M Institute of Architecture of Application Systems

Transactional Cross-Chain Smart Contract Invocations

Ghareeb Falazil, Uwe Breitenbicher?, Frank Leymannt,
Stefan Schulte3, and Vladimir Yussupov!

1 Institute of Architecture of Application Systems,
University of Stuttgart, Germany
{falazi, leymann, yussupov}@iaas.uni-stuttgart.de

2 Reutlingen University, Germany
uwe.breitenbuecher@reutlingen-university.de

3 Christian Doppler Laboratory for Blockchain Technologies for the Internet of Things,
Institute for Data Engineering, Hamburg University of Technology, Germany
stefan.schulte@tuhh.de

BIBTpX

@Article{Falazi2@23 TCCSCI,
Author = {Falazi, Ghareeb and Breitenb\"{u}cher, Uwe and Leymann, Frank
and Schulte, Stefan and Yussupov, Vladimir},

Title = {Transactional Cross-Chain Smart Contract Invocations},
Journal = {Distributed Ledger Technologies (DLT)},

Publisher = {ACM},

Month = aug,

Year = 2023,

Url = {https://dl.acm.org/doi/10.1145/3616023}

© ACM 2023

This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The
definitive version is available at ACM: https://doi.org/10.1145/3616023

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

. TUHH
b Hoch.schule_Reuf:Ilngen University of Stuttgart Hamburg
R Reutlingen University University of
s | Germany Y

Technology


https://doi.org/10.1145/3616023

Transactional Cross-Chain Smart Contract Invocations

GHAREEB FALAZI, Institute of Architecture of Application Systems, University of Stuttgart, Germany

UWE BREITENBUCHER, Reutlingen University, Germany

FRANK LEYMANN, Institute of Architecture of Application Systems, University of Stuttgart, Germany
STEFAN SCHULTE, Christian Doppler Laboratory for Blockchain Technologies for the Internet of Things, Hamburg
University of Technology, Germany

VLADIMIR YUSSUPOV, Institute of Architecture of Application Systems, University of Stuttgart, Germany

Blockchains have become increasingly important in recent years and have expanded their applicability to many domains beyond finance
and cryptocurrencies. This adoption has particularly increased with the introduction of smart contracts, which are immutable, user-
defined programs directly deployed on blockchain networks. However, many scenarios require business transactions to simultaneously
access smart contracts on multiple, possibly heterogeneous blockchain networks while ensuring the atomicity and isolation of these
transactions, which is not natively supported by current blockchain systems. Therefore, in this work, we introduce the Transactional
Cross-Chain Smart Contract Invocation (TCCSCI) approach that supports such distributed business transactions while ensuring
their global atomicity and serializability. The approach introduces the concept of Resource Manager Smart Contracts, and 2PC for
Blockchains (2PC4BC), a client-driven Atomic Commit Protocol (ACP) specialized for blockchain-based distributed transactions. We

validate our approach using a prototypical implementation, evaluate its introduced overhead, and prove its correctness.
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1 INTRODUCTION

Blockchain systems have become increasingly important in recent years and have expanded their field of applicability
to domains beyond finance and cryptocurrencies, such as health care management [30], supply chain and logistics
management [19], the energy sector [32], and others. This trend is influenced by their capability of managing a
tamper-resistant and tamper-evident ledger of transactions without the need for a Trusted Third-Party (TTP) [36].

Furthermore, the adoption of smart contracts [34], which are immutable and deterministic user-defined programs
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deployable on certain blockchain systems, has enabled implementing the logic of sensitive business collaborations that
run among mutually-distrustful business partners directly on blockchain networks [8]. However, it is often necessary
that a blockchain-based business process accesses resources that are distributed across multiple blockchain networks
in the same business transaction [6, 8, 13] since there is no “one size fits all” blockchain system and different types
of blockchains will continue to coexist [29]. Therefore, enterprises participating in complex use cases, such as supply
chains or travel industry scenarios, will likely need to connect to multiple blockchain networks simultaneously and run
their distributed business transactions across different chains. Moreover, since the business logic is implemented by smart
contracts, in enterprise integration scenarios, such distributed business transactions will likely incorporate invocations
of multiple smart contracts hosted on different, possibly heterogeneous blockchain networks simultaneously. However,
current blockchain systems do not support distributed cross-chain transactions as described above. Thus, it is currently
not possible to implement client-side blockchain-based distributed business transactions in a way that ensures their
global atomicity and global serializability, which violates their correctness according to the ACID paradigm [3, 4].
Therefore, in this work, we present the Transactional Cross-Chain Smart Contract Invocation (TCCSCI) approach,
which enables executing distributed business transactions that involve smart contract function invocations distributed
over possibly a heterogeneous set of blockchain networks to be executed in an atomic manner and in strict isolation
from each other so that their correctness is ensured. We refer to these transactions as TCCSCIs. In our approach, we
present the idea of Resource Manager Smart Contracts (RMSC), which is based on the concept of resource managers
known from the distributed transactions domain, and the Two-Phase Commit for Blockchains (2PC4BC) protocol, which
is based on the classical Two-Phase Commit (2PC) protocol [10]. The combination of these two concepts enables to

jointly guarantee global atomicity and serializability for TCCSCIs. To summarize, our contributions are as follows:

(1) We present a formal description of the problem of ensuring transactional behavior for cross-chain smart contract
invocations based on a formal blockchain system model.

