
© ACM 2010
This is the author's version of the work. It is posted here by permission of ACM for
your personal use. Not for redistribution. The definitive version is available at
ACM: http://doi.acm.org/10.1145/1967486.1967598

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

@inproceedings{ChorSphere4Sim,
 author = {Oliver Kopp and Katharina G\"orlach and Frank Leymann},
 title = {Extending Choreography Spheres to Improve Simulations},
 booktitle = {Proceedings of the 12th International
 Conference on Information Integration and Web-based
 Applications \& Services (iiWAS '10)},
 year = {2010},
 pages = {694-697},
 publisher = {ACM},
 doi = {10.1145/1967486.1967598},
 acmid = {1967598}
}

:

Oliver Kopp, Katharina Görlach, and Frank Leymann. 2010. Extending
choreography spheres to improve simulations. In Proceedings of the 12th
International Conference on Information Integration and Web-based Applications &
Services (iiWAS '10). ACM, New York, NY, USA, 696-699.
DOI=10.1145/1967486.1967598 http://doi.acm.org/10.1145/1967486.1967598

Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{kopp, goerlach, leymann}@iaas.uni-stuttgart.de

Extending Choreography Spheres to
Improve Simulations

Oliver Kopp, Katharina Görlach, Frank Leymann

Institute of Architecture of Application Systems

http://doi.acm.org/10.1145/1967486.1967598

Extending Choreography Spheres to Improve Simulations

Oliver Kopp, Katharina Görlach, Frank Leymann
Institute of Architecture of Application Systems

University of Stuttgart
70569 Stuttgart, Germany

lastname@iaas.uni-stuttgart.de

ABSTRACT
In simulations scientific workflows are used to coordinate
complex implementations incorporating different kinds of
simulations. Typically, the amount of data to be analyzed is
huge and it is impossible to store all intermediate or alter-
native results. Thus, the access to data services has to be
coordinated such that applications read the right data and
do not overwrite one another. In this paper, we present a
possibility to coordinate different scientific simulations access-
ing and updating the same data using existing Web service
technologies: We extend the concept of choreography spheres
by allowing control-links between them and the property
“permeability” stating whether a cross-boundary link may be
traversed before the start or completion of a choreography
sphere. This paper is the first presenting a state model for
choreography spheres.

Categories and Subject Descriptors
H.4.1 [Information Systems Applications]: Office Au-
tomation—Workflow management

1. OVERVIEW
Scientific workflows typically deal with a huge amount of

data [2] which results in an extensive use of data storages such
as databases. Using workflow technology for scientific simu-
lations arises particular challenges such as the automation
of scientists work during a simulation. Naturally scientists
successively improve their simulation models with the help
of multiple simulation runs varying the simulation model
or simulation method. In between the scientist compares
simulation results with the reality and decides about the
possibly needed improvement.

For instance, a linguist studies names and wishes to un-
derstand their origins. He has some hypotheses about the
evolution of names, e. g. randomly arising nicknames, com-
pound names by marriage, and the lengthening with place
names. For evaluation of this hypotheses the scientist models
them in a simulation and compares the simulation run with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
iiWAS2010, 8-10 November, 2010, Paris, France.
Copyright 2010 ACM 978-1-4503-0421-4/10/11 ...$10.00.

the reality. In our example, the scientist utilizes the Monte
Carlo method [6] as simulation method. It is a stochastic
simulation method for iteratively evaluating a deterministic
model using sets of random numbers as inputs. A simulation
can typically involve over 10,000 iterations. This simulation
method exists in diverse types and can be implemented by
Web services. In our example the Monte Carlo method is
parameterized with the simulation model in order to compute
the evolution of names based on the name universe. The
simulation model is built by a name universe in conjunction
with a mathematical representation of the user hypotheses.
Since the linguist “only” has hypotheses, there exist some
parameters correlated to the hypotheses, which cannot be
known by the scientist; e. g. probability distributions of aris-
ing nicknames. In the simulation model such values are
provided by adjustable parameters that the scientist wants
to optimize with the help of different simulation workflows.

