
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{schumm, leymann}@iaas.uni-stuttgart.de

European Research Institute in Service Science (ERISS), Tilburg University, Netherlands
{o.turetken, a.f.s.a.elgammal, w.j.a.m.vdnheuvel}@uvt.nl

Centrum Wiskunde & Informatica (CWI) Amsterdam, Netherlands
{natallia.kokash}@cwi.nl

Business Process Compliance through
Reusable Units of Compliant Processes

David Schumm, Oktay Turetken, Natallia Kokash, Amal Elgammal,
Frank Leymann, Willem-Jan van den Heuvel

© 2010 Springer-Verlag.
The original publication is available at www.springerlink.com
See also LNCS-Homepage: http://www.springeronline.com/lncs

@inproceedings{SchummTKE10,
author = {David Schumm and Oktay Turetken and Natallia Kokash and

Amal Elgammal and Frank Leymann and Willem‐Jan van den Heuvel},
title = {Business Process Compliance through Reusable Units

of Compliant Processes},
booktitle = {Proceedings of the 1st Workshop on Engineering SOA and

the Web (ESW'10), 26 May 2010, Vienna, Austria},
year = {2010},
pages = {325‐‐337},
doi = {10.1007/978‐3‐642‐16985‐4_29},
series = {Lecture Notes in Computer Science (LNCS)},
volume = {6385},
publisher = {Springer‐Verlag}

}

:

Institute of Architecture of Application Systems

Business Process Compliance through Reusable Units
of Compliant Processes

David Schumm1, Oktay Turetken2, Natallia Kokash3,
Amal Elgammal2, Frank Leymann1, Willem-Jan van den Heuvel2

1 Institute of Architecture of Application Systems (IAAS), University of Stuttgart,

Stuttgart, Germany
{Schumm, Leymann}@iaas.uni-stuttgart.de

2 European Research Institute in Service Science (ERISS), Tilburg University,
Tilburg, Netherlands

{o.turetken, a.f.s.a.elgammal, w.j.a.m.vdnheuvel}@uvt.nl
3 Centrum Wiskunde & Informatica (CWI) Amsterdam, Netherlands

{Natallia.Kokash}@cwi.nl

Abstract. Compliance management is essential for ensuring that organizational
business processes and supporting information systems are in accordance with a
set of prescribed requirements originating from laws, regulations, and various
legislative or technical documents such as Sarbanes-Oxley Act or ISO 17799.
As the violation of such requirements may lead to significant punishment for an
organization, compliance management should be supported at the very early
stages of business process development. In this paper, we present an integrated
approach to compliance management that helps process designers to adhere to
compliance requirements relevant for their processes. Firstly, we introduce a
conceptual model for specifying compliance requirements originating from
various compliance sources. Secondly, we propose a framework for augmenting
business processes with reusable fragments to ensure process compliance to
certain requirements by design. Furthermore, we discuss the formalization of
compliance requirements using mathematical logics and integrate the
framework for process reuse with automated software verification tools.

Keywords: Compliance, Business Process Management, Process Fragment,
Formal Modeling, Process Verification.

1 Introduction

In today’s business environment, organizations have to cope with an increasing
number of diverse and complex compliance requirements stemming from various
laws, regulations, internal or external policies, business contracts etc. This increases
the necessity and importance of a comprehensive compliance management solution,
which must support compliance throughout all the stages of the business process life
cycle. Compliance management ensures that business processes are in accordance
with a set of prescribed requirements. It should be considered in three main stages: (i)
compliance verification of business process models (static verification at design time),
(ii) compliance monitoring of the running instances (dynamic verification at runtime),

and (iii) offline monitoring of the completed business process executions. We
consider the static and dynamic verification phases as indispensible and
complementary phases for ensuring and managing compliance. This is mainly
because offline monitoring is a retrospective approach, which is based on the after-
the-fact principle. A preventive focus is fundamentally required in order to achieve
sustainability and effectiveness in compliance management.