(2) We introduce the TCCSCI approach that solves the stated problem by: (i) proposing the concept of an RMSC
that can be used to separate the execution of smart contract functions from the commitment of the changes that
occur during the execution, and (ii) introducing the 2PC4BC protocol, which is a client-driven Atomic Commit
Protocol (ACP) that utilizes RMSCs to ensure global atomicity and serializability for distributed transactions that
involve function invocations of smart contracts hosted on different blockchain networks.

(3) We prove the approach correctness, evaluate its time complexity, and estimate the worse-case execution cost.

(4) We validate the practical feasibility of the TCCSCI approach with a prototypical implementation thereof.

The rest of this paper is structured as follows: In Section 2, we present basic background information regarding
blockchain technology and blockchain interoperability. In Section 3, we motivate the importance of TCCSCIs and
present the research question this work aims to solve. In Section 4, we introduce a formal blockchain system model
that we use as basis for our approach, and formalize the problem statement. In Section 5, we introduce the TCCSCI
approach, and in Section 6, we validate it by introducing a prototypical implementation for it. In Section 7, we evaluate
the approach and prove its correctness, and in Section 8 we discuss its properties. In Section 9, we discuss the related

work, and finally, in Section 10 we provide a conclusion and discuss potential future research directions.

2 BACKGROUND

In this section, we give necessary background information regarding the blockchain technology, the problem of
blockchain interoperability, and the concept of resource management in blockchain systems.
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2.1 The Blockchain Technology

A blockchain system is a distributed system that supports the interaction between parties that are mutually distrustful [36].
By running a consensus protocol among the blockchain participants, they can ensure the consistency of a shared state
without favoring any one of them over the others and without requiring the honesty of specific participants [5].
To facilitate these properties, a blockchain system maintains the history of all executed blockchain transactions, i.e.,
participant-issued requests to execute operations that change the shared state. Blockchain transactions are usually
grouped into blocks that are cryptographically linked together to form a data structure known as a blockchain. With the
help of the consensus protocol, which is used to formulate agreed-upon blocks, the immutability and non-repudiation of
the history of executed blockchain transactions are guaranteed without the need for a Trusted Third Party (TTP) [36].

Blockchain systems can be grouped into two major categories: First, there are permissionless blockchain systems, such
as Bitcoin [21] and Ethereum [34], that allow anyone to participate, and are considered to be more decentralized [36].
However, permissionless blockchain systems usually employ consensus protocols that are relatively slow and temporarily
allow multiple transaction histories to exist. Therefore, they are more suitable for peer-to-peer applications that require
decentralization. Second, we have permissioned blockchain systems, such as Hyperledger Fabric [1]. These systems are
characterized by requiring the permission of an authority before an entity can join the system under certain roles [36],
which facilitates better control over data privacy. Being permissioned allows these blockchain systems to use Byzantine
Fault Tolerant (BFT)-based consensus protocols, which generally have better performance and do not suffer from
forking making them better suited to enterprise applications despite relinquishing a certain degree of decentralization.

With the advent of blockchain smart contracts, blockchain systems became suited for many more use cases, such as
health care management [30], supply chain management [19], and others. A smart contract is an immutable user-defined
program directly deployed to the blockchain and manages a portion of the blockchain’s shared state [34]. Smart contract
functions are executed as units-of-work, i.e., only the effects of successful executions are persisted, and the partial effects
of failed executions are undone. Moreover, the blockchain protocol ensures that they are executed exactly as designed.

Hence, they are suitable for implementing the business logic for collaborations among mutually-distrustful partners [8].

