
1Hasso-Plattner-Institute, University of Potsdam, Germany
{gero.decker,weske}@hpi.uni-potsdam.de

2Institute of Architecture of Application Systems, University of Stuttgart, Germany
lastname@iaas.uni-stuttgart.de

Modeling Service Choreographies
using BPMN and BPEL4Chor

Gero Decker1, Oliver Kopp2, Frank Leymann2,
Kerstin Pfitzner2, Mathias Weske1

© 2007 Springer-Verlag.
Paper available at http://www.springerlink.com/content/31517752vj362j1x/

See also LNCS-Homepage: http://www.springeronline.com/lncs

@inproceedings{DKL+2008,

author = {Gero Decker and Oliver Kopp and Frank Leymann and

Kerstin Pfitzner and Mathias Weske},

title = {Modeling Service Choreographies

using BPMN and BPEL4Chor},

booktitle = {20th International Conference on

Advanced Information Systems Engineering (CAiSE’08)},

year = {2008},

pages = {79-93},

doi = {10.1007/978-3-540-69534-9_6},

publisher = {Springer}

}

:

Institute of Architecture of Application Systems

Web Service Choreography Configurations for
BPMN?

Kerstin Pfitzner1, Gero Decker2, Oliver Kopp1, Frank Leymann1

1 Institute of Architecture of Application Systems, University of Stuttgart, Germany
{pfitzner,kopp,leymann}@iaas.uni-stuttgart.de

2 Hasso-Plattner-Institute, University of Potsdam, Germany
gero.decker@hpi.uni-potsdam.de

Abstract. The Business Process Modeling Notation (BPMN) and the
Business Process Execution Language (BPEL) are the de-facto standards
for process modeling and implementation. While BPMN allows to define
choreographies, i.e. the interaction behavior of interconnected services,
BPEL only allows an endpoint-centric view on services. To achieve appli-
cability of BPEL in the choreography space, we defined BPEL4Chor as
choreography extensions for BPEL in previous work. This paper extends
on this work and makes a contribution for the model-driven development
of service-based systems in inter-organizational settings: It extends BPMN
for enabling the generation of fully defined BPEL4Chor choreographies
and presents how to carry out this transformation.

1 Introduction

The Service-oriented Architecture (SOA) is an architectural style for building
software systems based on services. Services are loosely coupled components
described in a uniform way that can be discovered and composed. Services can
be orchestrated for implementing long-running business processes. In the web
services platform architecture [6], web service orchestrations are described using
the Business Process Execution Language (BPEL [2]), which are in turn exposed
as web services. A typical visual notation used to describe these processes is the
Business Process Modeling Notation (BPMN [1]).

BPMN is implementation-independent and especially allows the definition of
choreographies by interconnecting different processes using message flows. Such
choreographies are of high value especially in inter-organizational settings, where
different business partners agree on their interaction behavior before they actually
interconnect their information systems. Participant behavior descriptions are
first used as views on the choreography from the perspective of an individual
partner. Afterwards, they serve as specifications for the implementation of new
services or the adaptation of existing services.

While BPMN choreographies are suitable for listing all interactions and
defining the control flow between them, detailed technical configurations cannot
? Partially funded by the German Federal Ministry of Education and Research (project

Tools4BPEL, project number 01ISE08)

2 Kerstin Pfitzner, Gero Decker, Oliver Kopp, Frank Leymann

be expressed in this language. In contrast to this, BPEL allows such configurations.
However, it only considers individual processes which communicate with a black
box environment. In other words, BPEL does not support the specification of
choreographies. In order to overcome this limitation, we introduced a choreography
extension for BPEL called BPEL4Chor [7]. In this paper, we tackle the integration
of BPMN and BPEL4Chor. Existing work provides the basis for generating BPEL
stubs out of BPMN, e.g. [14]. We extend this work in two dimensions: (i) We
integrate the additions of BPEL4Chor to BPEL into the transformation. (ii)
We target the generation of fully defined BPEL4Chor choreographies: Ideally
no further refinements are necessary in the BPEL4Chor model. This calls for
BPMN extensions focusing on technical configuration.