In case the user wants to use multiple types of the simu-
lation method we can improve the performance of the sim-
ulation by parallel execution of simulation workflows each
implementing one simulation method. Since the simulation
methods work on the same simulation model, the model is
context information for the parallel executed workflows and
should be hold outside the workflow models. The linguist
in our example, however, defines three different simulation
workflows, which vary in the utilized Monte Carlo method
and manipulations on adjustable parameter values (see Fig-
ure 1). First of all, the simulation workflows fetch values
for the simulation model from an external database. Af-
terward the values of adjustable parameters are optionally
manipulated and passed together with the name universe
to the particular Monte Carlo method. After execution a
resulting name universe and some interesting values about
name evolution are returned. The writing service manages
the assumption of improved values in the simulation model.
In this service the user has to specify a condition that decides
whether a simulation result is nearer to the real world than
another. If the condition is fulfilled manipulated values of
adjustable parameters (and possibly the name universe) are
written into the database. As the data is stored at the same
place in the database, it has to be ensured that each simu-
lation workflow reads the data before the data is updated
by another workflow. In order to automate such work of
scientists external coordination techniques have to be ap-
plied if the simulation and the simulation database do not
implement a locking concept allowing only the best result
to be stored. This paper presents a possible coordination
technique based on choreography spheres [9]. Choreography

Fetch Params
From DB

Monte Carlo
Method 1

Send Result

Monte Carlo
Method 2

Send Result

Fetch Params
From DB

Monte Carlo
Method 3

Send Result

Manipulate
Hypotheses

Manipulate
Hypotheses

Name Universe,
Hypotheses,

...

Fetch
Last

Result
from DB

Update
X’ with X

Compare
X with X’

X’ is not better than X

Fetch Params
From DB

Figure 1: Scenario using choreography spheres

spheres are a technique for placing arbitrary activities of
different participants in a choreography in one transaction.

In the scenario, two choreography spheres are defined
and connected via an additional control link (see Figure 1).
Sphere S1 is used to combine the three read operations into
a single unit of work. Sphere S2 combines the sending opera-
tions. In each simulation process, the existing control link
from “Fetch Params From DB” to “Manipulate Hypotheses”
(“Monte Carlo Method” in the case of simulation workflow 2)
and the existing control link from “Monte Carlo Method” to
“Send Result” are crossing the boundary of a choreography
sphere. S1 is configured to let the control flow pass the cross-
boundary control link (“permable”=“both”). S2 is configured
to defer the execution of the activities inside until S2 is acti-
vated by the incoming control link (“permeable”=“out”). As
a result the cross-boundary control link from “Fetch Params
From DB” is processed as usual and the control link to “Send
Result” is deferred until all data is fetched. In that way it is
ensured that simulation results are written after all workflows
have read the initial simulation data.

The choreography spheres used in the scenario do not add
custom fault or compensation handlers. Compensation han-
dlers are not necessary as simulation workflows scientists
simply rerun simulations and place less value on compensa-
tion. A fault can happen at all activities of the workflow.
Regardless where the fault happens, the choreography spheres
propagate the fault to the other workflows, which finally leads
to a termination of each process.

The remainder of this paper is structured as follows: Sec-
tion 2 provides information on the background and related
work. Section 3 presents the overall concept of choreogra-
phy spheres, the property “permeability”, and a state model.
Section 4 sketches alternative approaches solving the coordi-
nation problem. Finally, Section 5 concludes and provides
an outlook on future work.

2. BACKGROUND AND RELATED WORK
In this paper, we use BPEL4Chor [5] as choreography

modeling technique. BPEL4Chor builds on the Web Services

Business Process Execution Language (BPEL for short) [11]:
Each participant is modeled by an abstract BPEL process,
which are interconnected using message links listed in the
participant topology. As BPEL (and BPEL4Chor) do not
specify a graphical rendering method, we use BPMN 1.2 as
rendering as presented in [13].

A general evaluation of the Web Services Business Process
Execution Language in the context of scientific workflows
has been done in [1]. There, exception handling, user inter-
action, recovery and rollback mechanisms were identified as
advantages of BPEL in the scientific domain.

Karastoyanova et al. [7] present an event model for BPEL4WS
1.1, which allows monitoring of BPEL processes and modify-
ing BPEL behavior. A general usage is described in [8]: the
workflow engine publishes the events of each activity on a
JMS topic. Custom controllers are subscribed to the topic. A
dedicated custom controller may sent events to the workflow
engine in order to steer the behavior of the engine. In our
paper, a custom controller is implementing the behavior of
the choreography sphere.

