
Institute of Architecture of Application Systems

A Framework for Optimized Distribution of Tenants
in Cloud Applications

Institute of Architecture of Application Systems,
University of Stuttgart Germany

in Cloud Applications

Christoph Fehling, Frank Leymann, Ralph Mietzner

University of Stuttgart, Germany
{fehling, leymann, mietzner}@iaas.uni-stuttgart.de

@inproceedings{FehlingLM10,
author = {Christoph Fehling and Frank Leymann and Ralph Mietzner},
title = {{A Framework for Optimized Distribution of Tenants in Cloud

Applications}},
booktitle = {Proceedings of the 3rd IEEE International Conference on Cloud

Computing, CLOUD 2010},
{2010}

:

year = {2010},
pages = {252‐‐259},
doi = {10.1109/CLOUD.2010.33}
publisher = {IEEE Computer Society}

}

© 2010 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted, y py g
component of this work in other works must be obtained from the IEEE.

A Framework for Optimized Distribution of Tenants in Cloud Applications

Christoph Fehling, Frank Leymann, Ralph Mietzner

Institute of Architecture of Application Systems
University of Stuttgart

Universitätsstr. 38, 70563 Stuttgart, Germany
firstname.lastname@iaas.uni-stuttgart.de

Abstract—To be successful a cloud service provider has to
target a preferably large customer group to leverage economies
of scale. Therefore an application offered as a service in the
cloud is often configurable regarding non-functional qualities,
such as location or availability. Since many of these qualities
depend on the resources on which the service is hosted, a large
number of computing environments has to be managed by the
service provider.

This paper analyses the challenges arising from such a
scenario and identifies several optimization opportunities orig-
inating from an intelligent distribution of users among the
functionally equal resources with different quality of services. A
framework enabling the development of distribution strategies
exploiting these opportunities is defined. It allows modeling
of resources, their deployment dependencies, and users with
specific demands. An architecture and prototype of a man-
agement system is introduced to handle the required resource
provisioning and user request routing. Several optimization
strategies are defined and their performance is evaluated using
statistical data of an existing cloud service provider.

Keywords-cloud, multi-tenancy, provisioning, SaaS

I. INTRODUCTION

Providing computing resources over a network is a busi-

ness model that currently gains widespread acceptance. A

customer accesses a resource or service hosted by a provider

instead of managing it on his own premise. Depending on

the type of resource offered this is called Infrastructure as a

Service (IaaS), Platform as a Service (PaaS), or Software

as a Service (SaaS). These * as a Service offerings are

typically subsumed under the term cloud computing [1]. One

significant aspect which makes these * as a Service offerings

successful, is the sharing of resources between customers,

also called tenants in this context. This allows providers to

exploit economies of scale by leveling the load of multiple

customers on the same infrastructure. To increase this effect

the number of targeted costumers has to be maximized.

One attempt is to provide a service that fits all customers.

However, as different customers have varying demands for

a service, this approach is often not feasible. To be able

to address a large customer base with different demands, a

provider must ”catch the long tail” [2] by offering multiple

variants of a service fitting different customers’ needs. The

potential of this approach is evident in Amazon’s success

on the book market which is largely based on selling

small amounts of very specific books to a large group of

customers with very specific individual interests. Analogous,

a SaaS providers can exploit the same effect by providing a

service with customizable non-functional qualities to address

different costumers. These often have different demands

regarding, for example, the location, security, availability,

and ultimately the resulting price of a service. However,

this introduces a complex challenge for the provider. Since

service qualities are often highly dependent on the used

computing infrastructure, a large number of computing

environments has to be managed and tenants have to be

assigned to the different resources of these environments

in an efficient manner. Thus, a framework is needed that

enables providers to model services with different quality of

service (QoS) and non-functional properties. The provider

can then use algorithms on top of this model to compute

efficient customer distributions that take requirements of the

customers into account.

After covering related work in Section II, such a frame-

work is introduced that deals with the optimized distribution

of customers in cloud applications built using a service-

oriented architecture. Section III describes in detail in which

scenarios optimization opportunities arise and derives a

set of properties that a system targeted by optimization

should display. The necessary models to describe users, their

demands, system resources, as well as their dependencies

are defined in Section V. These models form the basis

for an optimization algorithm introduced in Section VI.

