
1IBM TJ Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532, USA
rkhalaf@us.ibm.com

2Institute of Architecture of Application Systems, University of Stuttgart, Germany
{kopp,leymann}@iaas.uni-stuttgart.de

Maintaining Data Dependencies Across
BPEL Process Fragments

Rania Khalaf1, Oliver Kopp2, Frank Leymann2

© 2008 World Scientific
See also http://www.worldscinet.com/ijcis/17/1703/S0218843008001828.html

@article{KKL08,
author = {Rania Khalaf and Oliver Kopp and Frank Leymann},
title = {Maintaining Data Dependencies Across

{BPEL} Process Fragments},
journal = {International Journal of

Cooperative Information Systems (IJCIS)},
year = {2008},
volume = 17,
number = 3,
pages = {259‐‐282},
doi = {10.1142/S0218843008001828},
publisher = {World Scientific}

}

:

http://dx.doi.org/10.1142/S0218843008001828

Verifying Business Rules Using an SMT Solver for BPEL
Processes

Ganna Monakova1, Oliver Kopp1, Frank Leymann1, Simon Moser2, Klaus Schäfers2

1Institute of Architecture of Application Systems, Stuttgart, Germany
2IBM Deutschland Research & Development GmbH, Böblingen, Germany

1lastname@iaas.uni-stuttgart.de 2{smoser|kschaef}@de.ibm.com

Abstract: WS-BPEL is the standard for modelling executable business processes.
Recently, verification of BPEL processes has been an important topic in the research
community. While most of the existing approaches for BPEL process verification merely
consider control-flow based analysis, some actually consider data-flows, but only in
a very restrictive manner. In this paper, we present a novel approach that combines
control-flow analysis and data-flow analysis, producing a logical representation of
a process model. This logical representation captures the relations between process
variables and execution paths that allow properties to be verified using Satisfiability
Modulo Theory (SMT) solvers under constraints represented by the modelled assertions.

1 Introduction

Many of today’s enterprises model their business processes in BPEL [OAS07]. In order
to ensure quality of the modelled process, its correctness has to be proved. A correct
business process always terminates and produces valid results. Successful termination
implies the absence of deadlocks and can be verified using several techniques, e.g. [Hol04,
MM06, Loh07]. These techniques merely consider the control-flow of the process and
abstract from the data-flow. A valid result for a business process is usually defined by
business constraints on the produced output, e.g. “A customer who ordered less than 100
items should not receive a discount”. The verification of such a business constraint depends
on the relations between different process variables: to be able to verify the above constraint
we need to know the relation between number of ordered items and calculated discount.
Such relations depend on both control-flow and data-flow.

We use a simplified price calculation process that is a part of an onlineshop process to
illustrate the concepts of our approach. The basic idea of the process presented in Figure 1
is to determine the price of an item depending on the amount of ordered items. A discount
is given based on the subtotal. The process receives the number of ordered items n and
determines the item price dependent on n. If the customer has ordered more than 100 items,
they can buy each for 10AC, otherwise a price of 20ACper unit is offered. After the subtotal
is calculated, the customer gets 10% discount if it is between 1.000AC and 2.000AC and 20%
discount if the subtotal exceeds 2.000AC. The total sum s is sent back to the customer. The
process contains both graph-based (flow) and block-structured (if) constructs to show

lastname@iaas.uni-stuttgart.de
{smoser|kschaef}@de.ibm.com

link1 link2

Figure 1: Price calculation process

that the presented approach is capable of handling both.

Assume that a business analyst wants to ensure that the modelled process satisfies the
following business constraints: “A customer who ordered less than 200 items should not
receive a discount of more than 10% ” and “If the customer ordered 50 items or more,
they should get a discount”. To enable the verification of these constraints, the relations
between the variables s and n have to be analysed: At first glance, the control flow decision
made in the if activity considers the value of s only and does not depend on the decision
made in the preceding flow activity. However, if the number of ordered items exceeds 100
(n > 100), then we know that A1 will be executed, and thus s = 10∗n > 10∗100 = 1000.
With this knowledge, we can conclude that the if construct will never be skipped, meaning
the customer will be assured of a discount. This analysis is only possible if we know the
relation between s and n, namely s = 10 ∗ n, and know the condition which enables this
relation, namely n > 100. We also call such a condition the Execution Condition (EC) of
activity A1. Note that we do not make any assumptions on the values the variable n can
take, but only analyse the connections between data conditions and data manipulations.

