
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{wetzstein, strauch, leymann}@iaas.uni-stuttgart.de

Measuring Performance Metrics
of WS-BPEL Service Compositions

Branimir Wetzstein, Steve Strauch, Frank Leymann

© 2009 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

@inproceedings{Wetzstein2009,
 author = {Branimir Wetzstein and Steve Strauch and Frank Leymann},
 title = {Measuring Performance Metrics of WS-BPEL Service Compositions},
 booktitle = {Proceedings of the 5th International Conference on Networking and
 Services (ICNS 2009)},
 year = {2009},
 pages = {49--56},
 doi = {10.1109/ICNS.2009.80},
 publisher = {IEEE Computer Society}
}

:

Institute of Architecture of Application Systems

Measuring Performance Metrics of WS-BPEL Service Compositions

Branimir Wetzstein, Steve Strauch, Frank Leymann
Institute of Architecture of Application Systems

University of Stuttgart
Universitaetsstr. 38, 70569 Stuttgart, Germany
{firstname.lastname}@iaas.uni-stuttgart.de

Abstract

In this paper we present an approach to the development
of monitoring solutions for processes implemented as WS-
BPEL service compositions. The approach allows modeling
of process performance metrics in a platform-independent
manner and then generating an event-based monitor model
for a specific WS-BPEL process engine. We create a meta-
model which enables modeling of different types of process
performance metrics. In particular, our approach supports
modeling of metrics related to correlated processes. In the
deployment phase, we generate a monitor model based on
a proprietary event metamodel of a process engine. In ad-
dition, we determine which events are needed for the cal-
culation of PPMs, and generate corresponding deployment
information for the process engine.

1. Introduction

Business Process Management encompasses methods,
techniques, and tools that allow organizing, executing, and
measuring the processes of an organization [12]. Typically,
the business process lifecycle begins with the business an-
alyst analyzing business processes in the company and cre-
ating process models using a process modeling tool. When
the process is to be automated, it is translated by IT engi-
neers to an executable process model, which is run on a pro-
cess engine. When BPM is layered over a Service Oriented
Architecture (SOA), services are used for implementing ac-
tivities of business processes. In the context of SOA, busi-
ness processes are modeled and executed using the (WS-)
BPEL language [8], which is a workflow language for or-
chestration of services. The BPEL process engine executes
the BPEL process model by delegating the process tasks to
Web services.

For controlling the performance of business processes,
business activity monitoring (BAM) technology enables
continuous, near real-time monitoring of processes based

on process performance metrics (PPMs). Business people
define PPMs based on business goals. These PPMs are then
translated to monitor models by IT engineers. At process
execution time, the process engine publishes events as the
process is executed. A business process monitoring tool
subscribes to these events, calculates the PPM values and
displays them in dashboards to business users. In case of
severe deviations from planned values, alerts are raised and
notifications are sent to responsible people.

When it comes to developing monitoring solutions for
business processes, there exist several challenges that we
want to address in this paper: (i) While there is a stan-
dard language for specifying and executing processes in the
context of Web services, namely BPEL, there is no corre-
sponding approach on how to model performance metrics
for business processes. Typically, monitor models, which
serve as the input to the BAM tool and describe how PPMs
are calculated, are created by developers based on the events
the process engine emits for a business process, i.e. on a
lower abstraction level. (ii) As event metamodels of pro-
cess engines are proprietary, metric definitions are tightly
coupled to a specific process engine reflecting their specific
event metamodel.

In this paper we address these challenges by introducing
a top-down development approach for monitoring of PPMs
for WS-BPEL based business processes, as shown in Figure
1. For the definition of PPMs, the user specifies PPM at-
tributes such as name, type, data unit, analysis period, target
value, deviations and alerts, and defines how PPMs are cal-
culated using a domain specific language. He therefore uses
predefined functions such as ”Duration”, ”State”, and ”Pro-
cessVariableValue” (for accessing business objects), which
can be combined using arithmetic, logical and relational op-
erators. These functions use process probes as parameters,
which are pointers to process elements (typically activities
and variables) specifiying at which state (e.g., ”started”,
”completed”, ”modified”) the information is needed. There-
fore, an engine-independent event metamodel for BPEL
processes is used. The created PPM model is thus inde-

