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Abstract—Blockchains are distributed systems that facilitate
the interaction of autonomous entities with limited mutual trust.
Many of them support transactional applications known as smart
contracts, which access and modify the shared world state.
Permissionless blockchains are completely decentralized and do
not require mutual trust between interacting peers, but at the ex-
pense of having low performance and limited data confidentiality
capabilities. On the other hand, permissioned blockchains solve
these issues, but sacrifice complete decentralization and involve
more trust assumptions. Therefore, there is no single blockchain
system suitable for all use-cases. However, this becomes a serious
integration challenge for enterprises that need to interact with
multiple permissioned and permissionless blockchains in the
same context. To facilitate this, we propose an approach that
enables composing smart contract functions of various permis-
sioned and permissionless blockchain systems by providing the
ability to invoke them directly from business process models
using a new task type. To keep this task blockchain-agnostic, we
designed a generic technique to identify smart contract functions,
as well as a generic metric to describe the degree-of-confidence
in the finality of blockchain transactions. Thereby, the proposed
approach extends our previous work, BlockME, which provides
business modeling extensions only suitable for interacting with
permissionless blockchains. To validate the practical feasibility
of our approach, we provide a detailed system architecture and
a prototypical implementation supporting multiple blockchains.

I. INTRODUCTION

Blockchain systems have gained attraction in recent years in
fields such as payment settlement, supply chains management,
health care and digital identity. They can be described as
distributes systems that allow independent parties to conduct
collaborative processes even while having limited mutual
trust. Early blockchain protocols, such as Bitcoin [1] and
Ethereum [2], where permissionless, in the sense that partic-
ipating in the protocol with any role is open for everyone.
These systems favor absolute decentralization over privacy
and performance, and thus are not suitable for demanding or
competitive use-cases, such as the ones involving enterprises.
Therefore, permissioned blockchains were introduced as an al-
ternative that guarantees data confidentiality and ensures better
performance at the expense of losing some degree of decen-
tralization. However, due to their nature, permissioned block-
chains are usually independent silos containing partners from
a similar domain, which means that an enterprise could easily
become involved in more than one permissioned blockchain.
Furthermore, enterprises still need permissionless blockchains,
e.g., to utilize cryptocurrencies or store immutable hashes of
confidential data for auditing purposes.

A regular application program can be used to implement this
sort of integration. Nonetheless, this would require the devel-
opers to have significant knowledge of the involved blockchain
technologies, which do not follow established standards and
are very different in terms of properties, behavior and exposed
APIs. This has the potential of making the development
process time-consuming and error-prone. Therefore, our aim
here is to solve this integration challenge by allowing enter-
prises to compose the functionality provided by blockchain
smart contracts, which are the transactional applications that
these systems support, using business processes, and thus
gain the ability to model the composition logic using well-
established languages such as BPMN [3]. To this end we
introduce the BlockME2 approach, which is based on our
previous work [4], and has the following new contributions:
(i) it proposes a new BPMN task type that is capable of
modeling the invocation of a smart contract function and
makes sure the associated blockchain transaction is durably
committed; (ii) it specifies how this task can be transformed
into standard-compliant BPMN, which can be executed on
common process engines like Camunda [5]; (iii) it introduces
a generic measure for describing the degree-of-trust that a
certain blockchain transaction is durably committed, despite
the fact that different blockchains decide differently on when a
transaction is considered final; (iv) it also introduces a generic
URI scheme for identifying smart contract functions of various
permissioned and permissionless blockchains.

On the other hand, to prove the practical feasibility of the
approach, we provide an architectural design and a prototyp-
ical implementation for the Blockchain Access Layer (BAL),
which is the middleware component that we introduced to
support the execution of BlockME2 models. Finally, we show
how BlockME2 can be applied to a simple real-world scenario
from the domain of car manufacturing and retail.

The remainder of the paper is structured as follows: in
Section II, we present the background and motivation. In
Section III, we provide a high-level overview of BlockME2
and describe the related previous approach. In Section IV, we
explain how to measure the degree-of-confidence in the finality
of blockchain transactions, while in Section V, we explain
the actual approach in detail. Afterwards, in Section VI, we
validate the feasibility of the approach, and in Section VII,
we demonstrate a real-world scenario. We present the related
work in Section VIII, and finally provide concluding remarks
and discuss the planned future work in Section IX.



II. BACKGROUND AND MOTIVATION

In this section, we introduce the required background
knowledge and motivate this work based on an example.

A. Permissionless Blockchains

Permissionless (or public) blockchains are decentralized
systems designed to run transactional programs that access a
fully replicated immutable data store without the need to have
full trust in any single participant or in a third-party. This
kind of blockchains is open for participation by nature, and
allows anyone to join the system by simply running a local
instance of the corresponding peer-to-peer protocol. The first
permissionless blockchain to be introduced was Bitcoin [1].
It is a decentralized payment network that introduces its own
cryptocurrency and achieves probabilistic consensus on what
transactions to execute next and in which order via a protocol
based on Proof-of-Work (PoW) [6]. Furthermore, to ensure
the integrity and non-repudiation of these transactions Bitcoin
utilizes digital signatures. Therefore, users can be identified
in the network using their public keys without the need for
real-world identities, which makes them pseudonymous.

Apart from Bitcoin, other permissionless blockchains exist
that aim at generalizing the scope of the supported transac-
tional programs so that it includes use-cases beyond payment
settlement. For example, Ethereum [2], another permissionless
blockchain utilizing PoW to achieve consensus, introduced the
notion of smart contracts [7] to the world of blockchains.
Ethereum smart contracts are small applications written in a
general-purpose, Turing-complete language, such as Solidity.
They usually contain multiple functions and are stored im-
mutably in the blockchain. The execution of smart contract
functions is done by all nodes in the system and is guaranteed
to be deterministic. Therefore, they are usually used in applica-
tions involving multiple parties and requiring trustworthy and
decentralized execution of the business logic, such as multi-
signature escrows, decentralized autonomous organizations,
financial derivatives, name registries, and many more. A smart
contract is isolated from other smart contracts by having its
own storage that can only be accessed by its own functions.
Furthermore, a subset of these functions is usually public
allowing other smart contracts or even external applications
to interact with them. Invoking smart contract functions that
cause a change in the underlying storage always happens in
the context of an atomic transaction. Therefore, the execution
of a state-changing public function of a smart contract requires
the formulation and submission of a blockchain transaction.
The content of this data structure includes the address of
the corresponding smart contract, the name of the function
to be invoked, as well as the required parameters. After a
peer issues such a transaction, it goes through the consensus
mechanism, and if valid, it ends up in an agreed-upon batch
of transactions, or a block. A block determines the relative
order of all contained transactions that dictates which one
should be executed before which. New blocks are broadcast
throughout the network allowing all peers to execute them.
Each transaction in a block runs atomically and in isolation.