In this paper we introduce a process-centric approach to compliance management
focusing on the design time aspects where reusable units of compliant processes are
utilized to augment a process with structures related to compliance. The basic idea is
to combine the advantages of compliance checking based on logical formulas with a
novel approach for business process reuse. Assume a reusable building block that
implements a compliance requirement by means of activities and control dependency
among them. We refer to such a building block as a process fragment for compliance,
or compliance fragment for short. This fragment can be integrated into an existing
process with the intention of making the process compliant to the corresponding
compliance requirement. Thus, after the fragment has been integrated into a process,
the process should actually comply with the requirement that the fragment
implements. However, there is still a possibility that the process design violates the
requirements as there is yet no evidence that the fragment has been integrated in the
correct manner and in the correct place. The major reasons for an incorrect integration
are wrong positioning, wrong concretization, and change of the original fragment
design. Therefore, we propose involving rules that represent this compliance
requirement in a formal manner. These rules can be checked against the modified
process model using advanced methods for process verification to assure compliance.

The steps that have to be performed to provide the assurance of compliant process
design are briefly described in the following: at first, a compliance expert defines and
formalizes the requirements to which a particular process has to comply with. The
resulting formal rules are either associated with existing compliance fragments or
with new ones which are developed in cooperation of the compliance expert and a
process designer. The compliance fragments which are associated with the rules are
then integrated into the process by the process designer. The subsequent verification
indicates if all rules could be verified, or if changes on the process are required.

The rest of this paper is organized as follows: In Section 2, we introduce a
conceptual model for compliance management on which our work is based. In
Section 3, we describe a common industrial scenario, which we use as a running
example throughout this paper. Our approach to the development of business process
models compliant by design is demonstrated in Section 4. In Section 5, we discuss
related work. Finally, in Section 6, we conclude the paper and outline future work.

2 Conceptual Model

Most of the compliance requirements originate from rather generic compliance
documents. Compliance requirements may emerge from different sources and can
take various forms. They may originate from legislation and regulatory bodies (such
as Sarbanes-Oxley and Basel II), standards and code of practices (such as: ISO 9001)
and/or business partner contracts. These documents can be ambiguous and thus it is

difficult to decide what exactly has to be changed in a business process in order to
ensure its compliance to these requirements. Therefore, an appropriate model for
capturing and specifying compliance requirements is needed. In particular, since some
parts of such documents may not be relevant for a given process, this model needs to
describe compliance requirements and correlate them with business processes that
must conform to them. Furthermore, since legislation and regulations tend to change
over time, a link to the compliance source should be preserved. The conceptual model
depicted in Fig. 1 provides the constructs to manage compliance in business
processes.

Fig. 1. Conceptual model for compliance management

A Compliance requirement is a constraint or assertion that results from the
interpretation of the compliance sources, such as laws, regulations, policies,
standards, contracts, etc. Failure to meet these requirements increases the likelihood
of a compliance risk to materialize, which in turn might impair the organization’s
business model, reputation and financial condition. To mitigate these risks and ensure
that compliance requirements are satisfied an organization defines controls. A control
describes the restraining or directing influence to check, verify or enforce rules to
satisfy one or more compliance requirements. A Compliance rule is an operative
definition of a compliance requirement which formally describes a control. A
Compliance fragment is a connected process structure that can be used as a reusable
building block for ensuring a faster and more consistent specification and integration
of compliance into a process. Compliance fragments can be used to implement a
compliance rule in terms of activities and control structures. A Compliance target is a
generic specification, such as a business process, or a compliance fragment, which is
a target of compliance requirements. A user (compliance or business expert) can issue
a compliance request to check whether a set of compliance targets conforms to a set
of applicable compliance requirements. The purpose of a compliance request is to
identify if and how a process can or should be changed to make it (more) compliant.

3 Running Scenario

In order to provide an illustration for the concepts introduced above and to
demonstrate our approach we go over a motivating scenario. The general environment

in which the scenario takes place is the e-business application domain, and
particularly, banking applications in which compliance to strict regulations and
legislations is crucial. Fig. 2 depicts an excerpt from the process model for a “loan
origination” process represented using the Business Process Modeling Notation
(BPMN). The process starts with the customer submitting a loan request. Once the
loan request is received, a credit broker checks if the customer’s banking privileges
are suspended. Next, a loan threshold is calculated. If the threshold amount is less
than 1M Euros, the post processing clerk checks the credit worthiness of the customer
through a credit bureau service. If the threshold amount is greater than 1M Euros, the
clerk supervisor is responsible for performing the same activities instead of the post
processing clerk. Finally, the manager needs to approve the loan form and (in case of
acceptance) send the signed form to the customer to sign it.