The above example shows that a relationship between variables enables restrictions
on possible control flows to be analyzed. As an alternative example, the execution path
receive, A2, A3, reply is not possible: if n is 100, then the condition s > 2.000 evaluates
to false, because s was assigned a value of 2.000 after A2 occured.

In summary, the relationship between variables will have an impact on the evaluation of
the conditions that drive the control-flow. For this reason they play an important role in
the process analysis. In this paper, we present a technique that analyses these relations and
models them using logical assertions. Logical assertions capture the execution semantics of
a BPEL process and form the verification basis for the business constraints. The negation of
a business constraint is added to the verification base and checked to ensure it is unsatisfiable.
If it is unsatisfiable, then the business constraint is valid. Otherwise a counter example
violating this constraint is found.

The satisfiability of the modelled assertions is checked using the Satisfiability Modulo
Theories (SMT) solver Yices [DdM08]. An SMT solver solves satisfiability problems for

Boolean formulas containing predicates of underlying theories. Such theories can be, for
example, theories of arrays, lists and strings [B+06]. In addition, an SMT solver can be
extended with new theories as shown in [ND79]. To present the proposed approach, we
consider the theory of the linear arithmetic.

The remainder of this work is organized as follows: Section 2 presents how the execution
condition can be derived for each activity in a BPEL process. Section 3 shows how a BPEL
process can be analysed and modelled with logical assertions. The verification of business
constraints within the modelled context is presented in Section 4. Section 5 compares the
presented approach with related work and 6 concludes and provides an outlook on future
work.

2 Determining Execution Conditions

An execution condition of an activity is a Boolean expression that is constructed recur-
sively by analysing all conditions that have to be satisfied to enable the execution of this
activity. The following conditions have to be analysed:

1. A flow activity models concurrency. Additional synchronisation between activities
can be modelled with links. Each activity in a flow can have an arbitrary number
of incoming and outgoing links. Each link has exactly one source and one target
activity and expresses the synchronisation dependency between them. Each link
has a transition condition, which is evaluated if the source activity was successfully
executed. The transition condition is an arbitrary1 XPath expression of return type
Boolean.

If a transition condition is not explicitly defined, the link gets a default transition
condition true . Each link has a status that can be either unknown, negative or positive.
A link status can become positive if and only if the source activity of the link was
successfully executed and the transition condition of the link evaluates to true. If
the source activity was skipped or the transition condition evaluates to false, the
link status becomes negative. This is called dead path elimination (DPE). More
information regarding flow semantics and DPE is given in [OAS07, C+03]. Each
activity in a flow has a join condition. A join condition is a Boolean function over
the status values of the incoming links. The default join condition is a disjunction of
all incoming link status values.

According to the flow semantics described above, the execution condition (EC) of an
activity A can be recursively constructed as follows:

EC(A) = JC(A)
JC(A) = f(S(L1)...S(Ln))

∀i ∈ [1..n] : S(Li) = Li.tc ∧ EC(Li.source), where

1Recall that in this work we use linear arithmetic theory and therefore consider linear arithmetic expressions
only

A denotes an activity in a flow with L1,..., Ln incoming links (or rather A is the
target of L1,..., Ln), JC(A) denotes the join condition of the A, Li.tc denotes the
transition condition of the link Li, Li.source denotes the source activity of the link
Li, S(Li) denotes the status of the link Li and f(. . .) is an arbitrary Boolean function,
which specifies the join condition [OAS07].

In example of Figure 1 the flow activity contains three activities. The receive

activity does not have any incoming links, therefore both its join and execution
condition are true. Activities A1 and A2 have one incoming link and the default join
condition. ThereforeEC(A1) = JC(A1) = S(link1) = link1.tc∧EC(receive) =
link1.tc ∧ true = link1.tc = n > 100

2. In an if activity, the branch conditions are evaluated from left to right and the first
branch where a condition that evaluates to true is taken. If no condition evaluates to
true and no else branch exists, the if activity immediately completes. Therefore, for
an if with n conditional branches with the corresponding conditions C1, ..., Cn and
an else-branch, the execution condition for each branch is constructed as follows:

∀i ∈ [1..n] : EC(branchi) = ¬C1 ∧ ... ∧ ¬Ci−1 ∧ Ci

EC(else) = ¬C1 ∧ ... ∧ ¬Cn

Note that this modelling ensures that the execution condition of the branch j cannot
evaluate to true , although a branch i exists with i < j and EC(branchi) = true .

