node n, i.e. 
the root w has no incoming edges). □ 
 

The Wu-Palmer similarity measure is based on length of paths in the tree structuring 
the domain of a categorical parameter. 

 
Definition: Let x,y ∈ N be two nodes of a tree G. A path px,y from x to y is a set of 

edges {(x0, x1), (x1, x2)…,(xn-1, xn)} ⊆ E with x=x0 and xn=y. A path is often specified 
as px,y :  x=x0 → x1 → … → xn-1 → xn=y and the number of edges of a path is called 
the length of the path L(px,y). □ 

 
Fig. 11. A path between the nodes x and y in a tree 

Figure 11 depicts a tree and highlights the path px,y in the tree between nodes x and y.  
The length L(px,y) of this path is 3: L(px,y)=3. Note, that the direction of edges of a tree 
are often not explicitly drawn because their direction is assumed to be from top to bot-
tom.  
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Definition: Let G = (N, E) be a tree, w its root, x,y ∈ N, and let px,w: x=x0 → x1 → 
… → xn-1 → xn=w and py,w: y=y0 → y1 → … → ym-1 → ym=y be the paths from x to w 
and from y to w, respectively. The uniquely defined v ∈ N with the properties 

i. v ∈ {x0, x1,…,xn-1, xn} ∩ {y0, y1,…,ym-1, ym}  
ii. ∀ (v, v’) ∈ E: v’ ∉ {x0,…, xn} ∩ {y0,…, ym} 

is called the lowest common ancestor of x and y. □ 
 

 
Fig. 12. The lowest common ancestor of two nodes in a tree, and paths used to determine the 
Wu-Palmer similarity measure 

The lowest common ancestor v of the two nodes x and y are depicted in Figure 12. The 
two paths px,w and py,w from x and y to the root are shown in the left side of the figure, 
and v is the lowest common ancestor of x and y. In the right hand side of the figure, the 
paths px,w and py,w are split into paths px,v and py,v from x and y to their lowest common 
ancestor v, and another path pv,w from v to w. These paths are used next to finally define 
the Wu-Palmer similarity measure [85] as follows: 
 

Definition: Let G = (N, E) be a tree, w its root, x,y ∈ N, and v the lowest common 
ancestor of x and y. Then,  

𝜔(𝑥, 𝑦):=
2 ⋅ 𝐿;𝑝",$=

𝐿;𝑝%,"= + 𝐿;𝑝&,"= + 2 ⋅ 𝐿;𝑝",$=
 

 
is called the Wu-Palmer similarity of x and y.  □ 
 

Note, that the path px,w can be written as px,w : px,v → pv,w , i.e. as the composite path 
from x to v followed by the path from v to w (see Figure 12), and similar for the path 
py,w. With this it is obvious that the Wu-Palmer similarity can be computed as 

 

𝜔(𝑥, 𝑦) =
2 ⋅ 𝐿;𝑝",$=

𝐿;𝑝%,$= + 𝐿;𝑝&,$=
 

 
The following can be seen directly from the definition of a similarity measure: 
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Proposition: The Wu-Palmer similarity ω is a similarity measure on the node set of 
a tree G. ◼ 

 
Thus, categorical parameters the domains of which are structured by a tree (e.g. by 

a taxonomy) can be measured with respect to their similarity. As an example, the sim-
ilarity of x and y in Figure 12 is  

 

𝜔(𝑥, 𝑦) = 2 ⋅
𝐿;𝑝",$=

𝐿;𝑝%,"= + 𝐿;𝑝&,"= + 2 ⋅ 𝐿;𝑝",$=
= 2 ⋅

2
3 + 3 + 2 ⋅ 2 =

2
5 

Similarity of Set-Valued Categorical Parameters. A categorical parameter may be 
set-valued. E.g. a shares portfolio may contain shares from different companies. Any 
similarity measure s on a given set N can be extended to a similarity measure on the 
powerset of N, ℘(𝑁). Thus, categorical parameters with set-valued domains can be 
measured in terms of their similarity if the (single) domain the members of the set come 
from are equipped with a similarity measure. 

 
Definition: Let G = (N, E) be a tree, A, B ⊆ N, and s be a similarity measure on N. 

