
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{falazi, hahn, breitenbuecher, leymann}@iaas.uni-stuttgart.de

Modeling and Execution of Blockchain-aware
Business Processes

Ghareeb Falazi, Michael Hahn, Uwe Breitenbücher, Frank Leymann

@Article{Falazi2019BlockchainAwareBP,
author = {Falazi, Ghareeb and Hahn, Michael and Breitenb{\"u}cher, Uwe and

Leymann, Frank},
title = {Modeling and execution of blockchain-aware business processes},
journal = {SICS Software-Intensive Cyber-Physical Systems},
publisher = {Springer Berlin Heidelberg},
pages = {1--12},
day = {06},
month = {February},
year = {2019},
issn = {2524-8529},
doi = {10.1007/s00450-019-00399-5},
url = {http://link.springer.com/article/10.1007/s00450-019-00399-5},

}

:

Institute of Architecture of Application Systems

© Springer-Verlag GmbH Germany, part of Springer Nature 2019
This is a post-peer-review, pre-copyedit version of an article published in
SICS Software-Intensive Cyber-Physical Systems. The final authenticated
version is available online at: http://dx.doi.org/10.1007/s00450-019-
00399-5

http://dx.doi.org/10.1007/s00450-019-00399-5

Noname manuscript No.
(will be inserted by the editor)

Modeling and Execution of Blockchain-aware Business
Processes

Ghareeb Falazi · Michael Hahn · Uwe Breitenbücher · Frank Leymann

Received: date / Accepted: date

Abstract The blockchain is an emerging technology

that allows multiple parties to agree on a common state

without the need for trusted intermediaries. Moreover,

business process technology streamlines the automa-

tion of inter- and intra-organizational processes while

cutting-down on costs. With the new business opportuni-

ties provided by blockchains, it becomes vital to combine

both technologies to allow the modeling and execution

of blockchain-based interactions within business pro-

cesses. However, the existing business process modeling

languages lack support to intuitively model the various

interactions with blockchains. In this paper we address

this issue by proposing a business process modeling ex-

tension that captures the particularities of blockchains.

We also show how to transform the proposed constructs

into standard-compliant models, and we present an inte-

gration architecture that allows external applications, to

communicate with the blockchains. Finally, we validate

our approach by providing a prototypical implementa-

tion that proves its practical feasibility.

Keywords Business Process Management · Blockchain
Technology · Blockchain-aware Business Processes

Acknowledgements This research was partially funded by
the Ministry of Science of Baden-Württemberg, Germany, for
the Doctoral Program “Services Computing”, and by Smar-
tOrchestra (01MD16001F).

1 Introduction

The blockchain is an emerging technology that allows

multiple parties to share a common state without the

Institute of Architecture of Application Systems,
University of Stuttgart, Germany
E-mail: [lastname]@iaas.uni-stuttgart.de

need for establishing trust among them, or for trusted

intermediaries. It has a disruptive potential in the fields

of finance[17], supply-chains[6, 8], health-care[12], and

others. On the other hand, the automation of business

processes is a well-established approach that streamlines

inter- and intra-organizational processes, and cuts-down

on costs. With the new business opportunities provided

by the blockchain technology, it becomes vital for au-

tomated business processes, in the form of executable

process models, to allow and support the modeling and

execution of blockchain-based interactions. However, the

standardized modeling languages for business processes

lack the ability to intuitively model the various interac-

tions between an organization and a blockchain due to

its unique specificities. In Sect. 2, we highlight the prop-

erties specific to the blockchain technology that make

interacting with blockchain-based systems differ from

other data management systems. Moreover, we present

in Sect. 3 an integration architecture that abstracts the

common functionality of public blockchains and thus

allows external applications, such as process engines,

to communicate with them. Afterwards, in Sect. 4 we

introduce the BlockME-method for modeling and exe-

cuting blockchain-aware business processes, to this end

we present a modeling extension that captures the partic-

ularities of blockchains, and provides the means to model

the various interactions with them. In Sect. 5, we moti-

vate our modeling extension, and show in Section 6 how

this extension can be transformed to a standard busi-

ness process modeling language. Finally, in Sect. 7 we

validate our approach by introducing a system architec-

ture that realizes the BlockMe providing a prototypical

implementation that proves its practical feasibility.

2 Ghareeb Falazi et al.

2 Background and Motivation

Blockchain technology is a disruptive invention [10] that

promises to revolutionize various domains as it allows

multiple parties that do not fully trust each other nor

third-parties to agree on the value of a shared state,

thus providing a fully-decentralized solution to the dis-

tributed consensus problem. The nature of the shared

state differs from one domain to another. In the most

basic form, which is found in cryptocurrencies such

as Bitcoin [13], a state represent a set of balances of

all participants in the system. In other cases, such as

Ethereum [20], the state could represent a set of small

programs, commonly known as smart contracts, along

with their local storage. A change in this state is known

as a transaction. In Bitcoin this refers to the money

transfer between accounts, whereas in Ethereum it refers

to changing the value of the local storage of smart con-

tracts due to their code execution.

The invention of blockchains allowed to introduce

new business opportunities in many fields [18], such as

finance[17], health-care[12], and supply-chains[6, 8]. This

makes the ability to bridge the gap between existing

software solutions organizations use and the innovative

blockchain technology of high importance. Moreover,

as many organizations use process engines to automate

their business processes, it comes vital that existing

business process models gain the ability to communicate

with public blockchains that permit engaging in transac-

tions with unforeseen business partners and customers.

However, public blockchains have some inherent

properties that make using them by regular applica-

tions, in general, challenging. This suggests the need

for specialized modeling and execution support when

working with blockchains. From a business perspective,

one of the fundamental problems with that regard is

the durability of blockchain transactions since they are

not durably persisted as soon as they reach the network,

but rather an arbitrary time thereafter.