Despite their benefits, permissionless blockchains suffer
from several drawbacks inherited from their fully replicated
and open nature: (i) They have low performance in terms of
the ability to process a high throughput of transaction requests.
The reason is that, on the one hand, PoW progresses in peri-
odic phases, which have a limit in terms of how frequent they
are, and on the other hand, the number of transactions that can
be included in each phase is also limited. For example, Bitcoin
is currently able to process only about 7 tx/s. Approaches
to enhance performance, such as altering PoW parameters,
using other consensus mechanisms such as Proof-of-Stake, or
sharding the network into smaller sub-networks, all have the
side effect of reducing some desirable property of the system,
which is usually the degree of decentralization [8]. (ii) Data
stored in permissionless blockchains is publicly accessible as
it is fully replicated among all peers. Therefore, without imple-
menting additional measures on top of the original protocol,
this kind of blockchains suffers from confidentiality issues.
(iii) Public blockchain transactions never reach absolute
finality, because the design of PoW allows forking the chain
of agreed-upon transactions due to factors such as network
latency. When the forks are amended, certain transactions
committed in the dropped forks might be revoked. These
drawbacks hinder the utilization of public blockchains by large
businesses since they prevent their integration into enterprise-
grade systems that usually require secure, high performance
applications that guarantee reliable and consistent transactions.
Therefore, permissioned blockchains were introduced with the
main goal of avoiding these shortcomings.

B. Permissioned Blockchains

Permissioned blockchains are blockchain systems in which
the participation in some or all roles is restricted to a set of
users. This includes systems that implement total control over
all user roles, such as Hyperledger Fabric [9], and systems
that only control which nodes are allowed to participate
in the consensus process while leaving other roles open,
such as XRP Ledger [10] and Chain [11]. Permissioned
blockchains are best suited for competing enterprises that
are, nonetheless, willing to engage in collaborative processes
without employing third-parties, such as notaries, or central-
ized settlement networks [12]. The reason is that, besides
being mostly general-purpose and supporting smart contracts,
permissioned blockchains provide enhancements over their
permissionless counterparts that facilitate enterprise-grade use-
cases: (i) Since the participation in the consensus protocol is
limited to a specific group of users that requires explicit system
reconfiguration to be modified, permissioned blockchains are
able to use Byzantine Fault Tolerant (BFT) protocols, which
are a better alternative in terms of transaction latency and
throughput [13]. (ii) Furthermore, permissioned blockchains
are generally better in terms of confidentiality since sensitive
transactions can be isolated from public access. (iii) Finally,
most permissioned blockchain systems achieve transaction
finality and other desirable transactional properties which their
permissionless counterparts lack [14].
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Fig. 1. The problem solved by the approach: How can we allow Enterprise 1
to utilize two different blockchain technologies?

However, these interesting enhancements come at the price
of reducing decentralization due to depending on an adminis-
trative entity that decides user roles, and on a predefined set
of nodes to perform transaction validation.

C. Motivation

It is often necessary for enterprises to run processes that
span multiple systems. This also applies to blockchains: an
enterprise could participate in multiple consortia of companies
each with its own permissioned blockchain, while at the same
time accepting payments using a cryptocurrency that is pub-
licly traded on a permissionless blockchain. Another reason
why processes spanning multiple blockchains are needed is
that permissioned blockchains require participants to have
a certain level of trust that the system administrators will
not perform malicious acts, such as transaction censorship.
Moreover, external entities responsible for performing audits,
as well as end-users, cannot be sure that the participants of
a permissioned blockchain system did not collide in reverting
certain parts of the blockchain history for their own bene-
fits [15]. This can be addressed, for example, by storing values
that represent digests of the permissioned blockchain’s state in
a publicly accessible permissionless blockchain, which makes
them immutable. An auditing entity, can then easily compare
these values with the state of the permissioned blockchain and
thus ensure that no malicious alterations were performed.

Figure 1 shows an example that demonstrates such a
case. Here, an enterprise (Enterprise 1) is a member of a
permissioned blockchain system BC1, and a permissionless
blockchain BC2. By being a member of a permissioned
blockchain system, we mean that the enterprise operates an
authorized node, which is permitted to communicate with the
rest of the system, read the committed state, and invoke smart
contract function calls that change it. In contrast, member-
ship in a permissionless blockchain does not require special
authorization: the enterprise only needs to run an instance of
the corresponding P2P protocol. In this example, Enterprise
1 uses BC1 to conduct business with a consortium of other
participants. For example, assuming that Enterprise 1 is a
car manufacturer, BC1 could be a blockchain handling the
supply chain of car parts. Furthermore, Enterprise 1 uses BC2
to periodically record immutable digests of the confidential
interactions it makes within BC1, which could be necessary
for the auditing process conducted by external authorities

Business Process Managament

Blockchain Systems

BC 2
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BC 1
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Fig. 2. Using business processes to model the interaction with permissioned
and permissionless blockchain smart contracts.

responsible for, e.g., administering tax laws. Apart from that,
Enterprise 1 has its own business logic which influences how
and when it interacts with other enterprises via smart contracts.

For these scenarios, an application program, which acts as
a node in all relevant blockchain networks, is usually used
to implement how the enterprise interacts with the various
systems and how this is influenced by its own business logic.
If this program is implemented in an ad-hoc manner, extending
the logic to further cases, or altering it according to changing
requirements and urgent needs becomes difficult. Therefore,
in this work we try to answer the question: “How can we
compose the functionality of permissioned and permissionless
blockchain systems in a flexible and re-usable way that allows
enterprises to benefit from their individual strengths while
properly handling their specificities?”

III. APPROACH OVERVIEW AND PREVIOUS WORK

In this section, we present an overview of our approach,
which is process-based and allows enterprises to compose
smart contracts of permissioned and permissionless block-
chain systems in order to achieve the scalability, security
and robustness offered by the former, and the high level of
decentralization offered by the latter, while at the same time
correctly handling their special interaction models.