Then,  
 

𝜎(𝐴, 𝐵):=
1
2G

1
𝑐𝑎𝑟𝑑𝐴 ⋅ ∑'∈)

𝑚𝑎𝑥
*∈+

𝑠(𝑎, 𝑏) +
1

𝑐𝑎𝑟𝑑𝐵 ⋅ ∑*∈+
𝑚𝑎𝑥
'∈)

𝑠(𝑎, 𝑏)O 

 
defines a map  𝜎: (℘(𝑁) ∖ ∅) × (℘(𝑁) ∖ ∅) → ℝ. □ 
 

The following follows from the fact, that s is a similarity measure: 
Proposition: σ is a similarity measure. ◼ 
 
Figure 13 shows two sets A ⊆ N and B ⊆ N. The similarity values of pair from A×B 

are given as annotations of the dashed lines indicating the proper pairs, e.g. s(a,y)=0.3. 
The maximum value of the pairs with the same first component are noted close to the 
first component. Based on this the similarity σ(A,B) of the two sets A and B is com-
puted as 

 

𝜎(𝐴, 𝐵) =
1
2G
1
3 ⋅
(0.7 + 0.9 + 0.8) +

1
2 ⋅
(0.8 + 0.9)O =

1
2
(0.8 + 0.85) ≈ 0.825 
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Fig. 13. Comparing set-valued categorical parameters 

Especially, if a domain N is structured by a tree, the Wu-Palmer similarity measure 
induces a similarity measure on ℘(𝑁). This can be extended to tuples of set-valued 
parameters: 
 

Definition: Let Ni be sets with similarity measure si, and let σi be the similarity meas-
ure on ℘(𝑁,) induced by si. Then, 

 

𝜇;(𝐴-, ⋯ , 𝐴.), (𝐵-, ⋯ , 𝐵.)=:=
1
𝑚 ∑

,/-

.
𝜎,(𝐴, , 𝐵,) 

 
defines a map 

 
𝜇: ∏

,/-

.
(℘(𝑁,) ∖ ∅) × ∏

,/-

.
(℘(𝑁,) ∖ ∅) → ℝ. □ 

 
Directly from the definitions, the following is implied: 

Proposition: µ is a similarity measure. ◼ 

Costume Similarity Matrix. The data from the MUSE database are mostly categorical. 
Based on the taxonomies of the costume parameters that are used to capture all relevant 
information about a certain costume (see section 5.2) the similarity of the costumes and 
their base elements can be determined as described above. 

Often, algorithms are more conveniently formulated based on the distance of data 
than based on similarity. For this purpose, the notion of distance must be defined. 

5.5 Distance Measures and Feature Extraction  

Definition: Let M be a finite set. A distance measure (a.k.a. dissimilarity measure) on 
M is a map 𝑡:𝑀 ×𝑀 → ℝ with the following properties: 

i. t(i,j) = t(j,i)  (symmetry) 
ii. t(i,j) ≥0  (positivity) 
iii. t(i,j) = 0 ⇔ i = j (definiteness) 
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where i, j are arbitrary elements in M. Often, tij is written instead of t(i,j). In case t in 
addition has the property 

iv. t(i,j) ≤ t(i,k) + t(k,j)  (triangle inequality) 
for arbitrary elements i, j, k in M, t is called a metric on M. □ 
 

A categorical parameter the domain of which is structured by a tree has a distance 
measure defined that can be derived from the Wu-Palmer similarity measure. This is 
because similarity measures induce distance measures and vice versa:  

 
Proposition: If s is a similarity measure on M, then  
 

𝑡(𝑖, 𝑗) = _𝑠(𝑖, 𝑖) + 𝑠(𝑗, 𝑗) − 2𝑠(𝑖, 𝑗) 
 

is a distance measure on M. If t is a distance measure on M, then  
 

𝑠(𝑖, 𝑗) =
1

1 + 𝑡(𝑖, 𝑗) 

 
is a similarity measure on M. ◼ 

 
For example, in Figure 12 the similarity of x and y is ω(x,y) = 2/5. Thus, their dis-

tance based on the induced distance measure from the proposition is t(x,y) = _6/5. 
Note, that there are different ways to turn a similarity measure into a distance measure 
and vice versa. The proposition only gives two straightforward ways.  

 

Fig. 14. Distance matrix for color and genre values of 21 random chosen costumes 

Figure 14 depicts a distance matrix for the color and genre values of 21 random chosen 
costumes from the database using the Wu-Palmer similarity measure. As most of the 
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costumes have more than one color or genre value the similarity of set-valued categor-
ical parameters is used. The color code in Figure 14 corresponds to the degree of dis-
tance of two costumes and is described on the right side of the figure: dark blue corre-
sponds to a distance value of 0, i.e. the two elements are equal, and dark red, with a 
distance value of 1, indicates maximum dissimilarity. Based on distance measures the 
concept of an embedding can now be precisely defined. 