A management architecture handling the provisioning of

resources and routing of customer requests is introduced in

Section VII. We evaluate different user distribution strategies

in Section VIII, and finish with a conclusion in Section IX.

II. BACKGROUND AND RELATED WORK

SaaS applications allowing their resources to be shared

between costumers are said to be multi-tenant aware. In [2]

it is differentiated between four levels of tenant awareness.

The first level corresponds to that of traditional application

service providers (ASP) [3] meaning that every resource is

instantiated exclusively for one tenant. Applications on the

second level may be configured individually, but are still

instantiated separately for every tenant. On the third level,

the configuration data is extracted from the application. Only

a single instance is present which utilizes this data to display

2010 IEEE 3rd International Conference on Cloud Computing

978-0-7695-4130-3/10 $26.00 © 2010 IEEE

DOI 10.1109/CLOUD.2010.33

252

a different behavior for each tenant. The fourth and last

level dictates that multiple instances utilize the extracted

configuration data and are load balanced to allow serving

of a larger tenant number.

Designing and building of multi-tenant aware applications

introduces several new challenges. A central one is tenant
isolation meaning that even though resources are shared

every tenant perceives the application as if he were the only

tenant. In [4] a framework is introduced to achieve the re-

quired isolation regarding security, performance, availability,

and administration. In [5] we introduced additional patterns

which may be used to develop multi-tenant aware service-

oriented applications. The patterns are used to describe

which parts of an application are shared between tenants

and which parts must be available individually for every

tenant. The patterns also describe how tenants accessing the

application are routed to the correct service for that tenant

through tenant context-based routers. Each tenant request is

associated with a tenant context. This context is used by a

tenant context-based router to identify resources assigned to

the tenant and route the request respectively.

None of these previous works, however, considers per-

formance optimization which may be obtained by a smart

distribution of application users among the required re-

sources. Within the scope of this paper optimization of

user distribution among resources forming forth level tenant-

aware applications is investigated. One prerequisite is that

resource and system properties may be described to form the

basis for such an optimization. In [6] a method is introduced

to describe the costs to operate Grid resources. This is done

by assigning so-called units of trade to resources. Units

of trade can be, for example, computing time, messages

exchanged, or the number of transactions performed. Every

unit of trade may then be associated with a price. Section

V-A shows that this approach may also be used to describe

non-cost oriented properties which may then be targeted by

optimization. It is also necessary to determine the number of

users served by one resource. Capacity planning techniques,

such as those presented in [7], introduce models to describe

the workload, performance, and availability of a system.

Using these models the required capabilities of resources

to serve an amount of users may be assessed.

III. MOTIVATING SCENARIO

Virtual Machine

DBMSWeb Server

User
Interface

Data
Handler

Figure 1. Deployment Dependencies of the Motivating Scenario

Consider a service provider offering a calendar service.

Through a web interface users may store appointments in

a database and share them with others. Application compo-

nents and their dependencies on other software are shown in

Figure 1. This is from now on called deployment diagram
and is described further in Section V. To be successful a

service provider has to achieve three important goals, (i)

maximize the target costumer group, (ii) operate resources

in an efficient manner, and (iii) adjust flexibly to changing

demands.

In order to increase the target customer group, the service

provider needs to offer a certain flexibility for customers,

when subscribing to the application. That flexibility can

be, for example, the subscription to only a subset of the

components, or the selection of one of several quality

levels. Tenants are thus allowed to subscribe to any subset

of application components. In the scope of the example

application they may want to subscribe only to the data

handler component and use another application as the user

interface. This use case can be employed by customers that

want to take advantage of high-available, managed storage

at a provider that they cannot supply on premise. Another

customer may, for example, only subscribe to the user

interface component, as this customer wants to integrate his

own storage component.