The lifecycle of a blockchain transaction, as shown in

Fig. 1 is not simple. The reason behind this is the globally

distributed nature of blockchain networks, as well as

the specificities of the Proof-of-Work (PoW) consensus

protocol that is used by most major public blockchains to

guarantee the validity of blockchain transactions without

the need for a central authority. When a blockchain

transaction tx is Created, it is submitted to one peer

in the network which validates it against a set of rules,

such as its authenticity, the correctness of its structure

and the absence of contradicting transactions in the

network. If found to be Valid, the peer, also known as

a node, broadcasts the transaction to the blockchain

network which contains, along with the regular peers,

Created

Mined

Valid

Invalid

Durably
Committed

Tx
validated

Included in
new block

New block
built on top

„Enough“ blocks
built on top

Orphaned / not
included in other

blocks Tx invalidated

Branch replaced /
contradicting tx

Figure 1 A simplified state-diagram showing the states a block-
chain transaction can take, and the transitions between them.

a special kind of nodes called miners. When a miner

receives a new transaction, apart from validating it like

other nodes, it also places it with other transactions

into a larger data structure know as a block. When the

miner fills up enough transactions in a block, it starts

running a very complex mathematical puzzle that takes

an arbitrary time to solve, an act which is called mining.

The first miner in the network which can prove solving

the problem gets to append its block b to the end of the

distributed blockchain, i.e., it updates its local version

of the chain and broadcasts b to other nodes which

do the same. When a transaction is finally included

in a mined block, we say it has moved to the Mined

state, however, its journey does not end there. Enough

blocks need to be appended after b before it and its

transactions are considered to be Durably Committed.

Due to various reasons, a newly mined block suffers

from the risk of being replaced by other blocks, a risk

which greatly decreases when the block is old enough

[13] in the chain. When a block is replaced with others,

some of its transactions may return to the beginning of

their lifecycle in which they need to be validated again,

and might even become invalid if the replacing blocks

contain a contradicting transaction.

The non-triviality of states a blockchain transaction

goes through raises the need for tools and methods that

support the modeling and execution of business pro-

cesses that intend to communicate with blockchain net-

works [11]. To this end, we present the Blockchain-aware

Modeling and Execution (BlockME)-method which sup-

ports the modeling and execution of blockchain-aware

business processes by introducing a modeling extension

that captures the various aspects of blockchain transac-

tion durability issues, and gives the modeler the ability

to intuitively handle blockchain communications with-

out the need to have a deep knowledge and experience in

the domain. Furthermore, we introduce the Blockchain

Modeling and Execution of Blockchain-aware Business Processes 3

Access Layer, an extensible software component that

unifies access to various public blockchain systems, and

thus supports the execution of business process models

that need to communicate with public blockchains.

3 The Blockchain Access Layer (BAL)

In this section, we present the concept and design goals

of the Blockchain Access Layer (BAL), which provides

a technology-agnostic asynchronous access to certain

blockchain operations in a way that facilitates handling

the uncertainty inherent to blockchains.

We have designed this component with four goals in

mind: First, the BAL should support handling block-

chain uncertainty; as we have seen earlier, blockchain

transactions have a period of uncertainty before we con-

sider them durably committed. During this period, a

seemingly committed transaction might return to an

uncomitted state or even get invalidated. The BAL

should be aware of this uncertainty and provide means

to handle it. Second, the BAL should play the role of a

technology-agnostic unification layer. The reason

is that the blockchain technology is still in its shaping

phase, and many variations of it exist each with their

implementations [21]. Thus, the BAL should provide a

minimal and unified set of abstract blockchain opera-

tions applicable to the group of blockchain technologies

we plan to address. Third, the BAL should support

extensibility, meaning that the it should be designed

in a way which allows new types of blockchains to com-

municate with it, so that its coverage of the domain

can gradually enhance. Finally, the BAL should pro-

vide an asynchronous API; the probability that a

mined transaction becomes durably persisted in the

blockchain increases with additional blocks built on

top of it [13, 15, 20], this means that if we want to

achieve a certain degree of certainty, we should wait

for a corresponding period of time before considering

the transaction durable. This period can reach hours,

e. g., in the case of Bitcoin. Thus, the BAL should allow

external applications, such as process engines, to access

its operations through an asynchronous API, and not

force them to block waiting for the result.

As mentioned in Sect. 2, we focus in our work on pub-

lic blockchains, and it turns out that even in this subset

of the domain, the variation of attributes and capabilities

is high. For example, some blockchains support smart

contracts [20], while some support Multi-input/Multi-

output (MIMO) transactions [13], and others do not

even have a linear blockchain, but rather a graph of

blocks [15]. Nonetheless, we identified that most public

blockchains use some sort of a native cryptocurrency

which gives the peers the motive to maintain the system

functioning properly. This currency is transferable from

one account to another through transactions. Thus, at

the moment, the BAL only addresses the blockchain

operations related to transactions that transfer a value.

To this end, we identified three groups of relevant opera-

tions: (i) an operation to issue a blockchain transaction

(submitTransaction), (ii) two operations to receive a

blockchain transaction (receiveTransaction and receive-

Transactions), and (iii) two operations for monitoring

the state of an existing transaction (detectOrphaned-

Transaction and ensureTransactionState).

As we intend to provide an asynchronous API to

BAL clients, each operation is provided as a one-shot

subscription, i. e., whenever a client subscribes for some

operation, the BAL waits for the corresponding situa-

tion in the blockchain to take place, and then notifies

the client through a callback message and cancels the

subscription. Moreover, all of these operations provide

parameters that allow us to tackle the issue of transac-

tion durability by specifying how many blocks need to

be appended after the relevant transaction before the

operation triggers a callback. Furthermore, clients have

the ability to manually cancel an existing subscription.

According to this, each operation has two exposed

functions in the API: subscribe_<operationName> and

unsubscribe_<operationName>. One exception is the

receiveTransactions operation, which is a durable sub-

scription that makes the BAL send a callback message

each time a new transaction with the desired proper-

ties is detected in the blockchain. Unsubscription from

this operation happens only manually with an API call.

Moreover, to enhance the resilience of this layer, cancel-

ing an already-canceled subscription does not cause any

errors. Further architectural and implementation-related

details are provided in Sect. 7.

4 Blockchain-aware Modeling Extension

In the following, we present our approach to model

blockchain-aware processes that capture the semantics

of blockchains and the potential trade-offs encountered

when interacting with them. First, we present the overall

method of the approach, then we introduce the proposed

extension constructs and discuss their semantics.