2.2 Blockchain Interoperability

While permissionless blockchains are often used for peer-to-peer applications that require decentralization, such
as token management, permissioned blockchains are better suited to enterprise applications [7]. Therefore, there is
no “one size fits all” blockchain system. In fact, different types of blockchain systems will likely continue to evolve
and coexist, since they choose different trade-offs that contradict each other but are suitable for different needs [29].
Therefore, it is often necessary that a given business process accesses resources over multiple blockchain networks!
simultaneously [6, 8, 13]. We refer to the ability of a single business transaction to access resources over different
blockchain networks as blockchain interoperability. Many blockchain interoperability approaches exist [2], but they
all try to solve the same core problem common to blockchain systems, which is that these systems cannot directly
access external resources. The reason is that the execution of blockchain transactions must be deterministic, i.e., that all
honest peers participating in the execution of these transactions must come up with the same results since, otherwise,
consensus cannot be guaranteed [31]. However, accessing external systems is not guaranteed to produce consistent
results for all blockchain nodes and over an extended period of time. Therefore, such access is generally prohibited

within the frame of blockchain transactions. It is even prohibited that a blockchain transaction of one network accesses

!A blockchain network is an instance of a blockchain system.
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resources on a different blockchain network. Hence, new data cannot be actively queried by blockchain nodes from
external systems, but rather have to be passed to the consensus mechanism as entries within the request messages
issued by client applications. Therefore, when a cross-blockchain application requires information to be passed from one
blockchain network to another, an off-chain entity (known as an oracle) needs to embed this data into a blockchain
transaction execution request and submit it to the consensus mechanism of the target blockchain. Usually a service
that acts as a client application to both blockchain networks performs this task [20]. Cross-blockchain applications
have various aims. Therefore, many corresponding blockchain interoperability approaches have been developed with
different kinds of goals, such as Cross-Chain Asset Transfer (CCAT) [14, 15], Cross-Chain Data Migration (CCDM) [9],
and Cross-Chain Smart Contract Invocation (CCSCI) 18, 26], which is the main focus of this work.

2.3 Transactional Resource Managers and Blockchain Resource Management Layer

A transactional resource manager (or a resource manager for short) is a component that manages shared resources
in transaction processing (TP) systems [4]. Traditionally, these resources could be databases, queues, files, and other
shared objects accessible within a transaction. The major responsibility of a resource manager is ensuring the Atomicity,
Consistency, Isolation, and Durability (ACID) properties for the transactions that access the underlying resource.

A blockchain system also maintains resources. For example, in Ethereum [34], these resources are the account states,
whereas in Hyperledger Fabric [1], they are the ledger states. Hence, although blockchain systems commonly lack
a dedicated resource manager component, every blockchain system has mechanisms that ensure that transactions
accessing managed resources maintain the ACID properties [7]. For example, in Ethereum the Ethereum Virtual Machine
(EVM) ensures that aborting a transaction while executing a smart contract function revokes all changes made to the
state of the account that hosts the smart contract, whereas the consensus mechanism ensures that transactions are
executed serially in a predetermined and agreed upon order. Moreover, in Hyperledger Fabric, the transaction flow
utilizes an optimistic locking mechanism that ensures serializability, and a regular database system ensures durability
and atomicity. Hence, we refer to the ACID-enforcing mechanisms of a blockchain system as its Resource Management
Layer. In smart contract-enabled blockchains, this layer sits between smart contracts and the underlying blockchain

resources, e.g., ledger states, and exposes the API of a regular resource manager to the smart contract functions.

3 MOTIVATION AND RESEARCH QUESTION

CCSClIs, which are the focus of this work, allow the invocation of smart contract functions of two or more blockchain
networks to be composed or nested together. Moreover, ensuring the atomicity, i.e., all-or-nothing behavior, of CCSCI
executions is crucial in many enterprise application scenarios. For example, consider the exemplary use case depicted
in Figure 1. It shows two permissioned blockchain networks that act as marketplaces for airline and hotel room
reservations?. In the first network, different airlines offer flight seats for booking, while in the second network, different
hotels and property rental services offer rooms for booking. The business logic for each of these blockchain services,
or Decentralized Applications (DApps), is encoded in the form of smart contracts that are deployed directly on the
corresponding blockchain networks. Obviously, travel agencies are interested in both of these DApps, so they are
connected to the two networks. Furthermore, in order to interact with these DApps, they invoke the smart contracts

functions that encode the desired functionality, e.g., booking a hotel room or a flight seat, by submitting blockchain

ZNote that we are not restricted to permissioned blockchains. For instance, conditional payments may be performed using a smart contract in a
permissionless blockchain network.
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Begin

@ AirlinesBC["FlightMgmtSC"].ReserveFlightSeat(..);
5] HotelsBC[ "HotelMgmtSC"].BookRoom(A,..);

End
Airlines BC Hotels BC
(permissioned)

(permissioned)

Airline 2

Travel Agency 1

O

Travel Agency 2
_——1

FlightMgmt
SC

Airline 1

—1J

Hotel A

o HotelsBC[ "HotelMgmtSC"].BookRoom(A,..);
Airline 3

End

Hotel B

Fig. 1. A scenario that demonstrates the need for atomicity in the execution of CCSCls. The business transaction executed by Travel
Agency 1is not executed atomically because of a conflicting concurrent execution of another transaction executed by Travel Agency 2.

transactions to the underlying blockchain networks. If these transactions are valid, the consensus mechanisms will
accept them, which results in the execution of the requested smart contract functions.