As an example, consider the if in Figure 1. It contains two branches with the
conditions cond1 = s > 2.000 and cond2 = s > 1.000. Thus, the execution
conditions of activities A3 and A4 become: EC(A3) = cond1 and EC(A4) =
¬cond1 ∧ cond2.

3. In a pick activity, the first received message or the timeout event decides, which
branch is taken. Without considering any interacting partner, the branch choice is
non-deterministic. To model this, each of the branches gets a Boolean attribute fired .
Assuming that this attribute can only be set to true if and only if the corresponding
branch is chosen, the execution condition of each branch in a pick P withB1, ..., Bn

branches is modelled as follows:

∀i ∈ [1..n] : EC(Bi) = Bi.fired

To model the property that only one of the branches can actually be chosen, the
following constraints are used:

∀i ∈ [1..n] : Bi.fired → ∀j ∈ [1..n](j 6= i→ ¬Bj .fired)∨
i∈[1..n]

Bi.fired

A more precise branch-choice semantic has to consider the partner process. Because
of the space limitations, we don’t consider it here. The complete pick semantic
modelling is described in [Mon08].

In addition, each structured activity influences its children: if a structured activity is
skipped, then all of its children are also skipped. An activity will only be skipped if its
execution condition evaluates to false. That means the execution condition of an activity
depends on the execution conditions of its parent: if a structured activity P with the
execution condition C contains children activities A1,..., An, then the execution conditions
of each childAi takes the formCi∧C. HereCi denotes the combination of other conditions
that have impact upon the execution of Ai and is derived as presented above.

In the example shown in Figure 1 the execution conditions of all structured activities,
namely if and flow, are equal true. Therefore all derived execution conditions remain
unchanged.

Currently the loops are unfolded and thus can be mapped to a set of the if-constructs.
We investigate the loop invariants to improve this technique. The extension of the proposed
approach with scopes, fault- and compensation handlers is also addressed in ongoing
work.

3 Analysing BPEL Processes

There are several possible executions of the same BPEL process. Executions vary in the
executed activities and in their execution order. Input to the process and variable relations
determine which activities are executed and the synchronisation dependencies between
activities determine their execution order. The relations between variables are defined in
assign activities. If an assign activity is executed, then the relations defined in this activity
become valid. Therefore, the execution condition of an assign activity is the enabling
condition for the relations defined in this activity. To be able to evaluate an execution
condition, we need to know which relations are valid at the point of evaluation time. For
this purpose, we need to know which values each variable can take at the point of evaluation.
This depends on the activities that may have written to this variable. Such activities are
called possible writers and can be determined for each variable access using the Concurrent
Static Single Assignment (CSSA) representation of a BPEL process. In the following, we
begin by describing the CSSA form of BPEL in Section 3.1. In Section 3.2 we show how
the synchronisation dependencies captured in the CSSA form are modelled using logical
assertions. Finally, Section 3.3 presents how the relations between variables are modelled.

3.1 CSSA Representation of BPEL Processes

The Static Single Assignment (SSA) form is an intermediate representation that is used
to facilitate program analysis and optimisation [C+91]. The SSA form can be characterised
through two properties. First, each reference to a name corresponds to the value produced at
precisely one definition point giving the single assignment property. The single assignment
property is achieved by giving a unique index to each occurrence of the original variable
on the left side of an assignment (when it is reassigned). Second, it identifies the points in

receive(n1)

link1_tc := (n1 > 100)

link2 tc := (n1 <= 100)link2_tc := (n1 <= 100)

s1 := 10*n1 s2 := 20*n1A1 A2

EC(A1) = link1_tc EC(A2) = link2_tc

s3 := φ (s1, s2)

cond1 := (s3 > 2000)cond1 := (s3 > 2000)

cond2 := (s3 > 1000)
EC(A3) = cond1 EC(A4) = ¬ cond1 ∧ cond2

s4 := 0.8*s3 s5 := 0.9*s3

s6 := φ (s3 s4 s5)

