
© ACM 2021

This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for

redistribution. The definitive version is available at ACM: https://doi.org/10.1145/3468737.3494085

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

@inproceedings{Harzenetter2021_PatternDetection,
author = {Harzenetter, Lukas and Breitenb{\”u}cher, Uwe and

Falazi, Ghareeb and Leymann, Frank and Wersching, Adrian},
title = {Automated Detection of Design Patterns in Declarative

Deployment Models},
booktitle = {Proceedings of the 2021 IEEE/ACM 14th International

Conference on Utility Cloud Computing (UCC 2021)},
year = 2021,
month = dec,
pages = {36-45},
publisher = {ACM},
doi = {10.1145/3468737.3494085}

}

Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{harzenetter, breitenbuecher, falazi, leymann, wersching}@iaas.uni-stuttgart.de

Automated Detection of Design Patterns in
Declarative Deployment Models

Lukas Harzenetter, Uwe Breitenbücher, Ghareeb Falazi,
Frank Leymann, and Adrian Wersching

Institute of Architecture of Application Systems

https://doi.org/10.1145/3468737.3494085

Automated Detection of Design Patterns in Declarative
Deployment Models

Lukas Harzenetter, Uwe Breitenbücher, Ghareeb Falazi, Frank Leymann, and Adrian Wersching
{harzenetter,breitenbuecher,falazi,leymann,wersching}@iaas.uni-stuttgart.de

University of Stuttgart, Institute of Architecture of Application Systems (IAAS)
Stuttgart, Germany

ABSTRACT
In recent years, many different deployment automation technologies
have been developed to automatically deploy cloud applications.
Most of these technologies employ declarative deployment models
to describe the deployment of a cloud application by modeling its
components, their configurations as well as the relations between
them. However, while modeling the deployment of cloud appli-
cations declaratively is intuitive, declarative deployment models
quickly become complex as they often contain detailed information
about the application’s components and their configurations. As a
result, immense technical expertise is typically required to under-
stand the semantics of a declarative deployment model, i. e., what
gets deployed and how the components behave. In this paper, we
present an approach that automatically detects design patterns in
declarative deployment models. This eases understanding the se-
mantics of deployment models as only the abstract and high-level
semantics of the detected patterns must be known instead of tech-
nical details about components, relations, and configurations. We
demonstrate an open-source implementation based on the Topology
and Orchestration Specification for Cloud Applications (TOSCA)
and the graphical open-source modeling tool Winery. In addition,
we present a detailed case study showing how our approach can be
applied in practice using the presented prototype.

CCS CONCEPTS
• Software and its engineering → Software architectures; Soft-
ware system models; Design patterns; Cloud computing.

KEYWORDS
Declarative Deployment Models, Design Patterns, Pattern Detection,
TOSCA, Eclipse Winery

ACM Reference Format:
Lukas Harzenetter, Uwe Breitenbücher, Ghareeb Falazi, Frank Leymann,
and Adrian Wersching. 2021. Automated Detection of Design Patterns in
Declarative Deployment Models. In 2021 IEEE/ACM 14th International
Conference on Utility and Cloud Computing (UCC’21), December 6–9,
2021, Leicester, United Kingdom. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3468737.3494085

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UCC’21, December 6–9, 2021, Leicester, United Kingdom
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8564-0/21/12. . . $15.00
https://doi.org/10.1145/3468737.3494085

1 INTRODUCTION
Since the manual deployment and configuration of applications is
error-prone and time consuming, its automation is important to en-
sure repeatable and reliable executions—especially in the Cloud [4,
34]. Therefore, a plethora of deployment automation technologies,
e. g., Chef, Ansible, and Terraform have been developed [44]. These
technologies typically use deployment models to describe the de-
ployment and configuration of application components as well as
their relations [4, 44]. Deployment models can be classified into
declarative and imperative deployment models [11]. Imperative de-
ployment models specify the actual process of the deployment, i. e.,
technical deployment tasks as well as their execution order. Thus,
imperative models require a lot of technical expertise to implement
these deployment tasks [7]. In contrast, declarative deployment mod-
els describe only what has to be deployed without specifying the
technical execution details. Thereby, declarative models are typically
structured in the form of directed, weighted graphs [44] and can be
represented graphically, which eases their understandability. Since
the most prominent deployment automation technologies support
declarative modeling [44], we focus on them in this paper.

In general, declarative deployment models are significantly easier
to create in contrast to imperative deployment models because tech-
nical details about their execution do not need to be modeled [7, 31].
However, declarative deployment models also quickly become com-
plex as many technical details about components, relations, and their
configurations must be described to enable the application’s fully-
automated deployment. This is especially a challenge for large-scale
applications that consist of hundreds of components possibly dis-
tributed across multiple different cloud infrastructures using various
middleware technologies. Thus, understanding the semantics of the
modeled application requires immense technical expertise about
the modeled components, relations, and their configurations. For
example, to achieve a highly scalable cloud application, queues are
often used to enable asynchronous communication between different
components of the application. Thereby, it is often a compelling
business requirement to guarantee that each message is processed
exactly once. If a queue provided by a messaging service is used, the
service must therefore ensure Exactly-once Delivery [15]. However,
identifying that a queue is configured to ensure exactly-once seman-
tics from a deployment model requires technical knowledge about
the underlying technology. For instance, a queue hosted on AWS’
Simple Queuing Service (SQS)1 that realizes Exactly-once Delivery,
must be of type “FIFO”, whereas in Azure’s Service Bus Messag-
ing service2, the queue must be configured to use the “duplication
detection” feature. These are very specific technical details, which

1https://aws.amazon.com/de/sqs/
2https://docs.microsoft.com/en-us/azure/service-bus-messaging

https://doi.org/10.1145/3468737.3494085
https://doi.org/10.1145/3468737.3494085
https://aws.amazon.com/de/sqs/
https://docs.microsoft.com/en-us/azure/service-bus-messaging

UCC’21, December 6–9, 2021, Leicester, United Kingdom Harzenetter et al.

readers must know to understand the semantics of the queue and how
it behaves. This becomes a serious challenge for large, multi-cloud
deployments where multiple different technologies and providers
are involved. Moreover, as default configurations are typically not
modeled explicitly, recognizing the behavior of a component is very
difficult or even impossible for readers who are not aware of all the
technical details. Thus, adapting such models becomes error-prone.

To tackle this issue, we present an approach to automatically de-
tect design patterns in declarative deployment models. This eases
understanding the semantics in declarative deployment models as
they are explicitly described in the form of design patterns and do not
need to be derived by the reader from the technical details and con-
figurations of each component and relation. Moreover, since patterns
document proven solutions to a particular recurring problem [1], the
terms and concepts are clearly defined providing a common under-
standing for all readers. Therefore, to present the detected design
patterns and where they occur in the model, we reuse a metamodel
that has been previously introduced to describe Pattern-based De-
ployment Models (PbDMs) [21, 22]. Thereby, design patterns can be
used as nodes to represent structural elements or attached to nodes
to express their behavioral characteristics [22]. Hence, PbDMs de-
scribe the logical architecture [27] of applications and can be used
to communicate the application’s semantics to audiences that do not
have expert knowledge in all used vendors and technologies.

In previous work [21, 22], PbDMs were introduced to model de-
ployments in an abstract way without the need to specify concrete
components, relations, and configurations. Moreover, an approach
was presented to refine PbDMs automatically to executable deploy-
ment models [21]. On the contrary, in this work we turn the idea
around: Instead of manually creating PbDMs that can be automati-
cally refined, we automatically derive PbDMs from existing declar-
ative deployment models to ease understanding their semantics—
which is obviously easier to grasp from technology-independent,
pattern-based models than from deep technical deployment models.
We validate our approach by presenting a prototypical implementa-
tion based on Eclipse Winery [25] and applying it on a case study.