Consequently, travel agencies can provide more sophisticated services, e.g., planning a round-trip flight com-
bined with a hotel stay. Let us assume Travel Agency 1, which represents the enterprise application of some travel
agency, is currently executing such a business transaction as shown in Figure 1: it starts by @) invoking the flight seat
reservation function of the flight management smart contract hosted on the Airlines Blockchain (we denote this as
AirlinesBC["FlightMgmtSC"].ReserveFlightSeats(...);). Assuming this invocation succeeds, the business transaction
moves to executing a second function in which a room in Hotel A is reserved. However, before this happens, another
travel agency, Travel Agency 2 @ tries to book a room in Hotel A by executing the same function as part of a different
business transaction. Unfortunately, this results in booking the last room available in Hotel A. Therefore, when the
business transaction of Travel Agency 1 tries to book a room in this hotel (step €)), the operation fails. In this case,
we ended up in a business transaction that is non-atomic, i.e., it has its intended effects persisted in only one of the
underlying blockchain networks but not the other (only the flight was booked but not the hotel room). Clearly, this is
an undesirable state. Therefore, it is very crucial to ensure an all-or-nothing behavior in such business transactions, i.e.,
to ensure their global atomicity, which requires that a distributed transaction either entirely commits or entirely aborts
at all nodes [17]. Another problem we notice in this example is that parallel business transactions were not isolated,
i.e., they were allowed to manipulate shared data at the same time, which can result in unintended results. Hence, it
is also important to ensure global serializability, which requires that the execution of a set of interleaved distributed
transactions running concurrently is equivalent to some serial execution of these transactions [17].

Many more use cases, such as trade finance [26], and supply-chain management [8], involve business transactions
that include invocations of smart contracts functions hosted on different blockchain networks, which we referred to as
CCSClIs. However, as we will show in Section 9, no existing approach offers a practical solution for executing these
business transactions while ensuring their global atomicity and global serializability, which is often a requirement for

their correctness. Therefore, the research question for this work is:

Research Question: How can global atomicity and global serializability be guaranteed in business transactions that

involve the invocation of smart contract functions located in different, possibly heterogeneous blockchain networks?
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Fig. 2. An architectural representation of the blockchain system model we use in this work.

4 FORMAL FOUNDATIONS

In this section, we introduce a formal system model for blockchain systems that we use as basis for our approach. This
model only contains concepts that are common in various blockchain systems and relevant for our approach. The idea
is to present our approach in a way that is independent of any concrete blockchain system. Moreover, we formalize our

research question based on this system model and describe the assumptions on which our approach is based.

4.1 System Model

This section presents the formal system model, which we use as basis for introducing our approach in Section 5. An
architectural representation of the system model is shown in Figure 2. The model describes the set of entities involved
in any individual blockchain network bc that takes part in our approach. In addition, it describes the relationships
between these entities and the requirements they must fulfill. The model’s aim is not to capture as many details related

to blockchain systems as possible, but capture only those details that are directly relevant for our approach.

o A client application c is a blockchain-external, or off-chain, program that communicates with the blockchain smart
contracts of some blockchain network bc. Every client application c is associated with an identity id ;. that uniquely
identifies it within bc. It also has an asymmetric cryptography key pair (puc, prc) used for signing request messages
and submitting them to the API Layer of bc. There is a unique mapping between puc and id .

o The blockchain network bc hosts a set of smart contracts SCp,.. Each smart contract sc € SCy, is defined as follows:
sc = (idsc, Fsc). Here, idsc uniquely identifies the smart contract sc within bc and Fs, is the set of smart contract
functions contained in sc. A smart contract function f € Fsc is a deterministic program that has an identifier idy
that is unique within sc. We assume the following set of basic smart contract operations must be supported by the
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Transactional Cross-Chain Smart Contract Invocations 7

smart contract runtime layer of the blockchain network bc: (i) commit is used to signal the successful end of a given
invocation of a smart contract function f, (ii) abort is used to signal an error in a given invocation of f, (iii) set is
used to change the value of a data item stored in the persistence layer, which stores the states of all smart contracts
hosted on the blockchain network bc, (iv) get is used to retrieve the value of a data item stored in the persistence layer,
(v) invoke is used to invoke another smart contract function within the same blockchain network bc, and (vi) emit is
used to send a smart contract event to client applications.

