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Blockchains have become increasingly important in recent years and have expanded their applicability to many domains beyond finance
and cryptocurrencies. This adoption has particularly increased with the introduction of smart contracts, which are immutable, user-
defined programs directly deployed on blockchain networks. However, many scenarios require business transactions to simultaneously
access smart contracts on multiple, possibly heterogeneous blockchain networks while ensuring the atomicity and isolation of these
transactions, which is not natively supported by current blockchain systems. Therefore, in this work, we introduce the Transactional
Cross-Chain Smart Contract Invocation (TCCSCI) approach that supports such distributed business transactions while ensuring
their global atomicity and serializability. The approach introduces the concept of Resource Manager Smart Contracts, and 2PC for
Blockchains (2PC4BC), a client-driven Atomic Commit Protocol (ACP) specialized for blockchain-based distributed transactions. We
validate our approach using a prototypical implementation, evaluate its introduced overhead, and prove its correctness.
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Additional Key Words and Phrases: blockchain, smart contract, interoperability, cross-chain, cross-ledger, multi chain

ACM Reference Format:
Ghareeb Falazi, Uwe Breitenbücher, Frank Leymann, Stefan Schulte, and Vladimir Yussupov. 2023. Transactional Cross-Chain Smart
Contract Invocations. Distrib. Ledger Technol. 1, 1 (August 2023), 26 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Blockchain systems have become increasingly important in recent years and have expanded their field of applicability
to domains beyond finance and cryptocurrencies, such as health care management [30], supply chain and logistics
management [19], the energy sector [32], and others. This trend is influenced by their capability of managing a
tamper-resistant and tamper-evident ledger of transactions without the need for a Trusted Third-Party (TTP) [36].
Furthermore, the adoption of smart contracts [34], which are immutable and deterministic user-defined programs
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deployable on certain blockchain systems, has enabled implementing the logic of sensitive business collaborations that
run among mutually-distrustful business partners directly on blockchain networks [8]. However, it is often necessary
that a blockchain-based business process accesses resources that are distributed across multiple blockchain networks
in the same business transaction [6, 8, 13] since there is no “one size fits all” blockchain system and different types
of blockchains will continue to coexist [29]. Therefore, enterprises participating in complex use cases, such as supply
chains or travel industry scenarios, will likely need to connect to multiple blockchain networks simultaneously and run
their distributed business transactions across different chains. Moreover, since the business logic is implemented by smart
contracts, in enterprise integration scenarios, such distributed business transactions will likely incorporate invocations
of multiple smart contracts hosted on different, possibly heterogeneous blockchain networks simultaneously. However,
current blockchain systems do not support distributed cross-chain transactions as described above. Thus, it is currently
not possible to implement client-side blockchain-based distributed business transactions in a way that ensures their
global atomicity and global serializability, which violates their correctness according to the ACID paradigm [3, 4].

Therefore, in this work, we present the Transactional Cross-Chain Smart Contract Invocation (TCCSCI) approach,
which enables executing distributed business transactions that involve smart contract function invocations distributed
over possibly a heterogeneous set of blockchain networks to be executed in an atomic manner and in strict isolation
from each other so that their correctness is ensured. We refer to these transactions as TCCSCIs. In our approach, we
present the idea of Resource Manager Smart Contracts (RMSC), which is based on the concept of resource managers
known from the distributed transactions domain, and the Two-Phase Commit for Blockchains (2PC4BC) protocol, which
is based on the classical Two-Phase Commit (2PC) protocol [10]. The combination of these two concepts enables to
jointly guarantee global atomicity and serializability for TCCSCIs. To summarize, our contributions are as follows:

(1) We present a formal description of the problem of ensuring transactional behavior for cross-chain smart contract
invocations based on a formal blockchain system model.

(2) We introduce the TCCSCI approach that solves the stated problem by: (i) proposing the concept of an RMSC
that can be used to separate the execution of smart contract functions from the commitment of the changes that
occur during the execution, and (ii) introducing the 2PC4BC protocol, which is a client-driven Atomic Commit
Protocol (ACP) that utilizes RMSCs to ensure global atomicity and serializability for distributed transactions that
involve function invocations of smart contracts hosted on different blockchain networks.

(3) We prove the approach correctness, evaluate its time complexity, and estimate the worse-case execution cost.
(4) We validate the practical feasibility of the TCCSCI approach with a prototypical implementation thereof.

The rest of this paper is structured as follows: In Section 2, we present basic background information regarding
blockchain technology and blockchain interoperability. In Section 3, we motivate the importance of TCCSCIs and
present the research question this work aims to solve. In Section 4, we introduce a formal blockchain system model
that we use as basis for our approach, and formalize the problem statement. In Section 5, we introduce the TCCSCI
approach, and in Section 6, we validate it by introducing a prototypical implementation for it. In Section 7, we evaluate
the approach and prove its correctness, and in Section 8 we discuss its properties. In Section 9, we discuss the related
work, and finally, in Section 10 we provide a conclusion and discuss potential future research directions.

2 BACKGROUND

In this section, we give necessary background information regarding the blockchain technology, the problem of
blockchain interoperability, and the concept of resource management in blockchain systems.
Manuscript submitted to ACM
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2.1 The Blockchain Technology

A blockchain system is a distributed system that supports the interaction between parties that are mutually distrustful [36].
By running a consensus protocol among the blockchain participants, they can ensure the consistency of a shared state
without favoring any one of them over the others and without requiring the honesty of specific participants [5].
To facilitate these properties, a blockchain system maintains the history of all executed blockchain transactions, i.e.,
participant-issued requests to execute operations that change the shared state. Blockchain transactions are usually
grouped into blocks that are cryptographically linked together to form a data structure known as a blockchain. With the
help of the consensus protocol, which is used to formulate agreed-upon blocks, the immutability and non-repudiation of
the history of executed blockchain transactions are guaranteed without the need for a Trusted Third Party (TTP) [36].

Blockchain systems can be grouped into two major categories: First, there are permissionless blockchain systems, such
as Bitcoin [21] and Ethereum [34], that allow anyone to participate, and are considered to be more decentralized [36].
However, permissionless blockchain systems usually employ consensus protocols that are relatively slow and temporarily
allow multiple transaction histories to exist. Therefore, they are more suitable for peer-to-peer applications that require
decentralization. Second, we have permissioned blockchain systems, such as Hyperledger Fabric [1]. These systems are
characterized by requiring the permission of an authority before an entity can join the system under certain roles [36],
which facilitates better control over data privacy. Being permissioned allows these blockchain systems to use Byzantine
Fault Tolerant (BFT)-based consensus protocols, which generally have better performance and do not suffer from
forking making them better suited to enterprise applications despite relinquishing a certain degree of decentralization.

With the advent of blockchain smart contracts, blockchain systems became suited for many more use cases, such as
health care management [30], supply chain management [19], and others. A smart contract is an immutable user-defined
program directly deployed to the blockchain and manages a portion of the blockchain’s shared state [34]. Smart contract

functions are executed as units-of-work, i.e., only the effects of successful executions are persisted, and the partial effects
of failed executions are undone. Moreover, the blockchain protocol ensures that they are executed exactly as designed.
Hence, they are suitable for implementing the business logic for collaborations among mutually-distrustful partners [8].

2.2 Blockchain Interoperability

While permissionless blockchains are often used for peer-to-peer applications that require decentralization, such
as token management, permissioned blockchains are better suited to enterprise applications [7]. Therefore, there is
no “one size fits all” blockchain system. In fact, different types of blockchain systems will likely continue to evolve
and coexist, since they choose different trade-offs that contradict each other but are suitable for different needs [29].
Therefore, it is often necessary that a given business process accesses resources over multiple blockchain networks1

simultaneously [6, 8, 13]. We refer to the ability of a single business transaction to access resources over different
blockchain networks as blockchain interoperability. Many blockchain interoperability approaches exist [2], but they
all try to solve the same core problem common to blockchain systems, which is that these systems cannot directly
access external resources. The reason is that the execution of blockchain transactions must be deterministic, i.e., that all
honest peers participating in the execution of these transactions must come up with the same results since, otherwise,
consensus cannot be guaranteed [31]. However, accessing external systems is not guaranteed to produce consistent
results for all blockchain nodes and over an extended period of time. Therefore, such access is generally prohibited
within the frame of blockchain transactions. It is even prohibited that a blockchain transaction of one network accesses

1A blockchain network is an instance of a blockchain system.
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resources on a different blockchain network. Hence, new data cannot be actively queried by blockchain nodes from
external systems, but rather have to be passed to the consensus mechanism as entries within the request messages
issued by client applications. Therefore, when a cross-blockchain application requires information to be passed from one
blockchain network to another, an off-chain entity (known as an oracle) needs to embed this data into a blockchain
transaction execution request and submit it to the consensus mechanism of the target blockchain. Usually a service
that acts as a client application to both blockchain networks performs this task [20]. Cross-blockchain applications
have various aims. Therefore, many corresponding blockchain interoperability approaches have been developed with
different kinds of goals, such as Cross-Chain Asset Transfer (CCAT) [14, 15], Cross-Chain Data Migration (CCDM) [9],
and Cross-Chain Smart Contract Invocation (CCSCI) [18, 26], which is the main focus of this work.

2.3 Transactional Resource Managers and Blockchain Resource Management Layer

A transactional resource manager (or a resource manager for short) is a component that manages shared resources
in transaction processing (TP) systems [4]. Traditionally, these resources could be databases, queues, files, and other
shared objects accessible within a transaction. The major responsibility of a resource manager is ensuring the Atomicity,

Consistency, Isolation, and Durability (ACID) properties for the transactions that access the underlying resource.
A blockchain system also maintains resources. For example, in Ethereum [34], these resources are the account states,

whereas in Hyperledger Fabric [1], they are the ledger states. Hence, although blockchain systems commonly lack
a dedicated resource manager component, every blockchain system has mechanisms that ensure that transactions
accessing managed resources maintain the ACID properties [7]. For example, in Ethereum the Ethereum Virtual Machine

(EVM) ensures that aborting a transaction while executing a smart contract function revokes all changes made to the
state of the account that hosts the smart contract, whereas the consensus mechanism ensures that transactions are
executed serially in a predetermined and agreed upon order. Moreover, in Hyperledger Fabric, the transaction flow
utilizes an optimistic locking mechanism that ensures serializability, and a regular database system ensures durability
and atomicity. Hence, we refer to the ACID-enforcing mechanisms of a blockchain system as its Resource Management

Layer. In smart contract-enabled blockchains, this layer sits between smart contracts and the underlying blockchain
resources, e.g., ledger states, and exposes the API of a regular resource manager to the smart contract functions.

3 MOTIVATION AND RESEARCH QUESTION

CCSCIs, which are the focus of this work, allow the invocation of smart contract functions of two or more blockchain
networks to be composed or nested together. Moreover, ensuring the atomicity, i.e., all-or-nothing behavior, of CCSCI
executions is crucial in many enterprise application scenarios. For example, consider the exemplary use case depicted
in Figure 1. It shows two permissioned blockchain networks that act as marketplaces for airline and hotel room
reservations2. In the first network, different airlines offer flight seats for booking, while in the second network, different
hotels and property rental services offer rooms for booking. The business logic for each of these blockchain services,
or Decentralized Applications (DApps), is encoded in the form of smart contracts that are deployed directly on the
corresponding blockchain networks. Obviously, travel agencies are interested in both of these DApps, so they are
connected to the two networks. Furthermore, in order to interact with these DApps, they invoke the smart contracts
functions that encode the desired functionality, e.g., booking a hotel room or a flight seat, by submitting blockchain

2Note that we are not restricted to permissioned blockchains. For instance, conditional payments may be performed using a smart contract in a
permissionless blockchain network.
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…
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Fig. 1. A scenario that demonstrates the need for atomicity in the execution of CCSCIs. The business transaction executed by Travel
Agency 1 is not executed atomically because of a conflicting concurrent execution of another transaction executed by Travel Agency 2.

transactions to the underlying blockchain networks. If these transactions are valid, the consensus mechanisms will
accept them, which results in the execution of the requested smart contract functions.

Consequently, travel agencies can provide more sophisticated services, e.g., planning a round-trip flight com-
bined with a hotel stay. Let us assume Travel Agency 1, which represents the enterprise application of some travel
agency, is currently executing such a business transaction as shown in Figure 1: it starts by y1 invoking the flight seat
reservation function of the flight management smart contract hosted on the Airlines Blockchain (we denote this as
AirlinesBC["FlightMgmtSC"].ReserveFlightSeats(...);). Assuming this invocation succeeds, the business transaction
moves to executing a second function in which a room in Hotel A is reserved. However, before this happens, another
travel agency, Travel Agency 2 y2 tries to book a room in Hotel A by executing the same function as part of a different
business transaction. Unfortunately, this results in booking the last room available in Hotel A. Therefore, when the
business transaction of Travel Agency 1 tries to book a room in this hotel (step y3 ), the operation fails. In this case,
we ended up in a business transaction that is non-atomic, i.e., it has its intended effects persisted in only one of the
underlying blockchain networks but not the other (only the flight was booked but not the hotel room). Clearly, this is
an undesirable state. Therefore, it is very crucial to ensure an all-or-nothing behavior in such business transactions, i.e.,
to ensure their global atomicity, which requires that a distributed transaction either entirely commits or entirely aborts
at all nodes [17]. Another problem we notice in this example is that parallel business transactions were not isolated,
i.e., they were allowed to manipulate shared data at the same time, which can result in unintended results. Hence, it
is also important to ensure global serializability, which requires that the execution of a set of interleaved distributed
transactions running concurrently is equivalent to some serial execution of these transactions [17].

Many more use cases, such as trade finance [26], and supply-chain management [8], involve business transactions
that include invocations of smart contracts functions hosted on different blockchain networks, which we referred to as
CCSCIs. However, as we will show in Section 9, no existing approach offers a practical solution for executing these
business transactions while ensuring their global atomicity and global serializability, which is often a requirement for
their correctness. Therefore, the research question for this work is:

Research Question: How can global atomicity and global serializability be guaranteed in business transactions that

involve the invocation of smart contract functions located in different, possibly heterogeneous blockchain networks?
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Fig. 2. An architectural representation of the blockchain system model we use in this work.

4 FORMAL FOUNDATIONS

In this section, we introduce a formal system model for blockchain systems that we use as basis for our approach. This
model only contains concepts that are common in various blockchain systems and relevant for our approach. The idea
is to present our approach in a way that is independent of any concrete blockchain system. Moreover, we formalize our
research question based on this system model and describe the assumptions on which our approach is based.

4.1 System Model

This section presents the formal system model, which we use as basis for introducing our approach in Section 5. An
architectural representation of the system model is shown in Figure 2. The model describes the set of entities involved
in any individual blockchain network 𝑏𝑐 that takes part in our approach. In addition, it describes the relationships
between these entities and the requirements they must fulfill. The model’s aim is not to capture as many details related
to blockchain systems as possible, but capture only those details that are directly relevant for our approach.