The remainder of this paper is structured as follows. Section 2 provides a
choreography example and section 3 introduces BPEL4Chor. Section 4 identifies
the missing concepts in BPMN for generating fully defined choreographies and
section 5 gives an overview of the BPMN extensions realizing these concepts.
Section 6 presents the mapping from extended BPMN to BPEL4Chor. Section 7
will report on related work. Section 8 concludes and points to future work.

2 BPMN Example

BPMN supports modeling of choreographies as collaboration diagrams. Pools
model business roles or entities, while message flows represent the communication
between them. An example for a collaboration diagram is presented in Fig. 1
which illustrates the following scenario in BPMN: A client requests the price of a
book from a book shop. The book shop is a reseller and has business relationships
with a set of suppliers. Hence, the book shop requests the price from the suppliers.
This request causes each supplier to calculate the price for the book in question.
If the book is available at the supplier, its price is sent back to the book shop.
Otherwise, a fault message is sent. Upon receipt of a fault message, fault handling
is triggered, where the supplier data is updated. Thus, the book shop can collect
statistical data or use the data in an improved process, in which the book shop
does not request the supplier for the price of this book again. After having
received an answer from all suppliers, the book shop checks whether any supplier
has responded a price. If a price has been received, the book shop determines
the cheapest supplier and sends the respective price to the client. Otherwise
the supplier sends an error message to the client. Meanwhile, the client waits
for the response of the book shop. After the client has received a response, the
collaboration ends.

3 BPEL4Chor Overview

BPEL4Chor is a language to describe choreographies using BPEL. The behavior
of each participant is specified in a participant behavior description (PBD). The
PBD itself is expressed in abstract BPEL, where internal details of the process
are omitted. Thus, BPEL and BPEL4Chor contain the same activity types.

Web Service Choreography Configurations for BPMN 3

SupplierClient

send price
request

Book shop

send not
found

send
response

select
cheapest
supplier

price received
no price
received

update
suppliers

data

Not
found request

price

calculate
price

book
not found book found

reply
not found

reply

Fig. 1. Book shop choreography in BPMN

The communication activities of the PBDs are interconnected using message
links. A message link determines that a message is sent from one activity to
another one. Thus, message links replace port types and operations. Message
links themselves are specified in a participant topology. The participant topology
also specifies which participants take part in the choreography. Multiple instances
of a participant type are specified by the notation of a participant set. Participant
types form the connection between the participant behavior descriptions and the
concrete participants. The technical configuration, i.e., the concrete port types
and operations to be used at the execution phase of the choreography are given
in the participant grounding. There, each message link is grounded to a WSDL
operation. An abstract BPEL process containing partner links, port types, and
operations can be generated for each PBD. These abstract BPEL processes can

4 Kerstin Pfitzner, Gero Decker, Oliver Kopp, Frank Leymann

then be used as starting point for the generation of executable BPEL files, which
can be deployed on a BPEL workflow engine.

4 Web Service Choreography Configurations Missing in
BPMN

BPEL4Chor uses abstract processes, which are also the basis for BPMN collabo-
ration processes. This section lists the missing elements for each aspect.

Basic activities. BPMN knows different task and event types. Following
task and event types can be mapped to basic BPEL activities: a task of the type
service to the invoke activity, a send task to the reply activity, a receive task
or message event to the receive activity, an error event to the throw activity, a
compensation event to the compensate activity and a timer event to the wait
activity. The other BPEL basic activity types assign, validate, empty and opaque
do not have an equivalent in BPMN.

Structured activities. Structured BPEL activities can be modeled using
BPMN sub-processes, gateways and sequence flow. [15] shows how this works
for the sequence, if, pick, flow, while and repeatUntil activity. A scope activity
can be modeled using a sub-process not marked as looping activity. The forEach
activity can be modeled as a sub-process or task marked as multiple instance
loop. Note that while and repeatUntil activities can be modeled using a standard
loop. BPEL scopes can be isolated, whereas BPMN is not aware of the notion of
isolated sub-processes or tasks.

Event handlers. BPEL event handlers can be triggered by messages or
alarms (timeouts) and run concurrently to the activities within a process or scope.
BPMN attached intermediate events interrupt an activity. Thus, modeling of
BPEL event handlers using BPMN attached intermediate events is not applicable.
Furthermore, event handlers can be instantiated multiple times, while their parent
process or scope is active. Such behavior cannot be modeled in BPMN.