4.1 Blockchain-aware Modeling and Execution Method

In this section, we introduce the Blockchain-aware Mod-

eling and Execution (BlockME) method shown in Fig. 2

that gives a comprehensible overview of our approach.

First, a process modeling language that supports the

proposed extensions, such as Business Process Model

4 Ghareeb Falazi et al.

 Transform

Standard-Compliant
Process Model

 Deploy

Create BlockME-
process model

1

Transformation into
standard-compliant

process model

2

Deployment of
standard-compliant

process model

3

BlockME-
Process Model

Standard-Compliant
Process Engine

Figure 2 Overview of the BlockME-method (based on [5])

and Notation (BPMN) [14], is used to specify a pro-

cess model with blockchain-aware modeling constructs,

i. e., a BlockME-process model. Considering that we

neither intend to develop a new process modeling lan-

guage, nor to build a special blockchain-aware process

engine, in the second step, we enable the transforma-

tion of the aforementioned BlockME-process models

into standard-compliant and executable process mod-

els, such as BPMN 2.0 or Business Process Execution

Language (BPEL). To achieve this, we employ an ex-

plicit step that follows a set of transformation rules.

These rules ensure that all the blockchain-aware model-

ing constructs introduced by our BlockME extensions

are transformed into natively supported constructs of

the corresponding process modeling language. By trans-

forming the blockchain-aware model into a standard-

compliant model, we benefit from the portability of the

native language while still making use of the intuitive

and concise constructs of our extension.

Furthermore, a final deployment step could be nec-

essary if the model contains an instantiating task that

operates based on a blockchain-based event. The reason

behind this is that the underlying layer responsible for

triggering the instantiation of such a model needs to

know the endpoint to send the instantiation message

to, and this endpoint is only known after the model is

deployed to the Business Process Management System

(BPMS). Thus, the proposed deployment step involves

informing the underlying layer with the desired endpoint

details after it handles the actual model deployment.

In the following, we present the proposed BlockME-

artifacts and discuss their operational semantics.

4.2 Receiving a Blockchain Transaction

For detecting a new blockchain transaction addressed to

a certain blockchain account, we present a new task type

called ReceiveTransactionTask. The task can be used

either as a regular task, or as a model-instantiating task

BlockchainId: [id]
WaitUntil: [X block-confirmations]
SenderId: [address of sender]Timeout

BlockchainId: [id]
WaitUntil: [X block-confirmations]
SenderId: [address of sender]

Figure 3 Graphical notation of the ReceiveTransactionTask
(top), and the instantiating version of it (bottom).

and it has the following attributes: (i) BlockchainId that

identifies the underlying blockchain network we are con-

sidering, (ii) WaitUntil which sets a minimum number of

block-confirmations the new transaction should receive,

and finally, (iii) an optional SenderId that identifies the

transaction’s sender. Notice that the WaitUntil attribute

attached to this task and other BlockMEconstructs is re-

sponsible for handling the durability issue of blockchain

transactions (cf. Sect. 2) by allowing modelers to decide

the degree of trust they want to have in the finality of a

transaction before operating on it, which differs greatly

based on the importance of the transactions and the

operations to be taken afterwards. The operational se-

mantics for the ReceiveTransactionTask are as follows.

In the case of an instantiating task, i.e., a task that is

used to create a new instance of the process model, the

task is activated only when the underlying BAL detects

that a new blockchain transaction tx, which is addressed

to a certain account, has been persisted in a block b, and

that a sufficient number of additional blocks, as speci-

fied by the WaitUntil attribute, has been added to the

blockchain on top of b. We refer to the number of blocks

added on top of b as the number of block-confirmations

received. Moreover, if the optional SenderId attribute is

provided, then the task only gets activated if tx origi-

nates from the corresponding account. Furthermore, the

specification of the exact blockchain address we expect

to receive transaction at is done through a configuration

file that initializes the underlying BAL.

On the other hand, in the case of a non-instantiating

task the execution flow is blocked until the aforemen-

tioned conditions are satisfied and then continues reg-

ularly. Furthermore, the modeler can attach a timer

boundary event to the task and in the case the timer

is triggered before the conditions are satisfied, the ex-

ecution continues with an alternative flow. Finally, if

executed successfully, both of these tasks receive the

details of the transaction tx in a message from the BAL.

Figure 3 shows a visual representation of both

possible forms of this task. A task in BPMN is depicted

as a rounded rectangle with an icon on the top left rep-

resenting the type of the task, i.e., its semantics. In this

Modeling and Execution of Blockchain-aware Business Processes 5

BlockchainId: [id]
WaitUntil: [X block-confirmations]

Invalid Tx Timeout

Figure 4 Graphical notation of the SubmitTransactionTask.

case, an icon showing an arrow going out of the block-

chain is used. The icon has a white fill which indicates

a “catching” task. In the case of an instantiating task,

a circle is drawn around the icon making it look like a

start event. Moreover, the optional interrupting timer

event can be added to the task’s boundary.

4.3 Submitting a Blockchain Transaction

The proposed extension supports submitting a transac-

tion to the blockchain through a new SubmitTransaction-

Task. This task has two attributes: (i) BlockchainId that

identifies the underlying blockchain network we are con-

sidering, and (ii) WaitUntil which sets minimum number

of block-confirmations the submitted transaction should

receive. Furthermore, the task has the following oper-

ational semantics. When it becomes activated, this

task sends an unsigned blockchain transaction tx to the

underlying BAL, and blocks until the BAL detects re-

ceiving the number of block-confirmations specified in

the WaitUntil attribute. Afterwards, details about the

submission, such as the transaction hash, and the block

number in which it was included are received, and the

flow continues normally. However, a submitted transac-

tion can be invalid due to, e.g., insufficient funds, or an

incorrect target address, and in such a case an error mes-

sage is sent from the BAL causing an alternative flow to

be taken instead of the normal flow. Furthermore, as for

the ReceiveTransactionTask, the modeler may attach a

timer boundary event to the task. In this case, another

alternative flow is taken, if the timer is triggered before

receiving the required number of block-confirmations.

