
1Institute of Architecture of Application Systems
University of Stuttgart, Germany

{falazi,breitenbuecher,leymann,stoetzner}@iaas.uni-stuttgart.de

On Unifying the Compliance Management of
Applications Based on IaC Automation

Ghareeb Falazi1, Uwe Breitenbücher1, Frank Leymann1, Miles Stötzner1,
Evangelos Ntentos2, Uwe Zdun2, Martin Becker3, Elena Heldwein3

© 2022 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

@inproceedings{Falazi2022_IaCComplianceManagement,
Author = {Falazi, Ghareeb and Breitenb{\"u}cher, Uwe and Leymann, Frank

and St{\"o}tzner, Miles and Ntentos, Evangelos and Zdun, Uwe and
Becker, Martin and Heldwein, Elena},

Title = {On Unifying the Compliance Management of Applications Based on
IaC Automation},

Booktitle = {2022 IEEE 19th International Conference on Software Architecture
Companion (ICSA-C)},
Publisher = {IEEE},

Pages = {226--229},
Month = mar,
Year = 2022,
DOI = {10.1109/ICSA-C54293.2022.00050}

}

:

Institute of Architecture of Application Systems

2Research Group Software Architecture
Faculty of Computer Science, University of Vienna, Austria

{firstname.lastname}@univie.ac.at

3IBM Deutschland
Böblingen, Germany

martin.becker@de.ibm.com, elena.heldwein1@ibm.com

https://ieeexplore.ieee.org/abstract/document/9779653

On Unifying the Compliance Management of
Applications Based on IaC Automation

Ghareeb Falazi, Uwe Breitenbücher,
Frank Leymann, Miles Stötzner

Institute of Architecture of Application
Systems, University of Stuttgart

Stuttgart, Germany
{firstname.lastname}@iaas.uni-stuttgart.de

Evangelos Ntentos, Uwe Zdun
Research Group Software Architecture

Faculty of Computer Science
University of Vienna

Vienna, Austria
{firstname.lastname}@univie.ac.at

Martin Becker, Elena Heldwein
IBM Deutschland

Böblingen, Germany
martin.becker@de.ibm.com
elena.heldwein1@ibm.com

Abstract—Infrastructure-as-Code (IaC) technologies are used
to automate the deployment of cloud applications. They promote
the usage of code to define and configure the IT infrastructure
of cloud applications allowing them to benefit from conventional
software development practices, which facilitates the rapid de-
ployment of new versions of application infrastructures without
sacrificing quality or stability. On the other hand, enterprise
applications need to conform to compliance regarding external
regulations and internal policies. Many of these compliance rules
affect the application architecture on which IaC code operates.
However, managing the architectural compliance of IaC-based
application deployments faces a number of challenges, such as
configuration drift and the heterogeneity of IaC technologies.
Therefore, in this work, we present a vision on how to uniformly
manage the compliance of the infrastructure of applications that
utilize heterogeneous IaC technologies for deployment automa-
tion. To this end, we introduce an initial design for the IaC-based
Architectural Compliance Management Framework and discuss
how it addresses the corresponding challenges.

Index Terms—Compliance, Software Architecture, Software
Infrastructure, Infrastructure-as-Code.

I. INTRODUCTION

Infrastructure-as-Code (IaC) is a deployment automation
approach that emphasizes the repeatability and consistency of
application infrastructure provisioning and configuration [1].
IaC technologies, such as Terraform, CloudFormation, and
Ansible, use code to deploy, configure, and manage the in-
frastructure of software applications. Depending on the tech-
nology, IaC code takes either the form of declarative models
that describe the desired end-state, or imperative scripts that
describe the specific sequence of operations to be taken by the
tool. Using IaC code instead of, for example, directly issuing
commands to a CLI, has the inherent benefits of conventional
software development, such as the option to use version
control, static code analysis tools, and so on [1]. Furthermore,
common software development practices, such as Continuous
Integration and Continuous Delivery, can be applied to IaC.
This enables rolling out new versions of the infrastructure of
a software application in rapid iterations without sacrificing
quality and stability [2]. This is especially important in the

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) - Project number 314720630, and FWF (Austrian Science Fund)
project IAC2: I 4731-N.

cloud domain in which changes to the infrastructure of appli-
cations are common and frequently needed [3].