o A client application c invokes a function f € Fs. of a smart contract sc by submitting a smart contract function
invocation request (aka a “blockchain transaction”) req := (idyeq, idsc, idf, argsreq, Sige) € REQ to the INVOKE method
of the API layer of the blockchain network bc. Here, REQ is the set of all possible smart contract function invocation
requests of all blockchain networks. Moreover, in every request req € REQ, three identifiers unique within the
blockchain network bc to which the request is sent are provided: (i) idyeq represents the unique identifier of the
request, (ii) idsc represents the identifier of the smart contract that contains the function to be invoked f, and (iii) id¢
represents the identifier of f. Furthermore, argsreq, is a sequence of arguments that will be passed to f. Finally, req
contains a client-generated cryptographic signature sig. that allows verifying its integrity and associates it with the
client application c¢. We assume that all submitted requests req € REQ will eventually be delivered to the API layer
(which is usually HTTP-based) after an arbitrary but finite delay.

o The consensus layer of the blockchain network verifies the validity of each request req € REQ and includes verified
requests into the next block b := (seqp, Rp, <R, Ep, <g,) being constructed. Here, seq; represents the sequence
number of b, while R, € REQ is the set of requests included within b (such that req € Rp). Ry, is strictly and totally
ordered using the relation <g,: R X Ry, which reflects the order in which the requests in b will be executed. E,
represents the set of smart contract events that are emitted during the execution of the requests reqs, ...req|g, | € Ry
Ey, is strictly and totally ordered using the relation <g, : Ej, X Ej, which represents the order in which the events are
emitted. E;, starts as an empty set, then it gets gradually filled with the events that are emitted during the execution
of the smart contract functions invoked by the requests reqi, ...reqg,| € R as we will discuss next.

We assume that in order for a request req € REQ to be considered valid, it must be unique and that any request
successfully validated by the consensus layer will eventually be included into a block. Furthermore, we assume that
the consensus layer only associates monotonically increasing sequence numbers to the generated blocks. Therefore,
seqp uniquely identifies the block b within the blockchain network that received the request.

After the consensus layer adds “enough”® validated requests req € REQ to Ry, it triggers the invocation of all requests
in it sequentially according to <g, . For each request req = (idyeq, idsc, idf, argsreq. sigc) € Rp, the function identified
by idy inside the smart contract identified by idsc is invoked using the arguments argsreq passed by the client
application in combination with context information, i.e., (i) the sequence number seqy of the block containing the
request, which enables f to identify the point in time of which the invocation takes place, and (ii) id, p., the identity of
the client application that submitted the request*. Therefore, when a request req € Ry, that is included into the block b
is triggered, the resulting smart contract function invocation is defined as ipeqp = (idsc, idf, argsreq, seqp. idc pe) € Ipc.
where Ij,, represents the set of all invocations that result from valid smart contract function invocation requests
included into the blockchain structure of the blockchain network bc.

o The smart contract runtime layer is responsible for performing all smart contract function invocations in Ip,.. During
an invocation ieqp € Ipc, the basic smart contract operations set, get, commit, and abort are forwarded to the built-in

3This is determined on a technology-specific basis. For example, Ethereum miners try to fill the block up to a known threshold, i.e., the block’s gasLimit [34].
4The consensus layer infers idc pc from sige.
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resource management layer that ensures the atomicity and isolation of invocations within the blockchain network bc,
and communicates with the underlying persistence layer by reading from it and writing to it. Moreover, the basic
smart contract operation emit stores a smart contract event e := (typee, argse) in the set Ej, within the block b. Here,
type. represents a custom-defined event type, and args, represents a set of data items that will be reported back to
the client application c. Later, when the block b is added to the blockchain structure of the blockchain network bc,
the client application receives an asynchronous message from the EMIT method of the API Layer of bc containing the
smart contract event e. Since e is permanently stored into the blockchain data structure, even if the client application ¢
is unavailable when the block b is added to the blockchain, it still can receive the smart contract event e when it
becomes available again, and it receives it in the correct order. Furthermore, the basic smart contract operation invoke
executes a different smart contract function as a sub-invocation of the current invocation. This means the following:
(i) set and get operations performed by the sub-invocation are considered to be part of the parent invocation when it
comes to atomicity and isolation, (ii) a commit operation performed by the sub-invocation is allowed to return values
to the parent invocation, but does not guarantee that the state changes incurred will be persisted, and (iii) an abort
operation performed by the sub-invocation reverts all state changes that took place during its execution and reports
the failure to the parent invocation, which handles it according to its business logic, i.e., it does not necessarily
abort, too. Finally, we assume all invocations end either with the execution of a commit operation or the execution
of an abort operation. In addition to the logic of f, the built-in resource management layer may also trigger the
abort operation if it determines that the invocation i4j cannot finish in a serializable manner. Similarly, the smart
contract runtime layer may also abort if it detects that i, is infinite or too costly. The execution of this operation
is handled by the built-in resource management layer, which also uses the emit operation to asynchronously report
aborted invocations to the client application. Regardless of whether an invocation i,.qj ends with a commit or an
abort, it is always guaranteed that it is atomic and serializable within the blockchain network. In fact, we assume that
smart contract function invocations fulfill the ACID properties [4].

e When the smart contract runtime layer finishes all the invocations triggered by the requests reqz, ...req|g, | € Ry, it

permanently adds the block b to the blockchain structure of the blockchain network bc.