Setting a timeout for the submission of a blockchain

transaction is recommended because waiting for block-

confirmations might take much more time than expected,

and thus stall the execution of the process. The reason

behind this is that a transaction might be reported as

valid by the receiving node, but still does not end-up

in a block due to very low transaction fees. Miners in

a PoW-based blockchain network are free to choose

the valid transactions they include into new blocks, and

Sub-Process

Alternative flow

Alternative flow

Sub-Process

Normal flowBlockchainId: [id]
TransactionId: [monitored tx]

BlockchainId: [id]
TransactionId: [monitored tx]

Normal flow

Figure 5 Graphical notation of the OrphanedTransactionEvent
as a start event of an event sub-process (top), or as a boundary
event on the border of a sub-process (bottom).

when the load on the network is high, they will probably

give priority to transactions with higher transaction

fees as they are more beneficial for them. Although a

transaction with low fees 𝑡𝑥𝑙𝑜𝑤 could be dropped from

the network due to the limited memory of nodes. This

is not always the case, 𝑡𝑥𝑙𝑜𝑤 might eventually be mined

and persisted in a block if it is still in the memory-pool

of a miner when the load on the network decreases. Thus,

triggering the aforementioned timer does not guarantee

that 𝑡𝑥𝑙𝑜𝑤 will be aborted. An approach to address this

situation is submitting a contradicting transaction with

sufficient fees 𝑡𝑥ℎ𝑖𝑔ℎ that will most likely be prioritized

higher by the miners, and when included in a block will

cause 𝑡𝑥𝑙𝑜𝑤 to be invalidated and aborted.

The SubmitTransactionTask has the visual repre-

sentation shown in Fig. 4. Like the ReceiveTransac-

tionTask, it has the regular shape of a task with an

optional timer boundary event attached. The task can

also have a message boundary event which allows receiv-

ing potential error messages from the BAL1. Moreover,

the icon of the task shows an arrow pointing towards

the blockchain with a solid black fill that indicates the

semantics of a “throwing” task.

4.4 Handling Orphaned Blockchain Transactions

A transaction is orphaned if it is part of a mined block

that has been replaced (potentially along with other

blocks) by a longer, alternative chain. In a PoW-based

blockchain, the longest valid chain is the manifestation

of the majority decision over what the common state

is [13], and thus represents the “one true” chain. How-

ever, due to geographical distance, network partitioning

1 We use a message catch event icon when expecting to receive
an error from the BAL because it is of an external nature.

6 Ghareeb Falazi et al.

and other reasons, two or more parts of the blockchain

network can temporarily see multiple versions of the

blockchain differing in one or more blocks located at

the end. Nonetheless, when the these partitions finally

exchange their versions of the reality, only the longest

chain survives, and the other ones get discarded. At

this point, we call all transactions contained only in the

discarded blocks, orphaned transactions. These trans-

actions are returned to the memory-pool of the peers

aware of them, and go again into the verification pro-

cess and wait to be put in a new block. However, an

orphaned transaction could become invalid after being

orphaned as another contradicting transaction might

have replaced it in the longer chain (cf. Fig. 1). Due to

this potential risk, it is advisable to capture the event

of a transaction becoming orphaned.

The BlockME extension supports the detection of an

orphaned transaction through the OrphanedTransaction-

Event. This event has two attributes: (i) the BlockchainId

attribute which is present in all of the artifacts proposed

by the extension, and (ii) a TransactionId attribute

which uniquely identifies the transaction that we are

interested in monitoring. We assume that the transac-

tion id is known to the process either from a previously

executed transaction submission or reception, or directly

sent to the process from another party.

The event can be used either as an interrupting

boundary event attached to a sub-process, or as an

interrupting start event in an event sub-process. In

both cases it has the following overall operational

semantics. If the transaction being monitored is found

to be orphaned during the execution of the sub-process

to which the event is attached (𝑃𝑝𝑟𝑖𝑚𝑎𝑟𝑦), then the sub-

process is interrupted, i. e., the normal execution flow is

canceled and the modeled alternative flow going out of

the boundary event or specified in the event sub-process

is executed. However, it is worth mentioning that in the

case of a boundary event, the alternative flow executes

outside the scope of 𝑃𝑝𝑟𝑖𝑚𝑎𝑟𝑦, whereas in the case of an

event sub-process, the alternative flow runs inside it.

The visual representation of both potential forms of

the OrphanedTransactionEvent is shown in Fig. 5. It

shows the event as a circle with an icon inside that rep-

resents the aforementioned case of a blockchain forking,

and a branch being invalidated. Similar to the Trans-

actionReceiveTask, the icon is drawn with a white fill

to indicate that the event is of “catching” type. In the

case of an event sub-process, the border of the circle is a

single solid line to indicate that it is a start event of an

interrupting event sub-process, whereas in the case of a

boundary event, the border is a solid double line which

indicates that it is an interrupting boundary event.

BlockchainId: [id]
TxId: [txId to monitor]
WaitUntil: [X block-confirmations]

Tx Error Timeout

Figure 6 Graphical notation of EnsureTransactionStateTask.

4.5 Ensuring the State of a Specific Transaction

In certain scenarios, it is useful to ensure that a given

transaction has at least a certain number of block-

confirmations. We have seen this possibility in the Sub-

mitTransactionTask and the ReceiveTransactionTask.

However, having a task which gives modelers the ability

to ensure a desired transaction state in a way which is de-

coupled from the acts of submitting or receiving a trans-

action would be beneficial. Therefore, the BlockME ex-

tension supports ensuring a transaction’s state through

the EnsureTransactionStateTask. For example, this task

can be used together with the OrphanedTransaction-

Event as part of the alternative flow originating from it

to ensure that the orphaned transaction got re-validated

before proceeding, or it can be used to safe-guard certain

parts of the model which require a high level of certainty

that a transaction is durably persisted.

The operational semantics of this task are as

follows. When the task is activated it waits until the

specified transaction (TxId) receives at least the num-

ber of block-confirmations indicated by the WaitUntil

attribute, and then the normal flow continues. However,

if while waiting for the required block-confirmations,

it is detected that the transaction is invalidated after

being orphaned, the execution continues with an alter-

native flow. The same alternative flow is also triggered

if the specified transaction id cannot be found in the

blockchain. Another alternative flow can be activated if

a timer boundary event is attached by the modeler to

the task and the timer gets fired before enough block-

confirmations are detected. Finally, the visual repre-

sentation of this task, which is shown in Fig. 6, is

consistent with the appearance of other elements of our

BlockME extension. The icon of the task represents a

blockchain in an ensured state, and is depicted with a

solid black fill to give the semantics of a “throwing” task.