However, besides these benefits of IaC, the IT infrastructure
of enterprise applications is commonly subject to a set of
regulations and policies that must be adhered to. Specifically,
enterprise application infrastructures might be subject to:
(i) externally enforced compliance rules, e.g., branch-specific
guidelines and regional laws, such as the European General
Data Protection Regulation (GDPR) [4], and (ii) internally
enforced compliance rules; e.g., in the form of policies that
must be followed by all DevOps teams, such as requiring
all mission-critical data to be hosted on-premise rather than
on a public cloud. Thus, an enterprise that utilizes IaC tech-
nologies for deployment automation needs to ensure that the
corresponding IaC code adheres to such compliance rules.
However, this faces a number of challenges: First, ensuring the
compliance of IaC code only during design-time is not enough
due to configuration drift, i.e., possible ad-hoc infrastructure
changes that happen during runtime [1]. Second, representing
IaC compliance rules in a uniform and machine-readable
format that facilitates automatic checking and enforcement
is difficult because the various IaC technologies offer hetero-
geneous sets of features and use different formats; thus, the
corresponding IaC scripts and models to be checked are highly
polyglot. Finally, introducing fixes to non-compliant IaC code
is also difficult since it requires substantial technical expertise,
especially if multiple IaC technologies are used.

Therefore, the goal of this research is to present a concept
on how to uniformly manage the design-time and runtime
compliance of the infrastructures of software applications
that utilize heterogeneous IaC technologies for deployment
automation. To this end, we propose a uniform compliance
rule format capable of handling the heterogeneity of IaC tech-
nologies. We also introduce an initial design for the IaC-Based
Architectural Compliance Management Framework (IACMF),
which facilitates: (i) the management of compliance rules
in terms of modeling, updating, deleting, etc., (ii) checking
and enforcement of compliance rules both at design-time
and at runtime, and (iii) the continuous measurement of the
enhancement or degradation of the compliance of the software
application infrastructure as changes to IaC code occur.

II. BACKGROUND AND RESEARCH CHALLENGES

In this paper, we define the term compliance as the state
in which a considered IT system follows a set of predefined
rules. Therefore, compliance management is the process of
ensuring compliance in a certain domain, which is done by
identifying the applicable rules and transforming them into
technical measures that determine if a system is compliant
or not. Then, automated or manual corrective actions are
performed if necessary and a report is generated for auditing
purposes [5]. In this work, we address IaC-based architectural
compliance, which checks the compliance of the IT resources
provisioned and configured by IaC technologies for hosting
an application system, e.g., compute, storage, and networking
resources. Moreover, it is often necessary to use a complemen-
tary set of IaC technologies together, since some of them are
specialized in the provisioning of resources, while others focus
on configuration management. Thus, IaC technologies often
need to be combined—especially in large-scale application
systems that run in different environments [6].