4.2 The Transactional CCSCI Problem

Having formally defined the system model that describes the functionality of a blockchain network, we now use
it to formally define the problem that we want to solve, which is based on the Two-Phase Commit (2PC) Problem
Definition [3, 11, 12]: A client application c executes a transactional program that invokes smart contract functions
hosted on two or more blockchain networks bc1, bey, ..., bep, (n > 1), which we assume never crash. We call this execution
a Transactional CCSCI (TCCSCI). In fact a TCCSCI is a distributed transaction [4] that invokes smart contracts distributed
across multiple blockchains. Therefore, we use dix to denote it, and we formally define it as a totally and strictly ordered
set of operations that the runtime environment of the client application c executes, i.e., dtx = (Qgsx> <dsx), in Which
Qarx = {w1, ..., om}(m > 3), and the relation <g;: Qgzx X Qgsy defines the strict and total order of the operations.
Here, w1, the first operation executed in dtx according to <g;,., is always start_dtx, which marks the beginning of
dtx, and wpm, the last operation executed in dtx according to <g;, is either commit_dtx or abort_dtx, which mark the
successful or failed end of the distributed transaction dtx, respectively®. The concrete implementation of these three

operations according to our approach will be described in Section 5. Each of the operations wg, ..., om—1 € Qg;x is a

Note that commit_dtx and abort_dtx are different from commit and abort introduced in Section 4.1. The former pair are operations executed by
the runtime environment of the client application, and the latter pair are operations executed by the smart contract runtime layer of a blockchain network.

Manuscript submitted to ACM



Transactional Cross-Chain Smart Contract Invocations 9

-~Client Application -
(@

dtx start_dtx()
— -} - -} - —invoke_sc(bcy,req,)

A invoke_sc(bcy, reqy) ~
.7 . - invoke_sc(bcy,reqs) \‘
’ H invoke_sc(bcy,reqy) _
4 it_dtx() TN
/I i @ commit_ v .. -~
' ~.
API Layer — . ' API Layer ||

| T ] [ g
— Consensus Layer - Layer

0P| Ry, gy PO |

— Execution Layer*® N — Execution Layer™* N

. K e
It lreql,bA ’ lreq;i,bB It lT(‘IIvau ’ lT(’fImD/r
xhcl,dtx > qu'z,dtx >
BC Network bc, BC Network bc,

Fig. 3. An example that shows how a distributed transaction d¢x that contains smart contract function invocations on bc; and be,
results in the local transactions Ixp¢ dsx in bep and ltxpe, qsx in bea. For brevity, Execution Layer™ refers to all the layers below the
Consensus Layer, i.e., Smart Contract Runtime Layer, Built-in Resource Management Layer, and Persistence Layer (see Figure 2).

request submission operation defined as invoke_sc := (idp., req), which represents submitting the request req = (idyeq,
idsc, idy, argsreq, sige) € REQ to the INVOKE method of the API Layer of the blockchain network identified by idp, in
order to invoke the function identified by idy of the smart contract identified by idsc.

Furthermore, we define a local transaction [txpc gry = (Ipc,dex» <I,.) to be the strictly and totally ordered set of smart

contract function invocations that result from the execution of a TCCSCI dtx in the blockchain network bc:
Ipedix = ireqp € Ipclb € Blocksye A Jo € Qgyy : 0 = invoke_sc(idpc, req)} (1)

Formula 1 indicates that the set I 4;, contains all invocations in the blockchain network bc that result from the

invoke_sc operations executed within dtx. Here, Blocksy. denotes the set of blocks of the blockchain network bec.

irqu,bl <Ipe irqu,bz = (seqbl < seqp, V(b1 =bs A reqa <Rb1 rqu)) (2)

Formula 2 indicates that the relation <y, : Iy¢ X Ipc orders any two invocations iyeq, b,» ireqp,b, € Ipc according to the
sequence numbers of the blocks by and by that include the smart contract invocation requests that triggered them.
If these requests are in the same block b, i.e., if by = by = b, the invocations are ordered using the relative order of
the corresponding requests within R;, (see Section 4.1). The relationship between dtx and ltxp, 4; is demonstrated in
Figure 3 using an example that shows a TCCSCI with four invoke_sc operations that invoke smart contract functions
on two different blockchain networks.