• A client application 𝑐 is a blockchain-external, or off-chain, program that communicates with the blockchain smart
contracts of some blockchain network 𝑏𝑐 . Every client application 𝑐 is associated with an identity 𝑖𝑑𝑐,𝑏𝑐 that uniquely
identifies it within 𝑏𝑐 . It also has an asymmetric cryptography key pair (𝑝𝑢𝑐 , 𝑝𝑟𝑐 ) used for signing request messages
and submitting them to the API Layer of 𝑏𝑐 . There is a unique mapping between 𝑝𝑢𝑐 and 𝑖𝑑𝑐,𝑏𝑐 .
• The blockchain network 𝑏𝑐 hosts a set of smart contracts 𝑆𝐶𝑏𝑐 . Each smart contract 𝑠𝑐 ∈ 𝑆𝐶𝑏𝑐 is defined as follows:
𝑠𝑐 := (𝑖𝑑𝑠𝑐 , 𝐹𝑠𝑐 ). Here, 𝑖𝑑𝑠𝑐 uniquely identifies the smart contract 𝑠𝑐 within 𝑏𝑐 and 𝐹𝑠𝑐 is the set of smart contract

functions contained in 𝑠𝑐 . A smart contract function 𝑓 ∈ 𝐹𝑠𝑐 is a deterministic program that has an identifier 𝑖𝑑𝑓
that is unique within 𝑠𝑐 . We assume the following set of basic smart contract operations must be supported by the
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smart contract runtime layer of the blockchain network 𝑏𝑐: (i) commit is used to signal the successful end of a given
invocation of a smart contract function 𝑓 , (ii) abort is used to signal an error in a given invocation of 𝑓 , (iii) set is
used to change the value of a data item stored in the persistence layer, which stores the states of all smart contracts
hosted on the blockchain network 𝑏𝑐 , (iv) get is used to retrieve the value of a data item stored in the persistence layer,
(v) invoke is used to invoke another smart contract function within the same blockchain network 𝑏𝑐 , and (vi) emit is
used to send a smart contract event to client applications.
• A client application 𝑐 invokes a function 𝑓 ∈ 𝐹𝑠𝑐 of a smart contract 𝑠𝑐 by submitting a smart contract function

invocation request (aka a “blockchain transaction”) 𝑟𝑒𝑞 := (𝑖𝑑𝑟𝑒𝑞, 𝑖𝑑𝑠𝑐 , 𝑖𝑑𝑓 , 𝑎𝑟𝑔𝑠𝑟𝑒𝑞, 𝑠𝑖𝑔𝑐 ) ∈ 𝑅𝐸𝑄 to the INVOKE method
of the API layer of the blockchain network 𝑏𝑐 . Here, 𝑅𝐸𝑄 is the set of all possible smart contract function invocation
requests of all blockchain networks. Moreover, in every request 𝑟𝑒𝑞 ∈ 𝑅𝐸𝑄 , three identifiers unique within the
blockchain network 𝑏𝑐 to which the request is sent are provided: (i) 𝑖𝑑𝑟𝑒𝑞 represents the unique identifier of the
request, (ii) 𝑖𝑑𝑠𝑐 represents the identifier of the smart contract that contains the function to be invoked 𝑓 , and (iii) 𝑖𝑑𝑓
represents the identifier of 𝑓 . Furthermore, 𝑎𝑟𝑔𝑠𝑟𝑒𝑞 , is a sequence of arguments that will be passed to 𝑓 . Finally, 𝑟𝑒𝑞
contains a client-generated cryptographic signature 𝑠𝑖𝑔𝑐 that allows verifying its integrity and associates it with the
client application 𝑐 . We assume that all submitted requests 𝑟𝑒𝑞 ∈ 𝑅𝐸𝑄 will eventually be delivered to the API layer
(which is usually HTTP-based) after an arbitrary but finite delay.
• The consensus layer of the blockchain network verifies the validity of each request 𝑟𝑒𝑞 ∈ 𝑅𝐸𝑄 and includes verified
requests into the next block 𝑏 := (𝑠𝑒𝑞𝑏 , 𝑅𝑏 , ≺𝑅𝑏 , 𝐸𝑏 , ≺𝐸𝑏 ) being constructed. Here, 𝑠𝑒𝑞𝑏 represents the sequence
number of 𝑏, while 𝑅𝑏 ⊂ 𝑅𝐸𝑄 is the set of requests included within 𝑏 (such that 𝑟𝑒𝑞 ∈ 𝑅𝑏 ). 𝑅𝑏 is strictly and totally
ordered using the relation ≺𝑅𝑏 : 𝑅𝑏 × 𝑅𝑏 , which reflects the order in which the requests in 𝑏 will be executed. 𝐸𝑏
represents the set of smart contract events that are emitted during the execution of the requests 𝑟𝑒𝑞1, ...𝑟𝑒𝑞 |𝑅𝑏 | ∈ 𝑅𝑏 .
𝐸𝑏 is strictly and totally ordered using the relation ≺𝐸𝑏 : 𝐸𝑏 × 𝐸𝑏 which represents the order in which the events are
emitted. 𝐸𝑏 starts as an empty set, then it gets gradually filled with the events that are emitted during the execution
of the smart contract functions invoked by the requests 𝑟𝑒𝑞1, ...𝑟𝑒𝑞 |𝑅𝑏 | ∈ 𝑅𝑏 as we will discuss next.
We assume that in order for a request 𝑟𝑒𝑞 ∈ 𝑅𝐸𝑄 to be considered valid, it must be unique and that any request
successfully validated by the consensus layer will eventually be included into a block. Furthermore, we assume that
the consensus layer only associates monotonically increasing sequence numbers to the generated blocks. Therefore,
𝑠𝑒𝑞𝑏 uniquely identifies the block 𝑏 within the blockchain network that received the request.
After the consensus layer adds “enough”3 validated requests 𝑟𝑒𝑞 ∈ 𝑅𝐸𝑄 to 𝑅𝑏 , it triggers the invocation of all requests
in it sequentially according to ≺𝑅𝑏 . For each request 𝑟𝑒𝑞 = (𝑖𝑑𝑟𝑒𝑞, 𝑖𝑑𝑠𝑐 , 𝑖𝑑𝑓 , 𝑎𝑟𝑔𝑠𝑟𝑒𝑞, 𝑠𝑖𝑔𝑐 ) ∈ 𝑅𝑏 , the function identified
by 𝑖𝑑𝑓 inside the smart contract identified by 𝑖𝑑𝑠𝑐 is invoked using the arguments 𝑎𝑟𝑔𝑠𝑟𝑒𝑞 passed by the client
application in combination with context information, i.e., (i) the sequence number 𝑠𝑒𝑞𝑏 of the block containing the
request, which enables 𝑓 to identify the point in time of which the invocation takes place, and (ii) 𝑖𝑑𝑐,𝑏𝑐 , the identity of
the client application that submitted the request4. Therefore, when a request 𝑟𝑒𝑞 ∈ 𝑅𝑏 that is included into the block 𝑏
is triggered, the resulting smart contract function invocation is defined as 𝑖𝑟𝑒𝑞,𝑏 := (𝑖𝑑𝑠𝑐 , 𝑖𝑑𝑓 , 𝑎𝑟𝑔𝑠𝑟𝑒𝑞, 𝑠𝑒𝑞𝑏 , 𝑖𝑑𝑐,𝑏𝑐 ) ∈ 𝐼𝑏𝑐 ,
where 𝐼𝑏𝑐 represents the set of all invocations that result from valid smart contract function invocation requests
included into the blockchain structure of the blockchain network 𝑏𝑐 .
• The smart contract runtime layer is responsible for performing all smart contract function invocations in 𝐼𝑏𝑐 . During
an invocation 𝑖𝑟𝑒𝑞,𝑏 ∈ 𝐼𝑏𝑐 , the basic smart contract operations set, get, commit, and abort are forwarded to the built-in

3This is determined on a technology-specific basis. For example, Ethereumminers try to fill the block up to a known threshold, i.e., the block’s gasLimit [34].
4The consensus layer infers 𝑖𝑑𝑐,𝑏𝑐 from 𝑠𝑖𝑔𝑐 .
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resource management layer that ensures the atomicity and isolation of invocations within the blockchain network 𝑏𝑐 ,
and communicates with the underlying persistence layer by reading from it and writing to it. Moreover, the basic
smart contract operation emit stores a smart contract event 𝑒 := (𝑡𝑦𝑝𝑒𝑒 , 𝑎𝑟𝑔𝑠𝑒 ) in the set 𝐸𝑏 within the block 𝑏. Here,
𝑡𝑦𝑝𝑒𝑒 represents a custom-defined event type, and 𝑎𝑟𝑔𝑠𝑒 represents a set of data items that will be reported back to
the client application 𝑐 . Later, when the block 𝑏 is added to the blockchain structure of the blockchain network 𝑏𝑐 ,
the client application receives an asynchronous message from the EMIT method of the API Layer of 𝑏𝑐 containing the
smart contract event 𝑒 . Since 𝑒 is permanently stored into the blockchain data structure, even if the client application 𝑐
is unavailable when the block 𝑏 is added to the blockchain, it still can receive the smart contract event 𝑒 when it
becomes available again, and it receives it in the correct order. Furthermore, the basic smart contract operation invoke

executes a different smart contract function as a sub-invocation of the current invocation. This means the following:
(i) set and get operations performed by the sub-invocation are considered to be part of the parent invocation when it
comes to atomicity and isolation, (ii) a commit operation performed by the sub-invocation is allowed to return values
to the parent invocation, but does not guarantee that the state changes incurred will be persisted, and (iii) an abort

operation performed by the sub-invocation reverts all state changes that took place during its execution and reports
the failure to the parent invocation, which handles it according to its business logic, i.e., it does not necessarily
abort, too. Finally, we assume all invocations end either with the execution of a commit operation or the execution
of an abort operation. In addition to the logic of 𝑓 , the built-in resource management layer may also trigger the
abort operation if it determines that the invocation 𝑖𝑟𝑒𝑞,𝑏 cannot finish in a serializable manner. Similarly, the smart
contract runtime layer may also abort if it detects that 𝑖𝑟𝑒𝑞,𝑏 is infinite or too costly. The execution of this operation
is handled by the built-in resource management layer, which also uses the emit operation to asynchronously report
aborted invocations to the client application. Regardless of whether an invocation 𝑖𝑟𝑒𝑞,𝑏 ends with a commit or an
abort, it is always guaranteed that it is atomic and serializable within the blockchain network. In fact, we assume that
smart contract function invocations fulfill the ACID properties [4].
• When the smart contract runtime layer finishes all the invocations triggered by the requests 𝑟𝑒𝑞1, ...𝑟𝑒𝑞 |𝑅𝑏 | ∈ 𝑅𝑏 , it
permanently adds the block 𝑏 to the blockchain structure of the blockchain network 𝑏𝑐 .

4.2 The Transactional CCSCI Problem

Having formally defined the system model that describes the functionality of a blockchain network, we now use
it to formally define the problem that we want to solve, which is based on the Two-Phase Commit (2PC) Problem

Definition [3, 11, 12]: A client application 𝑐 executes a transactional program that invokes smart contract functions
hosted on two or more blockchain networks𝑏𝑐1, 𝑏𝑐2, ..., 𝑏𝑐𝑛 (𝑛 > 1), which we assume never crash.We call this execution
a Transactional CCSCI (TCCSCI). In fact a TCCSCI is a distributed transaction [4] that invokes smart contracts distributed
across multiple blockchains. Therefore, we use 𝑑𝑡𝑥 to denote it, and we formally define it as a totally and strictly ordered
set of operations that the runtime environment of the client application 𝑐 executes, i.e., 𝑑𝑡𝑥 := (Ω𝑑𝑡𝑥 , ≺𝑑𝑡𝑥 ), in which
Ω𝑑𝑡𝑥 := {𝜔1, ..., 𝜔𝑚}(𝑚 > 3), and the relation ≺𝑑𝑡𝑥 : Ω𝑑𝑡𝑥 × Ω𝑑𝑡𝑥 defines the strict and total order of the operations.
Here, 𝜔1, the first operation executed in 𝑑𝑡𝑥 according to ≺𝑑𝑡𝑥 , is always start_dtx, which marks the beginning of
𝑑𝑡𝑥 , and 𝜔𝑚 , the last operation executed in 𝑑𝑡𝑥 according to ≺𝑑𝑡𝑥 , is either commit_dtx or abort_dtx, which mark the
successful or failed end of the distributed transaction 𝑑𝑡𝑥 , respectively5. The concrete implementation of these three
operations according to our approach will be described in Section 5. Each of the operations 𝜔2, ..., 𝜔𝑚−1 ∈ Ω𝑑𝑡𝑥 is a

5Note that commit_dtx and abort_dtx are different from commit and abort introduced in Section 4.1. The former pair are operations executed by
the runtime environment of the client application, and the latter pair are operations executed by the smart contract runtime layer of a blockchain network.
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𝑠𝑡𝑎𝑟𝑡_𝑑𝑡𝑥()
𝑖𝑛𝑣𝑜𝑘𝑒_𝑠𝑐(𝑏𝑐1, 𝑟𝑒𝑞1)
𝑖𝑛𝑣𝑜𝑘𝑒_𝑠𝑐(𝑏𝑐2, 𝑟𝑒𝑞2)
𝑖𝑛𝑣𝑜𝑘𝑒_𝑠𝑐(𝑏𝑐1, 𝑟𝑒𝑞3)
𝑖𝑛𝑣𝑜𝑘𝑒_𝑠𝑐 𝑏𝑐2, 𝑟𝑒𝑞4

𝑐𝑜𝑚𝑚𝑖𝑡_𝑑𝑡𝑥()

𝒅𝒕𝒙

Client Application

INVOKE …

…
bA …

bB …

𝑖𝑟𝑒𝑞1,𝑏𝐴 , 𝑖𝑟𝑒𝑞3,𝑏𝐵

API Layer

Consensus Layer

Execution Layer*

BC Network bc1

…

INVOKE …

…
bα …

bβ …

𝑖𝑟𝑒𝑞2,𝑏𝛼 , 𝑖𝑟𝑒𝑞4,𝑏𝛽

API Layer

Consensus Layer

Execution Layer*

BC Network bc2

…

𝒍𝒕𝒙𝒃𝒄𝟏,𝒅𝒕𝒙 𝒍𝒕𝒙𝒃𝒄𝟐,𝒅𝒕𝒙

… , 𝑟𝑒𝑞1, …
𝑅𝑏𝐴

… , 𝑟𝑒𝑞3, …
𝑅𝑏𝐴

… , 𝑟𝑒𝑞2, …
𝑅𝑏𝛼

… , 𝑟𝑒𝑞4, …
𝑅𝑏𝛽

Fig. 3. An example that shows how a distributed transaction 𝑑𝑡𝑥 that contains smart contract function invocations on 𝑏𝑐1 and 𝑏𝑐2
results in the local transactions 𝑙𝑡𝑥𝑏𝑐1,𝑑𝑡𝑥 in 𝑏𝑐1 and 𝑙𝑡𝑥𝑏𝑐2,𝑑𝑡𝑥 in 𝑏𝑐2. For brevity, Execution Layer* refers to all the layers below the
Consensus Layer, i.e., Smart Contract Runtime Layer, Built-in Resource Management Layer, and Persistence Layer (see Figure 2).

request submission operation defined as 𝑖𝑛𝑣𝑜𝑘𝑒_𝑠𝑐 := (𝑖𝑑𝑏𝑐 , 𝑟𝑒𝑞), which represents submitting the request 𝑟𝑒𝑞 = (𝑖𝑑𝑟𝑒𝑞,
𝑖𝑑𝑠𝑐 , 𝑖𝑑𝑓 , 𝑎𝑟𝑔𝑠𝑟𝑒𝑞, 𝑠𝑖𝑔𝑐 ) ∈ 𝑅𝐸𝑄 to the INVOKE method of the API Layer of the blockchain network identified by 𝑖𝑑𝑏𝑐 in
order to invoke the function identified by 𝑖𝑑𝑓 of the smart contract identified by 𝑖𝑑𝑠𝑐 .