Therefore, IaC-Based Architectural Compliance Manage-
ment faces several challenges that need to be addressed by the
envisioned framework: (C1) IaC technologies are heteroge-
neous, because they are not uniform in terms of their purpose
and they employ different scripting languages, modelling
languages, data formats, and interfaces, i.e., different APIs
and CLIs [7]. Nonetheless, as it is often necessary to utilize
multiple of these technologies simultaneously, a framework
designed to manage IaC-based architectural compliance has
to handle this heterogeneity. (C2) Application infrastructure
and compliance rules may change at runtime. IaC code
is delivered into production via a delivery pipeline that en-
sures proper testing and integration. However, ad-hoc changes
directly made to the running infrastructure of the application
might still take place using tools such as Ansible, which is
known as configuration drift [1]. Furthermore, changes in
the regulations or internal policies may require changes to
corresponding compliance rules. For both reasons, even if
the designed deployment of an infrastructure is compliant,
the running infrastructure might be non-compliant due to
ad-hoc alterations during runtime or because the compli-
ance rules changed after deployment. Therefore, the proposed
framework should check compliance periodically at runtime.
Note that design-time checks are still necessary, because
fixing architectural compliance violations of the infrastructure
during runtime may be very costly for running applications.
Therefore, preventive measures in the form of design-time
compliance checking are preferable. (C3) If the designed or
running infrastructure of an application is found to violate
one or more compliance rules, it must be brought back into a
compliant state. However, correcting IaC scripts and models
or running infrastructure instances due to compliance
violations requires substantial technical expertise. Thus, the
framework should automatically suggest corrections and, for
critical rule violations, it should support a mode that directly
enforces the changes.

III. RELATED WORK AND PREVIOUS WORK

Plenty of approaches address the detection of specific char-
acteristics in IaC code, such as code smells. For example,
Kumara et al. [8] introduce an approach for the semantic
detection of smells and anti-patterns in deployment models
of cloud applications. Palma et al. [9] propose a catalog of
metrics to understand and improve the quality of Ansible
scripts. Sotiropoulos et al. [10] introduce an approach to
detect faults in Puppet models involving ordering violations
and notifiers by analyzing the system call traces produced
when executing these models. All of these approaches aim
to detect predefined characteristics in IaC code, but none of
them introduces a general purpose compliance management
framework that detects and enforces user-defined rules. On the
other hand, many business process compliance management
approaches exist (summarized in [11]), but none of them
addresses the compliance of the IT infrastructure layer.

One goal of our proposed approach is supporting compli-
ance rule modeling and checking. Existing approaches solve
this problem in different ways. For example, in a previous
work [12], we introduced the concept of a Deployment Com-
pliance Rule, which consists of two constructs: the Detector,
which is a subgraph used to detect areas in the deployment
model that are subject to the rule, and the Required Structure,
which is another subgraph used to verify that the rule is sat-
isfied. Matching these constructs with the deployment model
utilizes subgraph isomorphism. Another possibility, is to use
first-order logic instead of subgraph isomorphism by modeling
compliance rules as Prolog or Datalog rules as suggested
in [13]–[15]. These approaches entail increased difficulty in
rule modeling, and an extra step to transform all relevant
elements of the deployment model into first-order logic facts,
so rules can be evaluated. However, they allow defining rules
that indicate, e.g., the absence of undesired model structures,
which is not possible in the subgraph-based approach.

Checking architectural compliance, both at design-time and
at runtime, requires reconstructing the system’s architecture
in the form of a deployment model. There are multiple
approaches that can be utilized for this purpose. For example,
a previous approach [16] uses technology-specific discovery
plugins that crawl running instances of the application system
for the automated reconstruction and maintenance of Enter-
prise Topology Graphs. An enhancement of this approach
by Harzenetter et al. [17] starts from an initial deployment
model that is (re)constructed using plugins specific to the IaC
technologies used to manage the running application instance.
Then technology-specific plugins (similar to the ones from the
previous approach) are used to complete the deployment model
with technology-specific information. Another approach [18]
utilizes reusable detectors that analyze the code base looking
for specific characteristics that help to discover components
and their relations. This approach is less versatile than the
previous two, but is able to accurately find more relations
between the discovered components.