Furthermore, we assume an off-chain transaction manager component TM coordinates a commitment protocol P
with the purpose of guaranteeing the global atomicity of dtx. P is triggered when the client application requests the
execution of the commit_dtx operation. We assume that TM may suffer from crashes at any time and recovers after
some arbitrary amount of time. Information stored by the blockchain persistence layer is never lost. Information logged
on the disk TM survives later crashes. Each blockchain network bc unilaterally evaluates a vote that can be either “yes”
or “no”, which indicates whether it can commit the local transaction Itxp 4;, Which results from the TCCSCI dtx.

The problem is to have the blockchain networks collectively guarantee the global serializability of the TCCSCI dtx

and decide on either commit or abort considering the following requirements that guarantee the global atomicity of dtx:
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Fig. 4. An overview of the TCCSCI approach that guarantees global atomicity and global serializability of TCCSCls.

o Agreement: no two blockchain networks decide differently.

o Termination: if all TM failures are repaired and it does not crash for long enough, then all blockchain networks decide.

Abort-Validity: abort is the only possible decision if some blockchain networks vote “no”.

Commit-Validity: commit is the only possible decision if TM is operative and all blockchain networks vote “yes”.

5 THE TRANSACTIONAL CROSS-CHAIN SMART CONTRACT INVOCATION APPROACH

In this section, we present the TCCSCI approach, which guarantees global serializability and atomicity of business
transactions that involve the invocation of smart contract functions located in different, possibly heterogeneous
blockchain networks. We aim to fulfill the following requirements that ensure a relatively low adoption barrier: (i) No
dependence on TTPs, i.e., the approach must not require that the client application or blockchain networks have to
trust third-parties. (ii) Achieve arbitrary smart contract composition, i.e., the approach must allow the client application
to arbitrarily specify which smart contract functions are invoked on which blockchain network and in which order, and
it must allow the client application to pass data resulting from one invocation to another. (iii) The approach must allow
heterogeneity, i.e., it must be applicable to both permissioned and permissionless blockchains, and to any blockchain
system within these two categories that adheres to the system model presented in Section 4.1. (iv) The approach must

not require changing existing blockchain protocols. We evaluate the fulfillment of these requirements in Section 8.

5.1 Conceptual Overview of the TCCSCI Approach

The overall idea of the TCCSCI approach is to use smart contracts that act as resource managers to ensure the global
serializability of TCCSClIs, and to implement a variant of the 2PC protocol to ensure their global atomicity. Specifically,
blockchain systems are designed to ensure the atomicity and isolation of the individual smart contract function
invocations they run. However, in the context of ensuring transactional behavior for CCSCIs, we might need to roll
back the effects of an already-finished invocation as demonstrated in Section 3. Therefore, our approach needs to find

a way to separate the execution of a smart contract function invocation from its commitment, i.e., have the ability
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to provisionally execute an invocation and later decide whether to commit the incurred changes, i.e., “install” them
durably in the persistence layer, or to revoke them. Traditionally, such a feature is provided by the concept of a resource
manager [4]. However, on the one hand, built-in blockchain resource management layers are not designed for TCCSClIs,
i.e., they cannot ensure their atomicity and serializability. On the other hand, we do not want to introduce changes to
them, since this means requiring to change existing blockchain protocols, which limits the adoptability of the approach.

Therefore, we propose to implement the functionality of a resource manager that supports TCCSCIs directly in the
smart contract layer in the form of a Resource Manager Smart Contract as shown in Figure 4. We assume that for each
blockchain network bcy, ..., bcy,, we have a dedicated RMSC, RMSCpe,; ..., RMSCp, . Please note how RMSCs expose a set
of functions similar, except for preparex, to the basic operations exposed by the built-in resource management layer (to

W

differentiate between the two, we add the symbol “*” to the end of RMSC function names). Given a blockchain network
be, RMSCy,. acts as a layer on top of the built-in resource management layer of bc. Therefore, when a user-defined
smart contract sc in bc needs to participate in a TCCSCI, it must direct all its read and write requests to RMSCy,. by
invoking the functions setx and get* using the invoke basic operation instead of directly calling the basic operations
set and get of the built-in resource management layer. As discussed in Section 5.2, set* and get* are implemented in a
way that (i) ensures serializability by implementing Strict Two-Phase Locking (S2PL) [3], and (ii) facilitates recovery, i.e.,
recover the previous values of changed data items if a TCCSCI is aborted (by maintaining previous images).