Another desirable system property is the possibility to

adjust the QoS individually to a tenant’s demands. High

QoS regarding performance, availability, or security increase

the price of the offered service and tenants are unlikely

to pay for higher QoS than they actually require. In this

scenario the provider offers the service at three different

quality levels, gold, silver, and bronze. Those differ in non-

functional properties such as response time or availability

assurances. Offering a service in different quality levels

allows a provider to cater to different needs of different

customers, while keeping the number of variants of the

service low. As one goal of a cloud based approach is to

exploit economies of scale by offering the same service to

as many tenants as possible, providers will need to find

the right balance between standardization (i.e., keeping the

number of variants low) and attracting as many customers as

possible by offering fine-granular customization options for

the QoS of a service. For example, Amazon EC2 [8] offers

their compute service in multiple quality levels, ranging

from small to quadruple extra large instances that differ

considerably in compute power and memory size.

In this scenario, the provider offers to host the service

in his own private data center as well as in Amazon’s

public cloud as shown in Figure 2. Note that the private

data center may also use cloud computing technologies to

manage its resources. It would then be referred to as a

private cloud [9]. Since offered quality levels are highly

dependent on resource properties, the provider is forced to

use multiple computing environments. In order to operate the

resources residing in these environments efficiently, and thus

253

private Data Center

public Clouds

Silver Service
EC2 medium

US-West

Silver Service
EC2 medium

US-East

Bronze Service
EC2 small

Europe

Gold Service Silver Service Bronze Service

Figure 2. Computing Environments of the Motivating Scenario

optimize their utilization, resources may substitute others

based on their QoS. In Figure 2 possible substitutions are

depicted as arrows. They denote the possible movement of

users from one computing environment to a substituting one.

For example users requesting the bronze service may also

be assigned to all other resource types. At first this does

not seem profitable, however, there are circumstances under

which such an ”upgrade” can lead to a better utilization of

the overall system.

To adjust flexibly to changing demands, the system must

be able to handle changing user numbers efficiently. Through

integration of computing environments, the dynamicity of

the EC2 cloud can be combined with the probably smaller

price of local resources. How well rapidly increasing user

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

Feb
09

Mar
09

Apr
09

Mai
09

Jun
09

Jul 09 Aug
09

Sep
09

Oct
09

Nov
09

Dez
09

Jan 10

Figure 3. Unique Visitors of Ooyala.com per Month [10]

numbers may be handled by dynamic clouds, has been

shown, for example, by the startup company Ooyala. It

offers video hosting, transformation, and streaming based

completely on EC2 virtual machines. In April 2009 their

page had roughly 80.000 unique visitors, as shown in Figure

3. In less than one year, this number increased to more

than 780.000 in January 2010. Therefore, the number of

required resources is now almost ten-times as high. For

service providers of Web 2.0 offerings such an increase

is likely to happen due to rapidly increasing popularity.

In case of Ooyala it originated from offering their service

as a Facebook application. With the introduced approach,

Ooyala would also be able to offer the service to costumers

that do not allow their videos to reside in public clouds by

integrating Ooyala’s private data center or even resources

residing on the costumers’ premises.

Of course the required integration of multiple computing

environments introduces several challenges. Instead of bal-

ancing users among equal resources, as has been researched

in [11], resources differing in properties such as capacities,

price, and dynamicity now have to be considered.

IV. OPTIMIZATION OPPORTUNITIES THROUGH TENANT

DISTRIBUTION

In the following, generic cases are derived from the

motivating scenario which may profit from an optimized

distribution of users among heterogeneous computing en-

vironments.

A. Static Resources and increasing User Numbers

In several cases resources in local data centers are cheaper

than those of public clouds [12], [13]. However private

servers are a very static resource. While a new EC2 instance

is accessible within minutes, ordering and installation of

a private physical server requires a significantly greater

amount of time. To achieve the same dynamicity in a

private data center, managed as a private cloud, massive

overprovisioning would be necessary. Therefore, without

integrating dynamic clouds and private data centers a service

provider would have to increase the size of its local resources

far ahead to handle abruptly increasing user numbers [14].

Through integration, local resources may be provisioned

more optimistically. If their number is insufficient, dynamic

resources are provisioned temporarily. Note that this setup it

still profitable if not all components of the application, such

as data storage, may be hosted in the public cloud.