 
Definition: Let M be a finite set and t be a distance measure on M. A map 𝜑: (𝑀, 𝑡) →

(ℝ!, 𝑑) with the property d(𝜑(i),𝜑(j)) ≈ t(i,j) for all i, j ∈ M is called an embedding. 
Here, d is any appropriate metric on ℝ!. □ 

 
Several algorithms are known to compute embeddings. Especially when data sets 

should be visualized, embeddings in two- or three-dimensional space (i.e. n = 2 or n= 
3) are desirable. For this purpose, multidimensional scaling (MDS) algorithms [16] are 
used to compute embeddings. Figure 15 depicts the result of an embedding. If M ⊆ ℝ. 
and m ≫ n, an embedding is a feature extraction technique for dimensionality reduction 
to make processing data in machine learning tractable. 

 
Fig. 15. An embedding of a set with distance metric into ℝ2 with Euclidian metric 

As an example of MDS applied to the presented use case, Figure 16 (left side) depicts 
the embedding of the color and genre values of 40 randomly selected costumes and 
their distances into the two-dimensional space with the Euclidean metric.  

 

 
Fig. 16. Multidimensional scaling (left side) and clustering (right side) 

This embedding allows to run different cluster algorithms to determine those costumes 
that have the same effect. Figure 16 (right side) gives an example on how such costume 
clusters may look like. The algorithm used is the OPTICS (Ordering Points to Identify 
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the Clustering Structure) clustering algorithm that creates an augmented ordering of the 
neighboring points representing its density-based clustering structure [3]. 

As can be seen in this example, not all costumes (depicted as numbers) can be clas-
sified as part of the identified clusters (colored circles). By taking a closer look at the 
individual clustered costumes they indicate candidates of costume patterns, e.g. the 
cluster in the lower left corner (red circles) reveals that in the Western genre one of the 
dominant colors of the costumes is black. The candidate clusters require verification by 
a broader data set. 

Classical and Hybrid Autoencoder. Besides PCA or embeddings, there are several 
other algorithms to perform feature extraction, e.g. autoencoders. In the following, we 
show how an autoencoder is used in a quantum-inspired environment to analyze the 
MUSE data. 

An autoencoder is a neural network performing the task of reconstructing the origi-
nal input data as output data. The strength of this approach is to reduce the dimensions 
of a feature space by learning a representation of the input training data set. Romero, 
Olson and Aspuru-Guzik [67] introduce a quantum autoencoder for efficient compres-
sion of quantum data. Based on this, we have implemented a quantum-classical hybrid 
autoencoder in Qiskit [64] and TensorFlow Quantum (TFQ) [83]. The quantum auto-
encoder performs five main steps: (i) prepare the input data, (ii) learn how to preserve 
the quantum information of the input data with a reduced number of qubits (correspond-
ing to the dimensions to the feature space) by an encoder, (iii) reset the qubits that are 
supposed to be compressed to |0⟩,	(iv) reconstruct the quantum states of the input data 
as output by a decoder, and (v) measure the quantum states.  

 
Fig. 17. Training sup-part of a quantum autoencoder circuit  

Figure 17 depicts the sub-part of the implemented circuit run on Qiskit performing the 
training of the neural net. All five qubits are initialized to |0⟩.	The first three qubits q0i 
represent three dimensions. The second two qubits q10, q20 are ancillae qubits that are 
used to perform a SWAP test. The Rx gates represent rotations around the x-axis to 
achieve an angle encoding of the input data [41, 84]. The other R gates are rotations, 
which are parameterized by three values. Those values are initially randomly chosen 
and then modified via gradient decent in each iteration. Some of these rotations (pink) 
are controlled rotations. The final SWAP test determines how much the two quantum 
states q02 and q10 differ.  
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An autoencoder can be trained by minimizing the reconstruction error, i.e. the dif-
ference between the original input and the reconstructed output. In our use case we 
compared the reconstruction error of classical and hybrid autoencoders. During the first 
step a classical autoencoder was used to reduce all color values of the MUSE dataset to 
a three-dimensional feature space, while in the second step (i) classical autoencoders 
and (ii) quantum autoencoders were used to further reduce the dimension to two.  

