
1Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{falazi, breitenbuecher, leymann}@iaas.uni-stuttgart.de

Unified Integration of Smart Contracts
Through Service Orientation

Ghareeb Falazi1, Andrea Lamparelli2, Uwe Breitenbücher1,
Florian Daniel2, Frank Leymann1

© 2020 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.

@article {Falazi2020_UnifiedIntegrationBlockchains,
Author = {Ghareeb Falazi and Andrea Lamparelli and Uwe Breitenb{\"u}cher

and Florian Daniel and Frank Leymann},
Title = {{Unified Integration of Smart Contracts Through Service

Orientation}},
Journal = {IEEE Software},
Publisher = {IEEE},
Volume = {37},
Number = {5},
Year = 2020,
doi = {10.1109/MS.2020.2994040}

}

:

Institute of Architecture of Application Systems

2Dipartimento di Elettronica, Informazione e Bioingegneria,
Politecnico di Milano, Italy

andrea.lamparelli@mail.polimi.it, florian.daniel@polimi.it

This is the accepted version of the article, the final published version can
be accessed at: https://doi.org/10.1109/MS.2020.2994040

https://doi.org/10.1109/MS.2020.2994040

Department: Blockchain and Smart Contract Engineering
Editor: Name, xxxx@email

Unified Integration of Smart
Contracts through Service
Orientation
G. Falazi
University of Stuttgart

A. Lamparelli
Politecnico di Milano

U. Breitenbücher
University of Stuttgart

F. Daniel
Politecnico di Milano

F. Leymann
University of Stuttgart

Abstract—This article introduces the reader to a set of technologies that lay the foundation for a
service-oriented integration of smart contracts into generic software applications, such as
business processes or enterprise applications. Using a typical supply chain scenario, the article
showcases the use of the Smart Contract Description Language (SCDL) to describe the external
interfaces of smart contracts, the Smart Contract Locator (SCL) to locate contracts deployed
inside blockchain networks, and the Smart Contract Invocation Protocol (SCIP) to interact with
them from the outside of the blockchain networks. The three specifications abstract away from
blockchain specifics, provide developers with a unified view over multiple, heterogeneous
blockchain technologies, and are supported by a reference implementation of a SCIP endpoint
able to automatically turn abstract interactions into blockchain-specific ones.

SINCE THE INTRODUCTION of flexible smart
contracts – commonly associated with the birth
of Ethereum (https://ethereum.org) – blockchains
have expanded their applicability way beyond
cryptocurrencies into application scenarios as

diverse as supply chain management, health-
care, IoT, data management, and similar [1].
Smart contract-enabled blockchains today are
full-fledged, distributed computing platforms [2]
that are able to run application code inside the
blockchain and to equip applications running out-

IEEE Software Published by the IEEE Computer Society c© 2020 IEEE 1

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MS.2020.2994040

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://ethereum.org

Blockchain and Smart Contract Engineering

side the blockchain with trustworthy, determinis-
tic on-chain functionalities, such as payment or
logging services.

Integrating smart contracts into software that
runs outside the blockchain is however not
straightforward: each blockchain comes with pro-
prietary transaction logic, consensus mechanisms,
APIs, communication protocols, data formats, and
authentication models. To invoke a given smart
contract, one must master all these aspects and
have access to a node of the blockchain network.
And this must be repeated for each blockchain
one wants to work with. If an application involves
multiple blockchains, complexity thus grows sig-
nificantly, if not prohibitively.

Orthogonally, we observe a general lack
of software engineering technologies, tools and
methodologies that take into account the concep-
tual specifics of blockchains and smart contracts
(e.g., the lack of a guarantee that a transaction
is durably written on the blockchain) and, at
the same time, abstract away from technological
details to help developers reuse smart contracts.

To address these shortcomings, in prior work,
we conceived three ingredients to interpret smart
contracts as building blocks of a service-oriented
architecture: a smart contract description lan-
guage and a smart contract locator [3], as well as
an abstract interaction protocol [4]. In this article,
we provide a holistic view on these technologies
and, with the help of a supply chain scenario,
showcase how their joint use eases the integration
of smart contracts into generic software applica-
tions.