2 BACKGROUND, MOTIVATION,
AND PROBLEM STATEMENT

An overview of deployment automation is given in Section 2.1, while
Sections 2.2 and 2.3 motivate and outline the problem statement.

2.1 Deployment Models and Automation
Since the manual deployment of applications is error-prone and
time consuming, automating application deployments is inevitable
to achieve reproducible and efficient executions [34]. Available de-
ployment automation technologies mostly use deployment models to
describe the deployment of applications [4]. Thereby, two types can
be differentiated: (i) imperative deployment models and (ii) declar-
ative deployment models [11]. Imperative deployment models are
process models that explicitly describe the tasks to be executed with
all technical details as well as their order and the data flow between
them. Thus, imperative deployment models describe how the mod-
eled application is deployed. Hence, to perform the deployment, the
corresponding script or workflow is simply executed by a suitable
deployment automation engine. In contrast, declarative deployment

models describe only the components of an application to be de-
ployed including their relations and configurations. Hence, declar-
ative deployment models describe only what has to be deployed,
but not how. Thus, instead of directly consuming and executing a
declarative deployment model, declarative deployment automation
engines must derive the tasks that need be performed to instantiate an
application in the correct order. As a result, declarative deployment
models are easier to create as no technical expertise about the actual
deployment tasks is required [7]. Therefore, modeling application
deployments declaratively has prevailed in practice: The deploy-
ment automation technologies, which are most used in industry and
research, all use declarative models to describe the deployment of ap-
plications [44]. Additionally, by performing a review of the 13 most
used deployment automation technologies, Wurster et al. [44] de-
rived a meta-model, the Essential Deployment Metamodel (EDMM),
that consists of the general modeling elements all these technologies
have in common. Application deployments modeled in EDMM can
be automatically transformed to models of concrete technologies,
such as Terraform, Ansible, or Kubernetes [43] and executed using
these production-ready technologies [45]. Therefore, we use EDMM
to describe our concepts independent of a deployment technology.

2.2 Motivating Scenario and Running Example
In general, declarative deployment models can be represented as
directed, weighted graphs whereby components are represented as
nodes while edges define their relations [44]. In EDMM, both, com-
ponents and relations, are semantically defined by reusable types,
i. e., component types and relation types respectively, defining the
properties and operations a component or relation has. For example,
Fig. 1 shows a simplified declarative deployment model of a dis-
tributed order application consisting of a Webshop component that
communicates with an Order Processor component using a queue
component. The Webshop is realized in the form of an Angular
11 Web App as represented by the the component’s type, shown in
parentheses. It is publicly accessible via the internet via an Elastic
Beanstalk Webserver Environment on which it runs. Similarly, the
Order Processor, a Java 11 App, is hosted on AWS Lambda in the
form of a Java 11 Lambda Function and is executed whenever there
are new orders issued from the Webshop to the SQS Queue. To store
new orders persistently, the Order Processor connects to a MySQL
8.0 Database that is running on a Relational Database Service (RDS)
MySQL 8.0 Environment. Then, employees can access the database
using a Management UI hosted on a Ubuntu 20.04 virtual machine
(VM) running on a local OpenStack infrastructure to process and
ship the orders. In such a declarative deployment model, the compo-
nents are instances of component types defining their semantics. For
example, the Angular 11 Web App component type defines opera-
tions to install, start, and configure such an application, as well as its
required properties. In this case, the “Context” path from which the
Webshop will be reachable is “/shop”, while the name of the MySQL
Database, e. g., should be “webshop”. Finally, to express the seman-
tics of relations between the components, they are also instances
of relation types. Thus, to indicate that the Webshop is running on
an Elastic Beanstalk Webserver Environment and it connects to the
SQS Queue, the two relations are, as illustrated in Fig. 1, instances
of the relation types hostedOn and SecureQueueConnection.

Automated Detection of Design Patterns in Declarative Deployment Models UCC’21, December 6–9, 2021, Leicester, United Kingdom

= hostedOn

= Secure-Queue-Connection

= Secure-SQL-Connection

Le
ge

n
d

Property: [Value]

Name
(Component Type)

Context: /shop

Webshop
(Angular 11 Web App)

DB-Name: webshop

(MySQL 8.0 Database)

Type: FIFO
Server-Side-
Encryption: Yes
Master-Key: Default

(SQS Queue)

API: http://10.0.1.42/stack

(OpenStack)

RAM: 16GB
User: orderMgmt
PublicIP:

(Ubuntu 20.04)

Region: EU

(AWS)

Port: 8080

Management UI
(Java 11 Web App)

Account: ust-iaas

(AWS Relational
Database Service)

JmxPort: 9090

(Tomcat 10)

Account: ust-iaas

(AWS Simple
Queue Service)

1

Account: ust-iaas

(AWS Elastic Beanstalk)

5

3

Port: 3306
AZ-Deployment: Yes
Encryption: Yes

(RDS MySQL 8.0
Environment)

Env.Type: balanced
ScalingMetric: N.Out > 6 Mb
TimeSpan: 5 min

(Elastic Beanstalk
Webserver Environment)

2

Account: ust-iaas

(AWS Lambda)

4

MaxHeap: 6GB

Order Processor
(Java 11 App)

Code-signing: Yes
Trigger: onSQSmessage
Permissons: SQS-Read

(Java 11 Lambda Function)

Figure 1. A simplified declarative deployment model describing a hybrid cloud application consisting of multiple distributed components.

2.3 Problem Statement
As outlined above and illustrated in Fig. 1, declarative deployment
models are very useful to describe the components, relations, and
configurations of an application. However, understanding the seman-
tics hidden in such deployment models is very difficult and requires
immense technical expertise. For example, to recognize that the
queue used between the Webshop and the Order Processor enforces
exactly-once delivery, it must be known that AWS uses the queue
type “FIFO” to achieve this. In Fig. 1, the SQS Queue realizes this
and is highlighted by ➊. Similarly, to model that the Webshop must
be scaled horizontally, the corresponding Elastic Beanstalk Web-
server Environment hosting the Order Processor is configured to be
of type “balanced”, instead of “single”, see ➋. Thus, the Webshop is
automatically scaled if the network output is constantly over 6 Mb/s
for more than five minutes. Moreover, not only the behavior of com-
ponents is challenging to detect from deployment models, but also
the structural concepts realized by the employed components. For
example, it must be known that the Database Management System
(DBMS) is configured to use strict consistency since the Relational
Database Service Environment (➌) uses AZ-Deployments, which
is again highly vendor-specific knowledge required to identify this
behavior. Similarly, identifying the used service types may be a prob-
lem if the reader is not aware of them. For example, a reader must
know that AWS Lambda is a Function as a Service (FaaS) offering
(➍) while AWS Elastic Beanstalk, see ➎ in Fig. 1, is a Platform as a
Service (PaaS) offering. Moreover, this only holds for this particular
deployment model. If another cloud provider or even several are
used, understanding these deployment semantics becomes almost
impossible if knowledge about the different offerings and their con-
figurations is missing. Additionally, an application’s deployment
model describes its logical architecture and is therefore also suitable
for communication. Thus, the following research question arises:

“How can the semantics of technical declarative deployment
models be automatically detected and represented in a way
that significantly reduces the technical expertise the reader

needs to understand them?”

3 PATTERN-BASED REPRESENTATION OF
DEPLOYMENT SEMANTICS

First the idea of the proposed approach is described in Section 3.1
followed by an application to the motivation scenario in Section 3.2.