2009 Fifth International Conference on Networking and Services

978-0-7695-3586-9/09 $25.00 © 2009 IEEE

DOI 10.1109/ICNS.2009.80

49

2009 Fifth International Conference on Networking and Services

978-0-7695-3586-9/09 $25.00 © 2009 IEEE

DOI 10.1109/ICNS.2009.80

49

Figure 1. Overview of the Approach

pendent of a certain BPEL engine implementation. In the
next step, based on the event metamodel of the target BPEL
engine(s), we generate a monitor model and an event fil-
ter. The event filter is part of deployment information of the
BPEL engine specifying which events it needs to publish.
The monitor model specifies how to calculate the PPMs
based on the runtime events. At deployment time, the mon-
itor model is deployed to the monitoring tool. The process
models are deployed to one or several process engines. In
addition, the monitoring tool subscribes to events needed by
the process engines. At process runtime, the process engine
executes the process and publishes events as specified in the
deployment descriptor to a publish/subscribe infrastructure.
The business process monitor receives these events, com-
putes the corresponding PPM values, and displays them in
dashboards.

The contributions of the paper are as follows. We clas-
sify PPMs and in particular identify the need for PPMs
which are measured across correlated processes. We cre-
ate a metamodel which enables modeling of PPMs indepen-
dently of a specific event metamodel supported by a process
engine. We then show how this PPM model can be trans-
formed into a monitoring model based on a specific event
metamodel and how metrics are calculated at process execu-
tion time. The modeling approach is independent of process
engine implementation and thus flexible in that definition of
PPMs is separated from its implementation specifics.

The rest of the paper is organized as follows. In Section
2 we present a case study which we use to present examples
for our concepts and which we have implemented to evalu-
ate our approach. Section 3 describes how process perfor-
mance metrics are modeled. Section 4 shows then how PPM
models are transformed to event-based monitor models. In
Section 5 we present related work, and finally, in Section 6
we outline our future work.

2. Case Study

For evaluating our approach we have developed a pur-
chase order (PO) scenario in the B2B area. The use case
consists of a customer, a reseller, and a shipping service.
The reseller offers certain products to its customers. It holds
a certain part of the products in stock and orders missing
products if necessary; this ordering part is however left out
for space reasons. In the implemented scenario, the cus-
tomer sends a PO request with details about the required
products and needed amounts to the reseller. The latter
checks whether all products are available in stock in the
warehouse. If some products are not in stock and cannot
be ordered from suppliers, the reseller notifies the customer.
As long as customer and manufacturer do not agree on the
order, this process is repeated. When a mutual agreement
has been achieved, the reseller sends the purchase order to
the warehouse for shipment. The warehouse packages the
products and hands them over to the shipment service. Fi-
nally, the reseller sends a purchase order response back to
the customer. The shipment service delivers the products to
the customer and confirms the shipment. The interactions of
the participants in our scenario are illustrated in the BPMN
diagram shown in Figure 2.

The scenario has been implemented as follows: the PO
process and the warehouse process are implemented as two
different BPEL process models. The shipment service is
implemented in Java and exposed as a WSDL Web service.
The PO BPEL process and the warehouse BPEL process
have been deployed on an Apache ODE BPEL engine.

For evaluating the performance of the processes defined
in our scenario, we have chosen PPMs from the SCOR
model [3]. The SCOR model specifies reference processes
and PPMs in the supply-chain domain. We define the fol-
lowing PPMs from the point of view of the reseller: (i)
Average duration of the PO process (before products are
handed over to the shipping service); (ii) Percentage of POs
which were delivered ”in time”; (iii) Percentage of purchase
orders which were delivered ”in full” as requested by cus-
tomer. More details on these PPMs, such as target values
and more detailed definitions, will be given in Section 3.3
when explaining how they are modeled.