In Figure 18, the reconstruction error is visualized on the y-axis, and the performed 
number of iterations is depicted on the x-axis (average of 10 passes). The following 
autoencoders have been used: in our classical implementation we used (1) PyTorch [63] 
(orange line) and (2) TensorFlow [82] (green line); our hybrid implementation used (3) 
Qiskit and PyTorch (blue line) and (4) TFQ (yellow line). As several tests indicated 
that already the required SWAP test is highly error-prone due to the decoherence of the 
qubits and the fidelity of the gates on the quantum device, we have chosen a simulator 
to perform our hybrid encoder implemented with Qiskit and PyTorch. 
 

 
Fig. 18. Reconstruction errors (y-axis) and the number of iterations (x-axis) of  
classical and hybrid autoencoders 

The results depicted by Figure 18 show that the reconstruction error of the hybrid au-
toencoders are both smaller compared to the classical autoencoders (error rate per au-
toencoder: (1) 0.0698, (2) 0.0696, (3) 0.0681, (4) 0.0665) and require much fewer iter-
ations than the classic autoencoders. However, the downside of our hybrid autoencod-
ers, especially the autoencoder implemented in Qiskit and PyTorch, is their longer train-
ing time compared to the classical autoencoders (time in seconds per autoencoder: (1) 
1,8, (2) 3,7, (3) 2660, (4) 28,9). Nevertheless, the hybrid implementations are preferable 
because their results are quantum states, i.e. they can be immediately processed by fur-
ther quantum algorithms, e.g. quantum cluster algorithms, benefitting from the poten-
tial improvements by using the quantum computer (see section 5.3) accessible via a 
cloud (see section 3). 
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5.6 Sample Research Questions 

The most essential and fundamental question for quantum humanities is to evaluate 
which existing and new problems from the humanities can be addressed by quantum 
computers. Especially, which problems are best solved by classical, hybrid, or quantum 
algorithms? Besides speedup, which algorithms result in higher precision? Which lan-
guage allows to communicate between many disciplines (e.g. mathematics, physics, 
computer science, and the different areas from the humanities)? Are there completely 
new questions from the humanities that are only addressable based on a quantum com-
puter?  

6 Collaborative Quantum Application Platform 

Driven by the continuous improvement of quantum hardware, specialists in various 
fields have developed new quantum algorithms and applications in recent years. The 
use of these quantum applications requires in-depth knowledge of theory and practice, 
which is often lacking in small and medium-sized companies. A major challenge today 
is to facilitate the transfer of knowledge between research and practice to identify and 
fully exploit the potential of new emerging technologies. To prepare a body of 
knowledge for quantum computing reasonably and make it usable for different stake-
holders, a collaborative platform where all participants come together is essential [43]. 
For this purpose, the quantum application platform must cover the entire process from 
the development of quantum algorithms to their implementation and execution. The 
diversity of stakeholders and their different objectives lead to a variety of requirements 
for such a quantum platform.  

Building upon the stakeholders identified by Leymann, Barzen and Falkenthal [43], 
we firstly identify key entities, which serve as an anchor for the knowledge on a quan-
tum platform, secondly identify essential requirements for their expedient implementa-
tion and, finally, show a general extendable architecture for a collaborative quantum 
software platform. 

6.1 Key Entities 

To foster a clear structuring of the knowledge created on a quantum software platform 
the following key entities can be used. They allow different experts to hook into the 
platform and enable to share and contribute knowledge. 

Quantum Algorithm. As mentioned before, quantum algorithms are developed and 
specified typically by experts with in-depth quantum physics background. Thus, for a 
quantum software platform it is essential to capture quantum algorithms as artefacts. 
Besides generally sharing them, further valuable information can be attached to quan-
tum algorithms, such as discussions among experts regarding resource consumption of 
an algorithm, its speedup against classical algorithms, or its applicability to NISQ com-
puters.  
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Algorithm Implementation. Besides the representation of quantum algorithms in their 
conceptual form, i.e., as mathematical formulas or abstract circuits, the heterogeneous 
field of quantum hardware demands to capture vendor- and even hardware-specific im-
plementations of quantum algorithms. This is because, implementations for a particular 
quantum computer offering of a vendor requires the use of a vendor-specific SDK. 
Thus, implementations of an algorithm for quantum computers offered by different 
vendors ends up in different code or even the usage of completely different quantum 
programming languages. Thus, enabling sharing of different algorithm implementa-
tions on a quantum software platform stimulates knowledge transfer and reduces ramp-
up especially for unexperienced users. 

Data Transformator. Since quantum algorithms rely on the manipulation of quantum 
states they do not operate directly on data as represented in classical software. Instead, 
the data to be processed must be encoded in such a way that they can be prepared into 
a quantum register. Different problem classes such as clustering or classification have 
specific requirements for the data to be processed. It can be of great benefit to identify 
general transformation and coding strategies for relevant problem classes. Such strate-
gies can then be represented and discussed on the platform as data transformations. 