Termination handlers. The BPMN specification does not clearly state
what will happen during the interruption of an activity when an intermediate
attached event is triggered. There is no event type in BPMN that triggers a
termination handler.

Multiplicity of participants. It is not possible to indicate in the diagram
that there are multiple participants of the same type involved in a choreography.
For example, in the book shop choreography presented in Fig. 1 we cannot
determine whether there are several suppliers involved or whether one supplier
will receive the request several times.

Variables and messages. BPEL4Chor transfers data along message links
using a message. This corresponds to BPMN message flows and the message
attribute. BPEL4Chor allows to specify participant references and participant
sets to be sent over a message link. These can be annotated using data objects. In
addition, BPEL uses variables to store data. BPMN does not distinguish between
different types of data objects. For example, a data object modeling a variable
cannot be distinguished from a data object modeling a participant reference.

Web Service Choreography Configurations for BPMN 5

Attributes. Some additional information about the process can be defined
using the element attributes in BPMN. For instance, the correlation sets of a
BPEL process can be defined using the properties attribute of a BPMN process.
However, element attributes are not sufficient for representing all BPEL4Chor
information. For example, the import elements of a process or the from and to
elements in a variable declaration cannot be expressed.

Participant grounding. In BPMN the implementation details are part of
the graphical elements and are defined in element attributes such as Implementa-
tion or Message. This does not satisfy the requirement of BPEL4Chor, which
demands that the implementation details should be separated from the model.

5 BPMN Extensions for Service Choreographies

BPMN is intended to be extensible and allows to add new markers and indicators
associated with the BPMN elements. The indicator pool set is introduced as a
shaded pool to denote multiple instances of participants of the same type.

Scopes are sub-processes without any marker. We introduce the isolated
attribute for sub-processes to identify isolated scopes.

We use markers to distinguish the task types assign, empty, validate and
opaque as presented in Fig. 2. These tasks are not allowed to be connected with
message flows, since they do not take part in the communication between the
participants. A new trigger for the termination event is added as shown in Fig. 3.
The purpose of the termination event is to trigger a termination handler. Thus,
it can only be attached to the boundary of tasks and to sub-processes.

assign empty validate
?

opaque invoke
asynch.

invoke
synch.

reply receive

Fig. 2. Configured Tasks

To distinguish event, fault, termination and compensation handlers, marked
sub-processes are introduced. Event handler sub-processes cannot be connected
with sequence flows. The parent process or sub-process of an event handler
determines the context in which it can be triggered. Fault, termination and
compensation sub-processes can only be connected with the appropriate attached
event.

Different types of data objects need to be distinguished. Therefore, the
indicator participant set data object is introduced. Furthermore, markers for
the data object are introduced to denote participant reference data objects and
variable data objects.

The participant set and participant reference data objects are used to denote
which participant is actually taking part in a conversation. A pool set represents

6 Kerstin Pfitzner, Gero Decker, Oliver Kopp, Frank Leymann

invoke
synch.

...

invoke
synch.

...
...

...

(a) (b) (c) (d)

Fig. 3. (a) Event, (b) fault, (c) termination and (d) compensation handlers

multiple participants. Thus, participant data objects are needed for conversations
with activities located in a pool set to denote the concrete participant instance
being communicated with. Participant reference and participant set data objects
can be associated with communicating activities (invoke task, reply task, mes-
sage event) to define the participants taking part in the communication. The
participant data objects have different semantics depending on the direction of
the association they are connected with. Fig. 4 illustrates that an association
emanating from a participant reference data object leading to a sending task
denotes that a message is sent to this participant. If an association leads to a
receiving flow object (message event, invoke task), a message from this participant
is expected. A participant set data object association with a multiple instance
task or sub-process denotes that the loop will iterate over that participant set.

ReceiverYReceiverX

send
request

receiver

...

...
sender

<messageLink
sender=“sender“
receiver=“receiver“ … />

BPEL4Chor

Fig. 4. Sender and receiver

A directed association from a participant reference data object to a multiple
instance sub-process denotes that the participant reference acts as loop counter.

Fig. 5 shows an association from a receiving flow object to a participant
set data object. This association denotes that a message is expected from an
arbitrary participant and a reference to the sender of the message will be stored
in the associated set. The actual participant reference in the set is represented
by the participant reference data object associated with the flow object.

Web Service Choreography Configurations for BPMN 7

X

send
request

...