3. Modeling Process Performance Metrics

In this paper we concentrate solely on metrics which
evaluate the efficiency and effectiveness of business pro-
cesses and which can directly be derived and computed
based on the runtime data of service compositions; we call
this type of metrics process performance metrics (PPMs).
We do not consider information from external data sources
such as operational databases (e.g., CRM database) or ser-
vices not implemented as service compositions. Further-

5050

Figure 2. Case Study: Purchase Order Processing Scenario

more, we do not consider IT-level metrics such as the avail-
ability of the process engine, which of course also have an
impact on business process performance. Adding support
for external data sources, and IT level metrics is part of our
future work.

In order to come up with a metamodel for modeling
PPMs, we have analyzed the process metric catalogue of
SCOR Supply Chain Metrics [3] and related literature [10].
A PPM can be seen as a metric, which is evaluated in a cer-
tain analysis period and has a target value which should be
reached or preserved within the analysis period indicating
the achievement of predefined business goals [10]. Typi-
cally, in addition to a target value, allowed ranges of values
are defined. In case of deviations, notifications can be sent.
An example for a PPM is ”percentage of purchase orders
that were processed in time in the next 3 months should be
greater than 90”, the analysis period being 3 months and
the target value 90. The calculation formula of PPMs can
be specified based on following information: duration of the
process and its activities, cost of the process and its activi-
ties, business objects and their states, and execution flow of
process activities. In addition, it is important to be able to
specify PPMs across several business process models.

PPM computation is often based on business objects
which are dealt with in the process to be measured. Such
business objects (a.k.a. business items, business docu-
ments or business data) are for example ”purchase order”,
or ”shipment” in our case study. Typically, PPMs contain
a condition on the state of these business objects or query
their attributes (e.g., ”purchase order processed in time and
in full”). Some metrics are based on more than one business
process, e.g. the PPM ”average duration for processing a
PO” needs data both from the purchase order process and
the warehouse process.

The PPM metamodel (not shown as UML class diagram
for space reasons) defines a PPM as consisting of the fol-
lowing attributes: name, description, data type, unit, tar-
get value, analysis period, deviation value range and corre-
sponding alerts, and finally calculation formula. The cal-
culation formula is the ”heart” of the PPM definition, as it
defines how a PPM is measured based on other PPMs. For
specifying the calculation formula we have defined a do-
main specific language. When specifying the calculation
of PPMs, one can distinguish between instance metrics and
aggregate metrics. Instance metrics are based on one single
process instance, while aggregate metrics aggregate values
of instance metrics for several process instances by using
aggregation functions.

3.1 Instance Metrics

For specification of simple instance metrics we have de-
fined several functions as shown in Table 1. Thereby, one
function defines one simple instance metric. These func-
tions enable retrieving basic metrics on process instances.
The parameters of these functions (Process, Activity, Vari-
able) are ”process probes”, i.e. pointers to corresponding
artifacts of concrete process models (Section 3.1.2).

The function ”duration” refers to the whole process in-
stance, a process fragment, or a single activity, depending
on which parameters are used. The function ”count” re-
trieves the number of executions of an activity in a loop.
The function ”state” returns a set of states containing all
states the specified process or activity have been in dur-
ing process instance execution. This function is needed
to be able to test e.g. whether a certain activity has been
executed, or whether a process instance terminated. The
function ”time” retrieves the timestamp when an activity or

5151

Category Function

Duration duration(Process)
duration(Activity1, Activity2)
duration(Activity)

Count count(Activity)
State state(Process)

state(Activity)
Time time(Process)

time(Activity)
Process Data processVariableValue(Activity,Variable)

Table 1. Instance Metric Functions

process reached a certain state. Finally, ”processVariable-
Value” enables retrieving of data values of business objects
at a certain activity. Note that the function ”duration” is a
convenience function, which could also be specified using
operations over ”time” functions. For calculating cost of
processes and its activities, one could introduce a ”process
cost” function, similarly to the ”duration” function. That
function would, however, rely on the definition of a cost
model, which is out of scope of this paper.

