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Abstract. Hybrid quantum-classical applications are often implemented
as monolithic applications that comprise various tightly-coupled classi-
cal and quantum tasks. However, the lifecycle of such applications can
benefit from using service-oriented architectures, as they simplify scal-
able and resilient deployments and improve development processes by
decoupling complex processes into more comprehensible work packages.
In this demonstration, we (i) introduce Quokka, a service ecosystem that
facilitates workflow-based development and execution of quantum appli-
cations by providing dedicated services for implementing each task in
variational quantum algorithms. Further, (ii) we show how it can be
used to orchestrate an example quantum application using workflows.

Keywords: Quantum Computing · Microservices · Workflows · SoC.

1 Motivation: Quantum Applications as Workflows

Quantum computing enables solving various problems with improved precision
and in a more time- and energy-efficient manner by leveraging quantum me-
chanical phenomena, such as superposition and entanglement. However, quan-
tum algorithms depend on multiple pre- and post-processing tasks that often
need to be executed on classical hardware, e.g., data preparation, result analy-
sis, and parameter optimization. As currently available Noisy Intermediate-Scale
Quantum (NISQ) devices are error-prone, the majority of today’s quantum al-
gorithms are designed as so-called Variational Quantum Algorithms (VQAs) [2].
VQAs alternate between executing parameterized quantum circuits on a quan-
tum device and classically optimizing the quantum circuit parameters by evalu-
ating the quality of execution results. Moreover, quantum devices are not suit-
able for many traditional tasks, such as data persistence or visualization, which
makes them rather special co-processors that complement classical computers.
Quantum applications are, hence, inherently hybrid and must be designed with
classical and quantum perspectives as well as their integration in mind [4].
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While software engineering research is well-established for classical software,
the topic of quantum software engineering is still in its early stage, with several
works investigating the applicability of classical software engineering paradigms
to quantum software [4]. In particular, workflow-based execution of quantum
applications has multiple advantages brought by workflow technology, such as
robustness, scalability, and reusability of created models [3]. To facilitate the
modeling of quantum workflows, a quantum-specific BPMN extension has been
developed, introducing a set of custom-tailored quantum-related tasks. Figure 1
shows an example workflow model for solving the Travelling Salesman Prob-
lem (TSP) using the Quantum Approximate Optimization Algorithm (QAOA).
As a prerequisite, users need to specify the TSP problem instance as an adja-
cency matrix and decide on hyperparameter for the workflow execution, which
are passed to the workflow engine on workflow instantiation. After instantiation,
the circuit for the given TSP problem instance is (i) generated and (ii) exe-
cuted. Subsequently, occurred readout errors need to be (iii) mitigated and the
execution result’s quality is (iv) evaluated. Finally, the circuit parameters are
(v) optimized until convergence. The result of the algorithm’s last iteration is
the final solution, which could be analyzed, e.g., by a following user task.
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Fig. 1. Overview of a typical quantum workflow implementing a VQA.

The currently predominant way to implement such integrations of classi-
cal and quantum tasks is to use monoliths instead of workflows. However, hy-
brid quantum-classical applications can benefit from architectural styles such as
microservice-based architectures that promote distribution, loose coupling, and
better modularization. Employing these concepts leads to various advantages,
such as reusability, maintainability, robustness, or scalability that improve the
development and operations process. In particular, the reuse of existing and
well-tested components leads to a cheaper, less repetitive and less error-prone
development process with increased time-to-market. To tackle this problem, we
(i) introduce Quokka, a service ecosystem that simplifies executing different
tasks in VQAs, such as generation and execution of quantum circuits as well as
readout error mitigation, and (ii) demonstrate how Quokka facilitates workflow-
based execution of a VQA based on the scenario described in Figure 1.



2 The Quokka Ecosystem

The workflow model shown in Figure 1 describes the required steps to determine
a suitable route for a given TSP problem instance. However, it does not provide
an implementation of these steps, leaving the complex and time-consuming task
of implementing them to the developer. By providing a set of microservices for
each specific task type, the Quokka service ecosystem simplifies implement-
ing these tasks. Quokka’s system architecture is depicted in Figure 2, com-
prising the Quokka Gateway and five quantum task-specific microservices. All
Quokka microservices are implemented in Python, enabling easy integration of
the currently predominant Python-based quantum SDKs, including Qiskit and
Braket. Furthermore, they follow a modular design, enabling developers to easily
extend them and integrate code for specific use cases into the microservices.
Quokka Gateway: This Java-based API Gateway facilitates the request rout-
ing for clients, by uniting all Quokka microservices in a single REST API. It
is built upon the Spring Cloud Gateway and intercepts and forwards incoming
client requests to the respective microservices. Further, features brought by the
Spring Cloud Gateway, e.g., monitoring or security, can be taken advantage of.
Circuit Generation Service: Composing quantum circuits is a complex task
that is typically performed using quantum SDKs, which provide functions to
generate complete quantum circuits but also allow the creation of scripts to
assemble custom circuits. The circuit generation service provides on-demand
circuit implementations for a set of quantum algorithms that users can extend
by integrating their custom circuit generation scripts. API requests must include
the required parameters for the generation process of the respective quantum
algorithm and receive a circuit in the de facto standard language OpenQASM.
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Fig. 2. Overview of the overall system architecture.



Circuit Execution Service: This service enables the execution of quantum
circuits on various cloud-based quantum devices and simulators. In addition
to error-free simulators, the service offers access to noisy simulators capable of
simulating device errors, such that an algorithm’s performance can be simulated
without the common, long queuing times of current quantum devices.
Error Mitigation Service: To improve the quality of noisy execution results,
various error mitigation methods, e.g., matrix inversion-based readout error mit-
igation, can be used via the error mitigation service [1]. These methods typically
require up-to-date information about the used quantum device’s error rates,
which is obtained by executing additional circuits on the device. Since VQAs
repeatedly execute similar circuits on the same device, error rates can be saved
and reused, significantly improving the efficiency of the error mitigation process.
Objective Evaluation Service: This service enables a quality assessment of
the execution result, which, for example, can be used for optimization or bench-
marking. To assess an execution result’s quality, first, a problem-specific cost
function determines the cost of each measured bit string, e.g., traveled distances
for a TSP. Subsequently, an objective function is used to compute a single value
on the basis of the measurements’ frequencies and costs, e.g., the expectation
value, describing the overall quality of the result. Furthermore, a graphical rep-
resentation of the result is provided, e.g., a graph highlighting the best route.
Optimization Service: This service provides a selection of optimizer imple-
mentations available for Python, including SciPy and Qiskit Terra optimizers.
Clients initialize an optimization process by sending a request selecting their
desired optimizer and initial parameters. Once an optimization process is initial-
ized, messaging is used to exchange objective values and optimization parameters
between the optimization service and the client, e.g., a workflow engine.
The Quokka source code repository, documentation, and a comprehensive tuto-
rial can be found on GitHub: https://github.com/UST-QuAntiL/Quokka. The
demonstration video is available on YouTube: https://youtu.be/VQUz9Sj1r4M.
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