3.1 General Idea
Declarative deployment models can become very complex and con-
tain many different components that represent various vendors and
technologies as discussed in the previous section. Thus, understand-
ing their semantics is very difficult. To tackle this, the idea of this
paper is to (i) automatically detect design patterns in declarative
deployment models by mapping concrete components, relations, and
their configurations to abstract design patterns and (ii) represent-
ing them as Pattern-based Deployment Models (PbDMs)3 [21, 22],
which are deployment models that can contain structural patterns
instead of concrete components and behavior patterns attached to
nodes to describe their behavioral semantics. As a result, only de-
sign patterns need to be understood in contrast to deep technical
details of numerous technologies and providers. Especially for de-
ploying Cloud applications, there are different pattern languages
available that can be used to describe the semantics of components,
relations, and their configurations [21], e. g., the Cloud Computing
Patterns [15], the Enterprise Integration Patterns [23], and the Secu-
rity Patterns [38]. Moreover, the approach can be applied to the 13
most used deployment technologies [44] as we employ EDMM.

Originally, PbDMs were introduced to abstractly model applica-
tions with design patterns instead of using concrete technologies
and providers to ease their creation [21]. The existing approach also
enables the automated refinement of the modeled design patterns
to concrete components and their corresponding configurations for
each deployment of the application [21, 22]. Thereby, two types of
patterns are differentiated [22]: component patterns which are used
to describe components abstractly and behavior patterns which can

3In [22], PbDMs were extended to Pattern-based Deployment and Configuration Models
(PbDCMs) to support pattern-based configuration of components and relations. However,
for simplicity we use PbDMs to refer to PbDCMs in this paper.

UCC’21, December 6–9, 2021, Leicester, United Kingdom Harzenetter et al.

Webshop
(Angular Web App)

Order Processor
(Java 11 App)

Point-to-Point
Channel

Message-
oriented

Middleware

Public
Cloud

Relational
Database

Private
Cloud

Secure
Channel

Horizontal
Scaling*

Management UI
(Java 11 Web App)

Stateless
Component

Execution
Environment

Exactly-once
Delivery

Information
Obscurity

Strict
Consistency

Platform
as a

Service

Function
as a

Service*

Database
as a

Service*

Event-Driven
Consumer

= hostedOn

= Queue-Connection

= SQL-Connection

Le
ge

n
d

Property: [Value]

Name
(Component Type)

Figure 2. Pattern-based Deployment Model that is generated by applying the proposed approach to the deployment model shown in Fig. 1.
(*) Horizontal Scaling [15, 46], Function as a Service [47], and Database as a Service [47] are not documented as patterns but are common cloud concepts.

be annotated to components, relations, and component patterns to ab-
stractly define their behavior. Therefore, while PbDMs not only ease
the creation of deployment models but also ease understanding their
semantics, we propose to reverse the original approach presented
by Harzenetter et al. [21, 22] and enable the automated detection
of design patterns in declarative deployment models and represent
them in the form of PbDMs. Thus, the goal is to ease understanding
the semantics of the modeled application deployment as components
and their behavior are represented by patterns instead of technical
details that need to be understood.

3.2 Motivation Scenario as a Pattern-based
Deployment Model

To demonstrate how intuitive the result is if declarative deployment
models are represented as PbDMs, we describe how the application
shown in Fig. 1 can be represented as a PbDM. Therefore, Fig. 2
illustrates the running example application as a PbDM: Instead of
describing concrete vendors and technologies, such as the Elastic
Beanstalk Webserver Environment, the AWS Elastic Beanstalk, and
the AWS component the Webshop is hosted on, their semantics are
now abstractly represented in the form of component patterns [22].
Thus, the Webshop is hosted on a Platform as a Service [15] pattern
that is provided by a Public Cloud [15] pattern in Fig. 2. Similarly,
the SQS queue is an implementation of the Point-to-Point Channel
pattern [23] (a.k.a. Queue) that is running on a Message-oriented
Middleware [15] provided by the same Public Cloud in which the
Webshop is hosted on. Moreover, the components of the application
modeled in Fig. 1 are configured to behave in a particular way. To un-
derstand the behavior of a component or relation from a declarative
deployment model, immense technical expertise about the corre-
sponding vendor or technology is required. In contrast, the behavior
of components and relations is explicitly described in PbDMs in
the form of behavior patterns [22] annotated to the corresponding
component, component pattern, or relation. Hence, recognizing that,
e. g., the Point-to-Point Channel ensures Exactly-once Delivery is
significantly easier. Similarly, the Order Processor is running on
a Function as a Service (FaaS) and is annotated to be a Stateless
Component [15] that uses Horizontal Scaling. To understand that the
Order Processor cannot hold any state in between requests, hence

realizes the Stateless Component pattern, as well as that it is automat-
ically scaled horizontally based on the original deployment model
shown in Fig. 1, many technical details about how AWS Lambda
works need to be understood. In contrast, in the PbDM in Fig. 2 the
Order Processor’s behavior is abstractly shown. Additionally, since
the Java 11 Lambda Function is executed after a new message arrives
in the SQS Queue—defined by the “Trigger” property with the value
“onSQSmessage”—the Order Processor realizes the Event-Driven
Consumer [23] pattern. Furthermore, the Order Processor connects
to a Relational Database [15], which is running in a Database as a
Service (DBaaS) offering in the same Public Cloud. Moreover, it is
also possible to detect additional semantics hidden in the relations.
For example, to communicate between the Webshop and the Order
Processor, both use a Secure Queue Connection relationship type
to describe their communication with the SQS Queue. This can be
abstractly represented by a relation of type Queue Connection that
is annotated with the Secure Channel [38] pattern. Finally, the Man-
agement UI hosted on a Ubuntu VM running on OpenStack can be
represented by an Execution Environment [15] that is provided by a
Private Cloud [15] pattern. However, while Horizontal Scaling is not
documented as a pattern, we still included it to describe the scaling
behavior of an application since scaling horizontally is a common
behavior in the Cloud to compensate changing workloads [15, 46].
Similarly, FaaS and DBaaS are common cloud services [46], but are
not documented as design patterns.

4 THE UNDERLYING PREVIOUS APPROACH
As shown in the previous section, the technical knowledge required
to understand the deployment semantics of an application modeled
as a PbDM is significantly reduced in comparison to a technical
declarative deployment model. Therefore, we propose an iterative
approach to automatically generate PbDMs from executable declara-
tive deployment models in the next section. But before we introduce
our new approach in the next section, we describe in this section the
previous work [21, 22] on which our new approach is based as it is
a reversed version of this previous work.

In previous work [21, 22], Pattern-based Deployment Models
were modeled by the user to describe the abstract semantics of a
desired application deployment. As PbDMs cannot be executed, the

Automated Detection of Design Patterns in Declarative Deployment Models UCC’21, December 6–9, 2021, Leicester, United Kingdom

B

Pattern Refinement Models
Repository

(Java 11 Web App)

A

(MySQL Database 8)

Env.Type: balanced
[…]

(Elastic Beanstalk
Webserver Environment)

MaxHeap: 6GB
[…]

(Java 11 Web App)

Unpredictable
Worklaod

Platform as
a Service

Public
Cloud

(AWS Relational
Database Service)

Stateless
Component

[]

Relational
Database

Information
Obscurity

Strict
Consistency

Region: EU
[…]

(AWS)

(AWS Elastic Beanstalk)

Database as
a Service

= hostedOn

= connectsToLe
ge

n
d

Property: [Value]

(Component Type)

AZ-Deployment: Yes
Encryption: Y […]

(RDS MySQL 8.0
Environment)

Figure 3. The underlying approach previous approach [21, 22] that refines PbDMs into executable declarative deployment models.

previous work also presented a refinement method and correspond-
ing algorithms to automatically refine a PbDM to an executable
deployment model in order to deploy the modeled application. To
achieve this, the patterns in PbDMs must be replaced by concrete
components, relations, and configurations. Therefore, an iterative
approach has been introduced [21, 22] which is illustrated in Fig. 3.