BACKGROUND

Service-Orientation for Smart Contracts
Service orientation is the philosophy underly-

ing service-oriented computing [5]. It promotes a
software ecosystem, the Service-Oriented Archi-
tecture (SOA), for the reuse of application logic
– web services or web APIs – among nodes of a
network, typically the Internet. The SOA is based
on three roles: providers provision services, reg-
istries advertise services, and consumers discover
and invoke services. Services are addressed using
standard URLs and invoked using either XML-
based SOAP or plain HTTP messages.

Smart contracts are different. They run inside

blockchain networks, do not use the standard
stack of web protocols, and cannot be addressed
from the Internet. However, they have func-
tions and can emit events like web services [2],
somebody provisions them, and somebody uses
them. If we use a gateway to mediate between
blockchain networks and the Internet, it is possi-
ble to access smart contracts like services.

In our prior work, we laid the foundation
for such Internet-accessible smart contracts and
defined specifications to abstract away from tech-
nologies. Providers can describe the external in-
terface of contracts (functions, events, parame-
ters) using the JSON-based Smart Contract De-
scription Language (SCDL) [3]. Contracts can
be addressed by consumers using a Smart Con-
tract Locator (SCL) [3], which is composed of
a standard URL addressing the gateway and a
blockchain-specific address of the contract. And
contracts can be invoked using the Smart Con-
tract Invocation Protocol (SCIP) [4], a JSON-
RPC based message format to invoke a function,
subscribe to events, receive callbacks, and query
for events. See Figure 1 for an example of an
SCL address and a SCIP message.

Related Works
The problem of connecting or accessing smart

contracts of different blockchains is not new and
has been approached differently so far.

Blockchain interoperability, as proposed by
Interledger (https://interledger.org), Polkadot
(https://polkadot.network) or Lightning Network
(https://lightning.network/), focuses on enabling
blockchains to interact with each other. The
idea of blockchain gateways was introduced
by Thomas et al. [6], however still in the
context of blockchain interoperability and not
for generic applications. For this purpose,
connector-based approaches like Unibright [7]
propose full-fledged platforms to communicate
with blockchains, on the one hand, and with
blockchain-external applications via extensible
connectors, on the other hand. The use of vendor-
specific platforms and connectors, however, risks
to turn the technical integration problem into a
product selection or marketing problem. The Web
Ledger Protocol 1.0 [8] proposes a generic data
model and syntax for blockchains and a so-called
Ledger Agent HTTP API to create transactions,

2 IEEE Software

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MS.2020.2994040

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://interledger.org
https://polkadot.network
https://lightning.network/

append data, and query the blockchain; the
protocol, however, does not propose dedicated
abstractions for interacting with smart contracts.

Finally, Xu et al. [9] consider blockchains
as software connectors that can provide external
applications with communication, coordination,
conversion and facilitation services. Smart con-
tracts are used as middleware to connect applica-
tions, not as reusable services.

All these works raise the need for commu-
nicating with smart contracts, but only the three
specifications we showcase in this article aim to
provide an open specification for uniform smart
contract integration that everyone can implement
for free.

SMART CONTRACT INTEGRATION
In order to showcase the joint use of SCL,

SCDL and SCIP, we discuss their application in
the context of food supply chains.

In recent years, food product safety scandals
have caused a decrease in customer confidence
towards the quality and originality of food prod-
ucts [10]. Much of the problem can be attributed
to the complexity of the structure of food supply
chains, which results in the lack of transparency
and provenance knowledge [11]. Blockchain tech-
nology offers a viable distributed platform that
allows to enhance the knowledge of product
provenance by customers and partners alike. This
is achieved by its unique ability to irreversibly
and immutably store the history of transactions,
which guarantees supply chain participants the
ability to trace origin, certify authenticity, track
custody and verify integrity of products [12].