Hybrid Quantum Application. Since only the quantum parts of an algorithm are ex-
ecuted on a quantum computer, they must be delivered together with classical software 
parts that run on classical computers. To exploit the full potential of quantum algo-
rithms, they often have to be properly integrated into an already running system land-
scape, which includes proper data preparation and transformation. This is why solutions 
that are rolled out in practice are typically hybrid quantum applications (see section 
3.2). Therefore, knowledge transfer about applicable software solutions for particular 
use cases at hand is bound to hybrid quantum applications. 

Quantum Pattern. Software patterns are widely used to capture proven solution prin-
ciples for recurring problems in many fields in computer science. Thus, quantum pat-
terns seem to be a promising approach to also capture proven solutions regarding the 
design of quantum algorithms, their implementation and integration in existing sys-
tems. First patterns for developing quantum algorithms have already been published 
[40] and an entire pattern language on architecting quantum applications can be an ob-
ject of investigation on the intended platform. 

6.2 Requirements 

The essential challenge to create and provide a reasonable body of knowledge on quan-
tum algorithms and applications involves the collaboration among several stakeholders. 
In contrast to traditional software engineering, quantum algorithms are typically not 
specified by computer scientist rather than by quantum physicists. Furthermore, to un-
derstand and implement those algorithms a different mindset is required because the 
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key buildings blocks of algorithms are no longer loops, conditions, or procedure calls 
but quantum states and their manipulation via unitary operators.  

 By involving all participants identified by Leymann, Barzen and Falkenthal [43] in 
the platform, added value can be created, both for experienced quantum specialists and 
inexperienced customers. For this, the following listed requirements must be met. 

Knowledge Access. Often only certain specialists and scientists have the required ex-
pertise for developing quantum algorithms and their implementation. To identify and 
exploit the use cases of quantum computing in practice, companies must be empowered 
to gather knowledge and to exchange with experts (developer, service provider, con-
sultants, and so on) [50]. Additionally, due to the high level of research activities in this 
area, the exchange between experts is important in order to share and discuss new find-
ings with the community at an early stage. 

Best Practices for Quantum Algorithm Development. The development of new al-
gorithms requires in-depth knowledge and expertise in theory and practice. Docu-
mented, reusable best practices for recurring problems, i.e. patterns, can support and 
guide people in the development of new quantum algorithms. 

Decision-Support for Quantum Applications and Vendors. A two-stage decision-
support is required to identify appropriate solutions for real-world use cases. First, 
quantum algorithms that prove to provide a solution for a given problem have to be 
identified. Second, the appropriate implementation and quantum hardware have to be 
selected for integration and execution. For the second stage the resource consumption 
of algorithms and implementations on different quantum hardware are of main interest 
(see section 4.2). 

Vendor-Agnostic Usage of Quantum Hardware. Currently, various algorithm imple-
mentations from different vendors are available via proprietary SDKs that have been 
developed specifically for their hardware. To avoid vendor lock-in the quantum algo-
rithm must be portable between different vendors which can be achieved by a standard-
ized quantum programming language (see section 3.1 and 4.2).  

Data Transformation for Quantum Algorithms. Especially for machine learning and 
artificial intelligence data of sufficient quality is essential. This applies to both, classical 
and quantum algorithms. Such data have to be made available and respectively encoded 
for the quantum algorithm [49].  

Quantum Application as a Service (QaaS). The hybrid architecture of quantum ap-
plications consisting of classical and quantum parts increases the complexity of their 
deployment. Quantum applications provided “as a Service” via a self-service portal 
ease the utilization of the new technology (see section 3.2). 
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6.3 Architecture 

In Figure 19 the architecture of the collaborative quantum software platform is de-
picted. In essence, the platform consists of two parts: The analysis and development 
platform as depicted on the left of the figure for collecting, discussing, analyzing, and 
sharing knowledge, and the marketplace as depicted on the right that offers solutions in 
the form of quantum applications and consulting services. 