Furthermore, we define a local transaction 𝑙𝑡𝑥𝑏𝑐,𝑑𝑡𝑥 := (𝐼𝑏𝑐,𝑑𝑡𝑥 , ≺𝐼𝑏𝑐 ) to be the strictly and totally ordered set of smart
contract function invocations that result from the execution of a TCCSCI 𝑑𝑡𝑥 in the blockchain network 𝑏𝑐 :

𝐼𝑏𝑐,𝑑𝑡𝑥 := {𝑖𝑟𝑒𝑞,𝑏 ∈ 𝐼𝑏𝑐 |𝑏 ∈ 𝐵𝑙𝑜𝑐𝑘𝑠𝑏𝑐 ∧ ∃𝑜 ∈ Ω𝑑𝑡𝑥 : 𝑜 = 𝑖𝑛𝑣𝑜𝑘𝑒_𝑠𝑐 (𝑖𝑑𝑏𝑐 , 𝑟𝑒𝑞)} (1)

Formula 1 indicates that the set 𝐼𝑏𝑐,𝑑𝑡𝑥 contains all invocations in the blockchain network 𝑏𝑐 that result from the
invoke_sc operations executed within 𝑑𝑡𝑥 . Here, 𝐵𝑙𝑜𝑐𝑘𝑠𝑏𝑐 denotes the set of blocks of the blockchain network 𝑏𝑐 .

𝑖𝑟𝑒𝑞𝐴,𝑏1 ≺𝐼𝑏𝑐 𝑖𝑟𝑒𝑞𝐵 ,𝑏2 ⇐⇒ (𝑠𝑒𝑞𝑏1 < 𝑠𝑒𝑞𝑏2 ∨ (𝑏1 = 𝑏2 ∧ 𝑟𝑒𝑞𝐴 ≺𝑅𝑏1 𝑟𝑒𝑞𝐵)) (2)

Formula 2 indicates that the relation ≺𝐼𝑏𝑐 : 𝐼𝑏𝑐 × 𝐼𝑏𝑐 orders any two invocations 𝑖𝑟𝑒𝑞𝐴,𝑏1 , 𝑖𝑟𝑒𝑞𝐵 ,𝑏2 ∈ 𝐼𝑏𝑐 according to the
sequence numbers of the blocks 𝑏1 and 𝑏2 that include the smart contract invocation requests that triggered them.
If these requests are in the same block 𝑏, i.e., if 𝑏1 = 𝑏2 = 𝑏, the invocations are ordered using the relative order of
the corresponding requests within 𝑅𝑏 (see Section 4.1). The relationship between 𝑑𝑡𝑥 and 𝑙𝑡𝑥𝑏𝑐,𝑑𝑡𝑥 is demonstrated in
Figure 3 using an example that shows a TCCSCI with four invoke_sc operations that invoke smart contract functions
on two different blockchain networks.

Furthermore, we assume an off-chain transaction manager component 𝑇𝑀 coordinates a commitment protocol 𝑃
with the purpose of guaranteeing the global atomicity of 𝑑𝑡𝑥 . 𝑃 is triggered when the client application requests the
execution of the commit_dtx operation. We assume that 𝑇𝑀 may suffer from crashes at any time and recovers after
some arbitrary amount of time. Information stored by the blockchain persistence layer is never lost. Information logged
on the disk 𝑇𝑀 survives later crashes. Each blockchain network 𝑏𝑐 unilaterally evaluates a vote that can be either “yes”
or “no”, which indicates whether it can commit the local transaction 𝑙𝑡𝑥𝑏𝑐,𝑑𝑡𝑥 , which results from the TCCSCI 𝑑𝑡𝑥 .

The problem is to have the blockchain networks collectively guarantee the global serializability of the TCCSCI 𝑑𝑡𝑥
and decide on either commit or abort considering the following requirements that guarantee the global atomicity of 𝑑𝑡𝑥 :

Manuscript submitted to ACM



10 Ghareeb Falazi, Uwe Breitenbücher, Frank Leymann, Stefan Schulte, and Vladimir Yussupov

Sm
ar

t 
C

o
n

tr
ac

ts
 L

ay
e

r

Consensus 
Layer

Business 
Logic

Built-in Resource Management Layer

Persistence Layer

API Layer

get(), set()

B
u

si
n

e
ss

 
Lo

gi
c 

SC
s

Sy
st

e
m

 S
C

s

…

𝑅𝑀𝑆𝐶𝑏𝑐1

▪ set*()
▪ get*()

▪ commit*()
▪ abort*()

EMITINVOKE

commit(), abort(), get(), set()

Transaction Manager

start_dtx invoke_sc commit_dtx abort_dtx

…

Client 
Application

BC Network bc1

▪ prepare*()

emit()

invoke()

Consensus 
Layer

Built-in Resource Management Layer

Persistence Layer

API Layer

get(), set()

B
u

si
n

e
ss

 
Lo

gi
c 

SC
s

Sy
st

e
m

 S
C

s

…

𝑅𝑀𝑆𝐶𝑏𝑐𝑛

▪ set*()
▪ get*()

▪ commit*()
▪ abort*()

EMITINVOKE

commit(), abort(), get(), set()

BC Network bcn

▪ prepare*()

emit()

invoke()

Fig. 4. An overview of the TCCSCI approach that guarantees global atomicity and global serializability of TCCSCIs.

• Agreement: no two blockchain networks decide differently.
• Termination: if all𝑇𝑀 failures are repaired and it does not crash for long enough, then all blockchain networks decide.
• Abort-Validity: abort is the only possible decision if some blockchain networks vote “no”.
• Commit-Validity: commit is the only possible decision if 𝑇𝑀 is operative and all blockchain networks vote “yes”.

5 THE TRANSACTIONAL CROSS-CHAIN SMART CONTRACT INVOCATION APPROACH

In this section, we present the TCCSCI approach, which guarantees global serializability and atomicity of business
transactions that involve the invocation of smart contract functions located in different, possibly heterogeneous
blockchain networks. We aim to fulfill the following requirements that ensure a relatively low adoption barrier: (i) No
dependence on TTPs, i.e., the approach must not require that the client application or blockchain networks have to
trust third-parties. (ii) Achieve arbitrary smart contract composition, i.e., the approach must allow the client application
to arbitrarily specify which smart contract functions are invoked on which blockchain network and in which order, and
it must allow the client application to pass data resulting from one invocation to another. (iii) The approach must allow
heterogeneity, i.e., it must be applicable to both permissioned and permissionless blockchains, and to any blockchain
system within these two categories that adheres to the system model presented in Section 4.1. (iv) The approach must
not require changing existing blockchain protocols. We evaluate the fulfillment of these requirements in Section 8.

5.1 Conceptual Overview of the TCCSCI Approach

The overall idea of the TCCSCI approach is to use smart contracts that act as resource managers to ensure the global
serializability of TCCSCIs, and to implement a variant of the 2PC protocol to ensure their global atomicity. Specifically,
blockchain systems are designed to ensure the atomicity and isolation of the individual smart contract function
invocations they run. However, in the context of ensuring transactional behavior for CCSCIs, we might need to roll
back the effects of an already-finished invocation as demonstrated in Section 3. Therefore, our approach needs to find
a way to separate the execution of a smart contract function invocation from its commitment, i.e., have the ability
Manuscript submitted to ACM
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to provisionally execute an invocation and later decide whether to commit the incurred changes, i.e., “install” them
durably in the persistence layer, or to revoke them. Traditionally, such a feature is provided by the concept of a resource
manager [4]. However, on the one hand, built-in blockchain resource management layers are not designed for TCCSCIs,
i.e., they cannot ensure their atomicity and serializability. On the other hand, we do not want to introduce changes to
them, since this means requiring to change existing blockchain protocols, which limits the adoptability of the approach.

Therefore, we propose to implement the functionality of a resource manager that supports TCCSCIs directly in the
smart contract layer in the form of a Resource Manager Smart Contract as shown in Figure 4. We assume that for each
blockchain network 𝑏𝑐1, ..., 𝑏𝑐𝑛 , we have a dedicated RMSC, 𝑅𝑀𝑆𝐶𝑏𝑐1 , ..., 𝑅𝑀𝑆𝐶𝑏𝑐𝑛 . Please note how RMSCs expose a set
of functions similar, except for prepare*, to the basic operations exposed by the built-in resource management layer (to
differentiate between the two, we add the symbol “*” to the end of RMSC function names). Given a blockchain network
𝑏𝑐 , 𝑅𝑀𝑆𝐶𝑏𝑐 acts as a layer on top of the built-in resource management layer of 𝑏𝑐 . Therefore, when a user-defined
smart contract 𝑠𝑐 in 𝑏𝑐 needs to participate in a TCCSCI, it must direct all its read and write requests to 𝑅𝑀𝑆𝐶𝑏𝑐 by
invoking the functions set* and get* using the invoke basic operation instead of directly calling the basic operations
set and get of the built-in resource management layer. As discussed in Section 5.2, set* and get* are implemented in a
way that (i) ensures serializability by implementing Strict Two-Phase Locking (S2PL) [3], and (ii) facilitates recovery, i.e.,
recover the previous values of changed data items if a TCCSCI is aborted (by maintaining previous images).

To support the global atomicity of TCCSCIs, the TCCSCI approach introduces a transaction manager component as
part of the client application. We denote this component 𝑇𝑀 . The purpose of 𝑇𝑀 is to coordinate a specialized ACP
derived from the traditional 2PC protocol. As we will see in Section 5.3, given a TCCSCI 𝑑𝑡𝑥 , this protocol, which
we refer to as the 2PC4BC protocol, will ensure that all the corresponding local transactions are either committed or
aborted. To this end, when the business logic of the client application is successfully executed until the end, i.e., when
the operation 𝑐𝑜𝑚𝑚𝑖𝑡_𝑑𝑡𝑥 is executed, 𝑇𝑀 will communicate with the RMSCs of the involved blockchain networks to
run the 2PC4BC protocol by: (i) invoking the prepare* function provided by the smart contracts 𝑅𝑀𝑆𝐶𝑏𝑐1 , ..., 𝑅𝑀𝑆𝐶𝑏𝑐𝑛
of all participating blockchain networks 𝑏𝑐1, ..., 𝑏𝑐𝑛 , which requests them to vote on whether they are willing to commit
their local transactions 𝑙𝑡𝑥𝑏𝑐1,𝑑𝑡𝑥 , ..., 𝑙𝑡𝑥𝑏𝑐𝑛,𝑑𝑡𝑥 . (ii) If all vote “yes”, requesting them to perform the commit by invoking
the commit* function; otherwise, requesting them to abort by invoking the abort* function. The commit* function of a
given 𝑅𝑀𝑆𝐶𝑏𝑐 ensures that the effects of the local transaction 𝑙𝑡𝑥𝑏𝑐,𝑑𝑡𝑥 are “installed” in the persistence layer of 𝑏𝑐 ,
whereas the abort* function restores the previous images of the data items manipulated in 𝑙𝑡𝑥𝑏𝑐,𝑑𝑡𝑥 , thus effectively
revoking it. As a result, the global atomicity of 𝑑𝑡𝑥 is guaranteed. In the next two sections, we will give more details on
the RMSCs and the 2PC4BC protocol.

5.2 Resource Manager Smart Contract

As mentioned earlier, the main purposes of an RMSC is to (i) enable business logic smart contracts to separate their
execution from the commitment of the incurred changes, which allows for rolling back executed but uncommitted
function invocations if deemed necessary to ensure the global atomicity of a TCCSCI, and (ii) ensure that the access to
data items is controlled in such a way that prevents unintentional interactions between concurrent TCCSCIs, which
ensures global serializability. An example of unintentional interactions between concurrent TCCSCIs is accessing
uncommitted changes that might still be revoked later. Every blockchain network 𝑏𝑐 involved in the execution of
a TCCSCI requires an 𝑅𝑀𝑆𝐶𝑏𝑐 deployed on it. This 𝑅𝑀𝑆𝐶𝑏𝑐 will then be used to support the execution of the local
transactions 𝑙𝑡𝑥𝑏𝑐,𝑑𝑡𝑥 of all TCCSCIs. Every 𝑅𝑀𝑆𝐶𝑏𝑐 exposes five public functions, set*, get*, commit*, abort*, and
prepare*. We will postpone the discussion of commit*, abort*, and prepare* to the next section since they are more
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Listing 1 Pseudocode for 𝑅𝑀𝑆𝐶𝑏𝑐 : set* and get* functions along with other helping functions.
Context :𝑠𝑒𝑞𝑏 , 𝑖𝑑𝑐,𝑏𝑐
Data: vars[], txs[],𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

1 external function set*(𝑣𝑁𝑎𝑚𝑒 , 𝑣𝑎𝑙𝑢𝑒 , 𝑖𝑑𝑑𝑡𝑥 ):
2 require(ensureStarted(𝑖𝑑𝑑𝑡𝑥 ) = true)
3 require(txs[𝑖𝑑𝑑𝑡𝑥 ].𝑜𝑤𝑛𝑒𝑟 = 𝑖𝑑𝑐,𝑏𝑐)
4 [𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑓 𝑢𝑙, 𝑛𝑒𝑤𝐿𝑜𝑐𝑘 ] ← acquireLock(𝑣𝑁𝑎𝑚𝑒 , 𝑖𝑑𝑑𝑡𝑥 ,

𝑊𝑅𝐼𝑇𝐸)

5 if 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑓 𝑢𝑙 = false then // Cannot acquire the lock!
6 doAbort_ltx(𝑖𝑑𝑑𝑡𝑥 )

7 else
8 if 𝑛𝑒𝑤𝐿𝑜𝑐𝑘 = true then // 1𝑠𝑡 write to variable?
9 vars[vName].𝑝𝑟𝑒𝑣𝐼𝑚𝑎𝑔𝑒 ← vars[vName].𝑣𝑎𝑙𝑢𝑒