Predefined functions enable the specification of simple
instance metrics. Composed instance metrics can be used to
combine several (simple or composed) instance metrics into
a new metric using arithmetic operators (e.g., duration(A,
B) + duration(C,D)) or specifying a logical condition us-
ing logical and relational operators (e.g., processVariabl-
eValue(”Receive PO”, ”PurchaseOrder.totalCost”) > 1000
AND state(”Renegotiate”) = ”started”).

3.1.1 Cross-Process Metrics

A special type of instance metric is the cross-process in-
stance metric. It supports the definition of metrics which are
based on two process instances from two different process
models. For example, for measuring the ”average duration
of the PO process” in the case study, one needs to measure
the duration between two activities from two different pro-
cess models (Section 3.3). Thereby, the problem arises that
one has to correlate two process instances which belong to-
gether (i.e., to the same purchase order). To be able to corre-
late two instances of these processes, one has to additionally
specify a correlation token, in this case ”purchase order ID”,
when specifying correlated instance metrics. The correla-
tion token is based on one or several attributes of process
data variables, and has to be specified by the user by point-
ing to the corresponding variable attribute(s) in both process
models. It should be noted that the two process instances
do not have to be part of process models which ”communi-
cate” with each other as in the example above. E.g., a PPM
which measures how often ”orders have been returned after

they have not been delivered in time” involves the returns
process and the PO process which are not communicating
with each other in terms of WS calls.

3.1.2 Specifying Process Probes

Simple Instance Metrics are based on functions which con-
tain ”Process”, ”Activity”, and ”Variable” as parameters.
These parameters are pointers to corresponding artifacts of
concrete process models. They serve as process probes.
When attaching the parameters to the corresponding pro-
cess model elements, in addition to specifying the identifier
of the corresponding element, the user is able to specify the
state of the process or activity the parameter relates to. In
addition, in case of cross-process metrics, correlation to-
kens have to be attached to process variables, as explained
in the previous section.

When defining functions, we assume certain default val-
ues concerning process and activity states (e.g., in case of
duration(A, B), we assume ”A started” and ”B completed”).
However the user has the possibility to override these de-
fault settings by defining other process or activity states.
The process state metamodel and the activity state meta-
model are strongly related to the event metamodel of a pro-
cess engine, which publishes events when state changes oc-
cur. In our approach, we use the engine-independent BPEL
state metamodel as proposed in [5]. For most metrics the
states ”started” and ”completed” suffice.

As functions have ”Process”, ”Activity” and ”Variable”
as parameters, they have to reference corresponding pro-
cess models and activities. Since BPEL does not prescribe
unique identifiers for processes, activities as well as vari-
ables, first, unique identifiers have to be inserted either man-
ually by the user (or automatically if supported by the BPEL
editor) in the BPEL file. This can be done by setting an
attribute ”id” in the corresponding XML elements in the
BPEL file. Then, we can reference BPEL processes, BPEL
activities and BPEL variables out of the PPM model by us-
ing the XML Linking Language (XLink) and the XPointer
xpointer() Scheme. Listing 1 shows how the attachment
mechanism is used.

3.2 Aggregate Metrics

Aggregate metrics aggregate values of instance metrics
using aggregation functions ”sum”, ”max”, ”min”, ”avg”,
and ”qty”, as shown in Table 2. In addition, to the instance
metric which is aggregated, aggregate metrics can get a log-
ical condition as a second parameter, defined by a composed
instance metric. In that case, only those instances are aggre-
gated which fulfill the logical condition.

In difference to the other aggregation functions, the ag-
gregate metric ”quantity” has only one parameter, namely

5252

Category Function

Summation sum(InstanceMetric)
sum(InstanceMetric,
ComposedInstanceMetric)

Average avg(InstanceMetric)
avg(InstanceMetric,
ComposedInstanceMetric)

Maximum max(InstanceMetric)
max(InstanceMetric,
ComposedInstanceMetric)

Minimum min(InstanceMetric)
min(InstanceMetric,
ComposedInstanceMetric)

Quantity qty(ComposedInstanceMetric)

Table 2. Aggregation Functions

a composed instance metric specifying a logical condition.
It determines the number of instances fulfilling this logical
condition (e.g., qty(”purchase order has been processed in
time”). Aggregate metrics can be composed using arith-
metic operators.