The analysis and development platform addresses the needs of specialists and re-
searchers in the field of quantum computing and software engineering. In a first step, 
knowledge in the form of publications, software artifacts, datasets, or web content can 
be placed on the platform – either manually via a user interface or automatically using 
a crawler. This knowledge can originate from various sources, such as arXiv.org or 
github.com. In a first step it can be stored as raw data in the QAlgo & data content store. 
Content of interest has to be extracted from these raw data, such as a quantum algorithm 
described in a journal article. To facilitate collaboration among different disciplines and 
to create a common understanding, the representation of quantum circuits and mathe-
matical expressions must be normalized. A qualified description of the knowledge ar-
tifact with metadata is also essential to find and link relevant knowledge. Therefore, 
metadata formats must be normalized and enriched. The knowledge artifacts are then 
stored and provided via an expert portal to specialists and scientists and via a customer 
portal to users looking for solutions for their use cases and the community of interested 
people. 

Specialists and scientists can discuss, evaluate, and improve the different key entities 
on the platform. Algorithms and their implementations can be linked and evaluated 
based on defined metrics using the NISQ Analyzer (see section 4.3). Identified best 
practices, e.g., for creating entanglement, can then be stored as quantum patterns in a 
Quantum Computing Pattern Repository. These patterns ease the development of new 
algorithms as they provide proven solutions for frequently occurring problems at the 
design of quantum algorithms. Patterns solving specific problems can then be combine 
and applied for realizing a broader use case [20-22]. However, best practices are not 
only relevant for the development, but also for data preparation as input for quantum 
algorithms and the integration of quantum algorithms with classical applications. Data 
preparation is essential, and must especially be considered in the NISQ era. 

Since most quantum algorithms are hybrid algorithms, execution of quantum appli-
cations means a distributed deployment of hybrid quantum applications among classi-
cal and quantum hardware. Such applications can be stored for reuse in the Hybrid-
App-Repository. For the quantum part, the quantum computer vendor and more specific 
a single QPU has to be selected, depending on the QPU properties, the algorithm im-
plementation, and the input data. The platform automates this selection and provides a 
vendor-agnostic access to quantum hardware. For the deployment, technologies for 
classical computing are evaluated to provide an integrated deployment automation tool-
chain. Standards such as the Topology and Orchestration Specification for Cloud Ap-
plications (TOSCA) [56] have been developed precisely for this purpose to enable port-
ability, interoperability, and the distribution across different environments [68, 69]. 
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Thus, TOSCA as an international standard offers good foundation for an integration of 
classical and quantum deployment. 

 
Fig. 19. Architecture for a collaborative quantum software platform ([44] Fig. 10) 

While the expert portal is tailored to provide a sufficient user interface and toolchain 
addressing the needs of quantum computing experts the marketplace on the right of 
Figure 19 enables service providers and further stakeholders, such as consultants, to 
offer solutions. Customers can place requests for solutions for certain problems or use 
cases at hand. It is further intended to also allow consulting services to be offered in 
addition to hybrid quantum applications and their deployments. This means that also 
business models besides the development and distribution are enabled by the interplay 
of the marketplace and the analysis and development platform. For example, hybrid 
quantum applications can be provided as a service, which is enabled through the auto-
mated deployment capabilities by means of a TOSCA orchestrator such as Open-
TOSCA [12, 57] or Cloudify [15]. Further, the selection of quantum algorithms fitting 
to specific constraints of quantum hardware can be supported by the NISQ Analyzer 
and the discussions of experts. With the help of the marketplace, knowledge and soft-
ware artifacts, such as quantum algorithm implementations and hybrid quantum appli-
cations, can be monetized. Every turnover on the platform leads to incentives for par-
ticipating experts to make further knowledge available on the platform. 

6.4 Sample Research Questions 

The platform provides the basis for the technical realization of the research questions 
already discussed. However, further questions are raised: What are best practices for 
data preparation as input for quantum algorithms? What are best practices for integrat-
ing quantum algorithms with classical applications? How to combine the best practices 
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in quantum computing with other domains such as cloud computing? Which metadata 
is required to adequately describe the key entities on the platform? 

7 Conclusions 

New possibilities to solve classically intractable problems based on quantum compu-
ting is at the horizon. Quantum computers appear as part of the cloud infrastructure, 
and based on the hybrid nature of quantum-based applications, cloud computing tech-
niques will contribute to the discipline of building them. Lots of new research questions 
appeared. 

To evaluate promising application areas, we presented a use case from quantum hu-
manities in which quantum machine learning techniques were used to derive insights 
from a comprehensive data set.  

We are about to build the collaborative quantum application platform, and exploit it 
for several use cases, especially in the area of machine learning. A pattern language for 
quantum computing as well as tooling support [42, 84] are under construction. Research 
on the removal of hardware dependencies including deployment of hybrid quantum 
applications is ongoing.   
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