10 vars[vName].𝑣𝑎𝑙𝑢𝑒 ← 𝑣𝑎𝑙𝑢𝑒

11 external function get*(𝑣𝑁𝑎𝑚𝑒 , 𝑖𝑑𝑑𝑡𝑥 ):
12 require(ensureStarted(𝑖𝑑𝑑𝑡𝑥 ) = true)
13 require(txs[𝑖𝑑𝑑𝑡𝑥 ].𝑜𝑤𝑛𝑒𝑟 = 𝑖𝑑𝑐,𝑏𝑐)
14 [𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑓 𝑢𝑙, _] ← acquireLock(𝑣𝑁𝑎𝑚𝑒 , 𝑖𝑑𝑑𝑡𝑥 , 𝑅𝐸𝐴𝐷)

15 if 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑓 𝑢𝑙 = false then // Cannot set the lock!
16 doAbort_ltx(𝑖𝑑𝑑𝑡𝑥 )

17 else
18 return vars[vName].𝑣𝑎𝑙𝑢𝑒

19 internal function ensureStarted(𝑖𝑑𝑑𝑡𝑥 ):
20 if txs[𝑖𝑑𝑑𝑡𝑥 ] = ⊥ then // We have to initialize 𝑑𝑡𝑥

21 txs[𝑖𝑑𝑑𝑡𝑥 ].𝑜𝑤𝑛𝑒𝑟 ← 𝑖𝑑𝑐,𝑏𝑐
22 txs[𝑖𝑑𝑑𝑡𝑥 ].𝑠𝑡𝑎𝑡𝑒 ← 𝑆𝑇𝐴𝑅𝑇𝐸𝐷

23 txs[𝑖𝑑𝑑𝑡𝑥 ].𝑡𝑖𝑚𝑒𝑜𝑢𝑡 ← 𝑠𝑒𝑞𝑏 +𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

24 return true
25 return txs[𝑖𝑑𝑑𝑡𝑥 ].𝑠𝑡𝑎𝑡𝑒 = 𝑆𝑇𝐴𝑅𝑇𝐸𝐷

26 internal function acquireLock(𝑣𝑁𝑎𝑚𝑒 , 𝑖𝑑𝑑𝑡𝑥 , 𝑙𝑇 𝑦𝑝𝑒):
27 𝑣 ← vars[vName]
28 𝑡𝑥 ← txs[𝑖𝑑𝑑𝑡𝑥 ]
29 if (𝑙𝑇 𝑦𝑝𝑒 =𝑊𝑅𝐼𝑇𝐸 ∧ 𝑡𝑥 has write lock over 𝑣) ∨ (𝑙𝑇 𝑦𝑝𝑒 =

𝑅𝐸𝐴𝐷 ∧ 𝑡𝑥 has any lock over 𝑣) then // No need to lock
30 [𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑓 𝑢𝑙 , 𝑛𝑒𝑤𝐿𝑜𝑐𝑘]← [true, false]
31 else if (𝑙𝑇 𝑦𝑝𝑒 = 𝑅𝐸𝐴𝐷 ∧ 𝑣 is not write-locked) ∨ (𝑙𝑇 𝑦𝑝𝑒 =

𝑊𝑅𝐼𝑇𝐸∧ no other transaction has locks over 𝑣) then
32 lock(𝑣𝑁𝑎𝑚𝑒 , 𝑖𝑑𝑑𝑡𝑥 , 𝑙𝑇 𝑦𝑝𝑒)
33 [𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑓 𝑢𝑙 , 𝑛𝑒𝑤𝐿𝑜𝑐𝑘]← [true, true]
34 else // There are conflicting locks!
35 𝑙𝐻𝑜𝑙𝑑𝑒𝑟𝑠 ← 𝑣.𝑟𝑙𝐻𝑜𝑙𝑑𝑒𝑟𝑠 ∪ {𝑣.𝑤𝑙𝐻𝑜𝑙𝑑𝑒𝑟 }
36 if ∀ℎ ∈ 𝑙𝐻𝑜𝑙𝑑𝑒𝑟𝑠 (txs[ℎ].𝑡𝑖𝑚𝑒𝑜𝑢𝑡 ≤ 𝑠𝑒𝑞𝑏∧

txs[ℎ].𝑠𝑡𝑎𝑡𝑒 = 𝑆𝑇𝐴𝑅𝑇𝐸𝐷 ) then
37 foreach ℎ ∈ 𝑙𝐻𝑜𝑙𝑑𝑒𝑟𝑠 do
38 doAbort_ltx(ℎ)

39 lock(𝑣𝑁𝑎𝑚𝑒 , 𝑖𝑑𝑑𝑡𝑥 , 𝑙𝑇 𝑦𝑝𝑒)
40 [𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑓 𝑢𝑙 , 𝑛𝑒𝑤𝐿𝑜𝑐𝑘]← [true, true]
41 else // We cannot set the lock
42 [𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑓 𝑢𝑙 , 𝑛𝑒𝑤𝐿𝑜𝑐𝑘]← [false, false]
43 return [𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑓 𝑢𝑙 , 𝑛𝑒𝑤𝐿𝑜𝑐𝑘]

44 internal function lock(𝑣𝑁𝑎𝑚𝑒 , 𝑖𝑑𝑑𝑡𝑥 , 𝑙𝑇 𝑦𝑝𝑒):
45 if 𝑙𝑇 𝑦𝑝𝑒 =𝑊𝑅𝐼𝑇𝐸 then
46 vars[vName].𝑤𝑙𝐻𝑜𝑙𝑑𝑒𝑟 ← 𝑖𝑑𝑑𝑡𝑥
47 vars[vName].𝑟𝑙𝐻𝑜𝑙𝑑𝑒𝑟𝑠 ← ∅
48 else
49 vars[vName].𝑟𝑙𝐻𝑜𝑙𝑑𝑒𝑟𝑠 ←

vars[vName].𝑟𝑙𝐻𝑜𝑙𝑑𝑒𝑟𝑠 ∪ {𝑖𝑑𝑑𝑡𝑥 }

relevant for the proposed 2PC4BC protocol, and focus instead on set* and get* that represent the interface exposed to
user-defined smart contracts willing to participate in TCCSCIs.

5.2.1 Pseudocode Syntax. The pseudocode of the set* and get* functions and other required helping functions are
shown in Listing 1. Throughout the pseudocode, the basic smart contract operations set and get exposed by the built-in
resource management layer are implicitly executed whenever we assign a value to or read a value from the data
items stored in the persistence layer. The data items that the smart contract 𝑅𝑀𝑆𝐶𝑏𝑐 accesses are declared in the Data

block of the pseudocode. These data items are only accessible via 𝑅𝑀𝑆𝐶𝑏𝑐 functions, i.e., no other smart contract can
directly read or manipulate them. Moreover, the basic operation abort is implicitly executed whenever the pseudocode
command require(<condition>) is invoked and the <condition> evaluates to false, while the basic operation commit is
implicitly triggered when any function execution finishes without incurring an abort operation. Finally, the context
information provided by the consensus layer, i.e., the sequence number 𝑠𝑒𝑞𝑏 of the block that contains the current smart
contract function invocation request and the client application identity 𝑖𝑑𝑐,𝑏𝑐 within the local blockchain network 𝑏𝑐 are
made available to all functions of 𝑅𝑀𝑆𝐶𝑏𝑐 by declaring them in the Context pseudocode block. Please note that having
exclusive access to certain data items stored in the persistence layer and having access to the context information are
common capabilities for all smart contracts and are not restricted to RMSCs.

5.2.2 Needed Data Items and Their Structures. The Data pesudocode block shows that 𝑅𝑀𝑆𝐶𝑏𝑐 has access to three data
items, 𝑣𝑎𝑟𝑠 , 𝑡𝑥𝑠 , and 𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛: (i) 𝑣𝑎𝑟𝑠 is a mapping data item that hosts a set of variables. The purpose of
these variables is to represent the data items that user-defined smart contracts want to have access to during TCCSCI
executions. User-defined smart contracts can access these variables only via the set* and get* functions. This allows
Manuscript submitted to ACM



Transactional Cross-Chain Smart Contract Invocations 13

𝑅𝑀𝑆𝐶𝑏𝑐 to embed the locking mechanism needed to ensure global serializability into them. Each variable 𝑣 ∈ 𝑣𝑎𝑟𝑠
is accessible inside 𝑅𝑀𝑆𝐶𝑏𝑐 using the notation 𝑣𝑎𝑟𝑠 [𝑛𝑎𝑚𝑒] and is defined as follows: 𝑣 := (𝑛𝑎𝑚𝑒, 𝑣𝑎𝑙𝑢𝑒, 𝑝𝑟𝑒𝑣𝐼𝑚𝑎𝑔𝑒,
𝑤𝑙𝐻𝑜𝑙𝑑𝑒𝑟, 𝑟𝑙𝐻𝑜𝑙𝑑𝑒𝑟𝑠). Here, 𝑛𝑎𝑚𝑒 represents the name of the variable, 𝑣𝑎𝑙𝑢𝑒 is its current value, 𝑝𝑟𝑒𝑣𝐼𝑚𝑎𝑔𝑒 is the value
before the first successful set* operation that accesses 𝑣 in the current local transaction,𝑤𝑙𝐻𝑜𝑙𝑑𝑒𝑟 is the identifier of the
local transaction that holds a write lock over 𝑣 (or null ⊥), and 𝑟𝑙𝐻𝑜𝑙𝑑𝑒𝑟𝑠 is the set of identifiers of the local transactions
that hold read locks over 𝑣 (if any). A new variable is added to the 𝑣𝑎𝑟𝑠 mapping whenever a user-defined smart contract
tries to access a variable with an unknown 𝑛𝑎𝑚𝑒 using the set* or get* functions. (ii) 𝑡𝑥𝑠 is a mapping data item that
represents all existing local transactions of the blockchain network 𝑏𝑐 . Each 𝑡𝑥 ∈ 𝑡𝑥𝑠 is accessible inside 𝑅𝑀𝑆𝐶𝑏𝑐
using the notation 𝑡𝑥𝑠 [𝑖𝑑𝑑𝑡𝑥 ] and contains the necessary information to enable the corresponding local transaction to
participate in the 2PC4BC protocol. Hence, it is defined as follows: 𝑡𝑥 := (𝑖𝑑𝑑𝑡𝑥 , 𝑜𝑤𝑛𝑒𝑟, 𝑠𝑡𝑎𝑡𝑒, 𝑡𝑖𝑚𝑒𝑜𝑢𝑡). Here, 𝑖𝑑𝑑𝑡𝑥
represents the identifier of the TCCSCI. We assume that this identifier is unique within all blockchain networks involved
in the TCCSCI 𝑑𝑡𝑥 . Therefore, it is used also as an identifier for every local transaction that originates from 𝑑𝑡𝑥 . The
function start_tx in 𝑇𝑀 (as shown later) is responsible for generating 𝑖𝑑𝑑𝑡𝑥 when 𝑑𝑡𝑥 starts. Furthermore, 𝑜𝑤𝑛𝑒𝑟
represents the identifier 𝑖𝑑𝑐,𝑏𝑐 of the client application 𝑐 that executes the TCCSCI, 𝑠𝑡𝑎𝑡𝑒 ∈ {𝑆𝑇𝐴𝑅𝑇𝐸𝐷, 𝑃𝑅𝐸𝑃𝐴𝑅𝐸𝐷,
𝐶𝑂𝑀𝑀𝐼𝑇𝑇𝐸𝐷, 𝐴𝐵𝑂𝑅𝑇𝐸𝐷} represents the current state of the local transaction 𝑙𝑡𝑥𝑏𝑐,𝑑𝑡𝑥 , and 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 represents the
latest block sequence number in which the local transaction is allowed to maintain locks if it is still in the 𝑆𝑇𝐴𝑅𝑇𝐸𝐷
state. (iii) 𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 is a data item representing the duration of time, measured in the number of generated
blocks, in which any local transaction in the blockchain network 𝑏𝑐 is allowed to remain in the 𝑆𝑇𝐴𝑅𝑇𝐸𝐷 state.

5.2.3 The 𝑅𝑀𝑆𝐶𝑏𝑐 Functions. The function set* is marked with the keyword external, which means it can be invoked
from outside the smart contract 𝑅𝑀𝑆𝐶𝑏𝑐 . In fact, it needs to be invoked by any user-defined smart contract in the same
blockchain network willing to update the value of a specific variable in the context of some local transaction 𝑙𝑡𝑥𝑏𝑐,𝑑𝑡𝑥 .

With the help of the private, i.e., internal, function ensureStarted, set* ensures that the local transaction 𝑙𝑡𝑥𝑏𝑐,𝑑𝑡𝑥
either is already in the 𝑆𝑇𝐴𝑅𝑇𝐸𝐷 state, or does not yet exist, in which case a new entry for it in the 𝑡𝑥𝑠 mapping is
created and initialized. Next, the function set* ensures that the client application from which the current invocation
request originates has the same identity 𝑖𝑑𝑐,𝑏𝑐 as the owner of the local transaction 𝑙𝑡𝑥𝑏𝑐,𝑑𝑡𝑥 . This is necessary to ensure
that no other client application is allowed to interfere with the execution of the TCCSCI on the current blockchain
network 𝑏𝑐 . Next, the function tries to acquire a write lock over the variable to be set with the help of the acquireLock

internal function. If this was unsuccessful (see line 5), the local transaction is immediately aborted using the private
function doAbort_ltx, which we will explain in Section 5.3. Otherwise, the execution moves on to check if this is the
first time the current local transaction changes the value of the variable, in which case it stores the previous value in
the field 𝑝𝑟𝑒𝑣𝐼𝑚𝑎𝑔𝑒 . Finally, it changes the current value of the variable by assigning the new value to it.

The public function get* is invoked by any user-defined smart contract in the same blockchain network 𝑏𝑐 willing to
read the value of a specific data item in the context of the local transaction identified with 𝑖𝑑𝑑𝑡𝑥 . The function first
performs checks similar to set*, then it tries to acquire a read lock over the specified variable. If this is unsuccessful (see
line 15), the TCCSCI is aborted. Otherwise, the value of the variable is returned to the invoking smart contract function.

Both set* and get* utilize the private function acquireLock, which tries to set a lock of the type specified by the
argument 𝑙𝑇𝑦𝑝𝑒 ∈ {𝑊𝑅𝐼𝑇𝐸, 𝑅𝐸𝐴𝐷} on a specific variable 𝑣 . To this end, it follows a set of well-known rules [3] to find
out if there are conflicting locks already set over the variable 𝑣 . In short, if a given local transaction is willing to have a
write lock over 𝑣 , any existing locks from concurrent local transactions are considered to conflict with it, whereas if it is
willing to have a read lock over 𝑣 , then any existing write lock from a concurrent local transaction is considered to
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Listing 2 Pseudocode for the 𝑅𝑀𝑆𝐶𝑏𝑐 functions relevant for the 2PC4BC protocol.