B. Static Resources handling many Users per Instance

Resources with high QoS such as the gold service in

the motivating scenario are unlikely to be substituted by

other resources. Therefore, the provider has to assure that

increasing user numbers may be handled by provisioning

more of these resources than are needed. Even if they were

more flexible, such high-performance resources also tend to

allow serving of very large user numbers. However, a tenant

may sign up with an arbitrary small amount of users.

Both factors may lead to a bad utilization of powerful re-

sources. Therefore users requesting weaker service qualities

can be assigned to such badly utilized resources if possible

to increase the overall utilization. A similar approach is

taken by air lines when travelers are granted business class

seats even though they only booked economy class and the

economy class has been overbooked.

254

C. Equal Resource serving different Amount of Users

Available resources may display equal QoS while being

unequally powerful and thus allowing to serve different

amounts of users per instance. For example, when requesting

an EC2 instance, one may specify processor speed, number

of processors, size of the main memory, hard disk size, etc.

in form of pre-defined classes such as small, large, or extra

large. Also resources may contain multiple, different ser-

vices for better utilization. For example, one server resource

could contain only a Web server, only a database, or it could

contain both.

Depending on the amount of users requesting services

and the ratios between requests for different services types,

resources should be provisioned which are best fitting to

achieve a good utilization.

D. Factors of Profiting Systems

These generic cases allow to identify well suited candi-

dates for optimization. A set of factors was deduced which

a target system should display. The more these factors are

present, the more likely it is that the system will profit from

the optimization mechanisms introduced in Section VI:

• The system is used by tenants who demand different

QoS.

• Based on QoS, resources can be identified which may

substitute others.

• Managed resources differ in flexibility.

• Instances of resources may serve different user

amounts.

V. RESOURCE AND TENANT MODELING

In order to optimize the user distribution among a hetero-

geneous set of computing environments, certain prerequisites

have to be established. First, properties to evaluate user

distributions have to be defined. We differentiate between

properties of resources and system properties emerging from

them. Resource properties may include price per instance,

processing power, or service level agreements. Derived sys-

tem properties could be overall cost, throughput, response

time, utilization, flexibility, etc. Also it has to be described

which resources may be used to serve a specific tenant and

resource dependencies have to be modeled.

If this is established, the user distributions can be opti-

mized while respecting tenants’ demands and optimizing the

overall system properties. Note that while the most obvious

overall system property is cost, optimization is not limited

to it.

A. Defining Resource and System Properties

In [6] a general cost schema is introduced to associate

Grid resources with a certain amount of money required

for their operation. This amount can be based on the

time the resource is reserved, on the number of messages

exchange etc. This scheme may also be used to describe

other properties such as required computing time per request,

by altering the unit of the associated costs. In this way,

more complex system properties can be formulated, such as

response time. In another scenario tenants might specify the

time of day during which they usually access the system.

Optimization might then target an evenly utilization of

resources. Computation and evaluation of system properties

is further described in Section VI.

Description of the other prerequisites, tenants’ resource

requirements and the dependency relationship between re-

sources, is handled with a set of models on which the

optimization algorithm operates.

B. Tenant oriented Deployment Diagram

In the following the combination of concepts from de-

ployment diagrams, introduced in Cafe [15], and the tenant
aware resource model, introduced in [16], is described.

These concepts are combined to enable the modeling,

deployment planning, and provisioning of the application

introduced as motivation scenario in Section III. Cafe’s de-

ployment diagram describes software components and their

deployment dependencies among each other. A component

is represented by a box and may contain other compo-

nents meaning that the contained component is deployed

on the containing one. In the upper left corner of a box

a solid rectangle represents so-called visible properties of

the component. Those properties change depending on the

provisioning of a component instance, such as host names

and IP addresses. Those visible properties are used to fill

variability points of other components which are represented

by an open rectangle in the upper right corner of the

component boxes. The host name of the DBMS for example

is used to fill a variability point of the user interface which

specifies where to access the data handler.

