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Abstract:  Adequate data management and data provisioning are among the most 
important topics to cope with the information explosion intrinsically associated 
with simulation applications. Today, data exchange with and between simulation 
applications is mainly accomplished in a file-style manner. These files show 
proprietary formats and have to be transformed according to the specific needs of 
simulation applications. Lots of effort has to be spent to find appropriate data 
sources and to specify and implement data transformations. In this paper, we 
present SIMPL – an extensible framework that provides a generic and consolidated 
abstraction for data management and data provisioning in simulation workflows. 
We introduce extensions to workflow languages and show how they are used to 
model the data provisioning for simulation workflows based on data management 
patterns. Furthermore, we show how the framework supports a uniform access to 
arbitrary external data in such workflows. This removes the burden from engineers 
and scientists to specify low-level details of data management for their simulation 
applications and thus boosts their productivity. 

1 Introduction 

Workflows have long been used to meet the needs of IT support for business processes. 
Workflows are compositions of tasks by means of causal or data dependencies that are 
carried out on a computer using a workflow management system (WfMS) [LR99]. 
Recently, workflow technology has found application in the area of scientific computing 
and simulations for implementing complex scientific applications and the term scientific 
workflow has been coined [TDG07]. Simulations, as a subset of scientific applications, 
are typically compositions of complex calculations and data management tasks, which 
makes them good candidates for the realization as workflows. For instance, partial 
differential equations have to be solved to determine temporal or spatial changes of 
simulated objects, e.g., of the structure of a car in a crash test. 

Accessing and provisioning huge amounts of heterogeneous and distributed input data as 
well as generating huge intermediate and final data sets are some of the major challenges 
of simulation workflows [TDG07][Gi07][DC08]. Typical data management activities in 
simulation workflows are extraction, transformation, and load operations (ETL) [Mü10]. 



In [Vr07], the authors discuss workflow technology as the key technology to cope with 
heterogeneous applications and data stores. In line with this argumentation and as 
proposed by [Ma05], our work is based on an ETL workflow approach, i.e., ETL 
operations of simulation workflows are modeled and executed via workflow technology. 

Today, the data management and data provisioning of simulation applications is mainly 
accomplished in a file-style manner. These files show proprietary formats and inevitably 
have to be transformed into the appropriate format the simulations require. Most of 
current scientific workflow management systems (sWfMSs) lack a generic, consolidated, 
and integrated data management abstraction that can cope with huge and heterogeneous 
data sets. They use several specialized technologies, e.g., custom workflow activities or 
services, to access data. Lots of effort must be spent to find appropriate data sources and 
to specify and implement necessary data transformations, which brings in additional 
complexity for scientists. This is in particular true for simulations involving multiple 
domains since each domain has its own requirements and solutions for data handling and 
thus render the data source and application environment even more heterogeneous. A 
consolidated abstraction support would remove the burden from engineers and scientists 
to specify low-level details of data management for their simulation applications. 

In this paper, we present SIMPL (SimTech – Information Management, Processes, and 
Languages) – an extensible framework that addresses the lack of abstraction and 
generality for data provisioning in current simulation workflow technology. SIMPL 
provides unified access methods to access arbitrary external data in simulation 
workflows while metadata describe the mappings between their interfaces and the 
concrete access mechanisms. At the modeling level, the framework extends the 
workflow language by a small set of activities that tightly embed data management 
operations for any kind of data source. When such an activity is executed, it uses the 
unified access methods of SIMPL to seamlessly access the specified data source. To 
further assist the workflow modeler in defining typical data management tasks in 
simulation workflows, we introduce data management patterns, e.g., patterns for ETL 
operations. In this paper, we show that these patterns in combination with the activities 
for data management and the unified access methods allow to define the data 
provisioning for simulations in multiple domains as well as for other scientific 
applications, such as biology, astronomy, or earthquake science. We discuss the 
extensibility of the SIMPL framework with respect to additional kinds of data sources 
and data management patterns. Furthermore, we illustrate the huge potential for a 
consolidated optimization that SIMPL makes possible as it combines the definition of 
activities for data management and simulation at the same level of abstraction. 