Context :𝑠𝑒𝑞𝑏 , 𝑖𝑑𝑐,𝑏𝑐
Data: vars[], txs[],𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

1 external function prepare*(𝑖𝑑𝑑𝑡𝑥 ):
2 require(txs[𝑖𝑑𝑑𝑡𝑥 ].𝑜𝑤𝑛𝑒𝑟 = 𝑖𝑑𝑐,𝑏𝑐)
3 require(txs[𝑖𝑑𝑑𝑡𝑥 ].𝑠𝑡𝑎𝑡𝑒 ∈ {𝑆𝑇𝐴𝑅𝑇𝐸𝐷, 𝐴𝐵𝑂𝑅𝑇𝐸𝐷 })
4 if txs[𝑖𝑑𝑑𝑡𝑥 ].𝑠𝑡𝑎𝑡𝑒 = 𝑆𝑇𝐴𝑅𝑇𝐸𝐷 then
5 txs[𝑖𝑑𝑑𝑡𝑥 ].𝑠𝑡𝑎𝑡𝑒 ← 𝑃𝑅𝐸𝑃𝐴𝑅𝐸𝐷

6 emit(“VOTE_EVENT”, 𝑖𝑑𝑑𝑡𝑥 , “YES”)
7 else
8 emit(“VOTE_EVENT”, 𝑖𝑑𝑑𝑡𝑥 , “NO”)

9 external function commit*(𝑖𝑑𝑑𝑡𝑥 ):
10 require(txs[𝑖𝑑𝑑𝑡𝑥 ].𝑜𝑤𝑛𝑒𝑟 = 𝑖𝑑𝑐,𝑏𝑐)
11 require(txs[𝑖𝑑𝑑𝑡𝑥 ].𝑠𝑡𝑎𝑡𝑒 = 𝑃𝑅𝐸𝑃𝐴𝑅𝐸𝐷)

12 txs[𝑖𝑑𝑑𝑡𝑥 ].𝑠𝑡𝑎𝑡𝑒 ← 𝐶𝑂𝑀𝑀𝐼𝑇𝑇𝐸𝐷

13 releaseLocks(𝑖𝑑𝑑𝑡𝑥 )

14 external function abort*(𝑖𝑑𝑑𝑡𝑥 ):
15 require(txs[𝑖𝑑𝑑𝑡𝑥 ].𝑜𝑤𝑛𝑒𝑟 = 𝑖𝑑𝑐,𝑏𝑐)
16 require(txs[𝑖𝑑𝑑𝑡𝑥 ].𝑠𝑡𝑎𝑡𝑒 ≠ 𝐶𝑂𝑀𝑀𝐼𝑇𝑇𝐸𝐷)

17 if txs[𝑖𝑑𝑑𝑡𝑥 ].𝑠𝑡𝑎𝑡𝑒 ≠ 𝐴𝐵𝑂𝑅𝑇𝐸𝐷 then
18 doAbort_ltx(𝑖𝑑𝑑𝑡𝑥 )

19 internal function doAbort_ltx(𝑖𝑑𝑑𝑡𝑥 ):
20 foreach 𝑣 ∈ 𝑣𝑎𝑟𝑠 do
21 if 𝑣.𝑤𝑙𝐻𝑜𝑙𝑑𝑒𝑟 = 𝑖𝑑𝑑𝑡𝑥 then
22 𝑣.𝑣𝑎𝑙𝑢𝑒 ← 𝑣.𝑏𝑒 𝑓 𝑜𝑟𝑒𝐼𝑚𝑎𝑔𝑒

23 txs[𝑖𝑑𝑑𝑡𝑥 ].𝑠𝑡𝑎𝑡𝑒 ← 𝐴𝐵𝑂𝑅𝑇𝐸𝐷

24 releaseLocks(𝑖𝑑𝑑𝑡𝑥 )

25 internal function releaseLocks(𝑖𝑑𝑑𝑡𝑥 ):
26 foreach 𝑣 ∈ 𝑣𝑎𝑟𝑠 do
27 if 𝑣.𝑤𝑙𝐻𝑜𝑙𝑑𝑒𝑟 = 𝑖𝑑𝑑𝑡𝑥 then
28 𝑣.𝑤𝑙𝐻𝑜𝑙𝑑𝑒𝑟 ←⊥
29 else if 𝑖𝑑𝑑𝑡𝑥 ∈ 𝑣.𝑟𝑙𝐻𝑜𝑙𝑑𝑒𝑟𝑠 then
30 𝑣.𝑟𝑙𝐻𝑜𝑙𝑑𝑒𝑟𝑠 ← 𝑣.𝑟𝑙𝐻𝑜𝑙𝑑𝑒𝑟𝑠 \ {𝑖𝑑𝑑𝑡𝑥 }

conflict with it. If no conflicting locks are detected, acquireLock locks the variable (with the help of the lock function),
but if conflicting locks are detected, it checks if all the corresponding local transactions have timed-out while still being
in the 𝑆𝑇𝐴𝑅𝑇𝐸𝐷 state (see line 36). If that is the case, all conflicting local transactions are aborted, and the required
lock is set. This ensures that local transactions do not hold locks forever, which would, otherwise, indefinitely “starve”
other local transactions willing to access the locked variables. Obviously, if the current local transaction already has a
suitable lock on 𝑣 , then acquireLock will do nothing.

5.3 Two-Phase Commit for Blockchains Protocol

We now present the 2PC4BC protocol, which aims to achieve global atomicity in the CCSCIs (see Section 4.2). The
2PC4BC protocol is based on the original 2PC protocol [10] and, therefore, defines the same two protocol roles:
(i) participants, which are the blockchain networks that want to reach an agreement regarding the commitment of
a TCCSCI 𝑑𝑡𝑥 . In fact, since we aim to avoid changing existing blockchain protocols, the participant’s logic is not
implemented as part of the blockchain peer node itself, but rather embedded into the RMSC of the corresponding
blockchain network. The second role defined is (ii) the coordinator, which is responsible for accumulating the votes
from all participants, and accordingly coming up with a decision to commit or abort as defined by the original 2PC
protocol. This role is played by the TM component of the client application (see Figure 4). During protocol execution, the
coordinator sends messages to the participants using smart contract function invocation requests, and the participants
respond using smart contract events (see Section 4.1). In fact, participants never exchange messages among each other
nor initiate communication with the coordinator. The protocol supports the four requirements defined in the problem
statement: Agreement, Termination, Abort-Validity, and Commit-Validity as shown later in Section 7.1.

We start by introducing the pseudocode for the roles that take part in the 2PC4BC protocol, and then we describe
the protocol itself in detail. First, Listing 2 shows the pseudocode of the functions of the RMSC relevant for the
protocol. Specifically, the functions prepare*, commit*, and abort* are public and invoked by𝑇𝑀 as part of the protocol’s
interactions. These functions ensure the authenticity and validity of the received requests, i.e., that the current state
permits executing them, then change the state accordingly. Moreover, they perform additional functionality such as
voting (prepare*) and releasing locks (commit* and abort*).
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Second, Listing 3 shows the pseudocode of the TM component. We assume the component uses the mapping
𝑆𝐷𝐾 [] declared in the Input block to have access to the set of Software Development Kits (SDKs) that allow it to
communicate with the underlying blockchain networks via: (i) the invoke operation, which allows invoking a smart
contract function, and (ii) the listenTo operation, which allows waiting for a smart contract event of a specific type
to be emitted and delivers it to the component. These operations correspond to the functions INVOKE and EMIT of
the API layer of the blockchain system model we presented in Section 4.1. When these two operations are invoked
in the code, we use the keyword async to emphasize that their execution is asynchronous, i.e., 𝑇𝑀 does not wait
for the operation to complete, but rather moves immediately to the next operation, since it may take up to a few
minutes depending on the corresponding blockchain network. Furthermore, we assume the TM component has access
to the addresses of all relevant RMSCs via the mapping 𝑅𝑀𝑆𝐶 [] and to the identifiers of all RMSC functions that
take part in the 2PC4BC protocol, i.e., prepare*, commit*, and abort*, via the constants 𝑖𝑑𝑝𝑟𝑒𝑝𝑎𝑟𝑒 , 𝑖𝑑𝑐𝑜𝑚𝑚𝑖𝑡 , 𝑖𝑑𝑎𝑏𝑜𝑟𝑡

respectively. This information is also provided in the Input block at the top of Listing 3. Moreover, the component stores
information about existing TCCSCIs in the mapping 𝑡𝑥𝑠 [] that is maintained in a local, non-volatile storage. All changes
to this set are written synchronously and atomically to the local storage so that they survive any subsequent crashes.
The 𝑡𝑥𝑠 [] mapping is declared in the Data block in Listing 3. For each 𝑡𝑥 ∈ 𝑡𝑥𝑠 , the TM component maintains the
following information, which represents one TCCSCI, 𝑡𝑥 := (𝑖𝑑𝑑𝑡𝑥 , 𝑏𝑐𝑠, 𝑠𝑡𝑎𝑡𝑒, 𝑣𝑒𝑟𝑑𝑖𝑐𝑡, 𝑦𝑒𝑠). Here, 𝑖𝑑𝑑𝑡𝑥 is the unique
identifier of the TCCSCI, 𝑏𝑐𝑠 ⊆ 𝑆𝐷𝐾 represents the SDKs of the blockchain networks that take part in the TCCSCI,
𝑠𝑡𝑎𝑡𝑒 ∈ { 𝐴𝑊𝐴𝐼𝑇 𝐼𝑁𝐺_𝑅𝐸𝑄𝑈𝐸𝑆𝑇𝑆,𝐴𝑊𝐴𝐼𝑇 𝐼𝑁𝐺_𝑉𝑂𝑇𝐸𝑆,𝐴𝐵𝑂𝑅𝑇𝐸𝐷,𝐶𝑂𝑀𝑀𝐼𝑇𝑇𝐸𝐷 } is the current 2PC4BC protocol
state while processing the TCCSCI, 𝑣𝑒𝑟𝑑𝑖𝑐𝑡 ∈ { 𝐶𝑂𝑀𝑀𝐼𝑇,𝐴𝐵𝑂𝑅𝑇,⊥ } is the decision reached by 𝑇𝑀 on whether to
commit or abort the TCCSCI, and 𝑦𝑒𝑠 is a counter for “yes” votes. The pseudocode is divided into handlers marked with
the keyword handle. Each handler represents the logic for handling a specific event. Four handlers, i.e., (i) start_dtx(),
(ii) invoke_sc(𝑖𝑑𝑑𝑡𝑥 , 𝑖𝑑𝑏𝑐 , 𝑖𝑑𝑠𝑐 , 𝑖𝑑𝑓 , 𝑎𝑟𝑔𝑠), (iii) commit_dtx(𝑖𝑑𝑑𝑡𝑥), and (iv) abort_dtx(𝑖𝑑𝑑𝑡𝑥), handle request messages
submitted by the business logic component of the client application. Furthermore, bc.emit("VOTE_EVENT", e) handles
the voting events received from participant blockchain networks, and bc.emit("ERROR_EVENT", e) handles all error
events reported by the involved resource manager and user-defined smart contracts. Finally, the crashRecovery() is
triggered whenever 𝑇𝑀 recovers back from a crash, and it has the goal of handling recovery. In addition to these
handlers, the pseudocode introduces the logic of two helper functions doAbort_dtx and doCommit_dtx that are only used
internally. In the following, we explain the 2PC4BC protocol in two steps: we start by explaining the normal execution,
and then we explain the various types of possible failures that may occur and how the protocol handles them.

5.3.1 Normal Execution. Figure 5 presents state machine diagrams for the coordinator and the participants as they
execute a TCCSCI, which includes running the 2PC4BC protocol at the end to achieve agreement over its commitment.
The business logic component of the client application marks the beginning of the TCCSCI by submitting a start_dtx

request to𝑇𝑀 , which causes it to move to the “Awaiting Requests” state. While in this state,𝑇𝑀 receives smart contract
function invocation requests from the business logic component of the client application (see line 5 of Listing 3), which
it submits to the corresponding blockchain networks. At this stage, the RMSCs of these blockchain networks support
the execution of the invoked smart contracts (as explained in Section 5.2) and are, therefore, in the “Started” state. At
some point, the business logic decides to commit the TCCSCI, so it sends a commit_dtx request to 𝑇𝑀 , which triggers
the start of the 2PC4BC protocol. As the name suggests, the protocol has two phases. In Phase 1, the coordinator sends
a voting request to all participating blockchain networks by invoking the prepare* function of their RMSCs, and moves
to the “Awaiting Votes” state. When a participant receives the request while being in the “Started” state, it knows it will
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Listing 3 Pseudocode for the TM component functions that manage the execution of the 2PC4BC protocol.
Input: SDK[], RMSC[], 𝑖𝑑𝑝𝑟𝑒𝑝𝑎𝑟𝑒 , 𝑖𝑑𝑐𝑜𝑚𝑚𝑖𝑡 , 𝑖𝑑𝑎𝑏𝑜𝑟𝑡
Data: txs[]

1 handle start_dtx():
2 𝑖𝑑𝑑𝑡𝑥 ← generate()

3 txs[𝑖𝑑𝑑𝑡𝑥 ].𝑠𝑡𝑎𝑡𝑒 ← 𝐴𝑊𝐴𝐼𝑇 𝐼𝑁𝐺_𝑅𝐸𝑄𝑈𝐸𝑆𝑇𝑆

4 return 𝑖𝑑𝑑𝑡𝑥

5 handle invoke_sc(𝑖𝑑𝑑𝑡𝑥 , 𝑖𝑑𝑏𝑐 , 𝑖𝑑𝑠𝑐 , 𝑖𝑑𝑓 , 𝑎𝑟𝑔𝑠):
6 if txs[𝑖𝑑𝑑𝑡𝑥 ].𝑠𝑡𝑎𝑡𝑒=𝐴𝑊𝐴𝐼𝑇 𝐼𝑁𝐺_𝑅𝐸𝑄𝑈𝐸𝑆𝑇𝑆 then
7 𝑏𝑐 ←SDK[𝑖𝑑𝑏𝑐 ]
8 if 𝑏𝑐 ∉ txs[𝑖𝑑𝑑𝑡𝑥 ].𝑏𝑐𝑠 then
9 async 𝑏𝑐.listenTo(“ERROR_EVENT”)

10 txs[𝑖𝑑𝑑𝑡𝑥 ].𝑏𝑐𝑠 ← txs[𝑖𝑑𝑑𝑡𝑥 ].𝑏𝑐𝑠 ∪ {𝑏𝑐 }
11 async 𝑏𝑐.invoke(𝑖𝑑𝑠𝑐 , 𝑖𝑑𝑓 , 𝑎𝑟𝑔𝑠)