Fig. 2. An excerpt from the BPMN model of the running scenario

There are diverse compliance requirements relevant to this loan origination
process, including access rights, temporal aspects, privacy and security. Table 1 gives
an example of a compliance requirement regarding the appropriate segregation of
duties on the loan origination process. The proposed approach will be discussed by
going through this requirement and relevant controls.

Table 1. Compliance requirements relevant for the loan origination process

Control Compliance
Requirement

Comp. Risk Comp. Source

1- Customer bank privilege check is segregated from credit
worthiness check Duties in Loan

Processing
should be
adequately
segregated

Loan granted
with
inadequate
level of
assurance

- Sarbanes-Oxley
Sec. 404
- ISO 17799-
10.1.3

2- If the loan request exceeds 1M Euros, the Clerk Supervisor
checks the credit worthiness of the customer

3- The branch office Manager checks whether risks are
acceptable and makes the final approval of the request

4 Ensuring Compliance of Business Processes

This section explains how compliance fragment reuse and static process verification
can help us to achieve business process compliance by design.

As discussed in the previous section, a process designer is faced with the task of
making a process compliant. We assume that an organization has a repository
managed by compliance experts where all relevant requirements are stored in a format
represented by the aforementioned conceptual model. As a proof of concept, we have
implemented such a repository and call it Compliance Requirements Repository
(CRR). The designer uses the CRR to find requirements that the particular process
needs to adhere to. The ‘requirements search’ can be a simple keyword search done
through all attributes of the requirement (including sources, risks and controls), or be
based on an advanced query for expert users.

In response to the designer’s request, the CRR returns a list of all relevant
requirements. If the discovered requirements have already been instantiated, i.e.,
formalized as discussed in Section 4.1 and available as concretized process fragments
discussed in Section 4.2, they can be directly (re-)used. In this case, the concretized
fragments are integrated into the process without the need to check them separately,
as their compliant design has been proven before. The augmented process can then be
checked against the formal rules by utilizing process verification tools for proving
compliant process design (discussed in Section 4.3).

Formal rules can be associated to corresponding compliance requirements with the
help of Compliance Request Language Tools (CRLT), discussed in more detail in
Section 4.1. If there is one or more abstract fragment that corresponds to a particular
rule, it can be concretized and customized by the process designer to fit a specific
process. If such a fragment does not exist yet, it can be created and reused in the
future. By integrating the fragment into the process, we ensure that the process
adheres to the corresponding compliance rules. In our approach, we assume that
entities (constructs) present in concrete fragments and compliance rules share unique
identifiers in order to provide the correlation.

4.1 Defining and Formalizing Compliance Requirements

Compliance requirement specification language should be based on concepts derived
from formal logics to enable automated verification of compliance targets against
these requirements. Deontic logic (e.g. [19]) and temporal logic (e.g. [14]) families
have been intensively discussed in the literature as a basis for such a specification
language. In our framework, we mainly rely on temporal logic for representing
compliance rules. Our choice is justified by the fact that system property specification
using temporal logics is a mature field supported by efficient verification tools tested
and applied in practice for over 20 years. Among the formalisms within temporal
logic family, we prefer Linear Temporal Logic (LTL) [16] to Computational Tree
Logic (CTL) mainly due to its simplicity, intuitiveness and compositionality of
reasoning [22].

One of the main problems of the temporal logic family in general is that logical
formulas are difficult to write and understand for users. The notion of property
specification patterns (Dwyer’s property patterns) was introduced in [6] as high-level

abstractions of frequently used logical formulas. These patterns assist users in
understanding and defining formal specifications. In addition to the original patterns
introduced in [6], we have developed Compliance Patterns to capture recurring
patterns in the compliance context. Table 2 shows such patterns applied to the running
scenario. The first control is implemented using the newly introduced
SegregatedFrom pattern that captures the typical compliance requirement which
mandates segregation of duties among different roles and actors. In LTL, G, F, U
correspond to the temporal operators ‘always’, ‘eventually’, and ‘until’ respectively.
‘G’ denotes that formula f must be true in all the states of the business process model.
‘F’ indicates that formula f will be true at some state in the future. ‘U’ denotes that if
at some state in the future the second formula g will be true, then the first formula f
must be true in all the subsequent states. For example, the LTL representation of ‘P
LeadsTo Q’ is ‘G(P F(Q))’, which can be read as: If P is true, then in the future Q
should occur.