Y
...

sender

senders
<messageLink

senders=“senders“
receiver=“y“
bindSenderTo=“sender“ … />

BPEL4Chor

receive
request

<participantSet
name=“senders“ type=“Y“>
<participantReference

name=“sender“ />
</participantSet>
...

Fig. 5. Storing sender in a participant set

X

send
request

...

Y Z

send
request

...

...z

<messageLink
sender=“x“
receiver=“y“
participantRefs=“z“ … />

<messageLink
sender=“y>
receiver=“z“ … />

BPEL4Chor

Fig. 6. Passing a participant reference over the message flow

Besides communicating activities, participant reference data objects and
participant set data objects can be associated with message flows as presented
in Fig. 6. This realizes link passing mobility: The associated participant data
objects are references passed over the message flow.

Variable data objects are used to denote variables. They must be located
within the boundaries of a pool, pool set or sub-process and they can be associated
with flow objects only. The association must not cross the boundary of the pool,
pool set or sub-process where the variable is located. Variable data objects can be
associated with message events, fault events, invoke tasks and reply tasks without
any further requirements. Complex associations between variables and tasks (e.g.,
for assign tasks) are defined in additional element attributes introduced for each
task type. We introduce four different types of variable data objects: standard
variables express the defined variables within a process or sub-process, counter
variables represent the counter in a forEach activity, fault variables hold the data
of a fault that was thrown or caught and message variables contain the message
that triggers a message event of a message event handler. Each variable type
offers different attributes in which the relevant data is stored.

To keep the BPEL4Chor grounding replaceable, we introduce the attribute
grounding for the diagram. This attribute denotes the URI of the participant
grounding file.

An extension of the example in Section 2 with the introduced elements is
shown in Fig. 8. The pool set expresses the multiple suppliers. The participant

8 Kerstin Pfitzner, Gero Decker, Oliver Kopp, Frank Leymann

Fig. 7. Configured data objects

set data object associated with the multiple instance sub-process represents the
set of suppliers the loop will use for the iteration. The current supplier of each
looping instance is stored in the participant reference data object. This data
object is located in the multiple instance sub-process and associated with it.
Furthermore, it is associated with the “request price” task to denote that the
request is sent to the current supplier. The fault handler sub-process has a special
marker. A fault variable data object is associated with the attached fault event
to indicate the storage of the fault data in this variable. The reply tasks in the
supplier pool set can be distinguished from the invoke tasks in the book shop
pool set with the aid of a special marker.

6 Mapping Configured BPMN to BPEL4Chor

Regarding the transformation to BPEL4Chor we restrict the configured BPMN.
The following elements are not allowed:

– complex gateways
– ad-hoc and transactional sub-processes
– link, rule and multiple start events
– all end events except the non-triggered ones
– cancel, rule, link, multiple or non-triggered intermediate events
– user, script, abstract, manual, reference or non-typed tasks

In addition, we do not allow arbitrary cycles in BPMN diagrams, as their
translation leads to convoluted BPEL code: As there is no direct support for
arbitrary cycles in BPEL, message exchanges within one process in combination
with event handlers and fault handlers are resorted to as workaround in [14].
Furthermore, gateways are only allowed to have either more than one incoming
or more than one outgoing sequence flow.

A transformation from BPMN to BPEL has been developed in [15] for a subset
of BPMN elements. This transformation is based on the identification of patterns
in the diagram that can be mapped onto BPEL blocks. One pattern is folded into
a new task, which is associated with the generated BPEL code. We extend these
patterns with the elements used in the configured BPMN described above. Hence,
we can use that transformation for transforming processes located in a pool,

Web Service Choreography Configurations for BPMN 9

SupplierClient

send price
request

Bookshop

send not
found

send not
found

select
cheapest
supplier

price received
no price
received

update
suppliers

data

request
price

calculate
price

book
not found book found

suppliers

current
supplier

reply
not found

reply

not
found

Fig. 8. Choreography modeled in configured BPMN

pool set or sub-process to their BPEL4Chor representation. The transformation
assumes that there is only one start and one end event in each process.

We have to introduce a pattern for tasks and sub-processes with attached
events leading to the appropriate handlers. This attached event pattern creates a
handler for each attached event. The nesting is handled by the newly introduced
nesting pattern, where the nested content is handled as a process.