Modeling and Execution of Blockchain-aware Business Processes 7

BCId: ethm
WaitUntil: 1
SenderId: exReq.ethmAddr

Ensure
Tx State

BCId: ethm
WaitUntil: 12
TxId: txData1.id

Tx invalidated

Receive
Transaction

Receive Exchange
Request

Send Tx

txData1.value
>= 100 ether

BCId: btcn
WaitUntil: 1

exReq

Confirm
receipt of tx to

client

txData1

Inform client of failed
operation

txData2

Inform client
of txData2.id

X X

Figure 7 A scenario showing a potential usage for the EnsureTransactionStateTask.

5 Case Study

In this section we demonstrate the usage of the afore-

mentioned extension artifacts by presenting a practical

use-case from the domain of cryptocurrency exchanges.

An exchange is an online service that allows customers

to trade one type of cryptocurrencies for another. The

case study we show in Fig. 7 represents a simplified

version of the business process of an exchange service

that transfers bitcoins in return for ethers. The process

is initiated when a client sends an exchange request to

the service containing their addresses in both Ethereum

(source) and Bitcoin (target). Afterwards, the service

expects the client to issue a transaction transferring

ethers to its publicly known Ethereum address. This

is expressed with a ReceiveTransactionTask that waits

for only the minimum number of block-confirmations so

that it can inform the client of the received transaction

as soon as possible with a “throwing” event.

On parallel the service determines the risk level of

the operation by checking the number of transferred

ethers. If the risk is high, the service waits for 12 block-

confirmations to be recorded for the received transaction

using the EnsureTransactionStateTask, and then, issues

a transaction transferring the corresponding amount of

bitcoins to the client using the SubmitTransactionTask

with a minimum number of block-confirmations.

On the other hand, if the risk is low, sending bit-

coins to the client is done immediately. In both cases,

the service sends the address of the submitted bitcoin

transaction back to the client. Finally, if during the wait

for block-confirmations (in case of risky transactions)

the service detects that the transaction is orphaned

and invalidated, it notifies the client about the failed

operation by sending a message.

6 Transformation of BlockME-Artifacts into

Standard-compliant Fragments

As mentioned earlier, we aim at producing standard-

compliant models that support communication with

blockchain-based systems, thus, in this section we show

how to transform all BlockME-constructs into fragments

compliant with BPMN 2.0. We have chosen BPMN 2.0

as the target of our transformation as (i) it supports

the modeling of executable business processes, (ii) it

is one of the mostly used business process modeling

and execution languages, and (iii) tools exist [3] that

allow transforming BPMN models into other languages,

such as BPEL. Finally, (iv) we have used a BPMN-

based notation to visualize the BlockME-extensions in

the first place, which makes the transformation more

comprehensible if BPMN is also the target language.

The set of transformation rules we present in the

following aims at completely replacing the introduced

BlockME-constructs with standard-compliant BPMN

process fragments while capturing the exact same op-

erational semantics through specifying respective inter-

actions with the BAL. Moreover, we generally aim at

encapsulating the transformed fragments into a sub-

process as this enhances comprehension and reduces

cluttering in the target model.

The BAL, presented in Sect. 3, provides an asyn-

chronous API. For this reason, each time a blockchain-

related operation is requested, at least two messages

are exchanged, one originating from the process to call

an operation through subscribing for an asynchronous

callback, and the other originating from the BAL con-

taining the result of the operation (callback). For some

cases, additional messages can be part of the conversa-

tion, such as manual unsubscription messages sent from

the process, or error messages sent from the BAL.

8 Ghareeb Falazi et al.

Receive Tx

Timeout

Normal Flow

Alternative Flow

Receive Tx

response

Receive CallbackSubscribe to BAL

subscription
arguments

Receive Transaction Sub-Process

Normal Flow

Timeout

Alternative Flow
Unsubscribe

from BALunsubscription
arguments

txData

Receive Callback

Figure 8 The transformation rule of the ReceiveTransactionTask for the instantiating (top), and non-instantiating case (bottom).

response

Receive CallbackSubscribe to BAL

subscription
arguments

Submit Transaction / Ensure Transaction State Sub-Process

Normal Flow

Timeout

Alternative Flow 2

Unsubscribe
from BAL

unsubscription
arguments

Invalid Tx

Alternative Flow 1Normal Flow

Alternative Flow 1

Invalid TxTimeout

Alternative Flow 2

Normal Flow

Invalid TxTimeout

Alternative Flow 1

Alternative Flow 2

Ensure Tx State

Submit Tx

Figure 9 The transformation rule of the SubmitTransactionTask and EnsureTransactionStateTask.

Figure 8 describes the transformation rules for the

ReceiveTransactionTask. A non-instantiating Receive-
TransactionTask (bottom) is transformed into a sub-

process with two tasks; a send task that subscribes to

the receiveTransaction operation at the BAL, and a

receive task that waits for the resulting message sent

back from the BAL when the desired transaction is

detected in the blockchain. Along with the functional

attributes required for the operation itself, such as the

BlockchainId and the SenderId, the first message also

contains a subscriptionId which is solely used for the

purpose of message correlation, i. e., allowing the process

engine to route the callback message to the correct pro-

cess model instance. For this reason, the BAL includes

the same subscriptionId inside the callback message,

which also contains the details of the received trans-

action. Moreover, in order to inform the BAL of the

endpoint of the process to which the BAL should send

the callback message, an endpoint URL is also part of

the subscription message. Furthermore, timer bound-

ary events attached to the ReceiveTransactionTask, are

copied and attached to the resulting sub-process. How-

ever, if such a timer event is triggered on the level of the

process, we need to make sure to unsubscribe from the

receiveTransactionOperation by sending an unsubscrip-

tion message to the BAL before we continue with the

alternative flow. Such an unsubscription message is not

required for the normal flow, as the BAL unsubscribes

automatically after sending the callback.