A4A3

s6 := φ (s3, s4, s5)

reply(s6)

Bring into CSSA form without conditions…
Figure 2: Simplified CSSA representation of the price calculation process

the computation where values from different control-flow paths merge. At a merge point,
several different SSA names, corresponding to different definitions of the same original
name, may flow together. To ensure the single-assignment property, the construction inserts
a new definition at the merge point; its right hand side is a pseudo-function called a φ-
function that represents the merge of multiple SSA names. As parameters the φ-function
contains all variables written by possible writers. Due to the uniqueness of variable names,
there is no need to distinguish between variables and activities. Thus, we use the term
“possible writers” also for the variables, which can be uniquely mapped to the corresponding
activity.

While SSA form is suitable for the representation of sequential program execution, it
cannot deal with the parallel constructs. To analyse the parallel execution, an extension to
the SSA form, called Concurrent Static Single Assignment (CSSA) is used [LMP97]. The
idea of the CSSA form is that it summarises the interleaving information for conflicting
variables in an explicitly parallel program through the use of π-functions. The values of all
conflicting variables are well defined by the π-function at the point where the π-function is
placed and are represented via parameters of this function. Like the SSA form, the CSSA
form has the property that all uses of a variable are reached by exactly one assignment to
the variable.

The approach described in [M+07] shows how to obtain a CSSA representation for a
BPEL process. Figure 2 shows the simplified CSSA representation of the price calculation
process from Figure 1. For readability, the nodes representing implicit join conditions,
which in our case are equal to the status of the incoming link, are skipped.

The CSSA representation captures all accesses to the process variables. The link
transition conditions, the activity join conditions and the if branch conditions are each
represented as single nodes. Each node defines a unique variable that represents the

corresponding condition. These variables are used for modelling an activity’s execution
conditions.

3.2 Modelling Synchronisation Dependencies

The synchronisation dependencies are captured within the CSSA representation. An
activity B has a synchronisation dependency on activity A if there exists a path from A
to B in the CSSA graph. We assume that each assign activity writes only one variable,
and thus that dependencies between activities can be considered as dependencies between
corresponding written variables.

For each assign activity A let WA denote the variable written in A. We define a Direct
Dependency Set D(WA) as follows: D(WA) = {WA′ | there is a path from A′ to A which
does not contain any other assign activity}

The synchronisation dependencies define the irreflexive partial order on activities exe-
cution. To model this partial order, and therefore the constraints on possible executions,
each variable WA gets an order attribute. This attribute is of type Integer. Our goal is to
specify the constraints on how these attributes can be assigned and an SMT solver assigns
the concrete values.

Let A denote the set of all assign activities. We constrain all possible executions of the
assign activities to those that are allowed by the specified synchronisation dependencies as
follows:

∀A ∈ A,∀WA′ ∈ D(WA) : WA.order > WA′ .order

Note that parallel activities do not have any synchronisation dependencies. Therefore, the
variables written in such activities do not get mutual constraints. This corresponds to the
non-determinism within parallel constructs.

3.3 Modelling Relations Between Variables

The relations between variables are defined by assign activities. The evaluation of the
execution condition of an assign activity decides whether this relation is valid. To model
these relations each variable gets an ec and a val attributes. The Boolean ec attribute
defines the execution condition of the activity, in which this variable is written. The val
attribute denotes the value of this variable. Note that the actual values are not necessarily
known. For example, for the assign activity A1: s1 := 10 ∗ n1 we specify a constraint
s1.val = 10 ∗ n1.val. Even if the actual value of n1 is not known, the assertion captures
the dependency between the values of s1 and n1.