The general idea was to use transformation models, similar to
Triple Graph Grammars (TGGs) [39], which are used to transform
a particular left-hand-side graph into a right-hand-side graph by
describing correspondences between the nodes of the left-hand side
and the nodes of the right-hand side in a correspondence graph.
In the previous approach, so-called Pattern Refinement Models
(PRMs)4 [21] were used that define how a set of interconnected
patterns can be refined to concrete components, relations, and techni-
cal configurations. For example, Fig. 3 illustrates how an application
can be refined to an executable declarative deployment model. On
the left, a Java 11 Web App that is hosted on the Platform as a Ser-
vice pattern provided by the Public Cloud pattern, which connects
to a Relational Database pattern running on a DBaaS pattern by the
same Public Cloud. Additionally, the Java Web App is annotated
with an Unpredictable Workload [15] pattern and the Stateless Com-
ponent [15] pattern, while the Relational Database must ensure the
Strict Consistency [15] and the Information Obscurity [38] patterns.
Thus, to refine the PbDM a set of applicable PRMs is first identified
whereof one is chosen by a user to be applied to the PbDM. A PRM
is applicable if its left-hand side, i. e., a PbDM fragment called De-
tector, can be found as an isomorphic subgraph in the investigated
PbDM. Thereby, all nodes and their relations in the detector can be
found one-by-one in the PbDM [21]. Hence, if a PRM is applicable,
the subgraph in the PbDM matching its detector can be refined to
the graph defined in the PRM’s right-hand side, i. e., one possible set
of concrete components, relations, and configurations realizing the

4In [22], PRMs were extended to Component and Behavior Pattern Refinement Mod-
els (CBPRMs) to enable the refinement of annotated behavior patterns to concrete
configurations. For simplicity, we use PRMs to refer to CPRMs.

patterns described in the PRM’s detector, which is called Refinement
Structure [21]. For example, if a PRM’s detector defines a Relational
Database hosted on a DBaaS provided by a Public Cloud pattern, it
may define its refinement structure to be a MySQL Database run-
ning on an AWS RDS environment. Thus, by finding a subgraph in a
PbDM matching the PRM’s detector, the PRM can be applied to the
PbDM to replace the matching subgraph with the graph defined in
its refinement structure. This process repeats until no more patterns
can be found in the refined model.

Finally, an executable, declarative deployment model is generated
as shown in Fig. 3: The Java 11 Web App is then running on an
Elastic Beanstalk Webserver Environment running on AWS’ Elastic
Beanstalk and connects to a MySQL Database 8 provided by a RDS
MySQL 8.0 Environment on AWS’ RDS. To realize the annotated
behavior of the Java 11 Web App, the Elastic Beanstalk Webserver
Environment is configured to scale automatically, while the behavior
annotated at the Relational Database is realized by enabling encryp-
tion and AZ-Deployments in the RDS MySQL 8.0 Environment.

5 OVERVIEW OF THE METHOD
To detect design patterns in technical declarative deployment models
and to represent them as Pattern-based Deployment Models, we
present an automated method in this section which is depicted in
Fig. 4. Instead of identifying interconnected patterns as subgraphs
in a given PbDM and refining them to concrete technologies as
presented by the previous work (see Section 4), we now search for
subgraphs matching concrete components, relations, and configura-
tions in executable technical declarative deployment models in order
to replace them with the corresponding patterns. Thereby, similar
to the idea of PRMs, we use Pattern Detection Models (PDMs) to
automatically generate a PbDM from a given declarative deploy-
ment model by replacing subgraphs in the declarative deployment
models matching a PDM’s left-hand side with their right-hand side
in an iterative manner. PDMs are detailed in Section 6.1. Hence, in
each iteration of the method, more semantics hidden in the technical

UCC’21, December 6–9, 2021, Leicester, United Kingdom Harzenetter et al.

B

Pattern Detection Models
Repository

A

MaxHeap: 6GB
 …

(Java 11 Web App)

Horizontal
Scaling

Platform as
a Service

Public
Cloud

Relational
Database

Information
Obscurity

Strict
Consistency

Database as
a Service

(Java 11 Web App) (MySQL Database 8)

Env.Type: balanced
 …

(Elastic Beanstalk
Webserver Environment)

Region: EU
 …

(AWS)

(AWS Elastic Beanstalk)

= hostedOn

= connectsToLe
ge

n
d

Property: [Value]

(Component Type)

(AWS Relational
Database Service)

AZ-Deployment: Yes
Encryption: Y …

(RDS MySQL 8.0
Environment)

Figure 4. The new method for transforming technical declarative deployment models into Pattern-based Deployment Models.

details of the processed declarative deployment model are detected
and represented by abstract design patterns in the resulting PbDM.

For example, on the left of Fig. 4 the same Java 11 Web App
that is running on an Elastic Beanstalk Webserver Environment
provided by AWS Beanstalk is illustrated as shown on the right
side of Fig. 3. In this case, a PDM that defines this subgraph as its
left-hand side, which is called Technical Detector Fragment, maps
the concrete technologies to a Java 11 Web App that is running on a
PaaS provided by a Public Cloud, i. e., the PDM’s right-hand side
which we call Pattern Abstraction Fragment. Additionally, since
the Elastic Beanstalk Webserver Environment is configured to be
balanced, the Java 11 Web App gets annotated with Horizontal
Scaling to describe its behavior. In contrast to the PbDM shown
in Fig. 3, the generated PbDM neither contains the Unpredictable
Workload pattern nor the Stateless Component pattern because it is
only possible to detect the modeled scaling behavior but not that this
originally resulted from an expected Unpredictable Workload. Thus,
we differentiate between PRMs and PDMs in this paper and plan to
identify in which cases a PRM and a PDM can work both ways in
future work. Moreover, as depicted in the generated PbDM in Fig. 4,
both behavior patterns annotated to the Relational Database in the
PbDM shown in Fig. 3, i. e., Strict Consistency and Information
Obscurity, are annotated to the Relational Database pattern detected
in Fig. 4. This is possible since the corresponding configurations are
directly reflected as properties in the declarative deployment model.

6 DETECTING DESIGN PATTERNS IN
DECLARATIVE DEPLOYMENT MODELS

In Section 6.1, Pattern Detection Models (PDMs) are explained in
detail, while Section 6.2 presents two concepts that describe how
patterns can be detected in technical declarative deployment models.

6.1 Pattern Detection Models
To replace subgraphs in a declarative deployment model that match
the Technical Detector Fragment of a PDM, a set of rewriting rules

are needed. These rules are called Mappings [21] and form the
correspondence graph between the left-hand side and right-hand
side in PRMs and are reused and extended for PDMs. Therefore, we
use the following existing mappings between patterns, components,
and relations from previous work: (i) To define how relations that
are in- or outgoing from a matching component can be redirected
to a corresponding pattern, Relation Mappings [21] are used. For
example, the PDM shown on the left of Fig. 5 defines a relation
mapping between the AWS component and the Public Cloud pattern
which redirects all relations of type hostedOn that are ingoing at the
AWS component to the Public Cloud. (ii) To define that a component
must not be replaced when a PDM is applied, Stay Mappings [22] are
used to specify where the component must be located in the Pattern
Abstraction Fragment. For example, for the right PDM in Fig. 5 to be
applicable to a declarative deployment model, it must match the Java
11 Web App which is hosted on a Tomcat 10 Webserver running on a
Ubuntu 20.04 in vSphere. Thus, to define that the Java 11 Web App
will be hosted on the Execution Environment pattern in the PbDM,
a stay mapping is used. This ensures that all the properties specified
for the Java 11 Web App are still in the model after applying the
PDM. (iii) Lastly, Property Mappings [42] enable the mapping of
a property defined at a component to a property of a pattern. For
example, if the “Region” property is set in an AWS component of a
deployment model matching the PDM’s left-hand side in Fig. 5, its
value is transferred to the “Location” of the Public Cloud pattern.