Food Supply Chains Scenario
Figure 1 shows two simplified supply chains

for seafood and dairy products. The seafood
supply chain starts with individual fishermen,
or commercial fisheries, which catch seafood
resources like fish. Next, fish are transported
via shipping firms to their first buyers overseas,
which process and package them appropriately.
Finally, the packaged fish are transported to re-
tailers via domestic distributors. The dairy sup-
ply chain proceeds similarly starting from cattle
ranches, which produce milk that is transported
daily to processing facilities with the help of lo-
gistics partners. Finally, the resulting milk cartons

are transported to retailers by distributors.
We assume that the participants of each supply

chain agree on using a blockchain as a distributed
ledger of their transactions and to store the state
of the various products. The goal is to facilitate
end-to-end product provenance and cut down on
costs. To this end, a permissioned blockchain
ensures confidentiality, transaction durability, and
acceptable performance [13]. The agreed-upon
collaboration logic is implemented in the form
of one or more smart contracts and deployed on
the blockchain.

Due to overwhelming overhead, scalability
issues, and low interest, it is, however, unrealistic
to assume that the participants of all possible
supply chains agree on the same blockchain
platform. This means that multiple blockchain
instances will likely co-exist to support differ-
ent supply chains, e.g., for the seafood and
the milk processing sectors. Furthermore, since
many blockchain technologies exist with different
trade-offs and guarantees [13], it is not pos-
sible to assume that all considered blockchain
instances are of the same technology. For ex-
ample, we assume that the seafood supply chain
is managed by a private Ethereum instance
that uses Proof-of-Authority (https://wiki.parity.
io/Proof-of-Authority-Chains), and that the dairy
supply chain is managed by an instance of the
Hyperledger Fabric [14] blockchain. However,
certain partners could be participants of multiple
supply chains at the same time. For instance, the
retail enterprise depicted on top in Figure 1 is
connected to the two aforementioned blockchain
instances and integrates their smart contracts into
the Supply Chain Management System (SCMS)
of its Enterprise Resource Planning (ERP) sys-
tem. This is problematic and cumbersome, as it
has to adapt to the heterogeneous specifics of
these blockchain technologies, such as their APIs,
data formats, supported protocols, etc.

Design of Integration Logic
SCIP [4] facilitates the uniform invocation,

monitoring and querying of heterogeneous smart
contracts so that blockchain participants can per-
form these operations without having to under-
stand the technical details of the specific under-
lying blockchain technology. This is especially
helpful for participants accessing multiple hetero-

January 2020 3

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MS.2020.2994040

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://wiki.parity.io/Proof-of-Authority-Chains
https://wiki.parity.io/Proof-of-Authority-Chains

Blockchain and Smart Contract Engineering

Mobile
App

SCIP
EP

Customer

Dairy Supply ChainSeafood Supply Chain

SCL Address:
http://gateway1.com?blockchain=poa-eth&
blockchain-id=eth-0&address=0xa014

SCIP Message:
{
"jsonrpc": "2.0","method": "Query", "id": 1,
"params": {
"eventId": "StateUpdate",
"params": [
{
"name": "state", "type": {"type":"string"}

},
{
"name": "id","type": {"type":"string"}

}
],
"filter": "id == ‘FP123abc’"

}
}

Retail Enterprise

Inventory Sales

0xa014

(fab-0)
Hyperledger

Fabric

(eth-0)
PoA

Ethereum

SCIP
Gateway 1

SCIP EP

SCIP
Gateway 2

SCIP EP

D
is

tr
ib

u
to

r
So

ft
w

ar
e

SC
IP

 E
P

Distributors

D

Record Fish
Package
Distribution

Invoke4
Fi

sh
 P

ro
ce

ss
o

r
So

ft
w

ar
e

SC
IP

 E
P

Processors

FP

Record
Fish
Package

Invoke3

Sh
ip

p
er

So

ft
w

ar
e

SC
IP

 E
P

Shippers

-
S

Record
Fish
Shipment

Invoke2

Fi
sh

er
m

an

M
o

b
ile

 A
p

p

SC
IP

 E
P

Fishermen

F

Record
Caught
Fish

Invoke1

Distributors

D
is

tr
ib

u
to

r
So

ft
w

ar
e

SC
IP

 E
P

ProcessorsM
ilk

 P
ro

ce
ss

o
r

So
ft

w
ar

e

SC
IP

 E
P

Logistics

Lo
gi

st
ic

s
So

ft
w

ar
e

SC
IP

 E
P

Farms

Fa
rm

 M
gm

t
Sy

st
em

SC
IP

 E
P

Legend

[sig]