The tenant aware resource model is used in this paper

to model tenants and their users. A tenant owns multiple

usage partitions which contain his users. Further the model

contains so-called offering groups. Each offering group is

considered to offer a certain service. To combine the two

models these offering groups are replaced by components of

the deployment diagram. The extended deployment diagram

of the example application is shown in Figure 4. The user

interface is implemented as a PHP script. The data handler

is realized as a set of tables in a database. The user interface

has a deployment dependency on a Web server, whereas the

data handler depends on a DBMS. Both hosting components

are installed in a virtual machine. Every usage partition of a

tenant is associated with a component based on the selection

a tenant makes during the registration process. If a tenant

registers for the full application, usage partitions are created

for both, the user interface and the data handler component.

If a tenant chooses to register for only one of the components

the number of his usage partitions is reduced. Additionally a

tenant specifies required QoS during the registration process

255

[17]. Those may include service availability or allowed

tenant patterns [5].

Virtual Machine

DBMSWeb Server

User
Interface

Data
Handler

100
Users

100
Users

200
Users

Tenant 1 Tenant 2

Figure 4. Extendend Deployment Diagram of the Example Application

Since the QoS often depend on resource properties,

the deployment diagram must be instantiated in different

computing environments. The resulting deployment com-

binations are called deployment alternatives. A subset of

all deployment alternatives of the motivating scenario is

depicted in Figure 5. In this diagram, usage partitions are

associated with all deployment alternatives which may serve

their users, again according to the QoS provided by tenants.

To increase visibility these associations were omitted from

the diagram. In this way the diagram also shows influences

of some QoS, which were not visible before. A tenant may,

for example, specify that his DBMS must be hosted on

a dedicated system which would render the deployment

alternative in which the DBMS shares a virtual machine

with the Web server unusable. The offered service levels are

represented as separate stacks of the deployment alternatives.

Note that offering groups cannot be mapped directly to all

deployment alternatives, since they only offer one service

while deployment alternatives may contain multiple services.

The following section shows how the optimization algorithm

introduced in [16] may be adjusted to operate on deployment

alternatives.

VI. SYSTEM OPTIMIZATION

Since resources, tenant demands, and overall system prop-

erties can now be modeled, algorithms searching optimal

user distributions are needed to make use of these models.

Finding the optimal distribution of users among sets of

variable resources is proven to be a np-hard problem in

[16]. Therefore it is very unlikely that an algorithm exists

that always find the optimal solution in polynomial time.

A class of algorithms to find a good, even though not

always the optimal, solution for such problems are local

search algorithms [18]. In this paper a hybrid algorithm,

called smarter simulated annealing [16], based on simulated

annealing [19] and hill climbing [18] is used. It computes

possible user distributions starting from an initial one and

Br
on

ze
 S

er
vi

ce

Virtual Machine

Apache

Virtual Machine

DBMS

Virtual Machine

DBMS Apache

Si
lv

er
 S

er
vi

ce

Virtual Machine

Apache

Virtual Machine

DBMS

Virtual Machine

DBMS Apache

G
ol

d
Se

rv
ic

e

Virtual Machine

Apache

Virtual Machine

DBMS

Virtual Machine

DBMS Apache

Figure 5. Deployment Alternatives of the Example Application

rates their performance based on a fitness function. This

function utilizes the resource properties and derived system

properties to compute a comparable value, the fitness, for

each possible user distribution.

Originally the smarter simulated annealing algorithm op-

erates on offering groups among which users are distributed.

Algorithm 1 shows how deployment alternatives may be

used in the same manner. It starts with one legal user dis-

tribution. For example, this could be obtained by randomly

assigning users to a deployment alternative of the initially

requested service level. By making small rearrangements

of users the algorithms then searches an optimal solutions

stepwise. It computes so-called neighbors of the initial user

distribution by moving users between deployment alterna-

tives. Then it selects one of these distributions according to

a selection strategy as a next step. The selection strategies

form the main differences between the simulated annealing

and hill climbing approach.

Throughout the runtime, a random user distribution is

computed at the beginning of every step. If its fitness is better

than that of the user distribution selected in the last step, it is

chosen as the next step. If it is worse then it is still chosen

with a certain probability. This is the simulated annealing

selection strategy. The probability decreases the longer the

algorithm runs by subtraction of a so-called cooling rate. The

algorithm terminates, once the probability is zero. If a worse

user distribution is not chosen by the simulated annealing

selection strategy, a hill climbing selection is performed.