In addition to the existing mappings, we introduce a new mapping
to detect behavior patterns conditionally. Therefore, we introduce
Behavior Pattern Mappings to map a set of properties with specific
values to a behavior pattern. Thereby, concrete mappings between
the technical configuration properties in the left-hand side of the
PDM can be mapped to behavior patterns they implement in the
right-hand side. For example, in the configuration of the SQS Queue
illustrated in the left PDM in Fig. 5, the property “Type” is set to
“FIFO” which realizes the Exactly-once Delivery pattern. Thus, by
specifying a behavior pattern mapping between the SQS Queue’s
“Type” property and the Exactly-once Delivery pattern, the pattern

Automated Detection of Design Patterns in Declarative Deployment Models UCC’21, December 6–9, 2021, Leicester, United Kingdom

Mappings
Abstraction
Structure

Technical
Detector

Type: FIFO
Server-Side
Encryption: Yes
[…]

(SQS Queue)

Region:
[…]

(AWS)

Account:
[…]

(Simple Queue Service)

Point-to-Point
Channel

Message-
oriented

Middleware

Exactly-once
Delivery

Type: hostedOn
Direction: ingoing
SourceType: *

Relation Mapping

Behavior
Pattern

Mappings

Location:
[…]

Property Mapping

Type: connectsTo
Direction: ingoing
SourceType: *

Relation Mapping

Mappings
Abstraction
Structure

Technical
Detector

Location: on premise
[…]

(vSphere)

[…]

(Ubuntu 20.04)

[…]

(Java 11 Web App)

[…]

(Tomcat 10)

(Java 11 Web App)

Execution
Environment

Type: hostedOn
Direction: ingoing
SourceType: *

Relation Mapping

Stay
Mapping

Private
Cloud

Figure 5. Two examples for Pattern Detection Models (PDMs).

can be automatically detected whenever this particular configuration
of a matching SQS Queue is found in a technical declarative deploy-
ment model. Similarly, if the “Server-Side Encryption” property is
set to true in a matching SQS Queue component, the Information
Obscurity pattern is implemented and, thus, can be detected.

6.2 Deployment Model Abstraction Algorithm
In this section, we abstractly describe the Deployment Model Ab-
straction Algorithm which transforms a given technical deployment
model into a PbDM. The algorithm is depicted in Fig. 6 which gets
a declarative deployment model, ddm, as an input. To automatically
detect patterns in declarative deployment models, we first create
a copy of the model, see line 2 in Fig. 6, and then start to search
for applicable PDMs in line 3. Thereby, a PDM is applicable if
its Technical Detector fragment can be found as a subgraph in the
currently investigated deployment model. If such subgraphs can be
found in the PbDM, i. e., the component types and relation types
of components and relations defined in the Technical Detector, as
well as their properties, match a subgraph in a technical deploy-
ment model [22], we are able to replace them with the Abstraction
Structure fragments defined in the corresponding applicable PDMs.
Therefore, multiple PDMs can be applicable at a time whereof one
must be chosen by a user to be applied to the deployment model (see
line 4). Additionally, one PDM may be applicable multiple times as
the investigated model may contain multiple stacks that all match
the PDM’s Technical Detector. Hence, all matching subgraphs are
calculated in line 5 while one is chosen in line 6.

In the next step, the PDM is applied to the declarative deployment
model whereby the selected matching subgraph is replaced with the
PDM’s Abstraction Structure. For example, the Technical Detector
shown in the left PDM in Fig. 5 can be found in the deployment
model shown in Fig. 1. Hence, the SQS Queue provided by AWS can
be replaced with the Abstraction Structure defined in the left PDM of
Fig. 5. In contrast, the Technical Detector of the right PDM cannot
be found as a subgraph in Fig. 1. To apply a selected PDM, first all
component patterns and their relations among each other are added

to the copy of the declarative deployment model (see line 7 in Fig. 6).
Then, all relations that are in- and outgoing of the matching subgraph
are redirected to the added pattern structure fragment in line 8, while
the property mappings are applied by moving the corresponding
values from the matching components in line 9.

In addition, to enable a more generic matching, behavior pattern
mappings can be used to conditionally detect the components’ behav-
ior. For example, to detect that a SQS Queue is ensuring exactly-once
delivery, it must be configured to be of type “FIFO”. Hence, if a sub-
graph in a declarative deployment model can be found that matches
the left PDM’s Technical Detector shown in Fig. 5, the Exactly-
once Delivery pattern is annotated to the Point-to-Point Channel
representing the semantics of a queue only if the SQS Queue is con-
figured accordingly. Otherwise, the Pattern Abstraction Fragment
of the PDM is added to the declarative deployment model without
the Exactly-once Delivery pattern. This is realized in the algorithm
shown in Fig. 6 between lines 10 and 15: Hereby, all behavior pat-
terns defined in the PDM’s Abstraction Structure are investigated
if they are part of a behavior pattern mapping. If there are behav-
ior pattern mappings for a behavior pattern, it is only added to the
generated model if all properties are set in the matching subgraph
as defined by the behavior pattern mappings. In contrast, if a PDM
does not define behavior pattern mappings for the annotated patterns
the annotated behavior patterns are considered to be realized by de-
tecting the components defined in the Technical Detector and, thus,
are added to the generalized model. However, in this case, the PDM
is only applicable if all properties defined in the PDM’s Technical
Detector are defined in the exact same way as they are defined in
a declarative deployment model. The only exceptions are if (i) the
value of a component’s or relation’s property is empty or (ii) defines
a wildcard value, i. e., an asterisks, in the PDM’s Technical Detector.
Hence, the corresponding value in a declarative deployment model
may be (i) any value or must be (ii) any non-empty value.

As a last step, the detected subgraph is removed from the deploy-
ment model in line 16 of the algorithm. Then, everything between
the lines 3 to 17 is repeated until no more PDMs can be applied.

UCC’21, December 6–9, 2021, Leicester, United Kingdom Harzenetter et al.

1: function DETECTPATTERNS(ddm):
2: pbdm := CREATECOPY(ddm)
3: while

(
EXISTSAPPLICABLEPDM(pbdm)

)
do

4: pdm := SELECTPDM(pbdm)
5: matches := CALCULATEISOMORPHISMS(pbdm, pdm)
6: isomorphism := SELECTSUBGRAPH(matches)
7: ADDABSTRACTIONFRAGMENT(pbdm, pdm)
8: REDIRECTRELATIONS(pbdm, pbdm, isomorphism)
9: MOVEPROPERTIES(pbdm, pdm, isomorphism)

10: for all
(
bp ∈ BEHAVIORPATTERNS(pdm)

)
do

11: bpms := BEHAVIORPATTERNMAPPINGS(pdm, bp)
12: if

(
FULFILLSALLPROPERTIES(isomorphism, bpms)
∨ (bpms = ∅)

)
then

13: ADDBEHAVIORPATTERN(pbdm, isomorphism, bp)
14: end if
15: end for
16: REMOVESUBGRAPH(pbdm, isomorphism)
17: end while
18: return pbdm
19: end function

Figure 6. Pseudo-code of the Technical Deployment Model Abstraction.