An instantiating ReceiveTransactionTask (top)

is transformed into a single BPMN task, namely, an

instantiating receive task. This task receives a message

from the BAL containing the details of the received

transaction. In this case, the subscription has to be

done beforehand, e. g., during the deployment of the re-

lated process model, and also the unsubscription has to

be done, e. g., when the model is about to be undeployed.

The transformation rules of SubmitTransaction-
Task and EnsureTransactionStateTask (Fig. 9) are

very similar to the aforementioned case of the non-

instantiating ReceiveTransactionTask. Apart from the

obvious fact that we subscribe to different operations in

the BAL, the only difference these two transformation

rules have is the possibility to receive an error message

Modeling and Execution of Blockchain-aware Business Processes 9

Tx orphaned

Subscribe to BAL

subscription
arguments

Sub-Process

Normal flow

Alternative flow

Alternative flow

Sub-Process

Normal flow

Sub-Process

Alternative flow

Normal Flow

Receive Callback

Tx orphaned

Subscribe to BAL

subscription
arguments

Sub-Process

Normal flow

Receive Callback

Alternative flow

Unsubscribe
from BAL

unsubscription
arguments

Unsubscribe
from BAL

unsubscription
arguments

Figure 10 The transformation rule of the OrphanedTransactionEvent when used in an event sub-process (top), or as a boundary
event (bottom).

as a callback from the BAL. To this end, we attach an

interrupting message boundary event to the resulting

sub-process which receives the potential error message,

and activates the modeled outgoing flow (Alternative

Flow 1). The body of the error message contains the

specific reason behind it which can be used to trigger

specialized compensating actions along this execution

flow. An explicit unsubscription message is not required

in this case, as the BAL automatically unsubscribes

after sending an error callback.

On the other hand, the transformation of the Or-
phanedTransactionEvent, which is shown in Fig. 10,

looks different. As the OrphanedTransactionEvent is

used to annotate an existing sub-process P (either as a

boundary event or as part of an event sub-process), we

use the same sub-process in the transformed fragment.

Furthermore, depending on the way the OrphanedTrans-

actionEvent is used, we either annotate 𝑃𝑝𝑟𝑖𝑚𝑎𝑟𝑦 with

an interrupting message boundary event, or add an in-

terrupting event sub-process with a message start event

to 𝑃𝑝𝑟𝑖𝑚𝑎𝑟𝑦. These message events are triggered if a

callback is sent from the BAL informing us that the

transaction under consideration has been orphaned, and

in which case, an alternative execution flow is taken.

In order to allow the BAL to send the potential

callback message in a timely manner, i. e., starting from

the point-in-time in which 𝑃𝑝𝑟𝑖𝑚𝑎𝑟𝑦 is activated until

it is completed, we use a pair of subscribe/unsubscribe

send message tasks exactly before and after P, as shown

in Fig. 10. Moreover, if a callback is sent from the BAL,

there is no need for an unsubscription message, as the

BAL does the unsubscription automatically in that case.

Nonetheless, when using the OrphanedTransactionEvent

in an event sub-process (top), and if the callback is trig-

gered, which fires the inner sub-process inside 𝑃𝑝𝑟𝑖𝑚𝑎𝑟𝑦,

the normal flow going out of 𝑃𝑝𝑟𝑖𝑚𝑎𝑟𝑦 is then taken after

the inner sub-process finishes. This results in sending

an unnecessary unsubscription message. However, this

does not cause a problem to the BAL as it is designed to

treat unsubscription requests idempotently, i. e., trying

to unsubscribe from an already finished subscription

does not result in an error.

To demonstrate the usage of these rules, a trans-

formed version of the case study presented in Sect. 5 is

accessible on Github.2 Finally, we notice that, an expert

could implement the interaction with the BAL directly

using these rules without the need for the extension.

However, this is inconvenient and error prone.

7 Validation

In this section, we prove the practical feasibility of our

approach by showing an architecture in which it can be

realized, as well as a prototypical implementation of key

parts of this architecture, namely, the blockchain access

layer and blockchain adapters.

7.1 System Architecture

Figure 11 shows the system architecture we propose to

support the BlockME-method. The architecture, which

is based on our previous work [5], is divided into three

major layers: (i) Blockchain Layer. (ii) Blockchain Ac-

cess Layer. (iii) Blockchain-aware Process Layer. The

Blockchain Layer represents the set of blockchain net-

works our system intends to support. The figure shows

two of these networks, namely, the Bitcoin network and

the Ethereum network. In order to communicate with a

blockchain network, an application needs to have access

2 https://github.com/ghareeb-falazi/BlockME-UseCase

https://github.com/ghareeb-falazi/BlockME-UseCase

10 Ghareeb Falazi et al.

B
lo

ck
ch

ai
n

A
cc

es
s

La
ye

r

B
lo

ck
ch

ai
n

La
ye

r
…

B
lo

ck
ch

ai
n

-a
w

ar
e

P
ro

ce
ss

La
ye

r
B

lo
ck

M
E

m
o

d
el

Standard Process Engine
Subscribe /

Unsubscribe

Callback

BAL Asynchronous API

Blockchain Access Layer

Bitcoin Adapter Ethereum Adapter

…

Bitcoin Network

Bitcoin-specific API

Ethereum Network

Ethereum-specific API
BC Nodes

BC Adapters

Send Invoice Ship product …Receive Tx

Subscribe /
Unsubscribe

…BC Networks

Deploy

Transform

Figure 11 BlockME system architecture showing its three ma-
jor layers (based on the architecture presented in [5]).

to one of the network’s nodes. A blockchain node is a

process that executes the peer-to-peer protocol specific

to this blockchain. An example Ethereum node is Geth3,

and an example Bitcoin node is bitcoind4. A blockchain

node usually runs in the same environment as the ac-

cessing application. Moreover, most kinds of blockchain

nodes expose some sort of an API to other applications

so that they can interact with the underlying blockchain

network. However, these APIs are technology-specific

although exposing some common functionality.

As part of the Blockchain Access Layer, adapters

with technology-specific implementations are introduced

in order to unify access to blockchain nodes. These

adapters know the specificities of the corresponding

blockchain technology and can process requests from

higher levels and translate them to calls addressed to the

underlying node’s API. Furthermore, all adapters have

a common interface to communicate with the higher

layer. By having such a common interface, we guar-

antee the aforementioned extensibility requirement (cf.