3.3 DSL for PPM Specification

For specifying the calculation of PPMs we have defined
a domain specific language (DSL) based on the functions
specified in Tables 1 and 2 which can be combined using
arithmetic, relational, and logical operators. We have im-
plemented an Eclipse plugin for a BPEL 2.0 editor, which
enables modeling of PPMs. It produces a PPM model seri-
alized in XML. The XML model references BPEL process
models.

Table 3 shows the use of the DSL for specifying the cal-
culation formula of PPMs of the case study. The first met-
ric is a simple aggregate metric which aggregates a simple
cross-process instance metric based on the function ”dura-
tion(Activity1, Activity2)”. The correlation token is speci-
fied during attachment (see Listing 1). The second metric is
a composed aggregate metric which calculates the percent-
age value based on two simple aggregate metrics. Both ag-
gregate metrics count (qty) the number of process instances
which fulfill the corresponding logical expressions (com-
posed instance metrics). For testing whether the ordered
products were delivered in time, we assume that the ”Pur-
chase Order” business object contains the attribute ”deliv-
eryDeadline”. In the logical condition we then compare the
date in the attribute ”deliveryDeadline” with the value of the
”receiptDate” attribute of the ”Shipment” business object.
Note that this composed instance metric is a cross-process
metric, as the two activities ”Receive Shipment Ack” and
”Request Order Delivery” are part of different process mod-

els. Finally, with the second aggregate metric we count the
process instances which have completed. The third PPM is
specified in a similar way as the second one. A purchase
order has not been processed ”in full” if renegotiating is
needed. That is the case if the activity ”Renegotiate” has
been started (state(”Renegotiate”) = ”started”).

The language presented in Table 3 enables a top-down
specification of PPMs. Thereby, only the calculation of
the ”root” PPM is specified, as shown also in Listing 1.
The lower-level metrics which are composed or aggregated
for the calculation of the PPM are automatically detected
when parsing the calculation expression. This detection is
needed later for monitoring, as the PPM is then calculated
bottom-up, starting with instance metrics which are calcu-
lated based on runtime events.
<ppmModel>
<ppm name="Average Duration of PO Process until

Shipment">
<unit>hours</unit><targetValue>8</targetValue>
<calculation>
<avg><duration><fromActivity name="<Receive PO>"><

toActivity name="<Ship PO>"></duration></avg>
</calculation>
<attachments>
<activityAttachment parameterName="Receive PO"

xlink:type="simple" xlink:href="POProcess.
bpel#xpointer(//*[@name=\"ReceiveOrder\&
quot;])" status="started"/>

<activityAttachment parameterName="Ship PO"
xlink:type="simple" xlink:href="
WarehouseProcess.bpel#xpointer(//*[@name=\&
quot;ShipOrder\"])" status="completed"/>

</attachments>
<correlation>
<correlationKey>

<source>
<variableAttachment xlink:type="simple"

xlink:href="POProcess.bpel#xpointer(//*[
@name=\"PurchaseOrder.Id\"])"/>

<activityAttachment xlink:type="simple"
xlink:href="POProcess.bpel#xpointer(//*[
@id=\"ReceiveOrder\"])" status=
"completed"/>

</source>
<target>
<variableAttachment xlink:type="simple"

xlink:href="WarehouseProcess.bpel#
xpointer(//*[@name=\"Shipment.poId\&
quot;])"/>

<activityAttachment xlink:type="simple"
xlink:href="WarehouseProcess.bpel#
xpointer(//*[@id=\"ShipOrder\"
;])" status="completed"/>

</target>
<correlationKey>

</correlation>
</ppm>

</ppmModel>

Listing 1. PPM Definition with Attachment
and Correlation

4 Monitoring Process Performance Metrics

The result of PPM modeling consists of PPM definitions
which are based on one or more business process models.