7 PROTOTYPICAL REALIZATION IN TOSCA
To prove the technical feasibility of our approach, we present a
prototypical implementation based on the Topology and Orchestra-
tion Specification for Cloud Applications (TOSCA) [32, 33] and the
open-source TOSCA modeling tool Winery [25].

7.1 The TOSCA Standard
TOSCA is a standardized language to describe the orchestration
and management of cloud applications in a vendor- and technology-
independent way. To model applications, TOSCA defines Service
Templates. Thereby, a Service Template contains a description of the
application’s structure, referred to as its Topology Template, which
contains (i) Node Templates that represent the components of the
application and that correspond to components in EDMM and (ii) Re-
lationship Templates that correspond to relations in EDMM. Thus, a
Topology Template defines, similarly to EDMM, applications in the
form of a directed, weighted graph. In fact, all modeling elements
defined by EDMM can be mapped one-on-one to TOSCA [45]. Sim-
ilar to EDMM, TOSCA defines the semantics of Node Templates
and Relationship Templates by Node Types and Relationship Types
respectively. Hence, the Node Types and Relationship Types can be
reused when modeling new applications.

7.2 Realizing PbDMs in TOSCA
Since EDMM can be directly mapped one-on-one to TOSCA, we
describe in the following how PbDMs can be realized in TOSCA ac-
cording to previous work [21, 22]. Moreover, since TOSCA models
conforming to EDMM are automatically transformable to production
ready deployment technologies [45], the approach can be applied
to most of these technologies. To model components and relations
in TOSCA, Node Templates and Relationship Templates are used
respectively. However, to differentiate components from component

patterns in TOSCA, the Node Types defining component pattern
types are annotated with a flag identifying them as patterns. In con-
trast, behavior patterns are realized in the form of Policy Types since
TOSCA allows Node Templates to be annotated with Policies that
are defined by Policy Types. Additionally, to also enable the an-
notation of behavior patterns to relations, we extended TOSCA to
support the annotation of Policies to Relationship Templates. Since
PbDMs are abstract models, the contained patterns must be refined
to concrete components to be executable by a TOSCA orchestrator.
Hence, the extension is only used during modeling time and does not
interfere with the standard-compatibility of executable models [22].

To enable the generalization of deployment models to TOSCA-
based PbDMs, we define Pattern Detection Models as a separate
model element that uses Topology Templates to define the Techni-
cal Detector as well as the Abstraction Structure. Hence, to realize
the mappings between the Technical Detector and the Abstraction
Structure, separate elements for each mapping type, i. e., relation
mappings [21], stay mappings [22], property mappings [42], and be-
havior pattern mappings, can be defined between the corresponding
Node Templates. Moreover, to also provide the description of pat-
terns and how they are linked to each other, we integrated the Pattern
Atlas [30], which provides a way to capture pattern languages.

Lastly, to enable the graphical modeling and automated general-
ization of deployment models to PbDMs, we extended Winery [25]
to support the modeling of PDMs according to the extensions de-
scribed above. Thus, we extended the web-based modeling tool
Winery, which is part of the OpenTOSCA ecosystem [6], to support
the modeling of PDMs. In addition, we implemented the automated
generalization of deployment models as described in Section 4.

7.3 Case Study
Based on the deployment model of the motivation scenario shown
in Fig. 1, we used our implementation in Winery to automatically
identify the abstract semantics hidden in the deployment model by
generating a PbDM as illustrated in Fig. 2. We recorded a video [19]
that shows (i) how PDMs can be defined in Winery as well as (ii) how
they can be used in the generalization process to generate a PbDM
from a declarative deployment model automatically.

8 DISCUSSION
The approach described in this paper enables the automated identifi-
cation of design patterns in technical deployment models and repre-
sents the semantics of the architecture in the form of a Pattern-based
Deployment Model. However, it is not always possible to detect all
patterns realized in a technical deployment model as (i) the repository
containing PDMs may not be complete. (ii) Patterns may describe
architectural aspects of the application that are not mappable to con-
crete components, relations, or configurations. (iii) Moreover, there
are patterns which require the absence of other patterns or compo-
nents; this cannot be detected using our subgraph-based approach.
Finally, (iv) there are patterns that cannot be detected based on the
deployment model but only by using runtime measurements. For
example, to determine whether the workload of an application is
static, continuously changing, or even unpredictable, the workload
can only be measured and cannot be derived from configurations.

Automated Detection of Design Patterns in Declarative Deployment Models UCC’21, December 6–9, 2021, Leicester, United Kingdom

As the approach is based on rewriting rules, i. e., Pattern Detec-
tion Models, a large number of them are required to detect design
patterns in declarative deployment models. Additionally, as outlined
in Section 2.3, immense technical expertise is required to create Pat-
tern Detection Models as the abstract concepts described by design
patterns need to be mapped to concrete components and their config-
urations of various technologies and providers. Therefore, experts
are required that are familiar with (i) these technologies and how
they can be configured as well as (ii) with the appropriate design
patterns. As a result, it is a major challenge to create and maintain the
large number of PDMs that are required for our approach to abstract
as much as possible of the technical information in a declarative
deployment model. On the other hand, design patterns are often used
in application architectures, which are finally realized technically
when the application gets implemented, or in our case, deployed.
Thus, the knowledge of refining design patterns to concrete tech-
nical details is always required when realizing the patterns. As a
result, this knowledge could be documented for deployment-related
patterns in the form of PDMs as they exactly define what pattern
can be realized by which technical setting and configuration, which
provides one opportunity to achieve the number of PDMs required
for our approach in practice. Since our approach just applies the
PDMs created by experts, the quality and correctness of the resulting
PbDMs directly result from the quality and correctness of the PDMs.
Thus, if PDMs are created correctly, the detected patterns exactly
represent the technical settings that are captured by the PDMs.

9 RELATED WORK
The Software Architecture Reconstruction (SAR) [8] research area
aims at reconstructing one or more of the architectural views [24]
of an application system using artifacts like source code files, make-
files, and certain designs documents such as UML diagrams. Thus,
the presented approach falls under the umbrella of SAR, with the
inputs being executable deployment models and the output being
Pattern-based Deployment Models. Guamán et al. [17] provide a
thorough review on previous SAR approaches. Their review shows
that most approaches use source code files that describe the applica-
tion itself, rather than its infrastructure or deployment, as an input to
the reconstruction process. In fact, to the best of our knowledge, no
other approach uses deployment models as inputs for the SAR pro-
cess. Moreover, Guamán et al. [17] found the traceability between
a product and its deployment to be an open issue. Our approach
contributes to solving this issue since the concepts realized in de-
ployment models can be automatically identified and described using
design patterns, which is a first step towards mapping the patterns
actually realized and the patterns defined in the application’s require-
ments. Furthermore, although many approaches detect patterns as
intermediary or final results, most approaches detect the Gang of
Four (GoF) Design Patterns [16] describing the application itself.
In contrast, our approach detects component and behavior patterns
describing whole application components and their relationships
from established pattern languages [1] like the Cloud Computing
patterns [15], the Enterprise Integration Patterns [23], as well as the
Security Patterns [38] and combines them in PbDMs.

Detecting patterns in deployment models is done in multiple other
works: For example, Saatkamp et al. [36, 37] formalize architectural

patterns and detect them in deployment models using first-order-
logic. In contrast to our approach, they are not identifying patterns
realized by the modeled application but identify problems existing
in the deployment model that are solved by the formalized patterns.
Afterwards, a user can choose a preferred pattern, which solves the
detected problem by automatically applying it to the model [35].
Similarly, Borovits et al. [5] and Kumara et al. [28] propose an
approach to detect code smells and anti-patterns in IaC-models.