Sect. 3). We can extend our architecture to include

new blockchains only by providing a new adapter that

implements the same common interface, without the

need to alter any other component. The BAL has also

the responsibility of managing subscriptions by storing

subscription ids and callback endpoints, and using them

to correctly direct response messages. Furthermore, this

3 https://github.com/ethereum/go-ethereum/wiki/geth
4 https://github.com/bitcoin/bitcoin/

layer provides an asynchronous API to service external

applications, such as process engines, and supports the

operations we previously described in Sect. 3.

Finally, the third layer of the architecture is the

Blockchain-aware Process Layer which is responsi-

ble for executing BlockME-models. As we do not intend

to build a new process engine nor to extend an existing

one, the core of this layer is a standard-compliant engine.

This approach allows us to benefit from proven features

of standard engines, and promotes the portability of the

extension by allowing adopters to continue using the en-

gines they might already have. To allow this to happen,

the BlockME-models have to be manually transformed

so that all BlockME-specific constructs are replaced

with standard-compliant fragments by following the

rules we presented in Sect. 6. Furthermore, manual in-

tervention is also necessary during the deployment of a

process model onto a process engine if the given process

model contains an instantiating ReceiveTransactionTask

(cf. Sect. 4.2) which is responsible for instantiating a

new instance of the process model if a transaction with

specific properties is received. To this end, a durable sub-

scription request for the process model has to be sent to

the BAL by invoking the subscribe_receiveTransactions

operation. A subscription always requires sending the

details of the process model endpoint that the BAL

needs to invoke when sending response messages. The

endpoint, in this case, is only known after deploying

the process model to a process engine, thus the user

which is responsible for deployment is also responsible

for subscribing the process model at the BAL. Moreover,

the corresponding unsubscription operation of the BAL

should be invoked when such a process model is about

to be undeployed from the engine.

During the execution of a process model, the process

engine makes calls to the asynchronous API exposed by

the BAL in the form of subscription and unsubscription

requests as specified in the underlying process models.

The BAL responds accordingly with callback messages

sent to the endpoints specified in each request.

7.2 Prototype

In this section we provide a short description of the

prototypical implementation of the key component of

the introduced architecture, namely the BAL. We real-

ized this component as a layered Java 8 web application

exposing, at its highest level, a RESTful HTTP API. On

the other hand, at the lowest level of the BAL, we can

find a set of blockchain-specific adapters each of which

implementing the same Java interface which provides a

unified set of operations to the higher level. One example

https://github.com/ethereum/go-ethereum/wiki/geth
https://github.com/bitcoin/bitcoin/

Modeling and Execution of Blockchain-aware Business Processes 11

of these adapters is the Ethereum Adapter, which com-

municates with an underlying Ethereum node using a

lightweight Java library called web3j5 that implements

a client for the JSON-RPC API all Ethereum nodes

provide. The adapter utilizes a thread pool in order

to execute the long running operations of monitoring

the desired changes in the blockchain without blocking

its clients. In between the HTTP API at the top and

the adapters at the bottom operates the subscription

manager. This manager is responsible for mapping ex-

ternally provided subscription ids and endpoint URLs to

the currently running operations at the adapters level, so

that the resulting callbacks find their designated targets.

The prototype is packaged using Maven, and is publicly

available as an open-source project on Github6.

8 Related Work

The ability of blockchains to remove the need for es-

tablishing trust between communicating partners have

been utilized to support business processes in various

aspects which we will discuss in the following.

Blockchains can tackle the issue of lacking trust

facing business process choreographies; although the

integration of business processes across organizations

could be beneficial, interacting partners need to estab-

lish trust among them, or they need to trust an external

party to execute the joint process. This hinders the idea

of developing a collaborative process in the first place.

To this end Weber et al. [19] developed an approach that

integrates the blockchain technology into choreographies,

in a way that eliminates the need for a central authority,

while still maintaining trust. Specifically, their approach

allows generating immutable audit trails of the execu-

tion of choreographies, and further allows to channel

all Business-to-Business (B2B) choreography messages

through automatically generated smart contracts so that

business rules are enforced by the decentralized block-

chain system. However, their approach suffers from po-

tentially high costs of data storage in public blockchains,

and thus García-Bañuelos et al. [7] propose an optimized

method for executing business processes on top of com-

modity blockchain technology focusing on the reduction

of the aforementioned cost. Furthermore, López-Pintado

et al. [9], propose building an entire BPMN-compatible

BPMS based on the ethereum blockchain, making trust-

less execution of business process inherent in the engine

itself. These two approaches look at blockchains as a

means to support the execution of business processes,

specifically process choreographies. However, our ap-

5 https://github.com/web3j/web3j
6 https://github.com/ghareeb-falazi/blockchainaccesslayer

proach addresses blockchains in a broader sense. We

look at blockchains as external systems that allow to

exchange transactions with unforeseen business partners

and customers. Furthermore, our approach does not

require to alter existing BPMSs, but rather focuses on

supporting standard-compliant ones.

Various kinds of connectors have also been intro-

duced to allow exiting BPMSs to communicate with

blockchains. Auberger and Kloppmann [4] introduce a

connector that allows IBM Business Process Manager [1]

to communicate with the permissioned blockchain, Hy-

perledger Fabric [2] and access its various capabilities.

Moreover, Schmidt et al. [16], introduce a framework

for business integration based on blockchains. At the

bottom of the introduced architecture they propose a

set of “Smart Adapters” that they use to connect vari-

ous IT-systems to blockchains. These adapters support

various kinds of public and permissioned blockchains,

and expose an API that allows external applications to

interact with them. However, both of these approaches

lack the ability to address the durability issues of block-

chain transactions. They delegate this task to the higher

level of the architecture, i. e., the layer of external appli-

cations. However, this complicates the design of these

applications, and requires the involvement of blockchain

experts. On the other hand, the BAL, which we intro-

duced here, can handle the aforementioned durability

concerns internally, and exposes an comprehensible in-

terface to external applications eliminating the need for

a blockchain expert on the other end.