An assign activity A will only be executed if its execution conditions EC(A) evaluates
to true. Let WA denote the variable written in A and f(x1,, xn) denote the right side
of A. In this work f(x1, ..., xn) can only be a φ-, π or a linear arithmetic function. The

relation between variables defined by A is modelled as follows:

WA.ec = EC(A)
WA.ec→WA = f(x1, ..., xn)

According to these rules, we specify the following assertions for A3 and A4:

cond1 = s3 > 2000 cond2 = s3 > 2000
s4.ec = cond1 s4.ec→ s4.val = 0.8 ∗ s3.val
s5.ec = ¬cond1 ∧ cond2 s5.ec→ s5.val = 0.9 ∗ s3.val

In case f(x1, ..., xn) is a linear arithmetic expression, it is mapped one to one, as the
example for the activities A3 and A4 above shows. To model the assigns with the φ- and
π- functions on the right side, we need to specify their selection semantics. The selection
semantics defines the rules for the selection of the effective writer. In each single execution
of a process each variable has only one effective writer, namely the one that wrote the
variable which is used in the current execution. For example, consider the if construct
in Figure 1. There are three possible executions for this if: the left branch is taken, the
right branch is taken or the if is skipped. For each of these executions the value of s6 is
clearly defined: in the case of the left branch it becomes s4, in the case of the right branch
it becomes s5 and in the skipped case it becomes s3. This describes the selection semantic
of the φ(s3, s4, s5)-function for our example.

The φ-function is synchronised on the possible writers listed as parameters of the φ-
function. Therefore, the last writer is the effective writer. Thus, the selection semantic of a
φ-function is modelled as follows: If xi = φ(xi1 ,, xin

), then we define the following
constraints on the value of xi, where xik

denotes the effective writer:∨
k∈[1,n]

(
(xi.val = xik

.val) ∧ xik
.ec ∧

∧
l∈[1,n],l 6=k

(xil
.ec→ (xik

.order > xil
.order))

)

For our example, the φ-node s6 = φ(s3, s4, s5) is modelled by the following assertion:

(s6.val = s3.val) ∧ s3.ec ∧ (s4.ec→ (s3.order > s4.order))
∧ (s5.ec→ (s3.order > s5.order))

∨ (s6.val = s4.val) ∧ s4.ec ∧ (s3.ec→ (s4.order > s3.order))
∧ (s5.ec→ (s4.order > s5.order))

∨ (s6.val = s5.val) ∧ s5.ec ∧ (s3.ec→ (s5.order > s3.order))
∧ (s4.ec→ (s5.order > s4.order))

The assertions specified for A3 and A4 together with the above assertion for the φ-
function model the relations between the variables s3, s4, s5, s6, cond1, cond2. For ex-
ample, the value assignments s3 = 1000; cond1 = false; cond2 = false; s4 = any ; s5 =

any ; s6 = s3 = 1000 satisfy these assertions, while the assignment s3 = 1000; cond1 =
false; cond2 = false; s4 = any ; s5 = any ; s6 = s3 = 900 does not.

While a φ-function chooses an effective writer after all possible writers are executed,
the assertions for the π-function should consider the possibility that some of the possible
writers defined in the π-function can actually be executed after the assign activity that uses
the value of the π-function. In addition, because the possible writers of the π-function are
not necessarily synchronised, we have to explicitly model the property that a variable has
to be written before it can be used as the value of the π-function. Collectively, we model
the selection semantic of a π-function as follows:

If xi = π(xi1 ,, xin), then we define on the value of xi the following constraints:∨
k∈[1,n]

(
(xi.val = xik

.val) ∧ xik
.ec ∧ (xi.order > xik

.order) ∧

∧
l∈[1,n],l 6=k

(xil
.ec→ ((xik

.order > xil
.order) ∨ (xil

.order > xi.order)))
)

Compared to the φ-function, we have two new clauses. xi.order > xik
.order models

the fact that xik
has to be written before xi can read it and xil

.ec → ((xik
.order >

xil
.order) ∨ (xil

.order > xi.order)) states that if any other possible writer is written
(xil

.ec = true), then it is either written before xik
or after xi. Otherwise xi would read the

value of xil
.

4 Business Constraints Verification

In the previous section we showed how the logical assertions could be used to capture
the relationships between BPEL process variables. These assertions form the basis for the
business constraints verification. To verify a business constraint, its negation is modelled as
an assertion and added to the evaluation basis. If the obtained combination of assertions
cannot be satisfied, then the business constraint itself is fulfilled. Otherwise an assignment
to the process variables violating this constraint will be found.