The algorithm looks at all possible rearrangements of the

current user distribution and selects the one having the best

fitness value.

Following this approach, the algorithm combines advan-

tages of simulated annealing and hill climbing. By selecting

weaker user distributions it is unlikely to get stuck in local

optimum which is an advantage of simulated annealing. A

local optimum is a user distribution for which all possible

rearrangements display a degraded fitness, but another user

256

distribution exists which performs better. If only the hill

climbing selection strategy was used the algorithms would

terminate once such a local optimum is found. Towards

the end of its runtime, when it can be assumed that the

algorithms is close to finding a good user distribution, hill

climbing is performed to move towards this optimum faster.

Algorithm 1 Smarter Simulated Annealing Algorithm.

result← assign users to initial deployment alternatives

(i.e. randomly)

probability ← 1
coolingrate← number ∈ [0 . . . 1] {very small number}

while probability > 0 do
probability ← probability − coolingrate
neighbor ← move users from one deployment alterna-

tive to others randomly

if fitness(neighbor) > fitness(result) then
result← neighbor

else
{Even though the neighbor is weaker it is chosen by

chance (simulated annealing).}
random← random number ∈ [0 . . . 1]
if random < probability then

result← neighbor
else
{The weaker element was not chosen, a better one

is searched (hill climbing).}
for neighbor ∈ all possible user movements do

if fitness(neighbor) > fitness(result) then
result← neighbor

end if
end for

end if
end if

end while

A. Optimization Targets

For system performance it is very important to carefully

consider the amount of users considered by optimization.

Two different optimization targets are introduced in [16],

global and request-based optimization. A global optimiza-

tion considers and therefore rearranges all users of the

application. This is likely to result in major system reconfig-

uration. Request-based optimization only considers the users

which are new to the system. It leaves large portions of the

resources untouched.

The adequate optimization target is chosen based on

the characteristics of the managed system and behavior

of tenants. If a large number of tenants signs up to the

application in short time intervals, performing a global

optimization after each request is likely to result in too

many restructuring activities degrading the overall system

performance. If system resources are however very dynamic

it might still be feasible.

Since the time needed for system alterations is usually

much larger than the time needed by optimization algorithms

both optimization targets can be evaluated prior to changing

the resources. This way, global optimization may only be

reflected in system changes if a certain threshold respecting

the system property to be optimized is exceeded.

VII. MANAGEMENT SYSTEM ARCHITECTURE

To reflect the optimized user distribution the number of re-

quired resources has to be provisioned and tenants’ requests

have to be routed properly. Figure 6 shows a service oriented

architecture in which a central management and optimization

component performs all of the required tasks. First it handles

user registration and stores the required QoS and values for

variability points. Based on this information, optimization is

performed, required resources are provisioned, and routing

information is made available to a tenant context-based

router as well as load balancers.

Tenant context-
based Router

Load Balancer Load Balancer

Management
and

Optimization

Public
Clouds

Private Data
Centers

Tenant

Provision /
Deprovision

Rules

Tenant aware ESB

Figure 6. Architecture of the Management System [16]

The necessary tenant awareness of the system was realized

as a component of Apache ServiceMix [20], an Enterprise

Service Bus (ESB). Tenants access system resources residing

in data centers and clouds through this middleware. Each

request has a tenant context [5] attached that is used by

the tenant context based router to select the appropriate

computing environment for the tenant. Routing rules are

passed to this router by the management component. Load

balancers distribute requests among the resources of a certain

computing environment. They also receive rules so that the

different capabilities of resources, described in Section IV-C,

can be respected in distribution ratios.

257

VIII. EVALUATION OF DIFFERENT PROVISIONING

STRATEGIES

In this section the impact of different environmental

conditions on the success of a set of provisioning strategies is

investigated. A subset of the motivating scenario is chosen

to reduce the number of possible side effects during the

evaluation.