A. Approach Overview

The approach we present allows an enterprise, being a
member of one or more permissioned blockchain systems
and potentially also one or more permissionless blockchain
systems, to inter-operate the smart contracts it uses in these
systems and at the same time incorporate its local business
logic in a unified, flexible process model as shown in Fig. 2.
To allow an enterprise, like Enterprise 1, to orchestrate its
interactions with the smart contracts of various permissioned
and permissionless blockchain systems while at the same time
taking its own business logic into consideration, we propose
a process-based approach. In this approach, a process model,
developed in a language like BPMN [3], allows the enterprise
to visually describe when and under which conditions it
invokes functions of smart contracts residing in the blockchain



systems it is connected to. It also models the business rules
that govern these invocations. Such a process model is then
instantiated and executed on a Business Process Management
System (BPMS) which would translate the modeled constructs
into actual messages and API calls.

Business Process Management (BPM) provides us well-
established concepts, standards and tools for the specification,
execution and automation of processes within and across
organizations through the notion of business process mod-
els [16, 17]. Therefore, adopting business process models
within our approach results in advantages on multiple levels.
This includes, for example, the use of standardized model-
ing languages supporting complex error and compensation
handling, mature tool-support through standardized process
engines and modeling tools, broad application, i. e., many
companies are already familiar with BPM tools and modeling
languages, and straight-forward interactions and integration
with other systems through services and API calls.

B. Previous Work: Blockchain-aware Business Process Model-
ing and Execution (BlockME)

In our previous work [4], we developed the BlockME
method, which aimed at allowing existing business processes
to conduct cryptocurrency-related operations with permission-
less blockchains, like Ethereum and Bitcoin, by providing
support at the modeling level and at the execution level.
The major obstacle BlockME tried to tackle is the lack of
transaction finality of most permissionless blockchain systems.
As a result of this undesirable property, applications issu-
ing permissionless blockchain transactions need to wait for
several blocks to be confirmed and appended to the block-
chain data structure on top of a transaction tx before being
relatively confident that tx is final and will not be revoked
due to blockchain forking. Apart from handling blockchain
uncertainty, the approach facilitates sending and receiving
cryptocurrency transfers. Overall, the following operations
are supported: (i) submitTransaction operation, which allows
submitting a blockchain transaction that transfers an amount
of cryptocurrency from one account to another on the same
system, and ensures that the transaction receives a certain num-
ber of block confirmations; (ii) receiveTransaction operation,
which allows monitoring a specific blockchain address and
issuing callbacks when it receives cryptocurrency transfers via
transactions with a defined number of block confirmations;
(iii) detectOrphanedTransaction and ensureTransactionState
operations, which both monitor the state of a given blockchain
transaction. The former of the two triggers a callback when it
detects that the transaction resides in an dropped, or orphaned,
blockchain fork, which puts it under the risk to be invalidated
if a contradicting transaction exists in the replacing fork. On
the other hand, the latter operation triggers a callback only
when the monitored transaction receives a specific number of
block confirmations, making it relatively safe to be considered
durably committed. The BlockME method supports these
operations at both the modeling and the execution levels.

To realize this, the method is split into three phases: In the
first phase, the modeling phase, we introduced an extension
to the BPMN language that abstracts the possible interactions
and complex events of permissionless blockchains into easy-
to-understand constructs that have the familiar look and feel of
BPMN. Specifically, the proposed constructs aim at providing
a visual representation of the aforementioned operations and
their parameters allowing the modeler to develop a blockchain-
aware process model that is easy to understand and free of po-
tentially unmanageable clutter resulting from trying to handle
blockchain uncertainty. Table I provides a brief overview of the
proposed constructs. In the second phase, the resulting model
is transformed into a standard-compliant BPMN model that
is directly executable on process engines like Camunda [5].
To this end, we provided a set of clear transformation rules to
apply. In the last phase, the execution phase, the process engine
communicates with a specialized plug-in based middleware
layer called the Blockchain Access Layer (BAL) that provides
external applications a unified, asynchronous API that allows
them to communicate with various permissionless blockchain
systems. The BAL is extended with a new adapter for each
blockchain system we want to support. These adapters perform
translation between the high level BAL API being used by
the process engine and other applications, and the APIs
of individual blockchains. Table I also shows which BAL
API operations support which BPMN constructs. Notice that
for each high level operation, two BAL API operations are
present: one to subscribe for future notifications when the
corresponding conditions are met, and the other to unsubscribe
from such notifications. This is due to the asynchronous nature
of the operations under consideration.

BlockME suffers from two major drawbacks that prevent
using it as-is to solve the new research question introduced
in this paper: (i) it is only designed for permissionless block-
chain systems that have a linear blockchain data structure.
Therefore, the confidence that a given transaction is durably
committed is measured in the number of block confirmations.
For BFT-based permissioned blockchains, and for graph-based
blockchains in general, a different measure is needed; (ii) it
only supports cryptocurrency-related transactions that transfer
value from one account to another on the same permissionless
blockchain system. Therefore, the invocation of permissioned
or permissionless smart contracts is not supported. In the next
sections, we describe the required modifications and exten-
sions of BlockME to support cross-blockchain composition of
smart contracts. To have a clear differentiation between the
old and the new approaches, we call the new one BlockME2.

IV. UNIFIED MEASURE FOR TRANSACTION FINALITY

In this section, we try to find a measure for transaction
finality that is suitable for any kind of blockchains.

A. The Problem of Blockchain Transactions Finality

As we briefly mentioned in Section II-A, transactions of
permissionless blockchains as well as certain permissioned
blockchains never reach absolute finality: In such systems, the



TABLE I
OVERVIEW OF THE BPMN EXTENSION CONSTRUCTS OF BLOCKME AND

THE CORRESPONDING BAL API OPERATIONS

BPMN Extension BAL API

SubmitTransactionTask
subscribe submitTransaction
unsubscribe submitTransaction

ReceiveTransactionTask
subscribe receiveTransaction
unsubscribe receiveTransaction

EnsureTransactionStateTask
subscribe ensureTransactionState
unsubscribe ensureTransactionState

OrphanedTransactionEvent
subscribe detectOrphanedTransaction
unsubscribe detectOrphanedTransaction

creation of a new block of transactions is open to any node.
Although the created block has to fulfill certain criteria, like
the validity of its contents and the expensive calculation of a
suitable nonce according to PoW, multiple nodes could come
up with a valid block at relatively the same time. This results in
splitting-up the network into partitions, each of which accept-
ing a different block as the latest in the chain. Effectively, this
splits the blockchain data structure into branches. On certain
conditions, these branches can grow independently for some
time, or can even produce further branches. To eventually
come at a consistent data structure, each system has its rule of
selecting the one-true branch. For example, Bitcoin selects the
chain with the largest accumulative PoW (basically, the longest
chain) as being the only valid chain. When a winning branch is
chosen, transactions that only exist on the discarded branches,
orphaned transactions, move to the memory pools of the nodes
that are aware of them and are broadcast again to the remaining
nodes. Normally, these transactions will be included in the
valid chain after some node “mines” them into a block again.
However, if the main chain already includes transactions that
contradict with them, the orphaned transactions are considered
invalid, and will be discarded.