To support the global atomicity of TCCSCIs, the TCCSCI approach introduces a transaction manager component as
part of the client application. We denote this component TM. The purpose of TM is to coordinate a specialized ACP
derived from the traditional 2PC protocol. As we will see in Section 5.3, given a TCCSCI dtx, this protocol, which
we refer to as the 2PC4BC protocol, will ensure that all the corresponding local transactions are either committed or
aborted. To this end, when the business logic of the client application is successfully executed until the end, i.e., when
the operation commit_dtx is executed, TM will communicate with the RMSCs of the involved blockchain networks to
run the 2PC4BC protocol by: (i) invoking the prepare* function provided by the smart contracts RMSCp,,, ..., RMSCp,,
of all participating blockchain networks bcy, ..., bep, which requests them to vote on whether they are willing to commit
their local transactions Itxpc, gy - (EXpe, drx- (i) If all vote “yes”, requesting them to perform the commit by invoking
the commitx function; otherwise, requesting them to abort by invoking the abortx* function. The commit* function of a
given RMSCy,. ensures that the effects of the local transaction ltxp 4; are “installed” in the persistence layer of bc,
whereas the abort* function restores the previous images of the data items manipulated in ltxp g¢, thus effectively
revoking it. As a result, the global atomicity of dtx is guaranteed. In the next two sections, we will give more details on
the RMSCs and the 2PC4BC protocol.

5.2 Resource Manager Smart Contract

As mentioned earlier, the main purposes of an RMSC is to (i) enable business logic smart contracts to separate their
execution from the commitment of the incurred changes, which allows for rolling back executed but uncommitted
function invocations if deemed necessary to ensure the global atomicity of a TCCSCI, and (ii) ensure that the access to
data items is controlled in such a way that prevents unintentional interactions between concurrent TCCSCIs, which
ensures global serializability. An example of unintentional interactions between concurrent TCCSCIs is accessing
uncommitted changes that might still be revoked later. Every blockchain network bc involved in the execution of
a TCCSCI requires an RMSCy,. deployed on it. This RMSCp,, will then be used to support the execution of the local
transactions Itxpc 4; of all TCCSCIs. Every RMSCp,. exposes five public functions, setx, getx, commit*, abortx, and

preparex. We will postpone the discussion of commit*, abort*, and preparex to the next section since they are more
Manuscript submitted to ACM



12 Ghareeb Falazi, Uwe Breitenbiicher, Frank Leymann, Stefan Schulte, and Vladimir Yussupov

Listing 1 Pseudocode for RMSCy,: setx and get* functions along with other helping functions.

Context:seqp, idepe 26 internal function acquirelLock(uName, idg;x, IType):

Data: vars[], txs[], TimeoutDuration o7 0 — vars[vName]
1 external function set*(vName, value, idg;x): 28 tx — txs[idgey]
2 require(ensureStarted(idasx) = true) 29 if IType = WRITE A tx has write lock overv) V (IType =
3 require(txs[idgsx].owner = idcpc) READ A tx has any lock over v) then // No need to lock
4 [successful, newLock] « acquireLock(vName, idgyx, 30 | [successful, newLock] « [true, false]
WRITE) 31 else if (IType = READ A v is not write-locked) vV (IType =
5 if successful = false then // Cannot acquire the lock! WRITEA no other transaction has locks over v) then
6 | doAbort_ltx(idarx) 32 lock(oName, idgs, IType)
7 else 33 [successful, newLock] « [true, true]
8 if newLock = true then // 15! write to variable? 34 else // There are conflicting locks!
9 | vars[vName].prevImage « vars[vName)].value 35 IHolders — v.rlHolders U {v.wiHolder}
10 vars[vName].value — value 36 if Vh € [Holders (txs[h].timeout < seqpA
11 external function getx(oName, idg;x): txs[h].state = STARTED) then
12 require(ensureStarted(idgx) = true) 37 foreach h € [Holders do
13 require(txs[idg;x].owner = id; pc) 38 | doAbort_Ltx(h)
14 [successful, ] « acquireLock(vName, idg;x, READ) 39 lock(vName, idgex, IType)
15 if successful = false then // Cannot set the lock! 40 [successful, newLock] « [true, true]
16 | doAbort_ltx(idgsx) 41 else // We cannot set the lock
17 else 42 ‘ [successful, newLock] « [false, false]
18 | return vars[vName].value 143 return [successful, newLock]
19 internal function ensureStarted(idg,): 44 internal function lock(vName, ida;x, IType):
20 if txs[idgsx] = L then // We have to initialize dtx 45 if IType = WRITE then
21 txs[idgrx].owner « ide pe 6 ‘ vars[vName].wlHolder « idg;
22 txs[idg;x].state < STARTED 47 vars[vName].rlHolders <« 0
23 txs[idg;x].timeout < seqp + 