A general factor influencing optimization capabilities is

the degree to which resources may be moved between dif-

ferent computing environments. Good candidates are usually

all stateless resources, short running processes, and resources

working independent of others. Bad movement candidates

are resources handling large data volumes or long running

processes. Their movement requires a lot of state information

to be transferred between computing environments which is

likely to decrease the system performance and may interrupt

services.

A. Provisioning Strategies

private Data Center

public Clouds

Gold
Service

Silver
Service

Bronze Service

Capacity: 200
Price: 25$

Capacity: 500
Price: 100$

Capacity: 1500
Price: 500$

Figure 7. Scenario for the Evaluation.

The architecture of this framework allows the usage of ar-

bitrary provisioning strategies based on the used metamodel.

Some possible provisioning strategies are now evaluated

using the user data of Ooyala shown in Figure 3 as a

basis. Within the scope of this evaluation, all resources are

associated with a certain amount of money that it costs

to operate the resource for one month. The overall system

property to optimize is the sum of individual costs of all

required resources. The scenario depicted in Figure 7 still

includes three service offerings: gold, silver, and bronze.

The gold and silver offerings are considered to be hosted in

dynamic cloud environments. The bronze service is hosted in

a private data center and may not be provisioned dynamically

meaning that the amount of resources of this type has to be

fixed at the beginning of each month. Four strategies are

evaluated:

1) Bronze always correct: provides a reference value by

treating bronze resources as equally dynamic as silver

and gold resources and thus always provisions the

required amount.

2) Bronze always correct with optimization: performs an

additional optimization considering all resources as

equally dynamic.

3) Pessimistic prediction: bronze resources are provi-

sioned in the amount needed plus an additional 30%

to handle unexpected increasements. No optimization

is performed.

4) Optimistic prediction: the number of needed resources

is predicted by computing the change in user num-

bers of the last two months. Optimization allows

that bronze resources are substituted by others if the

predicted amount is insufficient.

5) Delayed provisioning: no prediction is performed at

all. At the end of a month the number of bronze

resources which would have been optimal for the last

month is provisioned. Therefore all newly required

bronze resources will be substituted to others at first.

In Figure 8, months February and March were omitted since

their user numbers were used for predictions. Performance

of the others is expressed as a percentage by which they opti-

mize the overall system cost respectively to the pessimistic

approach. For the first two strategies the performance of

an optimized user distribution is only slightly better than

that of the unoptimized one. This shows that optimization

opportunities mainly originate in the different dynamicity of

resources. If all resources are equally dynamic, optimization

may only target the boundary users not filling complete

resource instances. If the cost for bronze resources were

higher, optimization might however have a larger impact.

Further it can be observed that delayed provisioning per-

forms well when the user number alternates within a certain

corridor as is the case in the beginning of the observed time

frame. However only resources which are easily movable are

within the scope of this approach. Prediction tends to fail

in such an environment, since there is no steady increase

or decrease of user numbers. Towards the end of the time

frame, the increase becomes more steady and therefore

prediction is showing better results. Again the movability

of resources has to be taken into account, especially when

a decrease is predicted. In such a case resources which are

hard to move should be provisioned with a more pessimistic

strategy.

IX. CONCLUSION

Distribution of tenants has now been identified as a

opportunity for system optimization. While leveling the load

among similar resources is well established, the motivat-

ing scenario has shown that the need for heterogeneous

resources introduces new challenges as well as opportuni-

ties for the service provider. General system characteristics

were defined which allow identification of systems likely to

profit from optimization. Existing models were extended to

include a notion of tenants additional to resources and their

deployment dependencies. Those new models form the basis

258

0

5

10

15

20

25

30

35

Bronze always correct Bronze always correct and optimized

Optimistic Prediction Delayed Optimal Provisioning

Figure 8. Improvement over Pessimistic Prediction (%)

for optimization and a set of general distribution strategies.

Evaluation of these strategies has shown that successful

optimization is highly dependent on the properties of the

system to be optimized, and dynamicity of resources is the

central factor.

The presented framework allows service providers to

use distribution strategies as well as define them on their

own. Optimization may be performed regarding individually

modeled resource and system properties. The defined char-

acteristics of profiting systems allow providers to identify

optimization opportunities. The optimization results may

be utilized through the described management system ar-

chitecture handling the necessary provisioning and request

routing.

