
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{beisel, barzen, leymann, truger, weder, yussupov}@iaas.uni-stuttgart.de

Quokka: A Service Ecosystem for Workflow-Based
Execution of Variational Quantum Algorithms

Martin Beisel, Johanna Barzen, Simon Garhofer, Frank Leymann,
Felix Truger, Benjamin Weder, Vladimir Yussupov

@inproceedings{Beisel2023_Quokka,
author = {Beisel, Martin and Barzen, Johanna and Garhofer, Simon and

Leymann, Frank and Truger, Felix and Weder, Benjamin and
Yussupov, Vladimir},

title = {Quokka: A Service Ecosystem for Workflow-Based Execution of
Variational Quantum Algorithms}

booktitle = {Service-Oriented Computing -- ICSOC 2022 Workshops},
year = {2023},
month = mar,
pages = {369--373},
doi = {https://doi.org/10.1007/978-3-031-26507-5_35},
series = {Lecture Notes in Computer Science (LNCS)},
volume = {13821},
publisher = {Springer International Publishing}

}

:

Institute of Architecture of Application Systems

© 2023 Springer Nature Switzerland AG.
This is a post-peer-review, pre-copyedit version of an article published in
Service-Oriented Computing - ICSOC 2022 Workshops, part of the LNCS
book series. The final authenticated version is available online at:
https://doi.org/10.1007/978-3-031-26507-5_35

Quokka: A Service Ecosystem for Workflow-Based
Execution of Variational Quantum Algorithms

Martin Beisel1 , Johanna Barzen1 , Simon Garhofer2 , Frank Leymann1 ,
Felix Truger1 , Benjamin Weder1 , and Vladimir Yussupov1

1 University of Stuttgart, Universitätsstr. 38, 70569 Stuttgart, Germany
{lastname}@iaas.uni-stuttgart.de

2 University of Tübingen, Sand 13, 72076 Tübingen, Germany
simon.garhofer@uni-tuebingen.de

Abstract. Hybrid quantum-classical applications are often implemented
as monolithic applications that comprise various tightly-coupled classi-
cal and quantum tasks. However, the lifecycle of such applications can
benefit from using service-oriented architectures, as they simplify scal-
able and resilient deployments and improve development processes by
decoupling complex processes into more comprehensible work packages.
In this demonstration, we (i) introduce Quokka, a service ecosystem that
facilitates workflow-based development and execution of quantum appli-
cations by providing dedicated services for implementing each task in
variational quantum algorithms. Further, (ii) we show how it can be
used to orchestrate an example quantum application using workflows.

Keywords: Quantum Computing · Microservices · Workflows · SoC.

1 Motivation: Quantum Applications as Workflows

Quantum computing enables solving various problems with improved precision
and in a more time- and energy-efficient manner by leveraging quantum me-
chanical phenomena, such as superposition and entanglement. However, quan-
tum algorithms depend on multiple pre- and post-processing tasks that often
need to be executed on classical hardware, e.g., data preparation, result analy-
sis, and parameter optimization. As currently available Noisy Intermediate-Scale
Quantum (NISQ) devices are error-prone, the majority of today’s quantum al-
gorithms are designed as so-called Variational Quantum Algorithms (VQAs) [2].
VQAs alternate between executing parameterized quantum circuits on a quan-
tum device and classically optimizing the quantum circuit parameters by evalu-
ating the quality of execution results. Moreover, quantum devices are not suit-
able for many traditional tasks, such as data persistence or visualization, which
makes them rather special co-processors that complement classical computers.
Quantum applications are, hence, inherently hybrid and must be designed with
classical and quantum perspectives as well as their integration in mind [4].

https://orcid.org/0000-0003-2617-751X
https://orcid.org/0000-0001-8397-7973
https://orcid.org/0000-0002-6857-3214
https://orcid.org/0000-0002-9123-259X
https://orcid.org/0000-0001-6587-6431
https://orcid.org/0000-0002-6761-6243
https://orcid.org/0000-0002-6498-637X

While software engineering research is well-established for classical software,
the topic of quantum software engineering is still in its early stage, with several
works investigating the applicability of classical software engineering paradigms
to quantum software [4]. In particular, workflow-based execution of quantum
applications has multiple advantages brought by workflow technology, such as
robustness, scalability, and reusability of created models [3]. To facilitate the
modeling of quantum workflows, a quantum-specific BPMN extension has been
developed, introducing a set of custom-tailored quantum-related tasks. Figure 1
shows an example workflow model for solving the Travelling Salesman Prob-
lem (TSP) using the Quantum Approximate Optimization Algorithm (QAOA).
As a prerequisite, users need to specify the TSP problem instance as an adja-
cency matrix and decide on hyperparameter for the workflow execution, which
are passed to the workflow engine on workflow instantiation. After instantiation,
the circuit for the given TSP problem instance is (i) generated and (ii) exe-
cuted. Subsequently, occurred readout errors need to be (iii) mitigated and the
execution result’s quality is (iv) evaluated. Finally, the circuit parameters are
(v) optimized until convergence. The result of the algorithm’s last iteration is
the final solution, which could be analyzed, e.g., by a following user task.

Evaluate

TSP

Result

Optimize

QAOA

Parameters

Execute

TSP

Circuit Converged?

Yes
No

Generate

TSP

Circuit

Legend: Sequence

Flow
Service

Task

Quantum Circuit

Loading Task

Exclusive

Gateway
Quantum Circuit

Execution Task

Start

Event

End

Event

Perform

REM

Readout Error

Mitigation Task

Fig. 1. Overview of a typical quantum workflow implementing a VQA.