The concept of spheres with transactional behavior has
been first introduced in [10]. The spheres were allowed to
overlap, but the semantics for choreography spheres was put
as future work. Currently, there exist no work on cross-
organizational transactions, where arbitrary activities may
be chosen to be coordinated. The only work adding cross-
process coordination capabilities to choreography models by
employing spheres is the concept of choreography spheres [9].
The work presented in this paper builds on that work.

3. CHOREOGRAPHY SPHERES
A choreography sphere is used to group activities of partic-

ipants in a BPEL4Chor choreography together and to assign
properties to the group. In [9], the Boolean properties “2PC”
and “compensatable” are used. In case a sphere has the
property “2PC”, the activities in a sphere are coordinated to
ensure an all-or-nothing behavior. The sphere has been called
“2PC sphere”. Control flow is allowed to leave the sphere as
soon as the sphere is completed (and not earlier). Control
flow is always allowed to enter the sphere. The property
of allowing control flow crossing the boundary of a sphere
regardless of its state is called “permeability”: A sphere can
be permeable for incoming control links as well as permeable
for outgoing control links. In the case of 2PC spheres, the
sphere is permeable for incoming links, but not permeable
for outgoing links: That means, the activities in the sphere
may start regardless of a start of the sphere. Control flow
crossing the boundary of the sphere may only be followed as
soon as all activities in the sphere completed.

Compensatable spheres are called“BPEL spheres” [9]. Sim-
ilar to a BPEL scope, a compensation handler is attached to
the sphere and is installed as soon as the sphere completes.
“BPEL spheres” are permeable for both incoming as well as
outgoing control links.

This paper introduces the configurable property “perme-
able” to a choreography sphere. Possible values are “none”,
“in”, “out” and “both”; with “both” being the default. This
enables control flow links crossing the boundary of a sphere
to be followed even if the sphere itself is not active. BPEL
offers the concept of isolated scopes, where outgoing control
flow is not allowed to leave the scope until the scope com-
pleted and thus are comparable to choreography spheres with
in-permeability. The difference to choreography spheres is

Initial

permeable=
out|both

joinCondition=false

joinCondition=
true

Dead

Inactive
Enable

Successors
permeable=

in|none

permeable=out|none

permeable=in|both
No more
activities

Executing

Terminating
Completed

Compen-
sated

Fault
Handling

Compensation
Handling

Fault during
execution of

nested activity

Fault
Propagation

Faulted

Fault thrown

Completed with Fault
Fault handled and no fault thrown

Compensation
necessary

Figure 2: Choreography sphere state model

that only one isolated scope may be active at the same time,
whereas choreography spheres may be active in parallel.

Regarding control flow, this paper introduces the connec-
tion of spheres with control links. For this paper, we disal-
low the control flow forming cycles and spheres to overlap.
Spheres may only contain activities in the positive control
flow of the workflow (and not in the exception handling flow).
We do not allow spheres to be partially or fully nested in a
loop. This requires more tracking effort in the custom con-
troller and is out of scope of this paper. Aspects of repeatable
constructs will be addressed in future work. The semantics
of the control links follows the semantics of control links of
BPEL. We disallow block-oriented control-flow modeling and
force dead-path elimination to be disabled.

The state model of a choreography sphere is presented in
Figure 2. A sphere is first in the state “Initial”. After one
participant of the choreography has been instantiated, the
sphere is in the State “Inactive”. As soon as all incoming
links are visited, the join condition is evaluated.

In case the join condition evaluates to false, the sphere is
dead. In case “permeable” is set to “in” or “both”, activities in
the sphere may currently execute or may have been executed.
Executing activities have to be terminated and completed
activities must be compensated. After termination and com-
pensation of all nested activities the sphere transitions to
the state “Dead”. In this state, no activity in the sphere may
execute any more. In case control flow reaches an activity in
the sphere, the activity is handled as dead activity.

In case the join condition evaluates to true, the sphere is in
the state “Executing”. In case “permeable” is set to “out” or
“none”, the sphere enables all activities in the state“Ready”to
execute. Otherwise, the activities already started execution—
independent of the state of the sphere. In all cases, the
sphere waits for all nested activities to be completed or being
dead. For instance, the latter is the case for activities in
if branches not chosen. After the execution is finished,
the subsequent state depends again on the setting of the
“permeable” property: in the case of “in” or “none”, activities
following the sphere and outgoing links of activities, where
the links are crossing the boundary of the sphere, may only
followed if the sphere has executed completely. These links
are followed in the state “Enabled Successors”. In the case
of “out” or “both”, these links (and activities following the
sphere) are executed as soon as the workflow model itself
visits them—independent of the state of the sphere.