REFERENCES

[1] R. Buyya, C. Yeo, S. Venugopal, J. Broberg, and I. Brandic,
“Cloud Computing and Emerging IT Platforms: Vision, Hype,
and Reality for Delivering Computing as the 5th Utility,”
Future Generation Computer Systems, vol. 25, no. 6, pp. 599–
616, 2009.

[2] F. Chong and G. Carraro, “Building Distributed Applications
Architecture Strategies for Catching the Long Tail,” 2006.
[Online]. Available: http://msdn.microsoft.com/en-us/library/
aa479069.aspx

[3] L. Tao, “Shifting Paradigms with the Application Service
Provider Model,” Computer, pp. 32–39, 2001.

[4] C. Guo, W. Sun, Y. Huang, Z. Wang, and B. Gao, “A
Framework for Native Multi-Tenancy Application Develop-
ment and Management,” in E-Commerce Technology and the
4th IEEE International Conference on Enterprise Computing,
E-Commerce, and E-Services, 2007, pp. 551–558.

[5] R. Mietzner, T. Unger, R. Titze, and F. Leymann, “Combining
Different Multi-tenancy Patterns in Service-Oriented Applica-
tions,” 2009 IEEE International Enterprise Distributed Object
Computing Conference, pp. 131–140, 2009.

[6] A. Caracas and J. Altmann, “A Pricing Information Service
for Grid Computing,” in Proceedings of the 5th International
Workshop on Middleware for Grid Computing held at the
ACM/IFIP/USENIX 8th International Middleware Conference
- MGC, 2007, pp. 1–6.

[7] D. Menasce and V. Almeida, Capacity Planning for Web
Services: Metrics, Models, and Methods. Prentice Hall, 2002.

[8] Amazon.com, “Amazon Elastic Compute Cloud (EC2),” http:
//aws.amazon.com/ec2/.

[9] F. Leymann, “Cloud Computing: The Next Revolution in IT,”
in Proceedings of the 52th Photogrammetric Week, 2009, pp.
3–12.

[10] Compete.com, “Siteanalytics of ooyala.com from 01.2009 to
01.2010,” http://siteanalytics.compete.com/ooyala.com/.

[11] C. Kopparapu, Load Balancing Servers, Firewalls, and
Caches. Wiley, 2002.

[12] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good,
“The Cost of Doing Science on the Cloud: the Montage
Example,” in Proceedings of the 2008 ACM/IEEE Conference
on Supercomputing. IEEE Press, 2008, pp. 1–12.

[13] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H.
Katz, A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin,
I. Stoica, and M. Zaharia, “Above the Clouds: A Berkeley
View of Cloud Computing,” EECS Department, University
of California, Berkeley, Tech. Rep., Feb 2009.

[14] J. Varia, Architecting for the Cloud: Best Practices. White
Paper of Amazon.com, 2010.

[15] R. Mietzner, T. Unger, and F. Leymann, “Cafe: A Generic
Configurable Customizable Composite Cloud Application
Framework,” On the Move to Meaningful Internet Systems:
OTM 2009, pp. 357–364.

[16] C. Fehling, “Provisioning of Software as a Service Applica-
tions in the Cloud,” Master’s thesis, University of Stuttgart,
2009.

[17] T. Unger, R. Mietzner, and F. Leymann, “Customer-defined
service level agreements for composite applications,” Enter-
prise Information Systems, vol. 3, no. 3, pp. 369–391, 2009.

[18] S. Russel and P. Norvig, Artificial Intelligence: A Modern
Approach (Third Edition). Prentice Hall, 2010.

[19] S. Brooks and B. Morgan, “Optimization using simulated
annealing,” Journal of the Royal Statistical Society. Series
D (The Statistician), vol. 44, no. 2, pp. 241–257, 1995.

[20] Apache Software Foundation, “Apache ServiceMix,” http://
servicemix.apache.org.

259

	cover-IEEE - CLOUD 2010
	INPROC-2010-27_A_Framework_for_Optimized_Distribution_of_Tenants_in_Cloud_Applications