The rest of this paper is organized as follows: Section 2 illustrates the motivation to 
enhance an existing architecture of sWfMSs by the SIMPL framework and shows its 
integration into this architecture. Afterwards, Section 3 provides details on major aspects 
of modeling data management tasks in simulation workflows, while Section 4 deals with 
the underlying approach to unify heterogeneous access mechanisms for different data 
sources. We then discuss the benefits and drawbacks of our framework and evaluate it 
via an example simulation workflow in Section 5. Related work is afterwards discussed 
in Section 6. Finally, Section 7 concludes and lists future work. 



2 The SIMPL Framework 

The SIMPL framework is designed as an extension to scientific workflow management 
systems. Hence, we first sketch the main components of such a system according to the 
architecture of sWfMSs introduced in [Gö11]. Afterwards, we discuss the motivation to 
enhance this architecture, illustrate the main aspects by means of a sample workflow, 
and show the architectural integration of the SIMPL framework. 

2.1 Scientific Workflow Management Systems 

 

Fig. 1. Architecture of a scientific workflow management system, cf. [Gö11] 

The architecture of scientific workflow management systems presented in Figure 1 is 
based on the workflow technology for business and production workflows as defined in 
[LR99]. The scientific workflow modeler (sWF Modeler) of the GUI supports the 
modeling of workflow specifications and corresponding deployment information. The 
function catalog provides a list of available services as well as a customizable set of 
easy-to-model functions that can be used in workflow models. With the help of the 
monitor component, users may constantly observe workflow executions and identify 
unexpected events or faults. The result display component presents the final outcome of 
simulations as well as intermediate results in a way appropriate for the user. 

The deployment component transforms workflow models into engine-internal 
representations and installs them on the execution engine that executes instances of these 
workflows. The auditing component records runtime events related to workflows and 
activities, e.g., the start time of a workflow run. The monitoring component uses these 
events and indicates the states of workflow runs. The provenance component records 
data that goes beyond simple auditing information and that enables the reproducibility of 
workflow executions. The service bus primarily discovers and selects services that 
implement workflow activities, routes messages, and transforms data. Besides that, it 
connects workflows to other external, usually stateful resources, e.g., to data sources. 
The resource management component maintains metadata for such external resources as 
well as for services. The service/resource discovery component queries this metadata or 
external registries to find a list of candidate services or resources by means of descriptive 



information, e.g., semantic annotations. This list may be used by the function catalog of 
the GUI, for late binding of services and resources, or for rebinding of failed activities. 
This naturally implies the ability to use the modeling tool during the execution of 
workflow instances to enable ad-hoc changes of workflows [SK10]. 

In this architecture, scientific workflows may access and handle huge, heterogeneous, 
and distributed data objects, e.g., via services. However, the challenge still remains to 
provide a consolidated and integrated data management abstraction that is able to deal 
with such data objects. This abstraction support is one of the key requirements for 
scientific workflow management [TDG07][Gi07][DC08]. In the following, we illustrate 
this challenge using a bone remodeling simulation workflow. 

2.2 Simulation Workflow for Bone Remodeling 

Figure 2 shows the activities and relevant input and output data of a workflow for a bone 
remodeling simulation (BRS) that is used to research skeletal disorders, e.g., of human 
femur. The PANDAS framework calculates the structure of a bone under a specific load 
using the finite element method (FEM) [KME10]. The workflow is divided into three 
phases: preprocessing, solving, and post-processing.  

 
Fig. 2. Workflow for bone remodeling simulation 

In the preprocessing phase, it starts by loading basic information about the bone to be 
simulated from different databases or file systems. Examples of this information are a 
bone structure and material parameters. The second activity extracts FEM parameters 
from a file, e.g., interpolation functions. Afterwards, the workflow adjusts initial 
conditions that configure the bone structure for the start time of the simulation. 
Furthermore, it defines boundary conditions, e.g., the time-dependent pressures from 
outside on the upper joint of the bone that correspond to the human way of moving. The 
last preprocessing activity writes a set of simulation commands to a file. For example, it 
chooses a matrix solver and defines the discretization of the continuous simulation time 
into n time steps t1 to tn. In practice, a simulation involves thousands of such time steps. 