5353

Description Calculation Expression

Average Duration avg(duration(”Receive PO”, ”Ship PO”))
of PO Process
Percentage of POs qty(processVariableValue(”Receive Shipment Ack”, Shipment.receiptDate) <
delivered ”in time” processVariableValue(”Request Order Delivery”, PurchaseOrder.deliveryDeadline))

÷ qty(state(”Purchase Order Process”) = ”completed”) × 100 %
Percentage of POs 100% − (qty(state(”Renegotiate”) = ”started”) ÷
delivered ”in full” qty(state(”Purchase Order Process”) = ”completed” AND

state(”Warehouse Process”) = ”completed”)) × 100 %)

Table 3. Calculation Specifications for PPMs from the Case Study

In order to enable monitoring of PPMs at process execu-
tion time, two actions have to be performed: (i) informa-
tion has to be generated for the process engine about which
events need to be published for measurement of PPMs; (ii)
the PPM model has to be transformed to a monitor model
which is deployed to the monitoring tool.

Many process engines support publishing of events dur-
ing process execution. Events thereby denote a state change
of a process entity as the process instance is executed,
e.g., completion of an activity or modification of a vari-
able value. Although there is a standard specification for the
workflow audit trail in the reference model of the Workflow
Management Coalition [13], it is not supported by most pro-
cess engines. Thus, in practice, process engines differ in
event metamodels they implement. Besides different event
metamodels, there are also differences between engines in
terms of how to configure which events to publish for a par-
ticular process. This kind of configuration is typically done
in the deployment descriptor of the process model to be de-
ployed.

The granularity of configuration differs again between
engines. For example, Apache ODE [4] supports filtering
of events only on scope level, while IBM Process Server
supports specifying for each BPEL element which types of
events to publish and to some extent also which content the
events should contain [11]. The possibility of configura-
tion which events should be published is important, because
simply logging all possible events, i.e. every state change
of each process, activity, and variable, would unnecessarily
degrade the performance of the process execution infras-
tructure [6]. In particular for the evaluation of process per-
formance metrics only a small subset of all possible events
is needed.

4.1 Determining Needed Events

As shown in Figure 1, the transformation takes the PPM
model and the event metamodel of the process engine as in-
put and then generates the monitor model and event filtering
information for the process engine. The main task here is to

map the instance metrics in the PPM model to events which
are needed for their calculation. Other types of metrics are
not relevant, because they are not calculated based on events
but based on other metrics.

Function Required Events

duration(Process) ProcessInstanceStartedEvent,
ProcessCompletionEvent

duration(Activity) ActivityExecStartEvent,
ActivityExecEndEvent

duration(Act1, Act2) ActivityExecStartEvent,
ActivityExecEndEvent

count(Activity) ActivityExecEndEvent
time(Process) ProcessCompletionEvent
time(Activity) ActivityExecEndEvent
state(Process) ProcessInstanceStateChangeEvent
state(Activity) Activity*Event (for all

states of the Activity)
processVariableValue ActivityExecEndEvent,
(Act,Var) VariableModificationEvent

Table 4. Mapping Instance Metrics to Events

When determining events for a calculation of a PPM,
three aspects have to be addressed: (i) All simple instance
metrics (based on functions shown in Table 1) which are
used for the calculation of a PPM are calculated based on
runtime events; each function with its attachments can be
mapped to a set of events needed for the calculation of this
function (Table 4 shows a mapping based on the event meta-
model of the Apache Ode BPEL Engine [4]). (ii) For cross-
process metrics in addition correlation tokens have to be
mapped to additional events; (iii) For each instance metric
additional termination events are needed (see below).

When it comes to configurability there are greater dif-
ferences between process engines. We assume that we can
configure for the process and for each activity of the pro-
cess which events we are interested in. If a process engine
does not support that level of configuration, then there will
be more events published than needed for the evaluation of

5454

the PPMs. In that case, the business process monitor has to
simply discard those events when they are received.

4.1.1 Mapping Instance Metric Functions

Table 4 shows how Instance Metric Functions are mapped to
events for the Apache ODE BPEL Engine. Each event con-
tains at least the following attributes: creation timestamp,
process instance ID, process model ID, and activity ID (for
activity related events).