[Detailed
Method
Description]

[Method][#]

App

SCIP EP

ERP (SCMS)

SCIP EP

Query
Provenance
of Fish
Package

Query6

Query
Provenance
of Milk
Carton

Query7

D

MP

L

F

DairySC

RE

Record Fish
Package
Storage in
Inventory

Invoke5 RE

A signed SCIP message
with a sequence
number.

C C

SCIP client application.

Gateway

SCIP EP
SCIP gateway.

[Name] Smart contract

Figure 1. The supply chain integration scenario illustrated: a retail enterprise (top) integrates information from
a seafood supply chain (left) and a dairy supply chain (right) to provide provenance information to its customers
via a mobile app (bottom center). SCIP is used to interact with smart contracts through gateways, SCL to
address them (center).

4 IEEE Software

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MS.2020.2994040

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

geneous blockchain instances at the same time,
like the retail enterprise of the previous example.

However, since SCIP is not directly imple-
mented by current blockchains, an external entity
is needed that is connected to them on one hand
and exposes a SCIP implementation to SCIP
client applications on the other hand. We call
this entity a SCIP gateway [4]. The gateway
exchanges authenticated SCIP messages with the
client applications connected to it, and translates
them into technology-specific messages that are
forwarded to the underlying blockchain instances
via authorized nodes. Thus, it can be thought of
as a uniform abstraction layer on top of hetero-
geneous blockchains.

There are multiple options as of which entity
manages SCIP gateways; we plan to discuss these
options in a future work. Here we adopt an
option that aligns with the concept of Blockchain-
as-a-Service (BCaaS [15]), as supported by
providers like Amazon Web Services (https:
//aws.amazon.com/managed-blockchain), Upvest
(https://upvest.co) or Kaleido (https://kaleido.io).
Therefore, we assume that the participants of a
supply chain entrust one or more partners among
them to operate SCIP gateways that uniformly
expose selected blockchain operations to client
applications. Furthermore, client applications use
SCL addresses to identify the smart contracts they
wish to send SCIP messages to, and to define
the specific blockchain instance; the SCL address
up to the “?” implicitly and transparently to the
client identifies the gateway (see Figure 1). Client
applications become aware of the smart contracts’
external interfaces and of how to correctly formu-
late SCIP messages by consulting their SCDL de-
scriptors accessible, e.g., via a dedicated registry.
For examples of SCDL descriptors, see online:
https://github.com/floriandanielit/scdl#examples.

In the sample scenario in Figure 1, the par-
ticipants of the Seafood Supply Chain have vari-
ous client applications connected through SCIP
Gateway 1. When a batch of fish is caught
and moved along the supply chain, they issue
smart contract function invocations in order to
register it and update its state. SCIP supports the
uniform invocation of smart contract functions
via the Invoke method. Therefore, we see that
the client applications of the Fisherman Ê, the
Shipper Ë, the Processor Ì, and the Distributor

Í send authenticated, i.e., digitally signed, SCIP
Invocation messages to SCIP Gateway 1.
Next, when a fish package is received by the
Retail Enterprise, its ERP system triggers an ad-
ditional Invocation message that announces
its reception in the inventory Î.