Activities in a choreography sphere may fault. A fault is
raised by an activity either due to a BPEL internal fault such
as uninitializedVariable or a fault raised by an invoke
activity, which propagated a fault of a called Web service.
Both kinds of faults are treated the same way in BPEL: A
fault is propagated to the next enclosing scope. This scope

first terminates all running activities and subsequently looks
up a fault handler applicable for the current fault. In case
a specific fault handler is found, this fault handler is exe-
cuted. If no specific fault handler is found, the default fault
handler (catchAll) is called. In case this fault handler is
not explicitly modeled, it compensates all completed nested
activities and rethrows the catched fault. A choreography
sphere also has to handle faults of nested activities. Thus,
a choreography sphere extends local fault handling to cross-
partner fault handling: A choreography sphere interrupts
the hierarchy relation of scopes and nested activities. That
means, if an activity is nested in a scope and assigned to
a choreography sphere, this sphere handles the fault (state
“Fault Handling”). The behavior of a choreography sphere
with respect to fault handling is aligned to the behavior of a
BPEL scope: As soon as the fault reaches the choreography
sphere, the sphere terminates all running nested activities.
This also affects activities of activities residing at processes
not being the process where the fault is raised. In case mul-
tiple faults are raised, the first raised fault is handled and
the others are ignored. An explicit fault handler can include
arbitrary activities including compensation of nested activ-
ities and throwing a new fault (state “Fault Propagation”).
Choreography spheres also offer a default fault handler. If
this fault handler is not explicitly modeled, the default be-
havior is to compensate all completed nested activities and
to rethrow the fault. A fault thrown from a choreography
sphere is thrown to all processes where activities belong to
the choreography sphere. In case the property “permeable” of
the choreography sphere is set to “out” or “both”, the control
flow may have continued and the direct parent scope of the
activity of the sphere may have completed, too. To ensure a
consistent execution of the process, the fault is thrown in the
closest parent scope, which is running and where the activity
is nested in.

A choreography sphere is completed as soon as all enclosed
activities completed or are dead due to dead-path elimina-
tion (state “Completed”). An activity in the sphere may be
compensated due to a fault or compensation handler in its
parent scope. A compensation of an activity in a sphere leads
to an inconsistent state of the sphere, since part of the work
of the sphere is undone, while other work still has effects.
Thus, the sphere also compensates the other activities of the
sphere as soon as one activity gets compensated (state “Com-
pensation Handling”). This compensation happens also in
other processes. This leads to inconsistent states in the other
processes, too. Thus, the sphere raises a fault unableToCom-

plete to all running parent scopes of the activities nested
in the choreography sphere. The scope which has triggered
the compensation is excluded, as this handling ensures the
consistency in its process.

4. DISCUSSION
Employing choreography spheres with control links is not

the only solution to the coordination problem. Examples for
other solutions are: (i) explicitly modeled coordination of
the simulation workflows, (ii) customized WS-Coordination
protocol and (iii) locks in a customized database system.

Instead of using an additional modeling construct, the co-
ordination between the workflows can be modeled explicitly :
After fetching the parameters from the simulation database,
each workflow may send a “fetched” message to all other
workflows. The other workflows wait for the finished message
before writing the results back into the simulation database.
The drawback of this approach is that each simulation work-
flow has to be aware of the other workflows used. In case a
new parallel workflow is added, all other workflows have to
be adapted.

In the field of Web services, WS-Coordination is used to
coordinate participants [12]. Regarding the example scenario,
each workflow is a participant in the coordination. The stan-
dardized coordination protocols WS-BA and WS-AT cannot
be used to coordinate the simulation workflows as they are
targeted to transactions and not to synchronize read and
write operations the way required by the scenario. A pos-
sible customized coordination protocol is as follows: First,
each coordination participant sends a “read” message to the
coordinator. After the coordinator collected “read” from all
participants, it sends “write” message to each participant.
After receiving the “write” message, the participant is allowed
to write its result. This customized coordination protocol
may be realized in two ways: (a) putting the activities used
for WS-Coordination in the simulation workflows or (b) using
a BPEL engine, which is aware of the customized coordina-
tion protocol. Option (a) is similar to the general option (i),
where the coordination between the workflows is modeled
explicitly. The advantage of using WS-Coordination is that
existing workflows do not need to be adapted in case an
additional parallel workflow is added to the simulation or an
existing workflow is not used any more.