In the solving phase, the workflow uses the input to create and solve matrix equations for 
generating the intermediate and final results of the simulation. For each time step ti, it 
creates an FEM grid that is the basis to set up matrix equations Ax = b that are then 
solved. The FEM grid contains thousands or millions of mesh points and their relations. 
This mesh information is typically stored in main memory, but may also be persisted 
into files or databases for further usage in the post-processing phase. The latter also 
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holds for the matrix A and the vectors x and b. The solving phase ends after time step tn. 
The workflow then stores intermediate and final results based on the vectors x in comma 
separated value (CSV) files. The post-processing phase transforms these CSV files into 
another file format suitable for visualization tools. 

Altogether, the workflow carries out a multiplicity of data management and data 
provisioning activities. These activities involve several huge data sets as well as 
heterogeneous data sources and data formats, e.g., databases, CSV files, unstructured 
text documents, and image files. Most of the data management operations are performed 
as manual tasks, implying a high error rate. A generic and consolidated data 
management abstraction would decrease this error rate. Furthermore, it would remove 
the burden from scientists to specify low-level details of data management. 

2.3 Architecture and main Components of SIMPL 

Figure 3 shows how the SIMPL framework extends a sWfMS to provide an abstraction 
for data management and data provisioning. For better readability, we leave out 
components of the sWfMS architecture that are not relevant for SIMPL. The SIMPL core 
component, embedded in the service bus, provides unified logical interfaces to any kind 
of data source. We enhance the resource management component with metadata that 
describe the mappings between these unified interfaces and the concrete and possibly 
heterogeneous access mechanisms. The data management (DM) activity modeling plug-
in of the sWF modeler and the DM activity execution plug-in of the execution engine 
provide data management activities for simulation workflows. These activities may 
either be directly used in simulation workflows or they may be part of separate ETL 
workflows that encapsulate data provisioning processes for simulation workflows. The 
DM pattern plug-in of the function catalog assists the workflow modeler in defining the 
necessary data management operations. It contains abstract data management patterns 
that allow to model typical data provisioning tasks for simulation workflows. The 
following sections discuss the SIMPL components and plug-ins in detail. 

 

Fig. 3. The SIMPL framework integrated into a sWfMS architecture 



3. Modeling Data Management for Simulation Workflows 

In this section, we deal with major aspects of modeling data management tasks in 
simulation workflows. We introduce various extensions to workflow languages that 
allow for the definition of these tasks. The DM activity modeling plug-in makes these 
extensions available to the workflow modeler, whereas the DM activity execution plug-
in covers their runtime behavior. Furthermore, we show how data management patterns 
facilitate the definition of data management tasks for simulation workflows. 

3.1 Workflow Language Extensions for Data Management 

The Business Process Execution Language (BPEL) [Oa07] is the de-facto standard to 
define and execute business processes based on the control-flow oriented orchestration 
of service interactions. In [AMA06], BPEL is recommended for modeling and executing 
scientific workflows and simulation workflows. The main benefits stated are its modular 
design, its flexibility regarding generic XML data types and late binding of services as 
well as the fault, compensation, and event handling capabilities. In addition, many BPEL 
engines offer further capabilities, such as user interaction, workflow monitoring, or 
recovery of workflows. Due to these benefits of BPEL and in line with previous work, 
we define the Business Process Execution Language extension for Data Management 
(BPEL-DM) that extends BPEL by further activity types. We call activities of these new 
types data management (DM) activities. They reflect workflow tasks with embedded 
data management operations that are seamlessly issued against data sources. The major 
activity types of BPEL-DM are: IssueCommand, RetrieveData, and WriteDataBack. 
Each of these activities calls the SIMPL core and sends the data management operation 
to it in order to deal with heterogeneous data source access mechanisms. 