This happens, for example, if the sender of the transaction
is an adversary trying to implement a double-spending attack,
in which they submit a transaction transferring an asset to
peer A, and try to send the same asset in another transaction
to a different peer B. The aim of this attack is tricking A
into thinking that they actually received the ownership of the
asset and, in return, send some valuable product back to the
attacker. To make the attack succeed, the adversary tries to
create a different branch in the blockchain starting from a
block that precedes the one including the transaction to A. This
new branch would contain the transaction to B. Furthermore,
the attacker tries to convince the rest of the network that
this branch is the one-true branch by making it the longest
through mining new blocks. The success of the attack boils
down to the ability of the attacker to outpace the rest of the
network in generating new blocks. However, if the attacker
does not control more than half of the computing power of the
network, the probability that the attack succeeds diminishes
exponentially over time, i.e., when further blocks are added
on top of it [1]. Therefore, a recipient should not immediately

consider the transaction final and rather wait for some blocks
to be appended, i.e., block confirmations, before processing it.
Nonetheless, the usage of block confirmations as a measure of
confidence in the finality of transactions has some drawbacks,
which we will discuss next.

B. Why not Using Block Confirmations?

There are three major reasons that make block confirmations
a problematic system-agnostic measure for transaction finality
confidence to be used by a higher abstraction layer: (i) dif-
ferent PoW-based blockchains have different parameters, such
as the block generation interval, which results in a different
recommended number of block confirmations. For example,
6 block confirmations are suggested by the standard Bitcoin
client [18], whereas 12 are suggested by standard Ethereum
clients [19, 20]; (ii) some blockchain technologies, such as
the Tangle [21], do not use a linear chain data structure, but
rather a graph. These systems measure the confidence that
a transaction is valid and final in ways different than block
confirmations; (iii) finally, certain permissioned blockchains,
such as Hyperledger Fabric [9], use a consensus mechanism
that reaches absolute finality with the first block. Therefore,
waiting for more than one block confirmation is an overkill and
would result in an unnecessary delay. For these reasons, we
propose a different measure of transaction finality confidence.

C. Defining a new Measure

Instead of using the number of block confirmations to
measure the confidence we have in the finality of a blockchain
transaction tx, we propose using the probability that an attacker
will fail to overwrite tx even that they control a certain
percentage of the network’s resources. In order to formally
define this probability, first, let us define the following event:

Definition 1 (Failed Attack Event): The event that an attack
involving an adversary controlling a proportion q of the voting
power of a blockchain system s and trying to replace a
committed transaction tx with a different transaction tx′ in
the common data store fails.
Where the common data store refers to the data store rec-
ognized as the source of truth by the users that follow the
standard protocol of s , i.e., the honest users. For example,
the chain with the largest accumulative PoW is considered as
the agreed-upon shared data store in Bitcoin. Furthermore, the
voting power of a user refers to the degree in which the user
can influence the consensus protocol. For example, the voting
power in PoW is measured by the computational power, or the
hash-rate, controlled by the corresponding user. Based on this
event we define the following random variable:

Definition 2 (Failed Attack Duration Random Variable
(Xfail)): A random variable describing the duration of a failed
attack event.
Finally, let us define the measure we are looking for:

Definition 3 (Degree of Confidence in the Finality of Trans-
actions of a Blockchain System s (DoCs,T )): The probability
that an attack on s fails within a given duration T , i.e.,
P [Xfail ≤ T ]



We notice that the previous definition is generic and
technology-agnostic, which makes it applicable to a wide
range of blockchian systems. However, we cannot give a
general formula for DoCs,T that is applicable for all intended
systems since they differ in many ways. Nonetheless, we know
that this value typically increases quickly over time, since
otherwise, s would be vulnerable to double-spending attacks
(if the probability is constantly low), or not usable (if it takes a
long time to sufficiently increase). Next, we see how DoCs,T
is formulated in a number of permissionless and permissioned
blockchain systems.

D. The Formulation of DoCs,T in Various Blockchain Systems

DoCs,T , as explained in Definition 3, is usually formulated
by the creators of every blockchain system that uses a con-
sensus protocol guaranteeing only a probabilistic model of
transaction finality, such as PoW and Tangle, since it is an
important factor in proving that these systems are resistant to
resource-bounded attacks. For example, S. Nakamoto [1], the
creator of Bitcoin, formulated this probability as:

P [Xfail ≤ T ] =
z−1∑
k=0

λke−λ

k!
(1− (

q

1− q
)z−k) (1)

Where z represents the current depth (the distance from the
top of the blockchain) of the block that contains tx, and since
the protocol is designed so that a new block is mined at
almost every 10 minutes, z can be estimated by z ≈ 600 ∗ T .
Moreover, λ is defined as λ = z q

1−q . Providing that an attacker
does not control more than half of the computing power of the
network, i.e, q < 0.5, this probability increases over time.

In the case of Ethereum, the same formula is used. How-
ever, since the designated block interval is smaller than that of
Bitcoin (12s vs 600s), i.e., z ≈ 12 ∗T , Ethereum suffers from
a higher stale rate, which refers to nodes working on mining
a block of some height n when such a block is already added
to the blockchain due to network latency, which effectively
results in wasted computing power on the honest side of an
attack scenario. Furthermore, because this interval is small,
the cost of the attack decreases since the required energy is
smaller. This means that attackers can invest more on buying
mining equipment. Both issues affect the relative distribution
of computing power between the honest nodes and the attacker
“racing” with them, which is denoted as q in the previous
equation. V. Buterin, the creator of Ethereum, suggests to
use a 10× increase of the attacker’s computing power due to
the aforementioned factors [22]. This explains why Ethereum
suggests to wait for 12 block confirmations (which achieves
DoCethereum,0.2 = 0.9998 at q = 0.2), while Bitcoin suggests
6 (which also achieves DoCbitcoin,0.1 = 0.9998, but at
q = 0.1). Moreover, a formula for the graph-based blockchain,
Tangle is also defined in the literature [21, Equ. 11].

In the case of permissioned blockchain systems that guaran-
tee the finality of transactions as soon as the consensus proto-
col is successfully executed, such as Hyperledger Fabric [9],
Chain [11] and Quorum [23], defining a formula for this

measure is straight forward; since a committed transaction
cannot be replaced, a regular attack will definitely fail, i.e.,
∀T > 0, P [Xfail ≤ T ] = 1. Nonetheless, censorship attacks
can occur before the transaction is committed, but we do not
consider them here.