Runtime
Compliance

Manager

Design-Time
Compliance

Manager

Compliance
Rule

Modeler

Compliance
Rules

Repository

Running System

Delivery
Pipeline

Ad-hoc
Runtime
Changes

Compliance Monitoring
& Reporting

Code Base

<IaC> <IaC> <IaC></> </> </>

IACMF

IaC ProjectsApplication Code

✓
✓

IaC
Adaptation

Monitor Monitor

Store

InvokeInvoke

RetrieveRetrieve

Fetch Code Fetch Code Fetch State
Apply

Changes
Apply

Changes

Compliance
RuleCompliance

RuleCompliance
Rule

Fig. 1. Delivery pipeline (top) and architecture of the IACMF (bottom)

IV. A FRAMEWORK FOR UNIFORM IAC-BASED
ARCHITECTURAL COMPLIANCE MANAGEMENT

At the top of fig. 1, we see a delivery pipeline for applica-
tions that use IaC to define and configure their infrastructures.
The code base is split into code projects that represent applica-
tion logic, and projects that include IaC code, i.e., IaC models
and scripts used to (i) define the IT infrastructure of a software
application, e.g., using Terraform models, and (ii) to configure
it, e.g., using Ansible scripts. These projects can reference
each other, and such cross-project references (in addition to
references to external libraries) represent dependencies that
are resolved in the delivery pipeline using dedicated integra-
tion tools. Other tasks done in the delivery pipeline include
building projects with tools such as Jenkins, and testing.

At the bottom of fig. 1, we see our proposed framework
IACMF, which first facilitates the modeling and storage of
generic reusable IaC Architectural Compliance Rules. Fur-
thermore, it facilitates design-time compliance management
that ensures all relevant compliance rules are checked against
the involved code projects. In addition, the framework supports
runtime compliance management, ensuring the continuous
checking of compliance rules while the system is running.
Besides, IaC-based compliance management, both at design-
time and at runtime, involves adapting non-compliant IaC
scripts or models or even IaC-managed infrastructures
so that they are brought back into a compliant state. Finally,
the framework allows the measurement and reporting of
compliance enhancement or degradation based on changes
introduced to the code base. Next, we briefly sketch our
vision on how to achieve these features while addressing
the entailed challenges, which we refer to using the same
identifiers presented in section II, i.e., (C1), (C2), and (C3).

A. Handling the Heterogeneity of IaC Technologies

For automating the deployment of applications, often mul-
tiple IaC technologies need to be combined [6], which con-
stitutes a challenge for architectural compliance management
frameworks (C1). We propose to solve this problem via a
plugin-based approach that generates IaC technology-
agnostic deployment models. In a previous work [7], we
introduced the Essential Deployment Metamodel (EDMM),
which was derived by systematically analyzing deployment
technologies and distilling a common denominator of their
features: An EDMM model represents the application and in-
frastructure components as a graph-based deployment model,
which consists of typed components (vertices) that are con-
nected via typed relations (edges). Components and relations
can be enriched with properties, which describe their current
or desired state. To solve the IaC heterogeneity problem,
we propose to transform technology-specific IaC scripts and
models into an EDMM model, e.g., by extending our previous
work [19] that utilizes technology-specific plugins. Based on
this IaC technology-agnostic model, architectural compliance
rules can be defined more easily by limiting their lexicon
only to the model elements defined by EDMM rather than
the heterogeneous set of features of IaC technologies. This
isolates the complexity into the technology-specific plugins,
allowing to create generic and future-proof compliance rules.

B. IaC Architectural Compliance Rule Modeling

An IaC Architectural Compliance Rule encodes one or more
regulations or policies that the infrastructure must adhere to.
For example, a rule could dictate that web applications and
the databases connected to them must be hosted in the same
region so that sensitive data do not move across regions, or
it could dictate that no mission-critical databases are hosted
on a public cloud. We reuse the idea that such rules contain
two parts: a detector and an evaluator [12]. An evaluator
allows the framework to determine if the architecture fulfills
the rule. Moreover, it is foreseeable that not all defined rules
are applicable to the current system and that the evaluation of
certain rules could be time- or resource-intensive. Therefore,
the detector is introduced as a lightweight mechanism to allow
the framework to determine if a rule has to be evaluated for
the architecture or not. Detectors and evaluators are generic
concepts that can be implemented using various techniques,
e.g., using subgraph isomorphism [12] or Prolog rules [13] as
shown in previous works. We only mandate that they work on
EDMM models, since EDMM is IaC technology-agnostic, and
thereby increases the reusability and portability of the rules.