In the following, we use the term data source for a system that stores and manages data, 
e.g., a database or a file system. A data source receives and executes DM commands. 
Examples are SQL statements, shell commands of operating systems, or paths to files. 
The latter are used to load the content of a file into the process context of the workflow. 
Each of the DM activities has a BPEL variable as input parameter referring to the data 
source that executes the embedded DM command. We name such BPEL variables data 
source reference variables. A reference is a logical data source descriptor that is either a 
logical name or a document describing some functional or non-functional requirements 
for a data source. A logical name describes exactly one data source that is associated 
with the name in the resource management component. A requirements description can 
be used for choosing and binding a data source at runtime. 

A data source manages several data containers. Each container is an identifiable 
collection of data, e.g., a table in a database system or a file in a file system. Data 
container reference variables refer to a data container via a logical name. The resource 
management component maps this name to a concrete locator that uniquely identifies the 
container within the data source. A data set variable acts as target container for loading 
data into the process context of a workflow. Appropriate XML schema definitions 
specify the contents of these variables and must cope with the differences between 



several kinds of data sources. For example, we use an XML RowSet structure for any 
table-oriented data, such as data from an SQL database or from a CSV-based file. XML 
database systems, as another example, may already provide certain XML schema 
definitions or they may need to store arbitrary XML data within BPEL variables. 

We now detail on the three DM activity types. The IssueCommand activity can be used 
for data manipulation or data definition, for example. Besides the data source reference, 
it has a DM command as additional input parameter and issues this command against the 
specified data source. The engine that executes the activity expects a notification 
whether the DM command has been executed successfully by the data source or not. 
After a notification of success, the engine continues workflow execution according to the 
specified control flow. In case of a failure, it enables fault handling mechanisms. 

The RetrieveData activity also has a DM command as input parameter that is passed to 
the data source. The DM command must produce data. For instance, it may be a 
SELECT statement or a path to a file. When the data source has executed the command 
successfully, the result data is transmitted back to the execution engine. An additional 
input parameter of the activity defines a data set variable that stores this result data. In 
case of a failure, the execution engine is notified and enables fault handling mechanisms. 

The WriteDataBack activity is the counterpart of the RetrieveData activity. It writes data 
from the process context of a workflow back to a data source. The activity accepts one 
identifier for a data set variable and one for a data container reference variable as input 
parameters. It stores the data set of the first variable in the data container referred by the 
second one. As a result, the execution engine gets a notification of success or failure and 
proceeds like in the case of the IssueCommand activity. 

Data container reference variables may furthermore be used as parameters in DM 
commands of the IssueCommand or RetrieveData activities, e.g., in the FROM clause of 
an SQL SELECT statement. The same holds for other BPEL variables, e.g., string or 
integer variables used for comparisons in predicates. The workflow execution engine 
resolves all these variables, i.e., it reads the variable value and inserts this value at the 
position within the command where the variable has been referenced beforehand. In 
order to identify a variable in a DM command and distinguish it from other command 
items, the variable is marked by surrounding hash marks (e.g., ‘#’). Regarding a data 
container reference variable, only the logical name of the data container is inserted in the 
command. The SIMPL core is later responsible for mapping this name to the data 
source-specific container identifier by querying the resource management component. 

3.2 Abstraction Support through Data Management Patterns 

The SIMPL framework provides a set of data management patterns that cover major data 
provisioning tasks for simulation workflows. The workflow designer picks appropriate 
patterns from a list provided by the DM pattern plug-in of the function catalog. He/she is 
then assisted in defining the concrete data management operation for each chosen pattern 
in a semi-automatic approach instead of defining all details of the operation on his/her 
own. In the following, we illustrate the pattern-based approach via an example. 
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Fig. 4. Data join pattern and its transformation into executable workflow specifications

Figure 4(a) shows a pattern that represents a join of two data sets. Instead of defining 
concrete data management operations that execute the join, the modeler only needs to set 
some parameter values, i.e., two input variables, one output variable, and a join 
condition. Each of the input or output variables may hold data within the process context 
of the workflow, e.g., via a data set variable of BPEL-DM. Another option is that they 
refer to external data, e.g., via a data container reference variable. The respective data 
sets of the two input variables are joined according to the specified join condition. The 
result of this join is stored in the output variable or in the data container it refers to. 