V. BLOCKME2: A PROCESS-BASED APPROACH FOR
CROSS-BLOCKCHAIN SMART CONTRACT COMPOSITION

In this section, we explain the BlockME2 approach that
allows enterprises to compose the functionality provided by
various permissioned and permissionless blockchain smart
contracts without worrying about the specificities of each one
of these systems.

A. Applying the DoC Measure

In Section IV, we defined a measure capable of evaluating
how much we are confident that a given committed transaction
will not be revoked as a result of an attack. Here, we
show how we apply this measure to BlockME2 both at the
modeling level, and the execution level: all previously defined
BPMN constructs at the modeling level (see Table I) had a
parameter called WaitUntil that accepted the number of block
confirmations as its value. To apply the new measure, we
replace this parameter in these constructs with a new one
called Confidence that takes as a value a real-number between
0 and 100 which represents the DoC as a percentage. We also
add this parameter to the new construct we define later in this
paper. On the other hand, the actual formula for the measure
is implemented at the BAL (execution) level. However, this
is not done in the technology-agnostic layer of BAL, but
rather at the level of each individual adapter, which means
that developers of new adapters are responsible for defining
and implementing the formula that represents the probability
described in Definition 3 for the corresponding system.

B. Invoking Blockchain Smart Contracts

Since blockchain smart contracts embed the transactional
programs supported by such systems, invoking them is crucial
for external applications trying to exploit their functionality.
In this section, we explain how BlockME2 supports the
invocation of smart contract functions of permissioned and
permissionless blockchains both by introducing a new BPMN
task, and by adding a corresponding asynchronous operation
to the BAL. However, the ability to uniquely identify the
specific smart contract function we want to invoke is a clear
prerequisite for the success of this goal. Therefore, we first
discuss how this can be achieved.

1) Addressing Smart Contract Functions: Smart contracts
and their functions are identified differently based on the
corresponding blockchain system they are deployed on. For
example, Ethereum smart contracts are either identified by
their blockchain address, which is a unique fixed-length hexa-
decimal value [2], or by a human readable name taking
the form of a domain name registered using the Ethereum
Name Service (ENS) [24]. A second example is Hyperledger
Sawtooth [25], a permissioned blockchain systems that defines



families of transaction programs. A transaction family can
directly include fixed functions, like the IntegerKey transaction
family [26], or can allow the deployment of user-defined
smart contracts that include their own functions, like the
Seth transaction family [27]. A third and a final example is
Hyperledger Fabric, which divides the system into channels,
in which peers install chaincodes. Each chaincode consists of
one or more smart contracts that include invocable functions.

We see that in all cases, smart contract functions are
addressable by specifying one or more hierarchical levels and
then the function itself. Therefore, we propose to treat these
functions as resources and use the Unified Resource Identifier
(URI) web standard [28] to identify them. To this end, we
present a new resource identifier scheme called, scip (which
stands for “Smart Contract Invocation Protocol”) with the
following ABNF [29] syntax:
syntax = "scip://" bcid "/" *(pseg "/") func "?" [pars]

":" rtype
bcid = delid
pseg = delid
func = id
pars = pname "=" ptype *("&" pname "=" ptype)
pname = id
ptype = id
rtype = id
delid = 1*(ALPHA/DIGIT/"$"/"_"/"-"/"+"/".")
id = (ALPHA/"$"/"_") *(ALPHA/DIGIT/"$"/"_")

In which bcid refers to the identifier of the blockchain system
where the smart contract function is located. Recall that an
enterprise could be connected to multiple blockchian systems
(even of the same type, e. g., Fabric). We assume that an
identifier, which is unique within the domain of the enterprise,
is associated with each of these systems, and is used here.
Furthermore, pseg refers to a single segment in the path
that spans the various levels of hierarchy needed to reach
the smart contract function. Although in general, at least one
path segment is necessary, which would refer to the smart
contract itself, the syntax allows for an empty path to address
the special case in which we refer to a system-wide function
not contained in any smart contract. For example, one could
query the current height of a linear blockchain using a system-
wide function like getHeight. However, we do not predefine
such special functions at this level as they are technology-
specific. Additionally, func refers to the name of the function
we want to address. Finally, pars and rtype allow concretely
defining the exact function signature we want to address. The
former indicates the order, name and type of all potential input
parameters, whereas the latter defines the type of the returned
value or the keyword void if no value is returned. Input
and output parameter types are system-specific and are not
predefined here. Below is a list of some valid smart contract
function identifiers for Ethereum, Fabric, and Sawtooth:
scip://eth1/0xdf068aC89E6d5fa88520faace0267047e47102c2

/getOwner?:address
scip://fabric1/channel2/chaincode2/myFunc2?newVal=int:void
scip://sawtooth2/seth/0xfa3622e1/set?key=uint&value=uint:void

2) Invoking Smart Contract Functions: BlockME2 supports
invoking smart contract functions by introducing a new task

Function: [uri]
Parameters: [key-value pairs]
Confidence: [X %]

Invocation
ErrorTimeout

𝒇𝒏

Fig. 3. Visual representation of the InvokeSCFunctionTask and its parameters.

type, namely, the InvokeSCFunctionTask. This task, which
is visually represented in Fig. 3, has the following attributes:
(i) Function, which identifies the smart contract function we
want to call using the previously introduced scip scheme;
(ii) Parameters, which is a key-value list containing parameter
names and their values to be passed to the function, and
(iii) Confidence, is the DoC (see. Section IV) that we want
to achieve for the blockchain transaction issued to invoke the
function in case it is not read-only. This value is represented
as a percentage. Furthermore, this task has the following oper-
ational semantics: when it is reached, the execution stops and
the smart contract function is located and invoked using the
specified parameters. In case the function causes one or more
write operations to the underlying blockchain, a transaction
is issued and the execution remains halted until it achieves
the required confidence. Afterwards, the transaction details are
received and the execution continues regularly. However, if the
invoked function is read-only, no transaction is needed, and the
execution continues immediately after receiving the returned
value. Moreover, errors that could occur while trying to invoke
the function, e.g., a malformed scip, insufficient permissions,
or an exception thrown by the function itself, are caught by
a boundary message catch event and cause the execution to
take an alternative flow. Similarly, if a user-defined timeout
is reached before finishing the execution, another alternative
flow is taken starting from the attached timer boundary event.