C. Design-Time Architectural Compliance Management

The Design-Time Compliance Manager checks the archi-
tectural compliance of the input IaC code during design-time,
following the process described in fig. 2. First, the application
architecture including its infrastructure is (re)constructed as
an EDMM model. However, since architectural reconstruction
approaches have trade-offs (see section III), a combination
of them is often required, which we support using plugins.

Compliance Rules Repository

Reconstruct
Architecture

Enforce
Compliance

Check
Compliance

<IaC>
<IaC>

<IaC>
</>

</>
</>

Instance of

Running Application

Compliance
RuleCompliance

RuleCompliance
Rule

Generic System ModelApplication & IaC
code

EDMM

Fig. 2. Architectural compliance checking and enforcement process.

After generating the EDMM model, relevant compliance rules
are detected and evaluated also using plugins since differ-
ent implementations that correspond to different modeling
approaches are possible, e.g., using subgraphs or first-order
logic (see section IV-B). If a violation of certain rules are
detected, corrective measures are taken by the IaC Adaptation
component (C3). Depending on the severity of the violation,
this component either automatically enforces changes to the
IaC code, or suggests them to a human operator. Generating
these fixes also requires technology-specific plugins.

D. Runtime Architectural Compliance Management

The Runtime Compliance Manager component ensures
compliance of running application instances. It also executes
the process depicted in fig. 2 with two differences from the
design-time variant: (i) Since running application instances
might be modified at runtime in an ad-hoc manner (C2),
the (re)construction of their architecture in Step 1 depends
on both the code projects used in the deployment pipeline
and on information about the running instance. We discuss
suitable approaches for this in section III. However, further
research is required to enable the identification of arbitrary
communication relations between components, which typically
requires combining various reconstruction techniques. (ii) In
Step 3, the IaC Adaptation component handles fixing detected
compliance violations (C3) in one of two ways: it either
makes the original IaC code compliant and then re-executes the
delivery pipeline to guarantee that the ad-hoc changes applied
to the running instance are revoked making it compliant agian,
or if re-executing the pipeline is not a viable option, e.g., due
to possible interruptions to the production environment [1],
fixes are delivered directly to the running infrastructure, e.g.,
via invocations to the APIs of the used IaC technologies.

E. Continuous Architectural Compliance Measurement

Detecting compliance violations enables IaC architects to
get feedback on possible improvements and degradation of the
quality of the IaC code and architecture. The IACMF supports
the continuous measurement of a system’s IaC compliance by
measuring, e.g., the number of rule violations and the impact
of different IaC changes on this number. Such metrics will be
automatically monitored and reported back to architects by the
Compliance Monitoring and Reporting component.

V. CONCLUSION AND FUTURE WORK

We proposed a framework for managing the architectural
compliance of IaC-based deployments despite the heterogene-
ity of IaC technologies by generating IaC technology-agnostic
models and using an IaC technology-independent compliance
rule format. The envisioned framework also enables contin-
uosly checking the compliance of running applications and
takes corrective measures if required, e.g., for configuration
drift. Apart from implementing the IACMF and evaluating it,
we also plan to research ways to formalize and incorporate
compliance rules about the IaC-based deployment delivery
pipelines themselves, thus covering the IaC compliance of all
lifecycle stages.

REFERENCES

[1] K. Morris, Infrastructure as Code, 2nd ed. O’Reilly Media, Inc., 2020.
[2] R. Modi, “CI/CD with Terraform,” in Deep-Dive Terraform on Azure.

Berkeley, CA: Apress, 2021, pp. 163–190.
[3] D. Farley, Continuous delivery : a handbook for building, deploying,

testing and releasing software. Addison-Wesley Professional, 2010.
[4] (2018, May) General Data Protection Regulation. European

Commission. [Online]. Available: https://gdpr-info.eu/
[5] F. Koetter, M. Kochanowski, T. Renner, C. Fehling, and F. Leymann,

“Unifying Compliance Management in Adaptive Environments through
Variability Descriptors (Short Paper),” in SOCA 2013. IEEE, 2013.