12 handle commit_dtx(𝑖𝑑𝑑𝑡𝑥 ):
13 if txs[𝑖𝑑𝑑𝑡𝑥 ].𝑠𝑡𝑎𝑡𝑒=𝐴𝑊𝐴𝐼𝑇 𝐼𝑁𝐺_𝑅𝐸𝑄𝑈𝐸𝑆𝑇𝑆 then
14 txs[𝑖𝑑𝑑𝑡𝑥 ].𝑠𝑡𝑎𝑡𝑒 ← 𝐴𝑊𝐴𝐼𝑇 𝐼𝑁𝐺_𝑉𝑂𝑇𝐸𝑆

15 txs[𝑖𝑑𝑑𝑡𝑥 ].𝑦𝑒𝑠 ← 0
16 foreach 𝑏𝑐 ∈ txs[𝑖𝑑𝑑𝑡𝑥 ].𝑏𝑐𝑠 do
17 async 𝑏𝑐.listenTo(“VOTE_EVENT”)
18 async 𝑏𝑐.invoke(RMSC[𝑏𝑐], 𝑖𝑑𝑝𝑟𝑒𝑝𝑎𝑟𝑒 , {𝑖𝑑𝑑𝑡𝑥 })
19 handle abort_dtx(𝑖𝑑𝑑𝑡𝑥 ):
20 if txs[𝑖𝑑𝑑𝑡𝑥 ].𝑠𝑡𝑎𝑡𝑒=𝐴𝑊𝐴𝐼𝑇 𝐼𝑁𝐺_𝑅𝐸𝑄𝑈𝐸𝑆𝑇𝑆 then
21 doAbort_dtx(𝑖𝑑𝑑𝑡𝑥 )

22 handle bc.emit(“ERROR_EVENT”, 𝑒):
23 doAbort_dtx(𝑒.𝑎𝑟𝑔𝑠 [1])

24 handle bc.emit(“VOTE_EVENT”, 𝑒):
25 𝑖𝑑𝑑𝑡𝑥 ← 𝑒.𝑎𝑟𝑔𝑠 [1]
26 if txs[𝑖𝑑𝑑𝑡𝑥 ].𝑠𝑡𝑎𝑡𝑒=𝐴𝑊𝐴𝐼𝑇 𝐼𝑁𝐺_𝑉𝑂𝑇𝐸𝑆 then
27 if 𝑒.𝑎𝑟𝑔𝑠 [2] = “NO” then
28 doAbort_dtx(𝑖𝑑𝑑𝑡𝑥 )

29 else if ++𝑦𝑒𝑠 = |txs[𝑖𝑑𝑑𝑡𝑥 ].𝑏𝑐𝑠 | then
30 doCommit_dtx(𝑖𝑑𝑑𝑡𝑥 )

31 handle crashRecovery():
32 foreach 𝑡𝑥 ∈ 𝑡𝑥𝑠 do
33 𝑖𝑑𝑑𝑡𝑥 ← 𝑡𝑥 .𝑖𝑑

34 if 𝑡𝑥 .𝑠𝑡𝑎𝑡𝑒 = 𝐴𝑊𝐴𝐼𝑇 𝐼𝑁𝐺_𝑉𝑂𝑇𝐸𝑆 then
35 if 𝑡𝑥 .𝑣𝑒𝑟𝑑𝑖𝑐𝑡 ∈ {⊥, 𝐴𝐵𝑂𝑅𝑇 } then
36 doAbort_dtx(𝑖𝑑𝑑𝑡𝑥 )

37 else
38 doCommit_dtx(𝑖𝑑𝑑𝑡𝑥 )

39 function doAbort_dtx(𝑖𝑑𝑑𝑡𝑥 ):
40 txs[𝑖𝑑𝑑𝑡𝑥 ].𝑣𝑒𝑟𝑑𝑖𝑐𝑡 ← 𝐴𝐵𝑂𝑅𝑇

41 foreach 𝑏𝑐 ∈ txs[𝑖𝑑𝑑𝑡𝑥 ].𝑏𝑐𝑠 do
42 async 𝑏𝑐.invoke(RMSC[𝑏𝑐], 𝑖𝑑𝑎𝑏𝑜𝑟𝑡 , {𝑖𝑑𝑑𝑡𝑥 })
43 txs[𝑖𝑑𝑑𝑡𝑥 ].𝑠𝑡𝑎𝑡𝑒 ← 𝐴𝐵𝑂𝑅𝑇𝐸𝐷

44 function doCommit_dtx(𝑖𝑑𝑑𝑡𝑥 ):
45 txs[𝑖𝑑𝑑𝑡𝑥 ].𝑣𝑒𝑟𝑑𝑖𝑐𝑡 ← 𝐶𝑂𝑀𝑀𝐼𝑇

46 foreach 𝑏𝑐 ∈ txs[𝑖𝑑𝑑𝑡𝑥 ].𝑏𝑐𝑠 do
47 async 𝑏𝑐.invoke(RMSC[𝑏𝑐], 𝑖𝑑𝑐𝑜𝑚𝑚𝑖𝑡 , {𝑖𝑑𝑑𝑡𝑥 })
48 txs[𝑖𝑑𝑑𝑡𝑥 ].𝑠𝑡𝑎𝑡𝑒 ← 𝐶𝑂𝑀𝑀𝐼𝑇𝑇𝐸𝐷

be able to commit it afterward since TCCSCI already has all the required locks. Therefore, it responds with a “yes” vote,
which is transferred back to the coordinator via a smart contract event, and moves to the “Prepared” state. In Phase 2,
the coordinator collects participants’ votes, and when it detects that all participants have voted “yes”, it decides to
commit the TCCSCI, moves to the “Committed” state, and informs the participants about the decision by invoking the
commit* function of their RMSCs. As a result, the participants also move to the “Committed” state, permanently apply
the local changes of the TCCSCI, and release all locks obtained during its execution. At this stage, the protocol is over.

5.3.2 Failure Handling. Multiple types of failure may affect the execution of the 2PC4BC protocol. First, during the
execution of a TCCSCI 𝑑𝑡𝑥 , an invoked smart contract that represents some service may fail, e.g., due to a violation
of its business logic or a bug in its implementation. In this case, the handler bc.emit("ERROR_EVENT", e) of the TM
component (see line 22 in Listing 3) is triggered and the TCCSCI is aborted. A viable alternative is to forward such
errors to the business logic of the client application and let it decide whether to abort the TCCSCI or handle the error
differently, e.g., by trying a different smart contract that provides a similar business service. Second, even if all smart
contract invocations were successful, the client application might still decide to abort before triggering commit_dtx due
to its own business logic. In this case, it sends an abort_dtx request to the TM component (see line 19 of Listing 3),
which aborts the TCCSCI. Third, an invocation of a smart contract function hosted in one of the participant blockchain
networks 𝑏𝑐 might fail because it was not able to obtain a lock over an accessed data item (see Section 5.2). In this case,
𝑅𝑀𝑆𝐶𝑏𝑐 will unilaterally abort the local transaction 𝑙𝑡𝑥𝑏𝑐,𝑑𝑡𝑥 using the function doAbort_ltx (see Listing 2), causing it
to move to the “Aborted” state (see Figure 5b). Aborting 𝑙𝑡𝑥𝑏𝑐,𝑑𝑡𝑥 entails restoring the previous images for all data items
changed during the execution, and releasing all obtained locks. Later, when the 2PC4BC protocol is triggered, 𝑅𝑀𝑆𝐶𝑏𝑐
will vote “no” in Phase 1, and the whole TCCSCI will be aborted, i.e., all relevant local transactions will also be aborted.
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Awaiting Requests Awaiting Votes

Aborted Committed

[yes < countbc]

[yes == countbc]

bc:yes / 

client:invoke_sc(idbc, idsc, idf, …) / 

{  yes = 0; 
bc[1..countbc].invoke(RMSC.prepare); }

bc:nobc:error,

client:abort_tx

entry /

client:commit_tx /

{ update(countbc); bc.invoke(sc.f); }

{ yes++; }client:start_tx

{ bc[1.. countbc].invoke(
RMSC.abort); }

entry /

{ bc[1.. countbc].invoke(
RMSC.commit); }

(a) The state machine diagram for the Transaction Manager component.

Started

Aborted Committed

sc:get*, sc:set*/

{  emit_yes(); }

TM:abort*
TM:abort*,
locking_error, 
timeout

TM:prepare*/

Begin 
Transaction TM:commit*

entry /

TM:prepare*/                         ,{  emit_no(); }

{   release_locks();
revoke_changes();  }

{  try_lock();  }

entry /

{   release_locks();
apply_changes();  }

Prepared

TM:abort*

(b) The state machine diagram for a Resource Manager Smart Contract.

Fig. 5. The proposed 2PC4BC protocol expressed as two state machine diagrams for the TM component and the RMSCs.

Another type of possible failures is a 𝑇𝑀 crash. We assumed in the problem statement (see Section 4.2) that 𝑇𝑀 may
crash at any time, and that it will eventually be operational again after an arbitrary period of time. After it recovers,
it only “remembers” what was stored in its stable storage prior to the crash, i.e., the contents of the 𝑡𝑥𝑠 mapping
(see Listing 3), and it executes the handler crashRecovery() (see line 31 of Listing 3) that has the goal of ensuring the
correctness of the protocol execution despite the crash failure. To see how, we differentiate between three points in
the lifecycle of the protocol in which 𝑇𝑀 may crash: (i) If the crash happens after the TCCSCI is started, but before
commit_dtx is triggered, i.e., 𝑇𝑀 is in the “Awaiting Requests” state, and the involved RMSCs are in the “Started” state,
then it is safe for any RMSC to unilaterally abort the local transaction since it has not voted yet. This is useful to ensure
that the data items locked by the TCCSCI do not become inaccessible for other TCCSCIs for a long period of time. To
trigger such an abort, each RMSC has a timer based on the current block sequence of the blockchain network for all
local transactions in the “Started” phase. Any access request to one of the data items locked by the local transaction
after it has timed-out in the blockchain network 𝑏𝑐 will cause it to be aborted (see line 36 of Listing 1). As discussed
earlier, each RMSC that aborts a local transaction of a TCCSCI will vote “no” if the client application attempts to commit
it. Therefore, the TM component has no special logic to handle this situation after it recovers from the crash. (ii) If the
crash happens after commit_dtx is triggered but before a verdict was reached, 𝑇𝑀 will detect the following condition
in its stable storage after it recovers: 𝑡𝑥𝑠 [𝑖𝑑𝑑𝑡𝑥 ] .𝑠𝑡𝑎𝑡𝑒 = 𝐴𝑊𝐴𝐼𝑇 𝐼𝑁𝐺_𝑉𝑂𝑇𝐸𝑆 ∧ 𝑡𝑥𝑠 [𝑖𝑑𝑑𝑡𝑥 ] .𝑣𝑒𝑟𝑑𝑖𝑐𝑡 =⊥. Since 𝑇𝑀 has
not reached a verdict yet, it can safely abort the TCCSCI (see lines 34–36 of Listing 3). (iii) If the crash happens after a
verdict is reached but before sending it to all participants, 𝑇𝑀 will detect the following condition in its stable storage
after it recovers: 𝑡𝑥𝑠 [𝑖𝑑𝑑𝑡𝑥 ] .𝑠𝑡𝑎𝑡𝑒 = 𝐴𝑊𝐴𝐼𝑇 𝐼𝑁𝐺_𝑉𝑂𝑇𝐸𝑆 ∧ 𝑡𝑥𝑠 [𝑖𝑑𝑑𝑡𝑥 ] .𝑣𝑒𝑟𝑑𝑖𝑐𝑡 ∈ {𝐴𝐵𝑂𝑅𝑇, 𝐶𝑂𝑀𝑀𝐼𝑇 }. In this case,
𝑇𝑀 retransmits the verdict to all involved RMSCs (see lines 34–38 of Listing 3).
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Travel Agency

Business Logic (Java Application)

2PC4BC Transaction Manager  (SCIP Gateway)

Ethereum Adapter HL Fabric Adapter
Airlines BC (PoA Ethereum)

Flight 
Mgmt

RMSCAirlines Hotel
Mgmt

RMSCHotels

Hotels BC (Hyperledger Fabric)

Fig. 6. A prototypical implementation of the travel agency scenario demonstrating the practical feasibility of the TCCSCI approach.

6 PROTOTYPICAL IMPLEMENTATION

To prove the practical feasibility of our approach, we have used it to prototypically implemented the motivational
scenario presented in Section 3. To highlight the heterogeneity capabilities of the approach, we assume that Airlines BC
is an Ethereum-based permissioned blockchain network that uses Proof-of-Authority (PoA) [28], while Hotels BC is a
Hyperledger Fabric-based permissioned blockchain network that uses Raft [16]. Figure 6 shows an overview of the
prototype. Components shown in gray are newly developed or significantly adapted to support our approach. The other
components are re-used. Specifically, for Airlines BC, we implemented 𝑅𝑀𝑆𝐶𝐸𝑡ℎ , a generic Ethereum RMSC using the
Solidity language, which makes it also compatible with any other blockchain system that uses the EVM [34]. Moreover,
we implemented a simple 𝐹𝑙𝑖𝑔ℎ𝑡𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 smart contract that utilizes 𝑅𝑀𝑆𝐶𝐸𝑡ℎ to enable it to participate in TCCSCIs.
Similarly, for Hotels BC, we implemented 𝑅𝑀𝑆𝐶𝐻𝐿𝐹 , a generic Hyperledger Fabric RMSC using JavaScript, which can
be used on any Hyperledger Fabric blockchain network. Furthermore, we implemented a simple 𝐻𝑜𝑡𝑒𝑙𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡
smart contract that utilizes 𝑅𝑀𝑆𝐶𝐻𝐿𝐹 to enable it to participate in TCCSCIs.

To implement the TM component, we extended the SCIP Gateway, which is an implementation of the Smart Contract
Invocation Protocol (SCIP) [6, 8]. SCIP aims to build an abstraction layer on top of heterogeneous blockchain networks
by providing client applications with a set of technology-agnostic methods to invoke smart contract functions and to
perform other operations common in most blockchain technologies. The SCIP Gateway is a software component that
communicates with client applications using SCIP and with blockchain networks using their own protocols. To this
end, it utilizes technology-specific adapters. Currently, adapters for five different smart contract-enabled blockchain
technologies are available. In this work, we have extended the SCIP Gateway with the functionality of a 2PC4BC TM.

With the help of the 2PC4BC TM, client applications, such as the application that hosts the business logic of the
travel agency, can execute TCCSCIs that can span a heterogeneous set of blockchain networks while only having to
use a technology-agnostic API. The motivational scenario demonstrated in Figure 1 shows that if both travel agencies
interact with the two blockchain networks using TCCSCIs according to the TCCSCI approach, then the TCCSCI of
Travel Agency 1 will be aborted since the smart contract invocation in step y2 fails. This will lead to reverting the effects
of the invocation in step y1 (with the help of the introduced 𝑅𝑀𝑆𝐶𝐸𝑡ℎ), thus guaranteeing the global atomicity of the
TCCSCI. Note that Travel Agency 1 and Travel Agency 2 do not have to use the same 2PC4BC transaction manager
to participate in globally serializable and atomic TCCSCIs. Instead, each of them can use its own instance thereof
highlighting the fact that 2PC4BC TMs are not TTPs. The entire prototype is publicly accessible on GitHub6.