Later, the package is presented to Customers
in one of the retailer’s shopping centers. Inter-
ested buyers can then scan the barcode label on
the package using a dedicated Mobile App. A
SCIP Query message is then formulated and
sent to SCIP Gateway 1 Ï (see the example
SCIP message on the bottom left corner of Figure
1). The query requests previous occurrences of
specific events that were triggered during the ex-
ecution of smart contract functions. For example,
the Query message shown in the figure is sent to
the SCL of the smart contract responsible for han-
dling product state changes of the seafood supply
chain, which we assume has the address 0xa014.
The message retrieves the past occurrences of the
event “StateUpdate” that emits two output param-
eters: “state” and “id”. The “filter” field requires
that the “id” value be equal to “FP123abc”, which
we assume corresponds to the identifier of the fish
package the customer scanned. The result is a list
of event occurrences that describe when each state
change of the package happened and who caused
it, i.e., it retrieves the package’s provenance. This
helps to convince the customer of the authenticity
and quality of the packaged fish. Finally, similar
queries can be directed to SCIP Gateway 2 to
retrieve the provenance of milk cartons Ð.

Implementation
We implemented a prototypical setup for

the presented scenario, in which we included
a minimal Hyperledger Fabric instance to man-
age the dairy supply chain and a simulated
Ethereum blockchain instance, using Ganache
(https://www.trufflesuite.com/ganache), to man-
age the seafood supply chain. We included two
instances of JSON-RPC-based SCIP gateways
with adapters for Ethereum and Hyperledger
Fabric (code available at: https://github.com/
ghareeb-falazi/BlockchainAccessLayer). We also
deployed one smart contract on each blockchain
to handle the collaboration logic via suitable func-
tions and events. Finally, we implemented a sim-
ple web-based client application that allows the

January 2020 5

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MS.2020.2994040

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://aws.amazon.com/managed-blockchain
https://aws.amazon.com/managed-blockchain
https://upvest.co
https://kaleido.io
https://github.com/floriandanielit/scdl#examples
https://www.trufflesuite.com/ganache
https://github.com/ghareeb-falazi/BlockchainAccessLayer
https://github.com/ghareeb-falazi/BlockchainAccessLayer

Blockchain and Smart Contract Engineering

various partners of the supply chains to control
the lifecycle and custody of the circulated goods
and allows customers to query the provenance of
end packages.

The prototype is available on Github (https://
github.com/ghareeb-falazi/SCIP-CaseStudy-2). It
is containarized into multiple Docker (https://
www.docker.com/) containers orchestrated using
a combination of Docker Compose and Bash
scripts.

DISCUSSION AND OUTLOOK
SCL, SCDL and SCIP lay the foundation

for a service-oriented approach to the integration
of heterogeneous blockchain smart contracts into
generic software applications. They enable invok-
ing smart contract functions, subscribing to new
events, and querying for past ones. The specifica-
tions are open source1, free and equipped with a
reference implementation of a SCIP endpoint. To-
gether, they advance the state of the art in BCaaS
scenarios and bring the benefits of blockchains
also to clients without specific blockchain compe-
tences. The discussed food supply chains scenario
exemplified these benefits and showed how time-
consuming and error-prone tasks, such as invok-
ing smart contracts in different blockchains, can
be achieved using uniform SCIP messages.

The approach is enabled by the sensible use
of SCIP gateways and a delegated authentica-
tion scheme: while gateways create and sign
blockchain transactions, SCIP requires clients to
sign their messages allowing gateways to log
(e.g., using a transaction) client signatures and
corresponding transaction identifiers to enable the
auditing of their work. Clients are identified and
authenticated using standard OAuth 2.0 autho-
rization tokens (https://oauth.net/2/).

While the described approach helps to solve
the smart contract integration problem, it also
opens up new challenges and research directions:

• Enterprise applications usually group the ex-
ecution of different operations that semanti-
cally achieve a single collective goal into a
business transaction. Based on their guarantees
and properties, transactions implement differ-

1SCDL: https://github.com/floriandanielit/scdl
SCL: https://github.com/ghareeb-falazi/scl
SCIP: https://github.com/lampajr/scip

ent models, e.g., the ACID or the SAGA mod-
els. The question now is which kind of transac-
tional models can be supported when multiple
blockchain transactions of different blockchain
platforms semantically form a larger business
transaction. It is also unclear how such cross-
blockchain business transactions can be ex-
ecuted, i.e., how the involved systems can
coordinate their execution. In SCIP terms, this
means that we need to be able to group
different Invocation messages into cross-
blockchain business transactions and define
clear semantics for an atomic execution.