[6] M. Wurster et al., “Automating the Deployment of Distributed Appli-
cations by Combining Multiple Deployment Technologies,” in CLOSER
2021. SciTePress, May 2021, pp. 178–189.

[7] ——, “The Essential Deployment Metamodel: A Systematic Review of
Deployment Automation Technologies,” SICS Software-Intensive Cyber-
Physical Systems, vol. 35, pp. 63–75, Aug. 2019.

[8] I. Kumara et al., “Towards Semantic Detection of Smells in Cloud In-
frastructure Code,” in Proceedings of the 10th International Conference
on Web Intelligence, Mining and Semantics. ACM, jun 2020, pp. 63–67.

[9] S. Dalla Palma, D. Di Nucci, F. Palomba, and D. A. Tamburri, “Toward
a catalog of software quality metrics for infrastructure code,” Journal
of Systems and Software, vol. 170, p. 110726, dec 2020.

[10] T. Sotiropoulos, D. Mitropoulos, and D. Spinellis, “Practical fault
detection in puppet programs,” in ACM/IEEE ICSE 2020. ACM, 2020.

[11] S. Saralaya, V. Saralaya, and R. D’Souza, “Compliance Management in
Business Processes,” 2019, pp. 53–91.

[12] C. Krieger, U. Breitenbücher, K. Képes, and F. Leymann, “An Approach
to Automatically Check the Compliance of Declarative Deployment
Models,” in Papers from the 12th Advanced Summer School on Service-
Oriented Computing. IBM Research Division, 2018.

[13] K. Saatkamp, U. Breitenbücher, O. Kopp, and F. Leymann, “An ap-
proach to automatically detect problems in restructured deployment
models based on formalizing architecture and design patterns,” SICS
Software-Intensive Cyber-Physical Systems, pp. 1–13, Feb. 2019.

[14] C. Deiters, P. Dohrmann, S. Herold, and A. Rausch, “Rule-Based Archi-
tectural Compliance Checks for Enterprise Architecture Management,”
in EDOC 2009. IEEE, 2009, pp. 183–192.

[15] M. Montanari, E. Chan, K. Larson, W. Yoo, and R. H. Campbell, “Dis-
tributed security policy conformance,” Computers & Security, vol. 33,
pp. 28–40, mar 2013.

[16] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann, “Automated Dis-
covery and Maintenance of Enterprise Topology Graphs,” in Proceedings
of the 6th IEEE International Conference on Service Oriented Computing
and Applications (SOCA 2013). IEEE, Dec. 2013, pp. 126–134.

[17] L. Harzenetter et al., “Automated Generation of Management Workflows
for Running Applications by Deriving and Enriching Instance Models,”
in CLOSER 2021. SciTePress, May 2021, pp. 99–110.

[18] E. Ntentos et al., “Detector-based component model abstraction for
microservice-based systems,” Computing, vol. 103, no. 11, pp. 2521–
2551, nov 2021.

[19] C. Endres, U. Breitenbücher, F. Leymann, and J. Wettinger, “Anything
to Topology - A Method and System Architecture to Topologize
Technology-Specific Application Deployment Artifacts,” in CLOSER
2017. SciTePress, Apr. 2017, pp. 180–190.

https://gdpr-info.eu/

	Introduction
	Background and Research Challenges
	Related Work and Previous Work
	A Framework for Uniform IaC-Based Architectural Compliance Management
	Handling the Heterogeneity of IaC Technologies
	IaC Architectural Compliance Rule Modeling
	Design-Time Architectural Compliance Management
	Runtime Architectural Compliance Management
	Continuous Architectural Compliance Measurement

	Conclusion and Future Work
	References