Table 2. Compliance rules for the examples from the loan origination process

Control Pattern Comp. Rules in LTL
1- Customer bank privilege check
is segregated from credit
worthiness check

CheckCustomerBankPrivilege
SegregatedFrom Check Credit
Worthiness

G((CheckCustomerBankPrivilege.Role
(Role1) → G(!(CheckCredit Worthiness.
Role(Role1))

2 If the loan request exceeds 1M,
the Clerk Supervisor checks the
credit worthiness of the customer

((CreateLoanFile.Threshold >= 1M)
LeadsTo CheckCredit
Worthiness.Role("Supervisor"))

G((CreateLoanFile.Threshold >= 1M) →
F(CheckCredit Worthiness.Role(Supervisor)))

3- The branch office Manager
checks whether risks are
acceptable and makes the final
approval of the request.

((JudgeHighRiskLoan AND
Approved = “Yes”) Preceeds
SignOfficiallyLoanContract.Role(‘M
anager’)) AND
((JudgeHighRiskLoan AND
Approved = “No”) Preceeds
DeclineDueToHighRisk(‘Manager’))

G((JudgeHighRiskLoan Λ Approved = “Yes”)
˅(¬
SignOfficiallyLoanContract.Role(‘Manager’)
U (JudgeHighRiskLoan Λ Approved =
“Yes”))) Λ
G((JudgeHighRiskLoan Λ Approved = “No”)
˅(¬ DeclineDueToHighRisk.Role(‘Manager’)
U (JudgeHighRiskLoan Λ Approved =
“No”)))

We are currently implementing an environment1 as a part of a tool-suite for
business process compliance management. The prototype is a web-based
environment, which also incorporates stand-alone tools for building graphical
representation of requirements using patterns. The ongoing integration with Process
Verification toolkit (see Section 4.3) for process verification is achieved through a
group of asynchronous web service calls. BPMN or BPEL representations of
compliance targets (i.e. process models) and relevant formal compliance rules
specified in LTL are transferred to the Process Verification toolkit. The toolkit returns
the verification result, listing the rules that have been checked and whether they are
satisfied or not. Fig. 3 presents one of the user interfaces from the implementation
reflecting how the results of the compliance check are communicated to the business
or compliance expert. The user interface exemplifies the case that the first control
given in Table 2 is violated.

1 CRLT: Compliance Request Language Tools, http://eriss.uvt.nl/compas

Fig. 3. A user interface with compliance requirements identified for the running scenario

4.2 Compliance Fragments

Process fragments provide a lightweight approach for reusable process structures. In
[20] we introduced process fragments for compliance (abbreviated as compliance
fragments) as a means to realize compliance requirements within business processes
(e.g., based on BPMN) and workflows (e.g., based on BPEL) respectively. In order to
utilize this concept for a fast and consistent augmentation of processes with
compliance a library of such reusable compliance fragments has to be built up by the
bank or a consulting agency in our running scenario. This leads to the first phase in
the management life cycle of compliance fragments, which is identification and
design. In this phase either reusable process structures related to compliance are
identified within an existing process and extracted there from, or they are designed
from scratch. For instance, the fragment for approval shown in Fig. 4 could have been
extracted from the bank’s quality assurance process. To ease reuse the extracted or
designed fragment needs to be rendered somewhat abstractly, i.e. static values have to
be parameterized, activities need to be generalized and process-specific parts have to
be removed (Fig. 4a). A compliance fragment may have multiple points for
integration into a process. We call those points fragment entries and fragment exits.

The next phase in the fragment life cycle is storage and retrieval. For this phase we
are developing a fragment repository [7] that efficiently supports versioned storage
and retrieval. In our example the process designer would query this repository and
find (and retrieve) the abstracted fragment for approval. This fragment can then be
integrated into the loan approval process in order to realize the compliance
requirement. During integration the fragment has to be concretized, i.e. parameters
have to be set and the fragment has to be customized for the particular process in
which it is applied (see Fig. 4b). Therefore, checking an abstract fragment against
concrete rules has little advantages, but it is possible (and useful) to check a concrete
rule against a concrete fragment.