• The configuration, operation and management
of SCIP gateways plays a key role in guar-
anteeing non-functional properties. For exam-
ple, managing them by client systems does
not require additional trust assumptions, but
results in managerial overhead, whereas doing
so by dedicated blockchain service providers
introduces additional trust assumptions, but is
management-free from the client system per-
spective. It is important to carefully analyse the
resulting trade-offs, which also include aspects
like performance, security, and scalability, and
compile appropriate scenario-specific recom-
mendations.

• Finally, SCIP provides limited query capabil-
ities through the Query method. However,
we identified the need for a more sophisti-
cated and uniform blockchain query language
to formulate expressive queries over events
that took place in a blockchain system or its
current state, regardless of the specific un-
derlying technology. Similar to SQL in the
domain of relational databases, such a query
language could cater for a standard way to an-
alyze blockchain data using conventional data
analysis and visualization frameworks without
having to implement individual plugins for
each blockchain platform to be supported.

These challenges show how SCL, SCDL and
SCIP may serve as a platform for the development
of advanced, blockchain-oriented software engi-
neering tools and methodologies. The case study
discussed in this article shows how much these
are also needed in practice.

6 IEEE Software

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MS.2020.2994040

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://github.com/ghareeb-falazi/SCIP-CaseStudy-2
https://github.com/ghareeb-falazi/SCIP-CaseStudy-2
https://www.docker.com/
https://www.docker.com/
https://oauth.net/2/
https://github.com/floriandanielit/scdl
https://github.com/ghareeb-falazi/scl
https://github.com/lampajr/scip

ACKNOWLEDGMENT
This research was partially funded by the

Ministry of Science of Baden-Württemberg, Ger-
many, for the doctoral program “Services Com-
puting” and the DITAS project funded by the
European Union, Horizon 2020, grant agreement
RIA 731945.

REFERENCES
1. F. Casino, T. K. Dasaklis, and C. Patsakis, “A systematic

literature review of blockchain-based applications: cur-

rent status, classification and open issues,” Telematics

and Informatics, vol. 36, pp. 55–81, 2019.

2. F. Daniel and L. Guida, “A service-oriented perspective

on blockchain smart contracts,” IEEE Internet Comput-

ing, vol. 23, no. 1, pp. 46–53, 2019.

3. A. Lamparelli, G. Falazi, U. Breitenbücher, F. Daniel,

and F. Leymann, “Smart Contract Locator (SCL) and

Smart Contract Description Language (SCDL),” in

Service-Oriented Computing – ICSOC 2019 Work-

shops, 2019.

4. G. Falazi, U. Breitenbücher, F. Daniel, A. Lamparelli,

F. Leymann, and V. Yussupov, “Smart Contract Invoca-

tion Protocol (SCIP): A Protocol for the Uniform Inte-

gration of Heterogeneous Blockchain Smart Contracts,”

in 32nd International Conference on Advanced Informa-

tion Systems Engineering (CAiSE’20), 2020.

5. M. P. Papazoglou and D. Georgakopoulos, “Service-

oriented computing,” Communications of the ACM,

vol. 46, no. 10, pp. 25–28, 2003.

6. T. Hardjono, A. Lipton, and A. Pentland, “Towards

a Design Philosophy for Interoperable Blockchain

Systems,” CoRR, 2018. [Online]. Available: http:

//arxiv.org/abs/1805.05934

7. S. Schmidt, M. Jung, T. Schmidt et al., “Unibright-the

unified framework for blockchain based business inte-

gration,” White Paper, Apr. 2018.

8. M. Sporny and D. Longely, “The Web Ledger

Protocol 1.0,” W3C Blockchain Community Group,

Tech. Rep., 2019. [Online]. Available: https://w3c.

github.io/web-ledger/

9. X. Xu, C. Pautasso, L. Zhu, V. Gramoli, A. Ponomarev,

A. B. Tran, and S. Chen, “The blockchain as a software

connector,” in 2016 13th Working IEEE/IFIP Conference

on Software Architecture, WICSA 2016, 2016.