To describe cloud application abstractly, Di Martino et al. [9] also
use the Cloud Computing patterns [15] to model their component’s
composition and map them to provider specific patterns. However,
this is a manual process and their approach does not detect patterns
automatically in an existing deployment model. Weigold et al. [41]
introduce a concept to link patterns of different pattern languages in
“views” but they are not used to describe applications.

Similar to our approach, which uses subgraph isomorphism to
identify applicable PDMs, Krieger et at. [26] search for required
subgraphs in a deployment model to detect whether the deployment
model conforms to required compliance rules. Similar approaches
are presented by Zimmermann et al. [48], Eilam et al. [10], and
Arnold et al. [2, 3] who identify special structures in deployment
models. However, none of the approaches is detecting design patterns
that are realized in the modeled applications.

Similar to the concept of Solution Implementations [12, 13], the
refinement of patterns to sub-patterns [18], and Architectural Tem-
plates [29], PDMs define how patterns are realized by concrete
technologies, but can be used in both directions.

10 CONCLUSION AND FUTURE WORK
Deployment models describe an application and its components usu-
ally in a very detailed and technology- as well as vendor-specific way.
Thus, to identify the realized patterns and semantics is difficult and
requires immense technical expertise. Therefore, we presented an
approach that is able to detect design patterns in declarative deploy-
ment models and thereby eases the understanding of the semantics
hidden in such technically detailed models. Thus, instead of hav-
ing to know all technical variations of each vendor or technology,
only abstract design patterns need to be known to understand the
semantics of an application. Moreover, by combining the approach
with our instance retrieval approach [20], we are able to detect de-
sign patterns in running applications that have been deployed using
production-ready technologies like Puppet or Kubernetes. However,
one limitation of the approach is that the detection and rewriting
rules, i. e., PDMs, must be defined by experts once manually.

In future work, we plan to extend the approach by a traceability
method to enable users to understand how a specific pattern was
detected. Additionally, we plan to apply compliance approaches
to ensure that the application is compliant to its specification, for
example, by identifying that the application follows the Cloud Data
Patterns for confidentiality [40]. Moreover, we want to extend our
approach to support different levels of pattern abstraction [14].

ACKNOWLEDGMENT
This work was partially funded by the German Research Foundation
(DFG) projects SustainLife (379522012) and IAC2 (314720630), as
well as by the BMWi project PlanQK (01MK20005N).

UCC’21, December 6–9, 2021, Leicester, United Kingdom Harzenetter et al.

REFERENCES
[1] Christopher Alexander, Sara Ishikawa, and Murray Silverstein. 1977. A Pattern

Language: Towns, Buildings, Construction. Oxford University Press.
[2] William Arnold, Tamar Eilam, Michael Kalantar, Alexander V. Konstantinou, and

Alexander A. Totok. 2007. Pattern Based SOA Deployment. In ICSOC 2007.
Springer, 1–12.

[3] William Arnold, Tamar Eilam, Michael Kalantar, Alexander V. Konstantinou, and
Alexander A. Totok. 2008. Automatic Realization of SOA Deployment Patterns
in Distributed Environments. In ICSOC 2008. Springer, 162–179.

[4] Alexander Bergmayr, Uwe Breitenbücher, Nicolas Ferry, Alessandro Rossini,
Arnor Solberg, Manuel Wimmer, Gerti Kappel, and Frank Leymann. 2018. A
Systematic Review of Cloud Modeling Languages. ACM Computing Surveys
(CSUR) 51, 1 (Feb. 2018), 1–38.

[5] Nemania Borovits, Indika Kumara, Parvathy Krishnan, Stefano Dalla Palma, Dario
Di Nucci, Fabio Palomba, Damian A. Tamburri, and Willem-Jan van den Heuvel.
2020. DeepIaC: Deep Learning-Based Linguistic Anti-Pattern Detection in IaC
(MaLTeSQuE 2020). Association for Computing Machinery, NY, USA, 7–12.

[6] Uwe Breitenbücher, Christian Endres, Kálmán Képes, Oliver Kopp, Frank Ley-
mann, Sebastian Wagner, Johannes Wettinger, and Michael Zimmermann. 2016.
The OpenTOSCA Ecosystem - Concepts & Tools. European Space project on
Smart Systems, Big Data, Future Internet - Towards Serving the Grand Societal
Challenges - Volume 1: EPS Rome 2016 (Dec. 2016), 112–130.

[7] Uwe Breitenbücher, Kálmán Képes, Frank Leymann, and Michael Wurster. 2017.
Declarative vs. Imperative: How to Model the Automated Deployment of IoT
Applications?. In Proceedings of the 11th Advanced Summer School on Service
Oriented Computing. IBM Research Division, 18–27.

[8] S. Jeromy Carrière and Rick Kazman. 1998. The perils of reconstructing architec-
tures. In ISAW ’98. ACM Press, New York, New York, USA, 13–16.

[9] Beniamino Di Martino, Giuseppina Cretella, and Antonio Esposito. 2017. Cloud
services composition through cloud patterns: a semantic-based approach. Soft
Computing 21, 16 (2017), 4557–4570.

[10] T. Eilam, M.H. Kalantar, A.V. Konstantinou, G. Pacifici, J. Pershing, and A.
Agrawal. 2006. Managing the configuration complexity of distributed applications
in Internet data centers. Communications Magazine 44, 3 (March 2006), 166–177.

[11] Christian Endres, Uwe Breitenbücher, Michael Falkenthal, Oliver Kopp, Frank
Leymann, and Johannes Wettinger. 2017. Declarative vs. Imperative: Two Model-
ing Patterns for the Automated Deployment of Applications. In PATTERNS 2017.
Xpert Publishing Services, 22–27.

[12] Michael Falkenthal, Johanna Barzen, Uwe Breitenbücher, Christoph Fehling, and
Frank Leymann. 2014. Efficient Pattern Application: Validating the Concept
of Solution Implementations in Different Domains. International Journal On
Advances in Software 7, 3&4 (Dec. 2014), 710–726.

[13] Michael Falkenthal, Johanna Barzen, Uwe Breitenbücher, Christoph Fehling, and
Frank Leymann. 2014. From Pattern Languages to Solution Implementations. In
PATTERNS 2014. Xpert Publishing Services, 12–21.

[14] Michael Falkenthal, Johanna Barzen, Uwe Breitenbücher, Christoph Fehling,
Frank Leymann, Aristotelis Hadjakos, Frank Hentschel, and Heizo Schulze. 2015.
Leveraging Pattern Application via Pattern Refinement. In PURPLSOC 2015.
epubli.

[15] Christoph Fehling, Frank Leymann, Ralph Retter, Walter Schupeck, and Peter
Arbitter. 2014. Cloud Computing Patterns: Fundamentals to Design, Build, and
Manage Cloud Applications. Springer. 367 pages.

[16] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1994. Design
Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley.

[17] Daniel Guamán, Jennifer Pérez, Jessica Diaz, and Carlos E. Cuesta. 2020. Towards
a reference process for software architecture reconstruction. IET Software 14, 6
(dec 2020), 592–606.

[18] Jason Hallstrom and Neelam Soundarajan. 2009. Reusing patterns through design
refinement. In International Conference on Software Reuse. Springer, 225–235.

[19] Lukas Harzenetter. 2021. Video: Automated Detection of Design Patterns in
Declarative Deployment Models. https://vimeo.com/543231040 2021-04-30.

[20] Lukas Harzenetter, Tobias Binz, Uwe Breitenbücher, Frank Leymann, and Michael
Wurster. 2021. Automated Generation of Management Workflows for Running
Applications by Deriving and Enriching Instance Models. In CLOSER 2021.
SciTePress, 99–110.