Let C denote the conjunction of the assertions modelling the verification basis. Note
that C is fulfilled for the modelled process. For a given business constraint let B denote
the corresponding logical assertion. For the business constraint to be always fulfilled for
the modelled process the formula C → B has to be valid. To prove this, we verify the
satisfiability of its negation:

¬(C → B) = C ∧ ¬B

If it cannot be satisfied, then C → B is valid and therefore the business constraint B is
fulfilled for our process model.

As an example we show how the business constraints defined in Section 1 can be verified
for the price calculation process. We assume that the basis is already modelled as shown in

Section 3. So far this basis is satisfiable with all assignments to the variables, which are
possible in the real process execution.

Assume we want to verify the following business constraint: “A customer who ordered
less than 200 items should not receive a discount of more than 10%”. The negation of this
rule is represented with the following assertion:

(n1.val < 200) ∧ s4.ec

Here s4 is the variable written in the activity A3, which calculates a 20% discount. This
assertion assumes that there is a possible configuration of the variables that satisfies the fact
that the customer orders less than 200 items and gets 20% discount. Alternatively it can be
expressed with the following assertion:

(n1.val < 200) ∧ (s6.val < 0.9 ∗ s3.val)

If one of the above assertions is added to the modelled verification basis, it becomes
unsatisfiable. In other words, the business constraint is fulfilled. This is due to the fact
that the dependency between n and s is captured within the basis assertions. Therefore if
100 < n1 < 200 ⇒ link1 tc = true ⇒ s1 = 10 ∗ n1 < 2000 ⇒ s3 = s1 ⇒ cond1 =
false ⇒ the customer will not get 20% discount. If n1 ≤ 100⇒ link2 tc = true ⇒ s2 =
20 ∗ n1 < 2000⇒ s3 = s2 ⇒ cond1 = false ⇒ customer will not get 20% discount.

Analogous to the above, for the property “If the customer ordered 50 items or more,
then they should receive a discount” the corresponding assertion, which corresponds to the
negation of this property, is:

¬((n1.val ≥ 50)→ (s4.ec ∨ s5.ec))

This assumes that a customer who ordered 50 or more items did not receive a discount.
Alternatively, this rule can be modelled as follows:

¬((n1.val ≥ 50)→ (s6.val < s3.val))

In this case, Yices finds variable assignments that satisfy the modelled context. This
model contains n1 = 50, which means that when the customer orders 50 items, they do not
receive any discount2.

5 Related Work

An overview of existing BPEL formalizations and verification approaches is provided
in [BK06]. We present a summary of the presented approaches here.

2The input for Yices is available at http://www.iaas.uni-stuttgart.de/forschung/
pricecalculation.ys.

http://www.iaas.uni-stuttgart.de/forschung/pricecalculation.ys
http://www.iaas.uni-stuttgart.de/forschung/pricecalculation.ys

Petri net approaches abstract from data-flow [MM06, Loh07]. For example, the decision
of which if branch is taken is made non-deterministically. Thus, in the example from
Figure 1 the execution path receive, A2, A3, reply becomes possible, which can never
happen and thus leads to wrong verification results. The approach of [YTYL05] transforms
BPEL to Coloured Petri nets. Here, each type of message is transformed to a token with a
different colour. However, the mapping does not consider relations between the conditions
and variables.

The Promela approach transforms a BPEL process into Promela and verifies it with
the SPIN model checker [FBS04, Nak05, FFK05]. SPIN itself cannot handle large data
domains. SPIN works with explicit states and therefore has to check all possible values
an integer variable n can take, which is infinite [Hol04]. Even if the value of n is bounded
by the maximum integer value, the number of states explodes. For example, if x is bound
to [r1 . . . r2 and y to [s1 . . . s2, then SPIN has to consider (r2 − r1 + 1) ∗ (s2 − s1 + 1)
states. The approach presented in [BGS07] is similar to the Promela approaches, but uses
Bogor [RDH03] to do the actual model checking. As the Promela approach, it cannot
handle the large data domains.

An approach based on abstract state machines (ASM) is presented in [FR05]. While the
mapping covers scopes, it does not consider the relations between conditions and variables.
Approaches based on the π-calculus are presented in [WDW07, Fad04, LM07]. As with
the ASM approaches, these do not consider the relations between conditions and variables.