A set of rewrite rules specifies the transformations of abstract and parameterized patterns 
into workflow parts that carry out the necessary data management operations, e.g., via 
DM activities of BPEL-DM. The given parameters of the patterns and metadata that 
describe the characteristics of the data sources to be accessed, e.g., their query 
capabilities, determine which rewrite rule is to be applied for a certain pattern. Figure 4 
shows three rewrite rules for our join example. If the two input variables and the output 
variable of the join pattern refer to database tables in one and the same SQL database, an 
IssueCommand activity of BPEL-DM with an embedded set-oriented INSERT statement 
may execute the join (Figure 4(b)). In case the output variable directly stores the join 
result, we use a RetrieveData activity with a SELECT statement (Figure 4(c)). If all 
three variables refer to data containers in different data sources, the transformation 
becomes more complex. Assume that we need to perform a join between the content of a 
CSV-based file and a relational database table and that another database table is the 
target container for the join result. Then, we may use two RetrievaData activities that 
load the contents of the two input data containers into the process context of the 
workflow. A subsequent BPEL assign activity joins them, and a WriteDataBack activity 
stores the join result into the target database table (Figure 4(d)). 

As described above, metadata about the data sources to be accessed are one basis for 
deciding on the rewrite rule to be applied for a certain pattern. Hence, we must not apply 
rewrite rules until it is clear which data sources the data management tasks need to 
access. In case of a static data source binding during deployment time, we apply rewrite 



rules shortly before this deployment phase. If data sources are bound at runtime, we will 
convert each pattern into a single process fragment and use process fragment technology 
to dynamically integrate this fragment into an already executing workflow [EUL09]. 

Besides our join example, the DM pattern plug-in contains further patterns and 
according rewrite rules for typical data provisioning tasks of simulation workflows. This 
covers patterns for the transmission of data from one resource to another or for ETL 
operations [Mü10][TDG07]. ETL operations may be loading or retrieving a bulk of data, 
filtering a data set as well as joining, merging, or normalizing two data sets.  

4 Unified Access Mechanism 

Now, we illustrate the approach to unify different kinds of data source access 
mechanisms. This includes the SIMPL core and its unified logical interfaces to data 
sources, the metadata to map these interfaces to the underlying access mechanisms, and 
the interaction between the components of the service bus during data source access. 
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Fig. 5. Data sent between DM activities and SIMPL core operations 

4.1 SIMPL Core 

The SIMPL core defines a set of generic operations to access arbitrary data sources, i.e., 
the specifications of the operations are independent of the underlying kinds of data 
sources. They are geared to the DM activities of BPEL-DM and named accordingly: 
IssueCommand, RetrieveData, and WriteDataBack. Each DM activity calls the SIMPL 
core operation that shares the name of the activity. Figure 5 shows which contents of the 
input parameters of each activity are sent from the workflow execution engine to the 
corresponding SIMPL core operation and which message or data the activity expects as a 
reply. Regarding the interaction between workflows and data sources, the SIMPL core 
operations only forward DM commands, result data, or notifications. They do not 
implement any complex data transformations or analyses as this would contradict our 
assumption of workflow activities seamlessly accessing data sources. 



Each SIMPL core operation expects a logical data source descriptor as input in order to 
identify the data source where the data management operation is to be executed. The 
IssueCommand operation gets a DM command as further input, and the RetrieveData 
operation a DM command that produces data. The WriteDataBack operation expects a 
data set and an identifier of the data container to insert the data set, e.g., a logical 
container name. The IssueCommand and WriteDataBack operation both deliver a 
message to the workflow execution engine that indicates whether the data management 
operation has been successfully executed or not. The RetrieveData operation delivers the 
result data produced by the input DM command in case of success. The workflow 
execution engine may then store this result data in the data set variable specified for the 
calling RetrieveData activity. In case of failure, the operation delivers a failure message. 