The currently predominant way to implement such integrations of classi-
cal and quantum tasks is to use monoliths instead of workflows. However, hy-
brid quantum-classical applications can benefit from architectural styles such as
microservice-based architectures that promote distribution, loose coupling, and
better modularization. Employing these concepts leads to various advantages,
such as reusability, maintainability, robustness, or scalability that improve the
development and operations process. In particular, the reuse of existing and
well-tested components leads to a cheaper, less repetitive and less error-prone
development process with increased time-to-market. To tackle this problem, we
(i) introduce Quokka, a service ecosystem that simplifies executing different
tasks in VQAs, such as generation and execution of quantum circuits as well as
readout error mitigation, and (ii) demonstrate how Quokka facilitates workflow-
based execution of a VQA based on the scenario described in Figure 1.

2 The Quokka Ecosystem

The workflow model shown in Figure 1 describes the required steps to determine
a suitable route for a given TSP problem instance. However, it does not provide
an implementation of these steps, leaving the complex and time-consuming task
of implementing them to the developer. By providing a set of microservices for
each specific task type, the Quokka service ecosystem simplifies implement-
ing these tasks. Quokka’s system architecture is depicted in Figure 2, com-
prising the Quokka Gateway and five quantum task-specific microservices. All
Quokka microservices are implemented in Python, enabling easy integration of
the currently predominant Python-based quantum SDKs, including Qiskit and
Braket. Furthermore, they follow a modular design, enabling developers to easily
extend them and integrate code for specific use cases into the microservices.
Quokka Gateway: This Java-based API Gateway facilitates the request rout-
ing for clients, by uniting all Quokka microservices in a single REST API. It
is built upon the Spring Cloud Gateway and intercepts and forwards incoming
client requests to the respective microservices. Further, features brought by the
Spring Cloud Gateway, e.g., monitoring or security, can be taken advantage of.
Circuit Generation Service: Composing quantum circuits is a complex task
that is typically performed using quantum SDKs, which provide functions to
generate complete quantum circuits but also allow the creation of scripts to
assemble custom circuits. The circuit generation service provides on-demand
circuit implementations for a set of quantum algorithms that users can extend
by integrating their custom circuit generation scripts. API requests must include
the required parameters for the generation process of the respective quantum
algorithm and receive a circuit in the de facto standard language OpenQASM.

Quokka
Gateway

Workflow
Modeler

Workflow
Engine

QC Cloud
Services

Clients

Workflow
Orchestrations

...
Other QC Apps

Circuit
Execution

Objective
Evaluation

REST
API Circuit

Generation

REST
API

Error
Mitigation

REST
API

REST
API

Optimiz-
ation

REST
API

EM
DB

5.13

Ecosystem

Fig. 2. Overview of the overall system architecture.

Circuit Execution Service: This service enables the execution of quantum
circuits on various cloud-based quantum devices and simulators. In addition
to error-free simulators, the service offers access to noisy simulators capable of
simulating device errors, such that an algorithm’s performance can be simulated
without the common, long queuing times of current quantum devices.
Error Mitigation Service: To improve the quality of noisy execution results,
various error mitigation methods, e.g., matrix inversion-based readout error mit-
igation, can be used via the error mitigation service [1]. These methods typically
require up-to-date information about the used quantum device’s error rates,
which is obtained by executing additional circuits on the device. Since VQAs
repeatedly execute similar circuits on the same device, error rates can be saved
and reused, significantly improving the efficiency of the error mitigation process.
Objective Evaluation Service: This service enables a quality assessment of
the execution result, which, for example, can be used for optimization or bench-
marking. To assess an execution result’s quality, first, a problem-specific cost
function determines the cost of each measured bit string, e.g., traveled distances
for a TSP. Subsequently, an objective function is used to compute a single value
on the basis of the measurements’ frequencies and costs, e.g., the expectation
value, describing the overall quality of the result. Furthermore, a graphical rep-
resentation of the result is provided, e.g., a graph highlighting the best route.
Optimization Service: This service provides a selection of optimizer imple-
mentations available for Python, including SciPy and Qiskit Terra optimizers.
Clients initialize an optimization process by sending a request selecting their
desired optimizer and initial parameters. Once an optimization process is initial-
ized, messaging is used to exchange objective values and optimization parameters
between the optimization service and the client, e.g., a workflow engine.
The Quokka source code repository, documentation, and a comprehensive tuto-
rial can be found on GitHub: https://github.com/UST-QuAntiL/Quokka. The
demonstration video is available on YouTube: https://youtu.be/VQUz9Sj1r4M.

Acknowledgments. This work was funded by the BMWK projects PlanQK
(01MK20005N), EniQmA (01MQ22007B), and SeQuenC (01MQ22009B), and
by the project SEQUOIA funded by the Baden-Wuerttemberg Ministry of Eco-
nomic Affairs, Labour and Tourism.

References

1. Beisel, M., et al.: Configurable Readout Error Mitigation in Quantum Workflows.
Electronics 11(19) (2022)

2. Cerezo, M., et al.: Variational Quantum Algorithms. Nature Reviews Physics 3(9),
1–20 (2021)

3. Weder, B., et al.: Integrating Quantum Computing into Workflow Modeling and
Execution. In: Proceedings of the 13th IEEE/ACM International Conference on
Utility and Cloud Computing (UCC 2020). pp. 279–291. IEEE (2020)

4. Weder, B., et al.: Quantum Software Development Lifecycle. In: Quantum Software
Engineering. pp. 61–83. Springer International Publishing (2022)

https://github.com/UST-QuAntiL/Quokka
https://youtu.be/VQUz9Sj1r4M

	Folie 1
	Quokka: A Service Ecosystem for Workflow-Based Execution of Variational Quantum Algorithms