Event handlers are not connected with any sequence flow. Thus, they cannot
be treated as pattern and must be handled before the mapping of the process
flow as shown in Fig. 9, step 4.

The tasks and events are mapped during the mapping of the patterns. The
variable data objects are not folded because they may be associated with flow

10 Kerstin Pfitzner, Gero Decker, Oliver Kopp, Frank Leymann

objects in other patterns. Each pool and pool set is mapped to a participant type.
For a simple pool a participant reference with the type can be generated directly.
Additional references are generated from participant reference data objects. The
mapping of message flows to message links depends on the connected activities,
the participant reference and participant data objects associated with these
activities and the message data objects associated with the message flows. The
extended transformation removes elements from the model during the folding of
the patterns. Thus, the topology has to be created beforehand. An overview of
the whole transformation is given in Fig. 9.

1. Generate participant types in the topology depending on the pools and pool sets
2. Generate participant references and participant sets from the participant reference

and participant set data objects
3. Generate message links from the message flow, the associated participant reference

and message data objects
4. Transform the processes within the pools and pool sets

(a) Generate the variables from the variable data objects
(b) Generate event handlers. Treat the content as process and convert it according

to step 4
(c) Apply the extended transformation starting with the pattern for attached

events

Fig. 9. General transformation approach from configured BPMN to BPEL4Chor

7 Related Work

There are different language proposals available for modeling choreographies. The
Web Service Choreography Description Language (WS-CDL [12,3]) was released
by the World Wide Web Consortium in 2005. Differences between WS-CDL and
BPEL are discussed in [13]. Let’s Dance [17] is another choreography language.
Like BPMN, it is implementation-independent and comes with a visual notation.
This language was designed to support all Service Interaction Patterns [4], a
set of recurrent choreography scenarios. An assessment of WS-CDL using these
patterns can be found in [8]. An earlier and less expressive choreography language
is the Business Process Schema Specification (BPSS [5]). A general introduction
into the different viewpoints found in inter-organizational process modeling can
be found in [10].

There are basically two different choreography modeling styles manifested in
the languages. In the case of interconnection models, send and receive activities
are enlisted for each role and control and data flow dependencies are defined
on a per-role-basis. In contrast to this, interaction models are made up of
atomic interactions and control and data flow is defined globally, i.e. it is not
directly assigned to any of the roles. Examples for the first group are BPMN

Web Service Choreography Configurations for BPMN 11

and BPEL4Chor, but also simpler languages such as Message Sequence Charts
(MSC [11]). Examples for the second group are WS-CDL, BPSS and Let’s Dance.
Bridging these two modeling styles is not trivial and requires for sophisticated
transformation algorithms as presented in [9] for the case of interaction Petri nets
and their corresponding participant behavior descriptions. This is not needed in
our case, as BPMN and BPEL4Chor follow the same modeling style.

There has been some work on comparing BPMN and BPEL and carrying
out transformations. Comparison was done e.g. in [16] on the general concepts
covered in both languages and on the respective Workflow Pattern support: the
authors’ conclusion is that the expressiveness of BPMN has to be restricted if a
full mapping to BPEL is desired.

A major challenge in transforming BPMN to BPEL are the differences in
control flow constructs available in the languages. Ouyang et al. [14] restricted
BPMN and mapped that subset completely to BPEL.

Several commercial tools allow to define BPEL-specific configurations for
BPMN-models and implement transformation algorithms. However, typically
only a small subset of BPMN is allowed and then translated. None of the tools
provides a transformation to BPEL4Chor.

8 Conclusion and Outlook

We presented an approach to extend BPMN to support modeling of BPEL4Chor
choreographies. Our approach is independent of the structural transformation of
BPMN to BPEL4Chor. If new results including OR gateways are available, these
can be applied to our approach. We took the transformation of Ouyang et al. as
example and extended it to support our BPMN choreography extensions. Thus, we
showed how BPEL4Chor can be generated out of configured BPMN. Validation is
provided through the ongoing implementation of an editor supporting configured
BPMN and the transformation of configured BPMN to BPEL4Chor. The editor
is web based and already comes with a support for BPMN. It stores the diagrams
in an extended XPDL format reflecting the extensions of the configured BPMN.
The transformation is implemented as Java web service that will be integrated in
the editor. The extended XPDL format is used as input for the transformation
web service.