9 Conclusions and Outlook

In this paper we introduced the BlockME-method that

supports the modeling and execution of blockchain-

aware business processes. We proposed an extension

to BPMN that captures the semantics of blockchain-

based systems and assists modeling fine-grained deci-

sions when handling the uncertainty of blockchain trans-

actions. We further showed how to convert each of the

proposed modeling extensions into standard-compliant

BPMN 2.0 process fragments. Moreover, we designed

the Blockchain Access Layer, an integration middleware

that allows external applications to communicate with

public blockchain systems while taking care of block-

chain specificities. This layer supports the execution of

blockchain-aware processes by providing asynchronous

operations they can access. Finally, we proved the feasi-

bility of the method by presenting a system architecture

and a prototypical implementation of the BAL.

As future work, we intend to expand the approach

both horizontally, by supporting further blockchain sys-

tems, and vertically, by introducing new capabilities such

https://github.com/web3j/web3j
https://github.com/ghareeb-falazi/blockchainaccesslayer

12 Ghareeb Falazi et al.

as handling smart contracts deployment and invocation.

We further intend to develop a concept to express the

durability of blockchain transaction with means other

than the number of block-confirmations in order to sup-

port non-linear ledgers, such as the Tangle [15]. Finally,

we plan to create tools for transforming and deploying

BlockME-models without the need for a human-expert,

thus fully automating the BlockME-method.

References

1. (2018) Digital business automation on cloud. URL

https://www.bpm.ibmcloud.com/

2. (2018) Hyperledger Fabric. URL https://www.

hyperledger.org/projects/fabric

3. (2018) Petals BPM. URL http://bpmneditor.

petalslink.com/

4. Auberger L, Kloppmann M (2017) Combine

business process management and blockchain. URL

https://www.ibm.com/developerworks/library/

mw-1705-auberger-bluemix/1705-auberger.html

5. Breitenbücher U, et al (2015) A situation-aware

workflow modelling extension. In: Proc. of iiWAS,

ACM Press, DOI 10.1145/2837185.2837248

6. Cecere L (2017) Seven use cases for Hy-

perledger in supply chain. URL http:

//www.supplychainshaman.com/big-data-

supply-chains-2/10-use-cases-in-supply-chain-

for-hyperledger/

7. García-Bañuelos L, et al (2017) Optimized execu-

tion of business processes on blockchain. In: Busi-

ness Process Management, Springer International

Publishing, Cham, pp 130–146

8. van Kralingen B (2018) IBM, Maersk joint

blockchain venture to enhance global trade.

URL https://www.ibm.com/blogs/think/2018/

01/maersk-blockchain/

9. López-Pintado O, et al (2017) Caterpillar: A

blockchain-based business process management sys-

tem. In: Proc. of BPM Demo Track co-located BPM

10. Mattila J (2016) The blockchain phenomenon –

the disruptive potential of distributed consensus

architectures. ETLA Working Papers 38, The Re-

search Institute of the Finnish Economy, URL

https://ideas.repec.org/p/rif/wpaper/38.html

11. Mendling J, et al (2018) Blockchains for business

process management - challenges and opportuni-

ties. ACM Transactions on Management Informa-

tion Systems 9(1):4:1–4:16, DOI 10.1145/3183367,

URL http://doi.acm.org/10.1145/3183367

12. Mettler M (2016) Blockchain technology in health-

care: the revolution starts here. In: 2016 IEEE

18th International Conference on e-Health Network-

ing, Applications and Services (Healthcom), pp 1–3,

DOI 10.1109/HealthCom.2016.7749510

13. Nakamoto S (2008) Bitcoin: A peer-to-peer elec-

tronic cash system. White Paper

14. OMG (2011) Business Process Model and Notation

(BPMN), Version 2.0

15. Popov S (2018) The Tangle. White Paper

16. Schmidt S, et al (2018) Unibright-the unified frame-

work for blockchain based business integration.

White Paper

17. Schwartz D, Youngs N, Britto A, et al (2014) The

Ripple protocol consensus algorithm. White Paper

18. Underwood S (2016) Blockchain Beyond Bitcoin.

Commun ACM 59(11):15–17, DOI 10.1145/2994581

19. Weber I, et al (2016) Untrusted business process

monitoring and execution using blockchain. In:

La Rosa M, Loos P, Pastor O (eds) Business Pro-

cess Management, Springer International Publishing,

Cham, pp 329–347

20. Wood G (2018) Ethereum: a secure decentralised

generalised transaction ledger - Byzantium version.

White Paper

21. Xu X, Weber I, Staples M, Zhu L, Bosch J, Bass

L, Pautasso C, Rimba P (2017) A taxonomy of

blockchain-based systems for architecture design. In:

2017 IEEE International Conference on Software

Architecture (ICSA), pp 243–252, DOI 10.1109/

ICSA.2017.33

All links were last followed on 2019-02-04.

https://www.bpm.ibmcloud.com/
https://www.hyperledger.org/projects/fabric
https://www.hyperledger.org/projects/fabric
http://bpmneditor.petalslink.com/
http://bpmneditor.petalslink.com/
https://www.ibm.com/developerworks/library/mw-1705-auberger-bluemix/1705-auberger.html
https://www.ibm.com/developerworks/library/mw-1705-auberger-bluemix/1705-auberger.html
http://www.supplychainshaman.com/big-data-supply-chains-2/10-use-cases-in-supply-chain-for-hyperledger/
http://www.supplychainshaman.com/big-data-supply-chains-2/10-use-cases-in-supply-chain-for-hyperledger/
http://www.supplychainshaman.com/big-data-supply-chains-2/10-use-cases-in-supply-chain-for-hyperledger/
http://www.supplychainshaman.com/big-data-supply-chains-2/10-use-cases-in-supply-chain-for-hyperledger/
https://www.ibm.com/blogs/think/2018/01/maersk-blockchain/
https://www.ibm.com/blogs/think/2018/01/maersk-blockchain/
https://ideas.repec.org/p/rif/wpaper/38.html
http://doi.acm.org/10.1145/3183367

	Title Page
	Acknowledgment
	Introduction
	Background and Motivation
	The Blockchain Access Layer (BAL)
	Blockchain-aware Modeling Extension
	Case Study
	Transformation of blockme-Artifacts into Standard-compliant Fragments
	Validation
	Related Work
	Conclusions and Outlook