Different kinds of data sources rely on different access routines and further properties for 
data access, e.g., different authentication mechanisms or query capabilities. Hence, the 
generic access operations of the SIMPL core have to be implemented for concrete data 
sources or sets of data sources. Data source connectors provide this implementation and 
account for the specific properties of data sources. For example, we use a data source 
connector for data sources that are based on JDBC access mechanisms. Another 
connector supports the application programming interface of a certain file system. Some 
data sources do not support all SIMPL core operations. For instance, sensor nets do not 
allow for writing data back as they are only able to deliver data. In such a case, the 
corresponding data source connectors do not provide these operations as well.  

The SIMPL core additionally provides data converters that transform data from the 
output format of a data source connector to an XML-based format for the process 
context of the workflow and vice versa. For instance, a data converter transforms data 
between the JDBC result set format and the XML RowSet format of BPEL-DM. Such 
data converters may be used for data retrievals or for writing data back to a data source, 
i.e., for the RetrieveData and WriteDataBack operations and activities. 

4.2 Metadata for Mappings to Heterogeneous Access Mechanisms 

We enhance the resource management component of the service bus with metadata about 
data sources. These metadata describe the mappings between the unified interfaces of the 
SIMPL core and the underlying and possibly heterogeneous data source access 
mechanisms. Four kinds of objects may be registered in the resource management 
component: data sources, data containers, data source connectors, and data converters. 
Figure 6 shows the classification of the corresponding metadata as well as the 
cardinalities of associations between individual metadata classes. 

A logical source name is unique for each data source and acts as its identifier within the 
SIMPL framework. It can be used as logical data source descriptor within workflows, 
e.g., in a data source reference variable of BPEL-DM. This constitutes an abstraction 
offered to the modeler since he/she does not need to deal with real interfaces or security 
entities. The interface description contains information about the interface of the data 
source, in particular an endpoint to access it. The security entities, such as usernames 
and passwords, enable authorized data source access. The description of further 



functional or nun-functional properties typically includes properties of the data source 
like the maximally expected response time. Such properties may refer to requirements 
specified in a logical data source descriptor in order to perform a late binding of data 
sources. The data container objects describe the containers that are managed by the 
associated data source. They have a logical container name assigned that acts as a 
container reference in workflows, e.g., in a data container reference variable of BPEL-
DM. This name is mapped to the concrete local container identifier that uniquely 
identifies the container within the data source. 

 

Fig. 6. Classification of metadata to unify heterogeneous data source access mechanisms 

As described in Section 4.1, data source connectors implement the SIMPL core 
operations for the data sources they are associated with. Connectors may also be used for 
multiple data sources, e.g., one connector for all JDBC-based database systems. There 
might be multiple implementations for a single data source connector registration or data 
converter registration. In that case, one of these implementations has to be chosen during 
data source access via additional selection mechanisms, e.g., via the approach of [Ka07]. 
However, we do not further deal with this aspect for the sake of simplicity. 

When a data source is registered or when its registration is updated, the user may directly 
associate a connector to it. If the user is not sure which connector may handle the data 
source, he/she may use its connector properties description. It describes the properties a 
connector must have in order to connect to the data source. A similar description, i.e., the 
source properties description, is associated with each data source connector. It describes 
the properties a connector expects from associated data sources. For instance, both 
properties descriptions name the SIMPL core operations the associated data source and 
data source connector support. They are matched to each other to decide on the correct 
connector for the data source. The same matching can be used when a connector 
registration is added or updated to find all data sources the connector may handle. 