The approach presented in [PA08] transforms a BPEL process into a Java program
using B2J [Ecl08]. The Java model checker Java PathFinder (JPF, [VHB+03]) is then used
with the transformed program. The model checker uses explicit states for each variables
combination and therefore cannot handle large or unbound data domains.

When it comes to the determination of data-flow in BPEL processes, the control-flow has
to be analyzed. Current work on data-flow analysis are presented in [M+07], [KKL08] and
[ZZK07]. The approach presented in [M+07] is based on CSSA, the approach of [KKL08]
is based on abstract interpretation, and the approach of [ZZK07] is based on automatons.
All of these approaches determine a set of possible writers for each use of a variable.
However, all of them do not consider variable relations and the selection semantics. Thus,
all of them return {A1,A2} as possible writers for A3, which is an over-approximation.
This over-approximation can be improved if the execution conditions for each activity were
considered.

We showed in [Mon08] how the approach can be used to model and to verify ser-
vice communication. A proof of concept has been provided using IBM WebSphere as
implementation platform.

6 Conclusion and Outlook

We analysed the relations between variables and showed their influence on the data-flow.
The presented verification algorithm uses the results of this analysis and enables verification
of business constraints. The BPEL process execution semantics, the variable relations and

the business constraints were modelled using logical assertions. These assertions were
verified using the SMT solver Yices, that is extensible with different theories. In this
work we presented how the linear arithmetic theory can be used to enable business rules
verification. Our approach is the first one which goes beyond simple control flow analysis
and considers the dependency between control flow and data flow. That is not possible with
the other approaches.

The mapping to logical assertions presented in this work excluded BPEL scopes, which
is a part of our ongoing work. Furthermore, we investigate the other possibilities to handle
the loop constructs, e.g. using loop invariants. We also plan to use the results of this work to
analyse interacting processes and choreographies expressed in BPEL4Chor [D+07]. This
should enable the analysis and combination of the variables relationships between different
partners as shown in [Mon08].

Acknowledgments The work published in this article is partially funded by the MAS-
TER project under the EU 7th Framework Programme (contract no. FP7-216917). Oliver
Kopp is funded by the German Ministry of Education and Research (project Tools4BPEL,
project number 01ISE08B).

References

[B+06] Bernhard Beckert et al. Intelligent Systems and Formal Methods in Software Engineering.
IEEE Intelligent Systems, 21(6):71–81, 2006.

[BGS07] Domenico Bianculli, Carlo Ghezzi, and Paola Spoletini. A Model Checking Approach
to Verify BPEL4WS Workflows. In IEEE International Conference on Service-Oriented
Computing and Applications (SOCA ’07), pages 13–20. IEEE computer society, 2007.

[BK06] Franck van Breugel and Maria Koshkina. Models and Verification of BPEL. http:
//www.cse.yorku.ca/˜franck/research/drafts/tutorial.pdf, 2006.

[C+91] Ron Cytron et al. Efficiently Computing Static Single Assignment Form and the Control
Dependence Graph. ACM Transactions on Programming Languages and Systems, 13(4),
October 1991.

[C+03] Francisco Curbera et al. Exception Handling in the BPEL4WS Language. In Conference
on Business Process Management, pages 276–290. Springer, 2003.

[D+07] Gero Decker et al. BPEL4Chor: Extending BPEL for Modeling Choreographies. In IEEE
International Conference on Web Services. IEEE Computer Society, 2007.

[DdM08] Bruno Dutertre and Leonardo de Moura. The YICES SMT Solver, 2008. Available at
http://yices.csl.sri.com/.

[Ecl08] Eclipse Foundation. BPEL to Java (B2J) Subproject, 2008. http://www.eclipse.
org/stp/b2j/.

[Fad04] M. Fadlisyah. Using the π-Calculus for Modeling and Verifying Processes on Web
Services. Master’s thesis, Insitute for Theoretical Computer Science, Dresden University
of Technology, 2004.

http://www.cse.yorku.ca/~franck/research/drafts/tutorial.pdf
http://www.cse.yorku.ca/~franck/research/drafts/tutorial.pdf
http://yices.csl.sri.com/
http://www.eclipse.org/stp/b2j/
http://www.eclipse.org/stp/b2j/

[FBS04] Xiang Fu, Tevfik Bultan, and Jianwen Su. Model checking XML manipulating software.
In IEEE Int. Symp. on Software Testing and Analysis. ACM, 2004.