The function ”duration” is mapped to two events, a start
event and an end event and is calculated by subtracting the
timestamps of these two events. Per default these two events
denote the states ”started” and ”completed”, however, also
other or additional states are considered if they are explicitly
modeled on PPM level. The user could for example decide
that not only ”completed” but also ”terminated” or ”faulted”
processes should be considered. The function ”time” sim-
ply obtains the timestamp at which an event occurred. Thus,
one just has to log the event for a certain process state or ac-
tivity state. The function ”count” is counting how often a
state, per default ”completed”, occurs for an activity. Thus
it is mapped to the corresponding event of that state. The
function ”state” retrieves the states a process or an activity
has been in during process instance lifetime. This function
is simply mapped to all events which correspond to the state
model of the process or activity. The function ”processVari-
ableValue” is used to access the state of process variables at
a certain activity. The function thus has to be mapped to the
corresponding event marking the state of the activity (”com-
pleted” per default). This event however does not suffice,
because the event does not carry variable value data. There
is an additional event which is published when the value of
a variable changes. The function is thus mapped to both
the activity state relevant event and the variable modifica-
tion event. When evaluating this function one thus waits for
the ”completed” event of the activity and then evaluates the
last variable modification event received according to the
timestamp. A more optimal solution would be to send the
needed variable data with the activity event, however not
every process engine supports that.

4.1.2 Mapping Correlation Tokens

A cross-process instance metric specifies one or more cor-
relation keys which are mapped to variables in two or more
process models. To be able to correlate process instances,
one thus has to receive those data values from each pro-
cess instance. Thus, correlation keys are mapped to variable
modification events for variables which contain the correla-
tion key in each process model.

4.1.3 Termination Events

In some cases, it can happen that a metric cannot be cal-
culated because the corresponding activity is never reached
during execution of a process instance (because of a fault or
simply because another alternative branch has been taken).
E.g. if ”Activity2” is never executed in a paticular pro-
cess instance, ”duration (Activity1, Activity2)” cannot be
calculated. In that case the monitoring tool should know
when to abort the calculation of the metric, otherwise it
would wait ”forever” for the needed event. In order to deal
with these problems, we introduce the concept of termina-
tion events, which signal that the calculation of the instance
metric can be finished (if possible) or aborted. For some
instance metric types, regular events can act as termination
events, e.g. ”Activity 2 completed” in the example above.
For others, extra events are needed. In that case, in our
implementation, we use all events signalling the end of a
process instance as termination events. When such an event
is received, the monitoring tool deals with all yet ”unfin-
ished” instance metrics of that process instance. In case of
cross-process metrics termination events of both process in-
stances are needed. In some cases, one could use also time-
out events or more fine granular termination events, these
are however out of scope of this paper.

4.2 Monitoring

The monitor model specifies how events received by the
monitoring tool are processed to calculate the PPMs. The
PPM model already contains definitions of different types
of PPMs. Each PPM can be seen as a tree. Leafs of this tree
are the functions which define simple instance metrics. The
monitor model extends this PPM tree by inserting events as
leafs which are needed for the calculation of the function
as described in last section. The parent nodes of the events
are the corresponding simple instance metrics. The monitor
model effectively combines the PPM model with the corre-
sponding event model, as shown in Figure 3 for the PPM
”average process duration” from the case study (termina-
tion events are not displayed in the Figure). At process de-
ployment time, the monitoring tool subscribes to all events
specified in this event model. At process runtime, when the
process engine publishes a corresponding event, that event
is received by the monitoring tool, which evaluates the met-
rics of the PPM tree in a bottom up fashion.

5 Related Work

There are several approaches to monitoring of service
compositions described in the literature and already im-
plemented in products. IBM’s approach integrates perfor-
mance management tightly into the business process lifecy-