10. R. Yeung and W. M. Yee, “Food safety concern: Incor-

porating marketing strategies into consumer risk coping

framework,” British Food Journal, vol. 114, no. 1, pp.

40–53, 2012.

11. A. Awaysheh and R. D. Klassen, “The impact of supply

chain structure on the use of supplier socially responsi-

ble practices,” International Journal of Operations and

Production Management, vol. 30, no. 12, pp. 1246–

1268, 2010.

12. M. Montecchi, K. Plangger, and M. Etter, “It’s real,

trust me! Establishing supply chain provenance using

blockchain,” Business Horizons, vol. 62, no. 3, pp. 283–

293, May 2019.

13. G. Falazi, V. Khinchi, U. Breitenbücher, and F. Leymann,

“Transactional properties of permissioned blockchains,”

SICS Software-Intensive Cyber-Physical Systems, pp.

1–13, 2019.

14. E. Androulaki, Y. Manevich, S. Muralidharan, C. Murthy,

B. Nguyen, M. Sethi, G. Singh, K. Smith, A. Sorniotti,

C. Stathakopoulou, M. Vukolić, A. Barger, S. W. Cocco,

J. Yellick, V. Bortnikov, C. Cachin, K. Christidis, A. De

Caro, D. Enyeart, C. Ferris, and G. Laventman, “Hyper-

ledger fabric,” in Proceedings of the Thirteenth EuroSys

Conference on Computer Systems - EuroSys ’18. New

York, New York, USA: ACM Press, 2018, pp. 1–15.

15. M. Samaniego and R. Deters, “Blockchain as a Service

for IoT,” in 2016 IEEE iThings / GreenCom / CPSCom /

SmartData. IEEE, 2016, pp. 433–436.

Ghareeb Falazi is a research associate and a PhD
student at the Institute of Architecture of Application
Systems (IAAS) at the University of Stuttgart. His
research interests include distributed systems, and
decentralized applications, focusing on the transac-
tional properties of blockchain systems. He has re-
ceived a M.Sc. degree in Computer Science from
the University of Stuttgart in 2017. Contact him at
ghareeb.falazi@iaas.uni-stuttgart.de.

Andrea Lamparelli is a M.Sc. student at Politecnico
di Milano, Milan, Italy. His research interests include
service-oriented computing and blockchains. Contact
him at andrea.lamparelli@mail.polimi.it

Uwe Breitenbücher is a research staff member and
postdoc at the Institute of Architecture of Application
Systems (IAAS) at the University of Stuttgart, Ger-
many. His research vision is to improve cloud appli-
cation provisioning and application management by
automating the application of management patterns.
Uwe was part of the CloudCycle project, in which
the OpenTOSCA Ecosystem was developed. His cur-
rent research interests include cyber-physical sys-
tems, blockchains, and microservices. Contact him at
uwe.breitenbuecher@iaas.uni-stuttgart.de.

January 2020 7

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MS.2020.2994040

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://arxiv.org/abs/1805.05934
http://arxiv.org/abs/1805.05934
https://w3c.github.io/web-ledger/
https://w3c.github.io/web-ledger/

Blockchain and Smart Contract Engineering

Florian Daniel is an Associate Professor with Poli-
tecnico di Milano, Milan, Italy. His research interests
include service-oriented computing, blockchain, busi-
ness process management, and data science. He
holds a Ph.D. in Information Technology from Politec-
nico di Milano. Contact him at florian.daniel@polimi.it.

Frank Leymann is a full professor of computer
science and director of the Institute of Architecture
of Application Systems (IAAS) at the University of
Stuttgart, Germany. His research interests include
service-oriented architectures and associated mid-
dleware, workflow- and business process manage-
ment, cloud computing and associated systems man-
agement aspects, and patterns. Frank is co-author
of more than 400 peer-reviewed papers, about 70
patents, and several industry standards. He is elected
member of the Academy of Europe. Contact him at
frank.leymann@iaas.uni-stuttgart.de.

8 IEEE Software

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MS.2020.2994040

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