[FFK05] Jesús Arias Fisteus, Luis Sánchez Fernández, and Carlos Delgado Kloos. Applying
model checking to BPEL4WS business collaborations. In Proceedings of the 2005 ACM
symposium on Applied computing, pages 826–830. ACM, 2005.

[FR05] D. Fahland and W. Reisig. ASM-based semantics for BPEL: The negative Control Flow.
In 12th International Workshop on Abstract State Machines, pages 131–151, March 2005.

[Hol04] Gerard J. Holzmann. SPIN Model Checker, The: Primer and Reference Manual. Addison-
Wesley Professional, 2004.

[KKL08] Oliver Kopp, Rania Khalaf, and Frank Leymann. Deriving Explicit Data Links in WS-
BPEL Processes. In IEEE International Conference on Services Computing. IEEE Com-
puter Society Press, 2008.

[LM07] Roberto Lucchia and Manuel Mazzara. A pi-calculus based semantics for WS-BPEL.
Journal of Logic and Algebraic Programming, 70(1):96–118, January 2007.

[LMP97] Jaejin Lee, Samuel P. Midkiff, and David A. Padua. Concurrent Static Single Assignment
Form and Constant Propagation for Explicitly Parallel Programs. In International Workshop
on Languages and Compilers for Parallel Computing. Springer, 1997.

[Loh07] Niels Lohmann. A Feature-Complete Petri Net Semantics for WS-BPEL 2.0. In Interna-
tional Workshop on Web Services and Formal Methods. Springer, 2007.

[M+07] Simon Moser et al. Advanced Verification of Distributed WS-BPEL Business Processes
Incorporating CSSA-based Data Flow Analysis. In IEEE International Conference on
Services Computing, July 2007.

[MM06] Axel Martens and Simon Moser. Diagnosing SCA Components UsingWombat. In Confer-
ence on Business Process Management. Springer, 2006.

[Mon08] Ganna Monakova. Ontology Based Partner Service Discovery Using a First-Order Logic
Representation for BPEL Process Models. Diploma thesis, University of Stuttgart, Institute
of Architecture of Application Systems, 2008.

[Nak05] Shin Nakajima. Lightweight formal analysis of Web service flows. Progress in Informatics,
1:57–76, November 2005.

[ND79] G. Nelson and Oppen D. Simplification by Cooperating Decision Procedures. ACM
Transactions on Programming Languages and Systems, 1(2):245–257, 1979.

[OAS07] OASIS. Web Services Business Process Execution Language Version 2.0, 2007.

[PA08] P. Parizek and J. Adamek. Checking Session-Oriented Interactions between Web Services.
In Proceedings of 34th EUROMICRO SEAA conference, pages 3–10. IEEE Computer
Society, 2008.

[RDH03] Robby, Matthew B. Dwyer, and John Hatcliff. Bogor: an extensible and highly-modular
software model checking framework. In 9th European software engineering conference
(ESEC/SIGSOFT FSE), pages 267–276. ACM, 2003.

[VHB+03] Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park, and Flavio Lerda.
Model Checking Programs. Automated Software Engineering, 10(2):203–232, April 2003.

[WDW07] Matthias Weidlich, Gero Decker, and Mathias Weske. Efficient Analysis of BPEL 2.0
Processes using pi-Calculus. In Proceedings of the IEEE Asia-Pacific Services Computing
Conference (APSCC). IEEE Computer Society, 2007.

[YTYL05] YanPing Yang, QingPing Tan, JinShan Yu, and Feng Liu. Transformation BPEL to
CP-Nets for Verifying Web Services Composition. In International Conference on Next
Generation Web Services Practices (NWeSP), pages 137–142. IEEE Computer Society,
2005.

[ZZK07] Yongyan Zheng, Jiong Zhou, and Paul Krause. Analysis of BPEL Data Dependencies. In
Proceedings of the 33rd EUROMICRO SEAA conference, pages 351–358. IEEE Computer
Society, 2007.

All links were last followed on October 20, 2008.

	cover.pdf
	Foliennummer 1