7 EVALUATION

In this section, we prove the approach’s correctness, discuss security implications, and calculate time and cost overhead.

6Ethereum smart contracts: https://github.com/TIHBS/EthereumResourceManager, Fabric Chaincode: https://github.com/TIHBS/fabric-resource-manager,
SCIP Gateway: https://github.com/TIHBS/BlockchainAccessLayer

Manuscript submitted to ACM

https://github.com/TIHBS/EthereumResourceManager
https://github.com/TIHBS/fabric-resource-manager
https://github.com/TIHBS/BlockchainAccessLayer


Transactional Cross-Chain Smart Contract Invocations 19

7.1 Correctness of the TCCSCI Approach

We now show that the TCCSCI approach solves the problem stated in Section 4.2. First, we show that the approach
guarantees global serializability, i.e., that the execution of concurrent TCCSCIs is equivalent to some serial execution
thereof. The RMSC we introduce in our approach (see Section 5.2) implements the S2PL algorithm [3]. To see why,
consider 𝑅𝑀𝑆𝐶𝑏𝑐 , the RMSC of the blockchain network 𝑏𝑐 , and note that accessing shared data items hosted on 𝑏𝑐’s
persistence layer is protected via locks in a way that prevents conflicting operations from occurring (see the function
acquireLock in Listing 1). Furthermore, the locks obtained during the execution of the local transaction 𝑙𝑡𝑥𝑏𝑐,𝑑𝑡𝑥 of
a TCCSCI 𝑑𝑡𝑥 , are only released after 𝑙𝑡𝑥𝑏𝑐,𝑑𝑡𝑥 finishes with either a commit or an abort (in Listing 2, see how the
function releaseLocks is only invoked at the end of a commit or an abort operation). Hence, 𝑅𝑀𝑆𝐶𝑏𝑐 implements
the strict version of the 2PL algorithm, i.e., S2PL. It is shown in the literature that if S2PL is used at each site in a
distributed transaction, then global serializability is guaranteed [3, pp. 77–78]. Since we assume an RMSC is used for
each blockchain network involved in the TCCSCI approach, global serializability is indeed guaranteed.

Second, we show that the approach guarantees global atomicity, i.e., that the 2PC4BC protocol fulfills the four
requirements mentioned in Section 4.2: (i) 2PC4BC guarantees Agreement. To see why, notice that 𝑅𝑀𝑆𝐶𝑏𝑐 decides to
commit the local transaction 𝑙𝑡𝑥𝑏𝑐,𝑑𝑡𝑥 of a given TCCSCI 𝑑𝑡𝑥 if and only if it receives a commit* request from 𝑇𝑀 . In
turn, when 𝑇𝑀 sends a commit* request, it sends it to all involved RMSCs (see the function doCommit_dtx of Listing 3).
Therefore, if one RMSC decides to commit, then we are sure all other RMSCs also decide to commit. Since the only
options for the verdict are to commit or to abort, the previous argument proves that 2PC4BC achieves Agreement.
(ii) 2PC4BC guarantees Termination. To see why, remember that we assumed blockchain networks never fail, and that
𝑇𝑀 eventually recovers from potential failures and “remembers” the contents of its stable storage. Furthermore, we
assumed that the requests sent from𝑇𝑀 to the involved blockchain networks will eventually be delivered and accepted,
i.e., permanently become part of the corresponding blockchain histories, and vice versa, all communication sent from
RMSCs to 𝑇𝑀 will be delivered and processed, since they are embedded into smart contract events which are stored
permanently in the blockchain data structure. Thus, even if 𝑇𝑀 is not operational when a message is sent to it from an
RMSC, it will be able to receive it and process it when it eventually becomes operational again. Besides, looking at the
state machine diagram of 𝑇𝑀 (see Figure 5a), we see that after the TCCSCI is ended, 𝑇𝑀 will eventually end up in either

the “Comitted” or the “Aborted” states, and in both cases it will send a verdict to all involved RMSCs. It cannot remain
indefinitely in the “Awaiting Votes” state, since when an RMSC receives a prepare* request, it will cast a vote that will
eventually reach 𝑇𝑀 (see the function prepare* in Listing 2). In addition, by looking at the state machine diagram of an
RMSC (see Figure 5b), we see that all transitions triggered by receiving a verdict from𝑇𝑀 lead to either the “Committed”
or the “Aborted” states. Hence, considering our assumptions, 2PC4BC will eventually terminate. (iii) 2PC4BC guarantees
Abort-Validity. It is easy to see that, even if a single RMSC votes “no”, 𝑇𝑀 will decide on “Abort” as the verdict (see
the bc.commit("VOTE_EVENT", e) handler of Listing 3). Therefore, Abort-Validity is ensured. (iv) 2PC4BC guarantees
Commit-Validity. It is clear that, if 𝑇𝑀 receives “yes” votes from all participants, it will decide on “Commit” as the
verdict (see the bc.commit("VOTE_EVENT", e) handler of Listing 3). Thus, Commit-Validity is ensured.

7.2 Security Implications

A common point of reference in discussing security is the CIA triad [27]. CIA stands for Confidentiality, Integrity, and
Availability. First, the presented approach does not negatively affect confidentiality because (i) the logic of the control
flow of any TCCSCI is only known to the client application and is not published to any involved blockchain network and
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(ii) smart contract function invocation requests are submitted to the the corresponding blockchain networks directly by
the client application without the involvement of TTPs. Of course, if the blockchain networks themselves are public,
the data stored in them is not confidential, but this is an artifact of public blockchains and not of our approach. Second,
the approach does not negatively affect integrity because all messages sent by the client application as part of a TCCSCI
are cryptographically signed blockchain transactions. Additionally, the functions of the RMSC include cryptographic
checks that ensure only the request messages submitted by the client application that owns the TCCSCI are processed.
Third, the 2PC4BC protocol blocks if the TM component crashes during the “Awaiting Votes” state until the failure is
fixed, because during this state, participants cannot unilaterally decide to abort, since this might violate the Agreement

requirement. This negatively affects availability, since all locked variables are inaccessible to other TCCSCIs during
blocking. This undesirable feature is inherent to 2PC [3, 12]. In other types of distributed systems, this can be alleviated
by using a cooperative termination protocol or a different ACP, such as Three-Phase Commit (3PC) [3]. However, these
options require direct communication between participants, which is not possible when the participants are blockchain
networks without the introduction of TTPs that forward messages between them. A feasible way to tackle this problem
is employing fault-tolerance techniques [22] for the TM component.

7.3 Approach Overhead

First, we discuss the time complexity of the approach. Let’s define a request round to be a set of smart contract function
invocation requests that are simultaneously submitted by the client application. We call the duration of one round a
round duration, which is equal to the duration of its “slowest” request determined by the blockchain network that takes
the longest to store a submitted request into its immutable history. We define time complexity to be the sum of all round
durations involved in a crash-free TCCSCI in the worst case. During a TCCSCI, the client application submits 𝛽 rounds
of invocation requests targeted at user-defined smart contracts. Furthermore, in the 2PC4BC protocol, exactly two
request rounds are sent by 𝑇𝑀 , one to the prepare* function of all involved RMSCs, and one either to the commit* or
the abort* RMSC functions. Therefore, the total number of message rounds involved in the execution of a TCCSCI is:
𝛽 + 2. A trivial approach that submits the invocation requests specified in the TCCSCI without guaranteeing correctness
has 𝛽 request rounds. Let 𝛿 denote the round duration assuming the “slowest” blockchain network is involved. Then,
our approach incurs a time overhead of 2𝛿 regardless of how many blockchain networks are involved.

Finally, we discuss the cost overhead of executing a TCCSCI using our approach. Certain blockchain systems, mostly
permissionless, require that the execution of smart contract functions is associated with execution fees that correspond
to how costly the execution is to the blockchain nodes, in addition to fees that are meant to incentivize nodes to process
the invocation request quickly. We refer to the sum of all fees associated with a smart contract function invocation as
the invocation cost. We try to estimate an upper bound of the cost overhead of our approach. Therefore, we focus on
Ethereum Mainnet (Ethereum for short). Ethereum calculates the execution fees on an operation basis. Let us define
𝑐𝑜𝑠𝑡𝑜𝑝 (𝑜, 𝑐𝑡𝑥𝑡) to be the cost of executing the basic smart contract operation 𝑜 within the context 𝑐𝑡𝑥𝑡 . We define the
context of a basic operation or a function to be all the data items that are accessible to them at the time of execution,
which includes, e.g., the passed arguments and the accessible data items stored in the persistence layer. Similarly, we
define 𝑐𝑜𝑠𝑡 𝑓 𝑢 (𝑓 , 𝑐𝑡𝑥𝑡) to be the cost of invoking and executing the smart contract function 𝑓 within the context 𝑐𝑡𝑥𝑡 if
the invocation originates from another smart contract function in Ethereum, while we define 𝑐𝑜𝑠𝑡𝑟𝑒𝑞 (𝑓 , 𝑐𝑡𝑥𝑡) to be the
cost of invoking and executing the smart contract function 𝑓 within the context 𝑐𝑡𝑥𝑡 if the invocation originates from a
client application, which includes the additional fees paid for submitting a request to Ethereum.
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When using the approach, user-defined smart contracts have to invoke the set* and get* functions of the correspond-
ing RMSC instead of calling the basic operations set and get. In fact, this is the only requirement imposed by the TCCSCI
approach on user-defined smart contracts. Hence, we define 𝜅𝑠𝑒𝑡∗ (𝑐𝑡𝑥𝑡) := 𝑐𝑜𝑠𝑡 𝑓 𝑢 (𝑠𝑒𝑡∗, 𝑐𝑡𝑥𝑡) − 𝑐𝑜𝑠𝑡𝑜𝑝 (𝑠𝑒𝑡, 𝑐𝑡𝑥𝑡) to be
the overhead of using our approach for setting a value in a given context, which is the difference between the cost of
an invocation of the set* function and the cost of a call to the set basic operation using the same context. We define
𝜅𝑔𝑒𝑡∗ (𝑐𝑡𝑥𝑡) in a similar fashion. By looking at Listing 1, we note that ∀𝑐𝑡𝑥𝑡 : 𝜅𝑠𝑒𝑡∗ (𝑐𝑡𝑥𝑡) > 𝜅𝑔𝑒𝑡∗ (𝑐𝑡𝑥𝑡). Since we aim to
find an upper bound for the cost overhead and to simplify our calculations, we assume that all data access operations
are set* operations of different variables. Furthermore, by looking at the code of the function set*, we notice that it
executes more basic operations (and incur more cost) if it is the first invocation in a given local transaction 𝑙𝑡𝑥𝑏𝑐,𝑑𝑡𝑥 .
Hence, let’s define 𝜅𝑠𝑒𝑡∗1 to be the value of 𝜅𝑠𝑒𝑡∗ (𝑐𝑡𝑥𝑡) when the context indicates that this is the first data access
in 𝑙𝑡𝑥𝑏𝑐,𝑑𝑡𝑥 , and let’s define 𝜅𝑠𝑒𝑡∗

>1 to be the value of 𝜅𝑠𝑒𝑡∗ (𝑐𝑡𝑥𝑡) when the context indicates that this is not the first
invocation in 𝑙𝑡𝑥𝑏𝑐,𝑑𝑡𝑥 . Let 𝑛 denote the number of blockchain networks involved in the TCCSCI 𝑑𝑡𝑥 . Consequently,
we have a total of 𝑛 occurrences of 𝜅𝑠𝑒𝑡∗1 . Furthermore, let us denote 𝛼 to be the total number of times data items
were accessed across all the smart contract functions invoked in 𝑑𝑡𝑥 . Hence, an upper bound for the cost overhead of
invoking the smart contract functions of a TCCSCI is: (𝛼 − 𝑛)𝜅𝑠𝑒𝑡∗

>1 + 𝑛𝜅
𝑠𝑒𝑡∗
1 .

We now estimate an upper bound for the cost overhead of the 2PC4BC protocol. The protocol includes sending
𝑛 prepare* and 𝑛 commit* or abort* requests. By looking at Listing 2, we notice that ∀𝑐𝑡𝑥𝑡 : 𝑐𝑜𝑠𝑡𝑟𝑒𝑞 (𝑎𝑏𝑜𝑟𝑡∗, 𝑐𝑡𝑥𝑡) >
𝑐𝑜𝑠𝑡𝑟𝑒𝑞 (𝑐𝑜𝑚𝑚𝑖𝑡∗, 𝑐𝑡𝑥𝑡). Therefore, we assume the TCCSCI ends with an “Abort” verdict. Furthermore, notice that the
cost of an abort* linearly increases with the number of variables that were set* during the local transaction 𝑙𝑡𝑥𝑏𝑐,𝑑𝑡𝑥 ,
since it needs to unlock each of them and to restore their previous values. We define 𝜅𝑎𝑏𝑜𝑟𝑡∗

𝑘
:= 𝑐𝑜𝑠𝑡𝑟𝑒𝑞 (𝑎𝑏𝑜𝑟𝑡∗, 𝑐𝑡𝑥𝑡)

to be the cost for invoking the function abort* by the TM component when 𝑐𝑡𝑥𝑡 indicates that 𝑘 different variables
were accessed during 𝑙𝑡𝑥𝑏𝑐,𝑑𝑡𝑥 . Hence, 𝜅𝑎𝑏𝑜𝑟𝑡∗1 − 𝜅𝑎𝑏𝑜𝑟𝑡∗0 represents the cost associated with every accessed variable
when the TCCSCI 𝑑𝑡𝑥 is being aborted. Moreover, we define 𝜅𝑝𝑟𝑒𝑝𝑎𝑟𝑒∗𝑦𝑒𝑠 := 𝑐𝑜𝑠𝑡𝑟𝑒𝑞 (𝑝𝑟𝑒𝑝𝑎𝑟𝑒∗, 𝑐𝑡𝑥𝑡) to be the cost for
invoking the function prepare* by 𝑇𝑀 when 𝑐𝑡𝑥𝑡 indicates a “yes” vote (because this corresponds to more cost). Hence,
the upper bound for the cost overhead of the 2PC4BC protocol is: 𝛼 (𝜅𝑎𝑏𝑜𝑟𝑡∗1 − 𝜅𝑎𝑏𝑜𝑟𝑡∗0 ) + 𝑛(𝜅𝑝𝑟𝑒𝑝𝑎𝑟𝑒∗𝑦𝑒𝑠 + 𝜅𝑎𝑏𝑜𝑟𝑡∗0 ). This
gives the following estimate for the upper bound of the cost overhead of the whole approach:

𝛼 (𝜅𝑠𝑒𝑡∗>1 + 𝜅
𝑎𝑏𝑜𝑟𝑡∗
1 − 𝜅𝑎𝑏𝑜𝑟𝑡∗0 ) + 𝑛(𝜅𝑠𝑒𝑡∗1 + 𝜅𝑝𝑟𝑒𝑝𝑎𝑟𝑒∗𝑦𝑒𝑠 + 𝜅𝑎𝑏𝑜𝑟𝑡∗0 − 𝜅𝑠𝑒𝑡∗>1 ) (3)

We now empirically estimate the values, 𝜅𝑠𝑒𝑡∗
>1 , 𝜅𝑠𝑒𝑡∗1 , 𝜅𝑎𝑏𝑜𝑟𝑡∗0 , 𝜅𝑎𝑏𝑜𝑟𝑡∗1 , and 𝜅𝑝𝑟𝑒𝑝𝑎𝑟𝑒∗𝑦𝑒𝑠 . To this end, we use 𝑅𝑀𝑆𝐶𝐸𝑡ℎ ,

which was introduced in Section 6 for the Ethereum blockchain, and we invoke the corresponding functions either
directly from a client application (for prepare*, commit*, and abort*) or from another smart contract (for set* and get*).