(a) (b)
Fig. 4. (a) Abstracted process fragment for approval; (b) Concretized fragment

4.3 Process Verification

To achieve compliance-by-design, we aim at the detection of the violation of
compliance rules in design and implementation of compliance fragments and business
processes. To accomplish this goal, we automatically convert a compliance fragment
or a business process (either in BPMN, BPEL or UML) to its formal representation in
Reo [5]. Reo [2] is a graphical channel based coordination language that enables the
modeling of complex behavioral protocols using a small set of channel types with
predefined behavior. The application of Reo to business process modeling resembles
that of Petri nets. Intuitively, an asynchronous FIFO channel with a buffer of capacity
one in Reo corresponds to a place in a classical Petri net, while the notion of Petri net
transition is generalized and can be composed of multiple synchronous channels. This
enables the propagation of synchrony across Reo networks and helps us to model
business processes in a more concise and compositional manner. Fig. 5 shows a Reo
counterpart for the approval fragment. In this model, an abstract activity Perform
check is represented as a buffer while conditional gateways correspond to nodes with
outgoing filter channels.

Automated conversion of BPMN, BPEL or
UML diagrams to Reo process models

Automated conversion of BPMN, BPEL or
UML diagrams to Reo process models

Fig. 5. Process formalization: Abstracted fragment for approval is converted to Reo

Eclipse Coordination Tools (ECT) [3], a supporting framework for behavioral
service-based process modeling in Reo, consists of a set of integrated plug-ins that
provide the functionality for converting, editing, animating, annotating, simulating
and model checking formalized process models. Since high-level models often do not

contain all the information necessary for the automated process verification, we
assume that ECT is used by a technical specialist to refine the process models that are
passed for compliance verification. The imported process models and fragments need
to be refined and the compliance rules have to be transformed to a format which can
be accepted by a specific model checking tool chosen to verify a given property.

Currently, three model checking tools are supported by ECT, namely Vereofy [23],
mCRL2 [15] and PRISM [18]. Vereofy is a tool that can check properties specified in
LTL and CTL-like logics and can be used for control flow analysis. Among its
advantages are its compatibility with the compliance rule language discussed in
Section 4.1 and the ability to visualize counterexamples in a user-friendly manner by
showing them on Reo models using flash animations. Detailed examples of using this
tool to process compliance analysis, in particular verification of temporal constraints
on process control flow and segregation of duties, can be found in [11]. However,
data specification supported by Vereofy currently is not elaborate enough to enable
the verification of data-dependent compliance rules. Such rules can be analyzed with
the help of the mCRL2 toolset. The mCRL2 specification language and the
corresponding toolset were developed by the University of Eindhoven and represent a
powerful means for large-scale system verification. ECT includes a plug-in for
automatic generation of mCRL2 specifications from Reo process models [12],
annotated, if necessary, with data and time constraints. For example, Fig. 6 shows the
model of the dataflow in a concretized process fragment, where the input data domain
is described by a sort el(activated: Bool, amount: Nat) which indicates whether the
approval is activated and provides the requested loan amount. Data constraints in a
format understandable by mCRL2 (e.g., amount(e1(d)) > 1000000) are used as
annotations to graphical Reo models and specify process dataflow branching
conditions.

Fig. 6. Formal process model refinement: Concretized fragment for approval is annotated with

information about input data domain and dataflow

Such a model can be used for explicit state space generation or model checking
against properties specified in a variant of μ-calculus. This format subsumes temporal
logics LTL and CTL and allows us to formally express compliance rules with time
and data-aware conditions. For example, a compliance rule “if a requested loan

amount is higher than 1M, a manager authorization must be obtained” corresponds to
the following formula:

[] []XionauthorizatXamountamounttloanRequesamounttrue μ)1000000()(.:.* >∧∃ N

This formula literarily states that for a loan request with the amount exceeding 1M
Euro the authorization activity is unavoidable. Finally, the PRISM model checker is
used for the verification of probabilistic and quantitative properties of a Reo process
model. More detailed study of the application of this tool to compliance analysis
constitutes our future work. Apart from process model checking, formalized Reo
process models can be used for model-based test generation [21]. In this case,
generated tests may assure the compliance of an actual system implementation rather
than just the designed model. For example, in the aforementioned scenario at least
four test instances should be generated, with and without activated check conditions
and loan requests with two amounts: one exceeding 1M, and one not exceeding 1M.
Model-based test generation tools such as JTorX are compatible with the generated
mCRL2 specifications and can be easily employed in our framework. After the
verification, formalized models and model checking results are saved in a repository
for further reuse and process reengineering. Counterexamples found by the model
checking tools and generated tests that the system did not pass can help the designer
to understand why the property violation occurs in the composed process (e.g., detect
fragments that are implemented in a wrong way, point out where the wrong
integration points or incorrect placements of fragments are).

5 Related Work

Temporal logic has been used intensively in the literature for the formal specification
of compliance requirements, key work examples are: [1], [4], [8], [9], [14] and [10].
The authors of [14] proposed a static compliance-checking framework that includes
various model transformations. Compliance requirements are modeled using the
graphical Business Property Specification Language (BPSL) tool where graphically
represented compliance requirements are automatically transformed to LTL formulas.
Next, the NuSMV2 model checker is used to verify the compliance. The study in [1]
utilized π-Logic to formally represent compliance requirements. In addition, a toolkit
has been developed to implement the proposed approach (HAL toolkit).

On the other hand, business process models are abstractly modeled. If the abstract
business process model is compliant, a BPEL process equivalent to the abstract
representation can be automatically generated. The study in [4] utilized past LTL
(PLTL) where properties about the past can be represented. However, sequential
compliance requirements are just considered. On the other hand, the study in [16] has
utilized the original pattern based system adapted in this paper. They considered only
runtime compliance monitoring though. The study in [10] employed the original
pattern specification system used in this paper for the verification of service
compositions. In addition, they have introduced the logical composition of patterns
using Boolean logical operators. The correctness of pattern composition has also been
proved. Composite patterns enable the definition of complex properties in terms of

property patterns. Composite patterns can also be used for the specification of
complex compliance requirements. Furthermore, authors in [9] have extended the
original property pattern system to capture time-related property specifications, so
that real-time requirements can be represented via patterns. E.g. activity A must
always be followed by activity B within k time units.

Concerning reuse in business processes many concepts have been proposed so far.
Besides the well-known approaches for reuse such as sub processes or business rules,
more and more lightweight approaches are proposed. For instance, in decentralized
process modeling multiple people are involved, each of them having local know-how.
Each of the involved designers can model a particular aspect of a process as process
fragment, i.e. as an incomplete but connected process structure. These fragments are
later composed to a complete process model [13]. Although there is a significant
number of works in each of these areas, there is, to the best of our knowledge,
currently no approach that combines the advantages of formal languages and
compliance checking based on logical formulas with an approach for business process
reuse. Here we discussed a concept that demonstrates how these different fields can
be combined to support compliance management in business processes.

6 Conclusion and Outlook

In this paper, we presented a framework for design-time business process compliance
management. In particular, we introduced a conceptual model for specifying
compliance requirements and discussed how these requirements can be stored and
processed. The main contribution of this paper is an approach that combines the
formalization of compliance requirements, their automated verification for a given
process and a novel approach for process reuse. This combination enables a consistent
augmentation of business processes with process structures that implement relevant
compliance requirements and supports the development of compliant-by-design
software applications. By going through a scenario, we briefly demonstrated the
concepts and the proposed approach. We also demonstrated the core functionalities of
the tools utilized, each representing a part of an ongoing effort on the development of
a comprehensive tool-suite for business process compliance management.

Although the formal language introduced in this paper can be used to formalize
compliance requirements of diverse types, only those requirements relevant to the
control flow of the business processes can be tackled powerfully with compliance
fragments. For instance, a locative requirement that demands a certain set of rules on
data storage requires a different approach as it refers to database applications rather
than activities and control structures. The approach presented in this paper can be
seen as one piece of the puzzle in an overall solution to managing compliance.

Acknowledgements

This work is a part of the research project COMPAS (www.compas-ict.eu) which is
funded by the European commission, contract no. FP7-215175. Many thanks go to
Huy Tran for the development of the process model of the loan origination scenario.