On the other hand, to support the execution of this task,
the BAL introduces the invokeSCFunction asynchronous op-
eration. Under the hood, the BAL analyzes the scip URI
passed to it, and extracts the bcid fragment in order to identify
the suitable blockchain adapter. Next, it forwards the request
to this adapter, which knows exactly how smart contract
functions are invoked and how the DoC is measured for the
specific blockchain system it is handling. Finally, when the
required conditions are satisfied, the BAL notifies the process
engine running the business model, and passes the result to it.

To ensure compatibility with common BPMS, we provide
a transformation rule, demonstrated in Fig. 4, that allows
transforming the InvokeSCFunctionTask into a standard com-
pliant fragment. Accordingly, the task is transformed into
a sub-process with two tasks; a send task that triggers the
invokeSCFunction operation at the BAL, and a receive task that
waits for the resulting message sent back from the BAL when
the specified smart contract function is successfully invoked.
Along with the functional attributes required for the operation
itself, the request message contains an endpoint url to which
the callback message should be sent and a correlation identifier
that allows the process engine to route it to the correct
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Fig. 4. Visual representation of the transformed InvokeSCFunctionTask.

model instance. The callback message itself also contains the
correlation identifier in addition to details about the transaction
that caused the invocation if the called function is not read-
only, or contains a concrete value otherwise. Furthermore,
timer boundary events attached to the InvokeSCFunctionTask,
are copied and attached to the resulting sub-process. However,
if such a timer event is triggered, we need to make sure to
unsubscribe from the invokeSCFunction operation by sending
an unsubscription message to the BAL before we continue
with the alternative flow. Such an unsubscription message is
not required for the normal flow, as the BAL unsubscribes
automatically after sending the callback. Finally, to allow
the resulting segment to receive potential error messages, we
attach a boundary message catch event to the sub-process.
When such a message is received, an alternative flow is
activated. The body of the message contains the specific
reason behind it, which can be used to trigger specialized
compensating actions along this new execution path. An
explicit unsubscription message is not required, since the BAL
automatically unsubscribes after sending an error callback. A
message catch event is used instead of an error catch event
to capture this kind of errors, because they are of an external
nature, and are not triggered by a an error end event inside
the associated sub-process.

VI. SYSTEM ARCHITECTURE AND PROTOTYPICAL
VALIDATION

We validate the feasibility of the approach by providing
a refined architecture for the BAL and a prototypical imple-
mentation for it. Figure 5 shows the layered architecture of
the BAL. At the top, we find the management layer, which is
technology-agnostic and responsible for managing the various
interactions that take place with external applications via the
exposed asynchronous API. To this end, the Subscription Man-
ager is responsible for correlating request messages received
from external applications with their responses. Furthermore,
the Callback Manager is responsible for sending back the
result of each requested operation to the endpoint specified
by the external application. Finally, the Blockchain Manager,
coordinates the work of the previous sub-components, and
provides the high-level logic for all supported operations.

On the other hand, technology-specific tasks are handled
by the second layer, which contains a collection of adapter
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Fig. 5. The architecture of the Blockchain Access Layer (BAL)

instances exposing the same generic interface, but implement-
ing their functionality differently based on the underlying
blockchain. Specifically, adapters contain the following sub-
components: (i) a Confidence Calculator that is capable of
applying the formula suitable for calculating the DoC (see
Definition 3) of a transaction corresponding to the supported
blockchain system; (ii) a Smart Contract Function Invoker
that manages the invocations of smart contract functions and,
if necessary, requests issuing a transaction to the underlying
blockchain; (iii) a Blockchain Monitor which detects changes
in the blockchain and thus is capable of monitoring the recep-
tion of monetary transactions, or triggering the (re-)evaluation
of the DoC of a given transaction. (iv) A Transaction Manager
which is responsible for sending requests to the underlying
blockchain system in the form of transactions, or in the form of
read-only queries. By interacting with the Blockchain Monitor,
and the Confidence Calculator, it is also capable of determin-
ing when the DoC of a transaction becomes acceptable for a
certain request from the management layer.

We realized the BAL as a Java web application that
exposes a RESTful API to its client applications, such as
BPMS. When the application starts, it loads a configuration
file containing a definition of the connected blockchain sys-
tems. Among other things, these definitions contain the local
identifier to be associated with each network, as well as
the information on how to access the corresponding nodes,
and the needed credentials. The top layer of the BAL uses
this configuration file to determine the types and number of
instances of the required adapters. When these adapters are
created, the top layer starts routing requests to them as previ-
ously described. Our prototype, which is publicly accessible
at https://github.com/ghareeb-falazi/BlockchainAccessLayer/
releases/tag/smart-contract-composition contains the imple-
mentation of Bitcoin, Ethereum and Hyperledger Fabric
adapters, and in the future we plan to support further systems
such as Hyperledger Sawtooth and EOS.

VII. CASE STUDY

Figure 6 shows how the BlockME2 approach can be used to
address the following simplified scenario: a car manufacturer
is participating in two Fabric-based permissioned blockchains.
The first represents a consortium of car part providers and

https://github.com/ghareeb-falazi/BlockchainAccessLayer/releases/tag/smart-contract-composition
https://github.com/ghareeb-falazi/BlockchainAccessLayer/releases/tag/smart-contract-composition
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Fig. 6. A car manufacturer using the BlockME2 method to compose func-
tionality from two permissioned blockchains and a permissionless blockchain.

car manufacturers, whereas the second represents another
consortium also involving car manufacturers but with retail car
dealers. The example addresses one of the possible business
use-cases in which the manufacturer announces a request for
offers for a set of needed car parts by invoking the start

function of the smart contract SC1 1 located on the fabric1
network. The manufacturer then periodically retrieves a list of
the offers made by invoking the read-only function getOffers

of the same smart contract. If an offer is made with favorable
criteria, the loop breaks and the offer is accepted by invoking
a third function of the same smart contract, accept. On
parallel, the pricing of some of the cars affected by this
agreement is decreased for the corresponding car dealers by
invoking the function changePrice in the SC2 1 contract of
the fabric2 blockchain. At the end, the manufacturer stores
a hashed summary of the involved transactions in a third
smart contract on the Ethereum permissionless blockchains.
This facilitates auditing by allowing an external authority to
compare these immutable hashes with the values stored in the
two permissioned blockchains.