A customized database system may provide locks to ensure
that results are only written if the previous results are read [4].
The drawback here is that the database system has to be
adapted. A similar option is to implement a check-in/check-
out mechanism with branching and merging support. In case
the simulation results are too large, the database might not
be able to store all versions.

We do not claim that the choreography sphere solution
is the best solution in all cases. In case the simulation is
executed using BPEL workflows, choreography spheres seem
to be the most efficient option: A modeler can define a
choreography sphere where it is required. The sphere is then
either transformed to activities in the workflow or is directly
executed by a workflow engine. The modeler is not required
to model the coordination activities explicitly. A proof of
concept implementation of choreography spheres is based on
WS-Coordination and customized coordination protocols. It
is described in [3].

5. CONCLUSION AND OUTLOOK
This paper presented a state model for choreography

spheres and introduced control links connecting choreog-
raphy spheres. We have shown how choreography spheres
can be used to automate improvements of simulation models.

Especially, we have presented how a simulation can be en-
rolled by different workflows concurrently and how it can be
ensured that the input data is not overwritten by workflows
running in parallel. We position the proposed choreography
sphere extension as modeling artifact in scenarios where con-
currency control is not offered by the used services. One
may argue that the presented application scenario for chore-
ography spheres is a solution for a technical detail of the
whole simulation process and that the choreography sphere
is not used in the first step of choreography modeling, but
in the step toward execution. Nevertheless, the construct
offers an additional choice on the way from a choreography
to executable processes.

The concept has been presented as a solution to coordina-
tion issues in parallel scientific workflows. Our future work
includes an evaluation of the concept regarding general chore-
ography modeling. Questions driving our work are: What
is the performance of the approach compared with other
approaches? Which control flow constructs are needed to
connect choreography spheres? Does the concept of choreog-
raphy spheres ease choreography modeling? Is there a higher
understandability of the choreography models when using
choreography spheres instead of using existing constructs for
coordination?

6. ACKNOWLEDGMENTS
This work is partially funded by the DFG Cluster of Ex-

cellence “Simulation Technology” (EXC310).

7. REFERENCES
[1] A. Akram, D. Meredith, and R. Allan. Evaluation of

BPEL to Scientific Workflows. In Cluster Computing
and the Grid (CCGRID). IEEE, 2006.

[2] S. Bharathi et al. Characterization of Scientific
Workflows. In 3rd Workshop on Workflows in Support
of Large-Scale Science (WORKS08), 2008.

[3] S. Bors. A Runtime for BPEL4Chor Cross-Partner-
Scopes. Diploma thesis 2990, IAAS, 2010. (in German).

[4] G. Coulouris et al. Distributed Systems: Concepts and
Design. Addison-Wesley, 2005.

[5] G. Decker, O. Kopp, F. Leymann, and M. Weske.
Interacting Services: From Specification to Execution.
Data & Knowledge Engineering, April 2009.

[6] G. Fishman. Monte Carlo. Springer, Feb. 2003.

[7] D. Karastoyanova et al. BPEL Event Model. Technical
Report Computer Science 2006/10, IAAS, 2006.

[8] R. Khalaf, D. Karastoyanova, and F. Leymann.
Pluggable Framework for Enabling the Execution of
Extended BPEL Behavior. In WESOA. Springer, 2007.

[9] O. Kopp, M. Wieland, and F. Leymann. Towards
Choreography Transactions. In ZEUS 2009.

[10] F. Leymann. Supporting Business Transactions via
Partial Backward Recovery in Workflow Management
Systems. In BTW’95. Springer, 1995.

[11] OASIS. Web Services Business Process Execution
Language Version 2.0 – OASIS Standard, 2007.

[12] OASIS. Web Services Coordination (WS-Coordination)
Version 1.2, February 2009.

[13] D. Schumm et al. On Visualizing and Modelling BPEL
with BPMN. In 4th International Workshop on
Workflow Management (ICWM2009). IEEE, 2009.

	cover-ACM.pdf
	Slide Number 1