References

1. Abouzaid, F., Mullins, J.: A Calculus for Generation, Verification, and Refinement of
BPEL Specifications. In: Proc. of the WWV'07, 2007, pp. 43-68.

2. Arbab, F.: Reo: A Channel-based Coordination Model for Component Composition.
Mathematical Structures in Computer Science, vol. 14, 2004, pp. 329–366.

3. Arbab, F., Koehler, C., Maraikar, Z., Moon, Y., Proenca, J.: Modeling, Testing and
Executing Reo Connectors with the Eclipse Coordination Tools. Tool Demo Session at
FACS ’08, 2008.

4. Awad, A., Decker, G., Weske, M.: Efficient Compliance Checking using BPMN-Q and
Temporal Logic. Business Process Management, Vol. 5240. Springer, 2008.

5. Changizi, B., Kokash, N. Arbab, F.: A Unified Toolset for Business Process Model
Formalization. In: Proc. of the Int. Workshop on Formal Engineering approaches to
Software Components and Architectures (FESCA’10), 2010.

6. Dwyer, M., Avrunin, G., Corbett, J.: Property Specification Patterns for Finite-State
Verification. Int. Workshop on Formal Methods on Software Practice, 1998, pp. 7-15.

7. Fragmento - Fragment-oriented Repository. Online Documentation, 2010.
http://www.iaas.uni-stuttgart.de/forschung/projects/fragmento/start.htm

8. Giblin, C., Liu, A., Muller, S., B., P., Zhou, X.: Regulations Expressed As Logical Models.
In: Proc of the 18th Int. Annual Conf. on Legal Knowledge and Information Systems, 2005.

9. Gruhn, V., Laue, R.: Specification Patterns for Time-Related Properties. In: 12th Int’l
Symposium on Temporal Representation and Reasoning, USA, 2005, pp. 198-191.

10. Yu, J., Manh, T., Han, J., Jin, Y.: Pattern-Based Property Specification and Verification for
Service Composition. In: 7th international conference on web information systems
engineering (WISE06), China, 2006, pp. 156-168.

11. Kokash, N., Arbab, F.: Formal Behavioral Modeling and Compliance Analysis for Service-
Oriented Systems. In: Proc. of the FMCO’08, LNCS 5751, Springer, 2009, pp. 21–41.

12. Kokash, N. Krause, C. de Vink, E.: Data-aware design and verification of service
composition with Reo and mCRL2. In: Proc. of the SAC’10, ACM Press, 2010.

13. Eberle, H., Unger, T., Leymann, F.: Process Fragments. In: Proc. of the 17th Int.
Conference on Cooperative Information Systems (CoopIS), Springer, 2009.

14. Liu, Y., Muller, S., Xu, K.: A Static Compliance-Checking Framework for Business
Process Models. IBM Systems Journal, vol. 46, 2007.

15. mCRL2 toolset. http://www.mcrl2.org
16. Namiri, K., Stojanovic, N.: Pattern-based Design and Validation of Business Process

Compliance. Springer, 2007, pp. 59-76.
17. Pnueli A.: The Temporal Logic of Programs, In: Proc of the 18th IEEE Symposium on

Foundations of Computer Science, Providence, pp. 46–57, 1977.
18. Probabilistic model checker. http://www.prismmodelchecker.org/
19. Sadiq, S., Governatori, G., Naimiri, K.: Modeling Control Objectives for Business Process

Compliance. In: Proc. of the BPM’07, 2007, pp. 149-164.
20. Schumm, D., Leymann, F., Ma, Z., Scheibler, T., Strauch, S.: Integrating Compliance into

Business Processes: Process Fragments as Reusable Compliance Controls. In: Proc. of the
MKWI'10, Universitätsverlag Göttingen, 2010.

21. Tretmans, J.: Model Based Testing with Labelled Transition Systems. In: Proc. of the Int.
Conference on Formal Methods and Testing, LNCS 4949, Springer, 2008, pp. 1–38

22. Vardi, M.: Branching vs. Linear Time: Final Showdown. In: Proc. of the Int. Conf. on
Tools and Algorithms for the Construction and Analysis of Systems, 2001, pp. 1-22.

23. Vereofy model checking tool. http://www.vereofy.de/

	cover-Springer.pdf
	Foliennummer 1