After the scenario is modeled using a composition of
the introduced InvokeSCFunctionTask, the resulting model
is transformed into standard-compliant BPMN and deployed
onto a BPMS operated by the car manufacturer. Then the
BPMS communicates with a BAL instance, which performs
the actual smart contract function invocations and returns the
results back asynchronously. As an example, Fig. 7 demon-
strates these steps in details for one of the smart contract
invocations of this scenario, namely the last call in Fig. 6,
which is annotated with an asterisk (*). At the top of this
figure, we see that the InvokeSCFunctionTask is transformed
into a sub-process called “Invoke storeHash Smart Contract
Function” with two inner tasks according to the rule presented
in Fig. 4. The figure also shows a data object passed to
the inputs of the “Subscribe to BAL” send task. This data
object contains the input parameters necessary to invoke
the subscribe invokeSCFunction operation of the BAL API.
These parameters include: (i) Function, which specifies the
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Ethereum smart contract function to be invoked using a scip

URI. In this case, a function called storeHash, which is
located in a smart contract with the address 0x123 and has
a single input and no outputs, is indicated; (ii) Parameters,
which defines a set of key-value pairs corresponding to the
input parameters indicated in the previous scip; in this case,
a single entry is present with a value that corresponds to the
digest of the previous blockchain transactions involved in the
current process instance; (iii) Confidence, which specifies the
DoC (see Section IV) that the resulting transaction should
achieve before the BAL sends a callback message to the
process engine. In this case, the value is 90 %, which corre-
sponds to about 4 block confirmations in the case of Ethereum;
(iv) CorrId, which is a randomly generated correlation iden-
tifier that permits the process engine to correctly deliver the
final resulting message to the designated process instance;
(v) CallbackURL, which is used to inform the BAL where to
send the callback message. In this case, it specifies an endpoint
located at: http://129.69.214.42:8080/engine-rest, which
the process engine reserves for this purpose.

A standard-compliant business process engine, such as
Camunda [5], is used to execute the transformed model, which
includes this BPMN fragment. When the execution reaches
the “Subscribe to BAL” send task, the following steps take
place: (1) the engine issues a POST HTTP call containing
a message with the previous variables to the endpoint that
corresponds to the subscribe invokeSCFunction operation of



the BAL. Then, the Blockchain Manager takes control, and
(2) registers the request at the Subscription Manager, and then
(3) analyzes the provided scip in order to route the message to
the adapter responsible for providing access to the designated
blockchain, in this case Ethereum. (4) Afterwards, the Smart
Contract Function Invoker, detects that the execution of this
function requires issuing a blockchain transaction. Therefore,
it delegates the task to the Transaction Manager. (5) Then, the
manager formulates the corresponding transaction and submits
it to an Ethereum node via a blockchain-specific JSON-RPC
call. (6) In the next step, it triggers the Blockchain Monitor
to start monitoring the status of the submitted transaction.
The monitor then subscribes for updates from the connected
Ethereum node. (7) When the node detects that the transaction
is mined into a block, or that a new block is added on top of
it, it sends a callback to the Blockchain Monitor. (8) Then
the monitor informs the Transaction Manager of the update.
The manager, then, needs to decide whether the required
Confidence level is reached. (9) To this end, it consults with
the Confidence Calculator, which implements the suitable
DoC equation for Ethereum (see Eq. (1)), and supplies it
with the necessary inputs. If the calculator indicates that the
required DoC is not reached yet, steps (7), (8), and (9) are
repeated until it does. (10) Then, the Transaction Manager
informs the function invoker of the successful execution of
the blockchain transaction and supplies it with its identifier.
(11) The invoker, then, forwards this information to the
Blockchain Manager, which (12) retrieves the corresponding
CorrId and CallbackURL from the Subscription Manager,
and (13) requests the Callback Manager to send a callback
message to the process engine via the specified endpoint.
(14) This is done also via an HTTP POST call that contains,
among other things, the same correlation identifier sent in the
original request message. Then, the engine uses this identifier
to select the correct process instance and forwards the received
message to it. Finally, the “Receive Callback” task emits this
message as a data object, which can be further used by other
activities. Similar steps are done for each of the smart contract
function invocations involved in the previous example.

VIII. RELATED WORK

Blockchain interoperability, which is abstractly defined as
the ability of blockchain systems to exchange data, is a widely
approached topic. Buterin [30] lists three major schemes
in which interoperability can be achieved: Notary schemes,
such as Interledger [31], involve a consortium of trusted
intermediaries that prove to one chain that certain events took
place on another chain. On the other hand, relay schemes, like
Polkadot [32] or Cosomos [33], build a dedicated permissioned
blockchain that plays the role of a client of other blockchain
systems and facilitates their interactions. Finally, hash-locking
schemes, like the Lightning Network [34], facilitate off-chain
atomic swaps of tokens among heterogeneous blockchains
without trusting third parties. These approaches make certain
trade-offs achieving only two out of the following three prop-
erties: portability (applicability to a wide range of existing and

future blockchain systems), decentralization (not depending on
trusted third-parties) and functionality (is only the exchange
of assets supported or also the execution of cross-chain smart
contracts?). Since our approach does not provide a global
blockchain interoperability solution, but rather allows an en-
terprise to compose the functionality of existing blockchains
it is directly connected to, such trade-offs are not applicable,
and the problem can be approached more directly.

On the other hand, Guida and Daniel [35] look at block-
chains and smart contracts from a service-oriented viewpoint
and propose to introduce smart contract descriptors and a
corresponding descriptor registry together with a composition
paradigm for smart contracts, which is prototypically realized
for the Ethereum blockchain. However, the focus of their
approach is on the development, reuse and composition of
smart contracts on the level of a single blockchain, while our
approach targets the composition of smart contracts within
and across different blockchains by utilizing business process
models as a composition paradigm. For smart contract de-
velopment and reuse itself, we fully agree with the authors
arguments, that BPMN-based solutions are not beneficial and
that a visual development environment, as presented by them,
is more helpful in supporting developers.

Other works such as Auberger and Kloppmann [36]
or Schmidt et al. [37] introduce connectors to communicate
with blockchains from business processes or other IT-systems.
However, these approaches delegate the task of how to cor-
rectly interact with a blockchain to the application layer,
which requires the involvement of blockchain experts. To
abstract away blockchain-specific issues, we introduce the
BAL that handles such concerns internally, and exposes a
comprehensible interface to external applications eliminating
the need for a blockchain expert on the other end. Furthermore,
on top of the BAL, the overall approach allows enterprises
to compose the functionality provided by blockchain smart
contracts without worrying about their specificities by utilizing
corresponding BlockME2 tasks within their process models.