We introduced participant reference data objects to reflect participant refer-
ences in BPMN. On the other hand, participant references are first class citizens
in BPEL4Chor. We suggest adding the notation of participant reference objects
to BPMN, as we argue that participant references have major importance.

References

1. Business Process Modeling Notation (BPMN) Specification, Final Adopted Spec-
ification. Technical report, Object Management Group (OMG), February 2006.
http://www.bpmn.org/.

http://www.bpmn.org/

12 Kerstin Pfitzner, Gero Decker, Oliver Kopp, Frank Leymann

2. Web Services Business Process Execution Language Version 2.0 – Committe Speci-
fication. Technical report, OASIS, Jan 2007.

3. A. Barros, M. Dumas, and P. Oaks. A Critical Overview of WS-CDL. BPTrends,
3(3), 2005.

4. A. Barros, M. Dumas, and A. ter Hofstede. Service Interaction Patterns. In BPM
2005, LNCS, pages 302–318, Nancy, France, 2005. Springer Verlag.

5. J. Clark, C. Casanave, K. Kanaskie, B. Harvey, N. Smith, J. Yunker, and K. Riemer.
ebXML Business Process Specification Schema Version 1.01. Technical report,
UN/CEFACT and OASIS, May 2001. http://www.ebxml.org/specs/ebBPSS.pdf.

6. F. Curbera, F. Leymann, T. Storey, D. Ferguson, and S. Weerawarana. Web
Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-
BPEL, WS-Reliable Messaging and More. Prentice Hall PTR, 2005.

7. G. Decker, O. Kopp, F. Leymann, and M. Weske. BPEL4chor: Extending BPEL
for Modeling Choreographies. In Proceedings International Conference on Web
Services (ICWS), 2007.

8. G. Decker, H. Overdick, and J. M. Zaha. On the Suitability of WS-CDL for
Choreography Modeling. In EMISA 2006, Hamburg, Germany, Oct 2006.

9. G. Decker and M. Weske. Local Enforceability in Interaction Petri Nets. In
Proceedings 5th International Conference on Business Process Management (BPM
2007), LNCS, Brisbane, Australia, 2007.

10. R. Dijkman and M. Dumas. Service-oriented Design: A Multi-viewpoint Approach.
International Journal of Cooperative Information Systems, 13(4):337–368, 2004.

11. ITU-T. Message sequence chart. Recommendation Z.120, ITU-T, 2000.
12. N. Kavantzas, D. Burdett, G. Ritzinger, and Y. Lafon. Web Services Choreography

Description Language Version 1.0, W3C Candidate Recommendation. Technical
report, November 2005. http://www.w3.org/TR/ws-cdl-10.

13. J. Mendling and M. Hafner. From Inter-Organizational Workflows to Process
Execution: Generating BPEL from WS-CDL. In R. Meersman, Z. Tari, and P. H.
et al., editors, Proceedings of OTM 2005 Workshops. Lecture Notes in Computer
Science 3762, pages 506–515. Springer Verlag, October 2005.

14. C. Ouyang, M. Dumas, S. Breutel, and A. H. ter Hofstede. Translating Standard
Process Models to BPEL. In CAiSE 2006, Luxembourg, June 2006.

15. C. Ouyang, M. Dumas, A. H. ter Hofstede, and W. M. van der Aalst. Pattern-based
translation of BPMN process models to BPEL web services. International Journal
of Web Services Research (JWSR), 2007.

16. J. Recker and J. Mendling. On the translation between BPMN and BPEL: Con-
ceptual mismatch between process modeling languages. In T. Latour and M. Petit,
editors, CAiSE 2006 Workshop Proceedings - Eleventh International Workshop on
Exploring Modeling Methods in Systems Analysis and Design (EMMSAD 2006),
pages 521–532, June 2006.

17. J. M. Zaha, A. Barros, M. Dumas, and A. ter Hofstede. A Language for Service
Behavior Modeling. In Proceedings 14th International Conference on Cooperative
Information Systems (CoopIS 2006), Montpellier, France, Nov 2006. Springer Verlag.

http://www.ebxml.org/specs/ebBPSS.pdf
http://www.w3.org/TR/ws-cdl-10

	cover-Springer.pdf
	Slide Number 1