The environment used to conduct these experiments has the following setup: To estimate the gas consumed, we
use Remix IDE7 (version 0.33.0), which has an integrated Ethereum simulator. More specifically, we set the compiler
version to 0.8.18 and the EVM version to “Constantinople”. Furthermore, we run the executions on a machine with
40GB of RAM and a quad-core Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz of base frequency.

Gas is the unit that measures the amount of computational effort needed to execute operations on the Ethereum
network [34]. Table 1 shows a summary of the experiments we conducted and their outcomes. By applying the resulting
values to Formula 3, we get the following estimation of the upper bound for the cost overhead of using the TCCSCI
approach measured in the amount of consumed gas: 32 922𝛼 + 159 219𝑛.

7https://remix.ethereum.org/
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Table 1. The gas consumption of different operations in different steps of the TCCSCI approach.

Context RMSC Execution Cost (Gas) 2PC4BC Execution Cost (Gas)
𝑐𝑜𝑠𝑡𝑜𝑝 (𝑠𝑒𝑡, 𝑐𝑡𝑥𝑡 ) 𝑐𝑜𝑠𝑡 𝑓 𝑢 (𝑠𝑒𝑡∗, 𝑐𝑡𝑥𝑡 ) 𝜅𝑠𝑒𝑡∗ (𝑐𝑡𝑥𝑡 ) 𝜅

𝑝𝑟𝑒𝑝𝑎𝑟𝑒∗
𝑦𝑒𝑠 𝜅𝑎𝑏𝑜𝑟𝑡∗0 𝜅𝑎𝑏𝑜𝑟𝑡∗1

First Call 22 710 157 598 134 888 10 880 15 603 46 373
Next Calls 22 710 24 862 2 152 - - -

At the time of writing, the average gas price, which is the price the client application is willing to pay per unit of gas,
is 33 gwei (or 33 × 10−9 ethers), and the price of 1 ether in USD is $1 624.08. This means that, in the worst case, for each
data access within a given TCCSCI, the approach incurs an overhead of ∼$1.76, and for each blockchain network that
participates in the TCCSCI, the approach incurs an overhead of ∼$8.53.

8 DISCUSSION

In this section, we discuss the characteristics, trade-offs, and limitations of the TCCSCI approach. When we introduced
the TCCSCI approach, we determined a set of requirements that would ease its adoption (see Section 5). We now
discuss how well the approach fulfills these requirements. First, the approach does not depend on a TTP. The only new
components introduced by the approach are the RMSCs and 𝑇𝑀 . RMSCs are regular smart contracts hosted on the
participating blockchain networks, and 𝑇𝑀 is a component of the client application. Therefore, the TCCSCI approach
does not introduce any TTP. Second, the approach allows arbitrary composition of user-defined smart contracts during
TCCSCIs as long as they use the RMSCs of the blockchain networks they are hosted on to access the required data
items. Specifically, the business logic of the client application is free to invoke smart contract functions of different
blockchain networks and pass data between them within the scope of a TCCSCI as long as it uses a𝑇𝑀 component that
follows the 2PC4BC protocol to ensure global atomicity. Finally, the approach allows heterogeneity since it supports
any smart contract-enabled blockchain technology that fits into the system model introduced in Section 4.1 regardless
of its type (permissioned or permissionless) and the used consensus mechanism, and without changing its protocol.

Despite the approach’s desirable correctness and adoptability characteristics, it still suffers from certain drawbacks.
First, the approach might suffer from a relatively high abortion rate in certain situations. To see why, notice that
RMSC’s implementation aborts the TCCSCI if it cannot immediately obtain a lock on a data item it needs to access.
In ordinary resource managers, a scheduling algorithm is employed that might decide to temporarily block (or halt) a
transaction that cannot obtain a lock in the hope that it can later obtain it when conflicting transactions commit or
abort [3]. However, the execution of a smart contract function cannot be halted and resumed later, since it has to take
place during a single block. So if we decide to halt (and not abort) a TCCSCI when it cannot obtain a lock, the client
application will have to re-submit the request to execute the failed smart contract invocation repeatedly until it is able
to obtain the lock, but how often should it try that and in which intervals? Answering these questions effectively shifts
the scheduling responsibility from the resource manager to the client application, thus over-complicating it. Note that
our scheduling strategy causes relatively many abortions only if we have a high contention rate between concurrent
TCCSCIs over the same data items. Furthermore, a positive feature that we get from our scheduling strategy is that
we avoid deadlocks altogether [4] because it forces TCCSCIs that access conflicting data items to be executed serially.
Second, our approach requires rewriting existing user-defined smart contracts to make them use the RMSCs of their
blockchain networks whenever they access the data items they need. The only possible alternative to this (if we still
want to guarantee correctness) is to introduce changes to the built-in resource management layer of all used blockchain
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networks so that they support distributed transactions. However, we deem this option to be impractical since it requires
changing existing blockchain protocols, which would greatly impact the approach’s adoptability.

Finally, the TCCSCI approach has good scalability in relation to 𝑛, the number of blockchain networks involved in
the same TCCSCI, since (i) the time overhead of the approach is independent of 𝑛 and (ii) the cost overhead increases
linearly with 𝑛 (see Section 7). Furthermore, the TM component has to support communicating with the corresponding
blockchain types. Our prototype makes this feasible using pluggable blockchain adapters. As mentioned in Section 6,
the prototype currently includes five pluggable adapters for different blockchain types including Hyperledger Fabric
and any blockchain that exposes the Ethereum JSON-RPC API. Having adapters for widely used blockchain types
and having the ability to easily add new adapters increase the practicality of the proposed prototype. Nonetheless,
experiments outside the lab environment are still needed to evaluate the prototype’s real-world feasibility.

9 RELATEDWORK

Several existing approaches aim to support CCSCIs. The first category of approaches uses an ACP to achieve global
atomicity. For example, Wang et al. [33] present a CCSCI approach in which multiple Hyperledger Fabric blockchain
networks with a modified implementation collaborate to achieve an atomic CCSCI. To this end, an off-chain Scheduler

component receives smart contract invocation requests from a client application and forwards them to the corresponding
networks. It also coordinates the execution of an ACP directly with the nodes of the underlying networks, which
are modified for this purpose. However, during the CCSCI execution, no locks are obtained, and thus unintentional
interactions between parallel CCSCIs are possible. Therefore, structures that record data dependencies between CCSCIs
are maintained. If the ACP decides to abort a CCSCI, all dependent CCSCIs are also aborted and if they are already
committed, they are rolled back, which violates their durability and, consequently, global serializability [3, chapter
2]. Another example is the approach proposed by Xiao et al. [35] which introduces a custom blockchain network
that acts as a 2PC transaction manager, and off-chain relayer components that participate in the ACP on behalf of
the actual blockchain networks. These relayers are TTPs that the blockchains networks need to trust in order to
participate in CCSCIs. Furthermore, the approach does not involve locking mechanisms, allowing parallel CCSCIs to
erroneously interact. The approach proposed by Robinson and Ramesh [25] stands out from the former approaches
by employing a locking-based concurrency control mechanism that guarantees global serializability. In this approach,
similar to our approach, a dedicated smart contract in each blockchain network performs locking and recovery handling,
and the client application handles 2PC. However, a major difference is that smart contracts across blockchains are
able to synchronously invoke each other. To this end, the client application has to simulate the whole smart contract
invocation tree of the CCSCI before it starts, and has to include the outcomes in a request message submitted to a special
Cross-Chain Communication Smart Contract (CCCSC) on one of the involved blockchain networks. To perform the
simulation, the client application needs to be able to access the current state of all involved blockchains, and to locally
simulate the execution of the involved smart contracts. During execution, the CCCSC and the client application run a
special protocol, which guarantees that whenever a smart contract wants to invoke a remote smart contract, the results
of the invocation are already stored on a local smart contract, which can be simply queried instead of performing the
actual invocation. This is made possible with the knowledge about the invocation tree and the results of the simulation.
If during runtime, the invocation results deviate from the simulation, or if any lock is not obtainable, the whole CCSCI
is aborted. Obviously, this approach requires a complex client application capable of performing the aforementioned
simulations and to coordinate both commitment and execution. Moreover, aborts are more likely than our approach.

Manuscript submitted to ACM



24 Ghareeb Falazi, Uwe Breitenbücher, Frank Leymann, Stefan Schulte, and Vladimir Yussupov

Table 2. Comparison of CCSCI approaches. GA: Global Atomicity, GS: Global Serializability, Pd: Permissioned, Ps: Permissionless.

Approach Category TTP
Needed?

Arbitrary
Composition?

Guarantees Blockch.
Types

Modifications
Needed?

Simulation
Needed?

Wang et al. [33] 2PC Yes Yes GA Pd Yes No
Xiao et al. [35] 2PC Yes No GA Ps & Pd No No
Robinson and Ramesh [25] 2PC No Yes GA & GS Ps & Pd No Yes
Nissl et al. [23] RPC Yes No None Ps & Pd No No
LayerZero [38] RPC Yes No None Ps & Pd No No
TokenBridge/AMB [24] RPC Yes No None Ps & Pd No No
HyperService [18] Workflow Yes Yes None∗ Ps & Pd No No
TCCSCI 2PC No Yes GA & GS Ps & Pd No No

∗Only financial atomicity is guaranteed, which we do not consider as one of the correctness criteria.

Furthermore, a group of approaches do not try to coordinate the commitment of CCSCIs. For example, Nissl et
al. [23] introduce an approach that implements a mechanism similar to Remote Procedure Calls (RPCs), in which a
smart contract on a source blockchain invokes a smart contract on a target blockchain by invoking a local cross-chain
smart contract passing the invocation details to it. This smart contract then emits an event with these details, which is
picked up by a distributed network of TTPs that forward it to the target smart contract. The approach also introduces a
mechanism that allows the target smart contract to verify that the invocation originated from the source blockchain
with the help of additional TTPs. Many other approaches follow a similar mechanism, such as LayerZero [38] and
TokenBridge/AMB [24]. Another example is HyperService [18], which allows defining CCSCIs using HSL, a smart
contract composition language. A compiled HSL program gets deployed onto a middleware layer consisting of a set of
TTP nodes and a dedicated permissioned blockchain network called NSB. Afterwards, the client application collaborates
with the TTPs and the underlying blockchain networks according to a custom cryptographic execution protocol to
execute the CCSCI. A special smart contract on NSB ensures that honest participants receive almost no financial loss
even if the other participants deviate from the protocol . Hence, HyperService achieves financial atomicity, but fails
to achieve global atomicity and serializability. Table 2 summarizes the properties of the aforementioned approaches
including to which category they belong, whether a TTP is needed, whether arbitrary composition of smart contract
function invocations is supported, which CCSCI correctness guarantees are ensured, which blockchain types are
supported, whether modifications to the standard blockchain protocols are needed, and whether the client application
has to locally simulate the CCSCI execution prior to starting it. The last row shows the TCCSCI approach in comparison.

The table shows that only the approach of Robinson and Ramesh [25] has properties close to ours. However, their
approach results in a higher rate of aborts, and requires the client application to simulate the CCSCI and to participate
in a sophisticated protocol during execution. Furthermore, their approach has higher cost overhead due to the higher
protocol complexity and larger sizes of request messages submitted to the involved blockchain networks. For example,
using their approach to read an integer from one blockchain network and write it to another blockchain network
incurs a cost overhead of 1 013 784 units of gas according to the evaluation presented in [25], while executing the same
scenario using our approach incurs a cost overhead of only 32 922(2) + 159 219(2) = 384 282 units of gas in the worst
case. This corresponds to a cost saving of at least 62.1 % when our approach is used. Finally, their approach incurs a time
overhead of (1 +𝑤)𝛿 , where𝑤 represents the number of involved blockchain networks that execute state-changing
smart contract functions as part of the CCSCI, whereas our approach has a constant time overhead of 2𝛿 , which makes
it equally or more efficient in terms of time overhead in all scenarios involving any state-changing operations.
Manuscript submitted to ACM
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10 CONCLUSION

In this work, we have introduced and formalized the problem of ensuring transactional behavior for Cross-Chain Smart
Contract Invocations (CCSCIs), which are business transactions that invoke smart contracts distributed across multiple
blockchains, and presented the Transactional CCSCI (TCCSCI) approach, which solves it. Moreover, we have proved
the correctness of the approach and discussed a prototypical implementation thereof. Finally, we evaluated its overhead
in terms of cost and time, discussed its security implications and trade-offs, and compared it to existing approaches.

Our approach answers the question of how to guarantee global atomicity and global serializability in business

transactions that involve the invocation of smart contract functions located in different, possibly heterogeneous blockchain

networks by introducing on-chain Resource Manager Smart Contracts (RMSCs) that implement locking over shared
variables and guarantee the isolation of parallel CCSCIs, and 2PC4BC, a variant of 2PC that ensures the global atomicity
of CCSCIs. The approach is technology-agnostic. Therefore, it supports heterogeneous blockchain networks. To the best
of our knowledge, the TCCSCI approach is the first TTP-free approach that provides global serializability and atomicity,
allows arbitrary composition of heterogeneous smart contract functions, and supports standard blockchain protocols
while not requiring complex client-side simulations. Actually, our approach also solves the problem of Transactional
Cross-Block Smart Contract Invocations [37], which aims to achieve atomicity and isolation for business transactions
involving smart contract function invocations over multiple blocks on the same blockchain network.

A limitation of the approach is that the 2PC4BC protocol temporarily blocks in a specific failure situation thus
affecting availability. Another limitation is the relatively high abortion rate in case of high contention over shared
data. Finally, the approach incurs a constant time overhead regardless of the number of involved blockchain networks,
which is a drawback only in rather small use cases. An open question is how the approach can be generalized to include
non-blockchain resource managers such as database management systems and messaging middlewares, which we plan
to tackle in future work. Furthermore, we plan to introduce a smart contract re-writing tool that allows developers to
effortlessly transform regular smart contracts to be TCCSCI-compatible by integrating them with the local RMSCs.
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