Another way of combining BPM and blockchains is the
use of blockchains as the underlying infrastructure to execute
modeled business processes involving different partners in
an immutable and trustworthy manner [38–40]. While such
approaches introduce advantages regarding the execution of
collaborative business processes (i. e., process choreographies)
in a truly distributed manner within untrusted environments or
settings, it forces collaborating partners to agree on a single
blockchain technology upfront since, by default, smart con-
tracts of one blockchain system cannot invoke smart contracts
of another blockchain. As a result, this hinders the interaction
with different blockchains in a business process and therefore
does not allow to realize multi-blockchain scenarios as the one
described in Fig. 6. We look at blockchains as external systems
that allow to exchange transactions with unforeseen business
partners and customers. Therefore, our approach allows to
specify arbitrary interactions with different blockchain systems
to invoke smart contracts and issue blockchain transactions
as part of business process models to establish trust between



partners, while still enabling the specification of classical
business logic that does not require an additional level of trust
as provided through a blockchain.

IX. CONCLUDING REMARKS AND FUTURE WORK

In this work, we have presented BlockME2, an approach
that facilitates the composition of smart contract functions of
various permissioned and permissionless blockchain systems
by allowing BPMS to invoke them via a new technology-
agnostic BPMN task. To achieve this, we introduced a generic
mechanism to address smart contract functions. Furthermore,
we showed how it can be transformed into a standard-
compliant BPMN activity that is deployable on common
BPMS. Moreover, we defined a new metric that measures
the degree of confidence that a certain blockchain transaction
is durably committed, which is necessary for ensuring a
certain amount of reliability when external applications utilize
blockchain systems. Finally, we supported these new features
at runtime by extending the BAL middleware with a new
asynchronous operation and blockchain-specific adapters, and
showed how BlockME2 can be used via a simple case study.

As a future work, we plan to introduce a new operation
to BlockME2 that allows monitoring smart contract functions
so that interesting situations can be detected. This would
simplify the process model we presented in Section VII, for
example. Moreover, we plan to define a new unified protocol
for blockchain smart contract function invocation that would
facilitate their interoperability and integration with existing
systems. Finally, we plan to analyze and define the semantics
of distributed transactions spanning multiple blockchains, and
equip them with a suitable coordination protocol. This would
allow to model and execute more robust business processes
involving multiple blockchains.

ACKNOWLEDGMENTS

This research was partially funded by the Ministry of
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[12] M. Vukolić, “Rethinking permissioned blockchains,” in Proc. of ACM
Workshop on Blockchain, Cryptocurrencies and Contracts (BCC ’17).
ACM, 2017, pp. 3–7.

[13] C. Cachin and M. Vukolic, “Blockchain consensus protocols in the wild
(keynote talk),” in International Symposium on Distributed Computing
(DISC 2017), 2017, pp. 1:1–1:16.

[14] G. Falazi, V. Khinchi, U. Breitenbücher, and F. Leymann, “Transactional
properties of permissioned blockchains,” SICS Software-Intensive Cyber-
Physical Systems, 2019, to be published.

[15] K. Wst and A. Gervais, “Do you need a blockchain?” in Proc. of 2018
Crypto Valley Conference on Blockchain Technology (CVCBT). IEEE,
Jun. 2018, pp. 45–54.

[16] M. Weske, Business Process Management - Concepts, Languages,
Architectures, 2nd Edition. Springer, 2012.

[17] F. Leymann and D. Roller, Production Workflow - Concepts and Tech-
niques. PTR Prentice Hall, 2000.

[18] (2019) Bitcoin Core. [Online]. Available: https://bitcoincore.org/
[19] (2019) Go Ethereum. [Online]. Available: https://geth.ethereum.org/
[20] (2019) Parity Ethereum client. Parity Technologies. [Online]. Available:

https://www.parity.io/ethereum/
[21] S. Popov, “The Tangle,” Whitepaper, Apr. 2018.
[22] V. Buterin. (2015, Sep.) On slow and fast block

times. [Online]. Available: https://blog.ethereum.org/2015/09/14/
on-slow-and-fast-block-times/

[23] (2018) Quorum wiki. J.P. Morgan Chase & Co. [Online]. Available:
https://github.com/jpmorganchase/quorum/wiki

[24] Ethereum name service. True Names LTD. [Online]. Available:
https://ens.domains/

[25] (2019) Hyperledger Sawtooth documentation. [Online]. Available:
https://sawtooth.hyperledger.org/docs/core/releases/latest/

[26] IntegerKey transaction family. [Online]. Available:
https://sawtooth.hyperledger.org/docs/core/releases/latest/transaction
family specifications/integerkey transaction family.html

[27] Hyperledger Sawtooth Seth documentation. [Online]. Available: https:
//sawtooth.hyperledger.org/docs/seth/releases/latest/

[28] T. Berners-Lee, R. Fielding, and L. Masinter, Uniform resource identifier
(URI): generic syntax, Network Working Group Internet Standard RFC
3986, Jan. 2005. [Online]. Available: https://tools.ietf.org/html/rfc3986

[29] D. Crocker and P. Overell, Augmented BNF for syntax specifications:
ABNF, Network Working Group Internet Standard, Rev. RFC 5234,
Jan. 2008. [Online]. Available: https://tools.ietf.org/html/rfc5234

[30] V. Buterin. (2016) Chain interoperability. [Online]. Available: https:
//allquantor.at/blockchainbib/pdf/vitalik2016chain.pdf

[31] A. Hope-Bailie and S. Thomas, “Interledger: creating a standard for
payments,” in Proc. of International Conference Companion on World
Wide Web - (WWW '16 Companion). ACM Press, 2016.

[32] (2019) Polkadot: decentralized Web 3.0 blockchain interoperability
platform. Polkadot. [Online]. Available: https://polkadot.network/

[33] (2019) Internet of blockchains - Cosmos network. Interchain Foundation.
[Online]. Available: https://cosmos.network/

[34] (2019) Lightning Network. [Online]. Available: https://lightning.
network/

[35] L. Guida and F. Daniel, “Supporting Reuse of Smart Contracts through
Service Orientation and Assisted Development,” in IEEE International
Conference on Decentralized Applications and Infrastructures (DAPP-
CON 2019). IEEE, 2019, pp. 59–68.

[36] L. Auberger and M. Kloppmann, “Combine business process manage-
ment and blockchain,” May 2017.

[37] S. Schmidt, M. Jung, T. Schmidt et al., “Unibright-the unified framework
for blockchain based business integration,” White Paper, Apr. 2018.

[38] J. Mendling, I. Weber, W. v. d. Aalst et al., “Blockchains for business
process management - challenges and opportunities,” ACM Transactions
on Management Information Systems, vol. 9, no. 1, Feb. 2018.
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