5555

Figure 3. Monitor Model

cle and supports it through its WebSphere family of prod-
ucts [11]. Thereby, PPMs are modeled based on events
of the Process Server BPEL engine. In our approach, we
model PPMs in a platform-independent manner and provide
a DSL and support for cross-process metrics. [7] presents
a model-driven approach to developing monitored business
processes. The authors show how a monitoring model can
be integrated with a BPMN process model, finally generat-
ing a BPEL process with special activities provide monitor-
ing information by invoking operations on the monitoring
tool. Our approach is different, in that we support a more
elaborate metric metamodel and we rely on the event dis-
patching mechanism of the process engine providing infor-
mation for monitoring. [9] also extends a BPEL process
definition with auditing activities in order to publish state
changes to the monitoring tool. The auditable BPEL pro-
cess definition does not use proprietary event metamodels
of process engines but remains compliant with the standard.
The approach, however, does not deal with specification
of process performance metrics. [2] deals with monitor-
ing of BPEL processes focusing on runtime validation. The
goal is thereby not to monitor process performance metrics,
but to detect partner services which deliver unexpected re-
sults. [1] describes a monitoring approach for BPEL pro-
cesses which also distinguishes between instance and ag-
gregate metrics. It, however, does not deal with modeling of
PPMs in an engine-independent manner and does not sup-
port cross-process metrics.

6 Conclusions and Outlook

In this paper we have presented an approach to monitor-
ing of PPMs of WS-BPEL processes. We have implemented
the presented concepts as follows: modeling of PPMs is
supported by an Eclipse plugin which is part of the Eclipse
BPEL Designer. As output, the plugin creates a PPM model
serialized in XML. The XML file is read by a transforma-
tion component implemented in Java which generates the
monitor model supporting the Apache ODE BPEL engine.

The monitor model is deployed on a monitoring tool which
computes the PPMs at process runtime and displays the re-
sults in dashboard-like views. In our future work, we will
extend our approach to support also human tasks, external
data sources, cost models, and resource-level metrics.

Acknowledgment

The research leading to these results has received fund-
ing from the European Community’s 7th Framework Pro-
gramme under the Network of Excellence S-Cube Grant
Agreement no. 215483 and the COMPAS Project Grant
Agreement no. 215175.

References

[1] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti. Run-
Time Monitoring of Instances and Classes of Web Service
Compositions. In ICWS, pages 63–71, 2006.

[2] L. Baresi and S. Guinea. Towards Dynamic Monitoring of
WS-BPEL Processes. In ICSOC 2005, 3rd International
Conference of Service-Oriented Computing, pages 269–282.
Springer, 2005.

[3] S. Council. Supply Chain Operations Reference Model Ver-
sion 7.0, 2005.

[4] A. S. Foundation. Apache ODE User Guide. W3C Working
Draft. http://ode.apache.org/user-guide.html.

[5] D. Karastoyanova, R. Khalaf, R. Schroth, M. Paluszek, and
F. Leymann. BPEL Event Model. Technical Report 2006/10,
University of Stuttgart, Germany, November 2006.

[6] F. Leymann and D. Roller. Production Workflow – Concepts
and Techniques. Prentice Hall, 2000.

[7] C. Momm, R. Malec, and S. Abeck. Towards a Model-
driven Development of Monitored Processes. In Pro-
ceedings of 8. Internationale Tagung Wirtschaftsinformatik
(WI2007), Karlsruhe, Germany, February 2007.

[8] Organization for the Advancement of Structured Informa-
tion Standards (OASIS). Web Services Business Process Ex-
ecution Language Version 2.0. Comitee Specification, April
2007.

[9] H. Roth, J. Schiefer, and A. Schatten. Probing and Monitor-
ing of WSBPEL Processes with Web Services. In Proceed-
ings of CEC, San Francisco, 2006.

[10] H. Schmelzer and W. Sesselmann.
Geschäftsprozessmanagement in der Praxis. Hanser
Verlag München, 2006.

[11] U. Wahli, V. Avula, H. Macleod, M. Saeed, and A. Vinther.
Business Process Management: Modeling Through Moni-
toring Using WebSphere V6.0.2 Products. IBM, Interna-
tional Technical Support Organization, 2007.

[12] M. Weske. Business Process Management: Concepts, Lan-
guages, Architectures. Springer-Verlag New York, Inc., Se-
caucus, NJ, USA, 2007.

[13] WfMC. Audit Data Specification. W3C Working Draft,
1998.

5656

	cover-IEEE
	Foliennummer 1

	04976736