[21] Lukas Harzenetter, Uwe Breitenbücher, Michael Falkenthal, Jasmin Guth,
Christoph Krieger, and Frank Leymann. 2018. Pattern-based Deployment Models
and Their Automatic Execution. In UCC 2018. IEEE, 41–52.

[22] Lukas Harzenetter, Uwe Breitenbücher, Michael Falkenthal, Jasmin Guth, and
Frank Leymann. 2020. Pattern-based Deployment Models Revisited: Automated
Pattern-driven Deployment Configuration. In PATTERNS 2020. Xpert Publishing
Services, 40–49.

[23] Gregor Hohpe and Bobby Woolf. 2004. Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Addison-Wesley.

[24] Rick Kazman and S. Jeromy Carriere. 1998. View extraction and view fusion in
architectural understanding. In International Conference on Software Reuse.

[25] Oliver Kopp, Tobias Binz, Uwe Breitenbücher, and Frank Leymann. 2013. Winery –
A Modeling Tool for TOSCA-based Cloud Applications. In ICSOC 2013. Springer,
700–704.

[26] Christoph Krieger, Uwe Breitenbücher, Kálmán Képes, and Frank Leymann. 2018.
An Approach to Automatically Check the Compliance of Declarative Deployment
Models. In SummerSoC 2018. IBM Research Division, 76–89.

[27] Philippe B Kruchten. 1995. The 4+ 1 view model of architecture. IEEE software
12, 6 (1995), 42–50.

[28] Indika Kumara, Zoe Vasileiou, Georgios Meditskos, Damian A Tamburri, Willem-
Jan Van Den Heuvel, Anastasios Karakostas, Stefanos Vrochidis, and Ioannis
Kompatsiaris. 2020. Towards Semantic Detection of Smells in Cloud Infrastructure
Code. In Proceedings of the 10th International Conference on Web Intelligence,
Mining and Semantics. 63–67.

[29] Sebastian Lehrig. 2018. Efficiently Conducting Quality-of-Service Analyses by
Templating Architectural Knowledge. Dissertation. University of Stuttgart, Faculty
of Computer Science, Electrical Engineering, and Information Technology.

[30] Frank Leymann and Johanna Barzen. 2021. Pattern Atlas. Lecture Notes in
Computer Science 12521 (April 2021), 67–76.

[31] Kief Morris. 2016. Infrastructure as code: managing servers in the cloud.
[32] OASIS. 2013. Topology and Orchestration Specification for Cloud Applications

(TOSCA) Version 1.0. Organization for the Advancement of Structured Information
Standards (OASIS).

[33] OASIS. 2020. TOSCA Simple Profile in YAML Version 1.3. Organization for the
Advancement of Structured Information Standards (OASIS).

[34] David Oppenheimer. 2003. The importance of understanding distributed system
configuration. In CHI 2003. ACM.

[35] Karoline Saatkamp, Uwe Breitenbücher, Michael Falkenthal, Lukas Harzenetter,
and Frank Leymann. 2019. An Approach to Determine & Apply Solutions to
Solve Detected Problems in Restructured Deployment Models Using First-Order
Logic. In CLOSER 2019. SciTePress, 495–506.

[36] Karoline Saatkamp, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann. 2018.
Application Scenarios for Automated Problem Detection in TOSCA Topologies
by Formalized Patterns. In SummerSOC 2018. IBM Research Division, 43–53.

[37] Karoline Saatkamp, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann. 2019.
An approach to automatically detect problems in restructured deployment models
based on formalizing architecture and design patterns. SICS Software-Intensive
Cyber-Physical Systems (Feb. 2019), 1–13.

[38] Markus Schumacher, Eduardo Fernandez-Buglioni, Duane Hybertson, Frank
Buschmann, and Peter Sommerlad. 2006. Security Patterns: Integrating Security
and Systems Engineering. John Wiley & Sons, Inc. 565 pages.

[39] Andy Schürr. 1995. Specification of graph translators with triple graph grammars.
In Graph-Theoretic Concepts in Computer Science. Springer, 151–163.

[40] Steve Strauch, Uwe Breitenbücher, Oliver Kopp, Frank Leymann, and To-
bias Unger. 2012. Cloud Data Patterns for Confidentiality. In CLOSER 2012.
SciTePress, 387–394.

[41] Manuela Weigold, Johanna Barzen, Uwe Breitenbücher, Michael Falkenthal,
Frank Leymann, and Karoline Wild. 2020. Pattern Views: Concept and Tooling of
Interconnected Pattern Languages. In SummerSOC 2020. Springer International
Publishing, 86–103.

[42] Karoline Wild, Uwe Breitenbücher, Lukas Harzenetter, Frank Leymann, Daniel
Vietz, and Michael Zimmermann. 2020. TOSCA4QC: Two Modeling Styles for
TOSCA to Automate the Deployment and Orchestration of Quantum Applications.
In EDOC 2020. IEEE, 125–134.

[43] Michael Wurster, Uwe Breitenbücher, Antonio Brogi, Ghareeb Falazi, Lukas
Harzenetter, Frank Leymann, Jacopo Soldani, and Vladimir Yussupov. 2019. The
EDMM Modeling and Transformation System. In Service-Oriented Computing –
ICSOC 2019 Workshops. Springer.

[44] Michael Wurster, Uwe Breitenbücher, Michael Falkenthal, Christoph Krieger,
Frank Leymann, Karoline Saatkamp, and Jacopo Soldani. 2019. The Essential
Deployment Metamodel: A Systematic Review of Deployment Automation Tech-
nologies. Software-Intensive Cyber-Physical Systems 35 (Aug. 2019), 63–75.

[45] Michael Wurster, Uwe Breitenbücher, Lukas Harzenetter, Frank Leymann, Jacopo
Soldani, and Vladimir Yussupov. 2020. TOSCA Light: Bridging the Gap between
the TOSCA Specification and Production-ready Deployment Technologies. In
CLOSER 2020. SciTePress, 216–226.

[46] Vladimir Yussupov, Jacopo Soldani, Uwe Breitenbücher, Antonio Brogi, and
Frank Leymann. [n.d.]. From Serverful to Serverless: A Spectrum of Patterns for
Hosting Application Components. In CLOSER 2021. SciTePress. to appear.

[47] Vladimir Yussupov, Jacopo Soldani, Uwe Breitenbücher, Antonio Brogi, and
Frank Leymann. 2021. FaaSten your decisions: A classification framework and
technology review of Function-as-a-Service platforms. Journal of Systems and
Software 175 (May 2021).

[48] Michael Zimmermann, Uwe Breitenbücher, Christoph Krieger, and Frank Ley-
mann. 2018. Deployment Enforcement Rules for TOSCA-based Applications. In
SECURWARE 2018. Xpert Publishing Services, 114–121.

https://vimeo.com/543231040

	Abstract
	1 Introduction
	2 Background, Motivation, and Problem Statement
	2.1 Deployment Models and Automation
	2.2 Motivating Scenario and Running Example
	2.3 Problem Statement

	3 Pattern-based Representation of Deployment Semantics
	3.1 General Idea
	3.2 Motivation Scenario as a Pattern-based Deployment Model

	4 The Underlying Previous Approach
	5 Overview of the Method
	6 Detecting Design Patterns in Declarative Deployment Models
	6.1 Pattern Detection Models
	6.2 Deployment Model Abstraction Algorithm

	7 Prototypical Realization in TOSCA
	7.1 The TOSCA Standard
	7.2 Realizing PbDMs in TOSCA
	7.3 Case Study

	8 Discussion
	9 Related Work
	10 Conclusion and Future Work
	References