A data source connector is furthermore associated with a description of a data format for 
a converter. It denotes the data format in which the connector delivers output data to a 
requestor or expects input data from it. A data converter has a similar data format 
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description associated. These data format descriptions are used to map connectors and 
converters to each other during the registration of either objects or the update of a 
registration. So, only those connectors and converters are associated with each other that 
rely on the same data format. The second data format description associated to a data 
converter denotes the format in which the converter expects input sent from a workflow 
and in which it sends its output back to the workflow, e.g., XML RowSet of BPEL-DM. 
The pair of data formats associated with a converter defines between which formats it is 
able to transform data. As a constraint, this format pair uniquely identifies a data 
converter object, i.e., there is at most one converter object for each possible pair. 

We enhance the resource management component with the functionalities metadata 
management, metadata provisioning, and metadata integration (see Figure 3). Metadata 
management ensures a persistent and transactional storage of the metadata as well as the 
management of the metadata schema. The metadata provisioning provides metadata 
information to other components of the sWfMS. It offers a query interface for one or 
more query languages, e.g., SQL. Besides, it may also offer further repository services 
that go beyond simple query answering. For example, a service may execute a series of 
queries that each resolves a selection rule that is used for late binding of data sources. 
The metadata integration is responsible for integrating metadata from internal and 
external metadata sources and for dealing with according heterogeneities, in particular 
regarding the metadata schemas and their contents. Such metadata sources can be, e.g., 
users that access the resource management component via the GUI, external registries 
that also describe data sources, and the external data sources themselves. Each of these 
sources may register metadata objects with associated metadata. They may also be asked 
to complement the metadata after another party has registered an object. For example, a 
user may register a data source, which then provides all data containers it manages. 

4.3 Data Source Access using the SIMPL Framework 

 

Fig. 7. Interaction of service bus components to prepare data source access 

When a workflow accesses a data source via a logical data source descriptor, the SIMPL 
framework needs to map this descriptor to all information that is necessary for data 
source access. This information consists of the interface description, a security entity, the 
suitable data source connector, and the suitable data converter. Furthermore, it needs to 
map logical names of referenced data containers to local container identifiers. In the 
following, we describe how the components of the service bus interact with each other to 



achieve this mapping. Figure 7 shows this interaction in case the logical data source 
descriptor sent to the SIMPL core (step 1) contains a requirements specification for a 
data source. In case it contains a logical name, we skip steps 2 to 5. 

The SIMPL core sends the requirements specification to the discovery component (2). 
The latter queries the resource management component to map the requirements to a set 
of data source names that identify data sources meeting the claimed requirements (3 and 
4). The discovery component then chooses one of these names based on selection criteria 
in the requirements specification and sends the chosen name back to the SIMPL core (5). 
The latter queries the resource management component with the source name to retrieve 
the above-mentioned information that is necessary for data source access (6 and 7). This 
information is used to access the data source and to execute the SIMPL core operation 
that is identified by the calling workflow activity (8), e.g., an IssueCommand activity 
calls the IssueCommand operation. Strictly speaking, we execute the implementation of 
this operation as provided by the data source connector identified before. 

If the workflow performs a data retrieval or write back, we will need to identify exactly 
one of the converters that are associated with the identified connector. For that purpose, 
the workflow engine sends the data type of the BPEL variable that holds the data to be 
retrieved or written back to the SIMPL core. This data type determines the correct 
workflow-specific format of the converter. This data format and the connector-specific 
format assigned to the resolved connector uniquely identify the correct converter. 

5 Discussion and Evaluation 

In this section, we discuss the benefits and drawbacks of the SIMPL framework. In 
particular, our discussion covers generality issues of SIMPL, its extensibility, and 
optimization opportunities for data management in simulation workflows. Afterwards, 
we evaluate SIMPL via the example workflow for bone remodeling of Section 2.2. 

5.1 Generic Data Management for Simulation Workflows 

The generic access operations of the SIMPL core, the metadata to describe data sources, 
and the logical data source descriptors provide a uniform access to arbitrary 
heterogeneous data sources. This eases the integration of further data management 
techniques in addition to BPEL-DM. Besides that, we can port the SIMPL core and the 
metadata management to other sWfMS implementations, which may use different 
workflow engines, different workflow languages, or even different solutions for 
modeling data management and data provisioning. The high degree of portability of the 
framework is basically achieved by its architecture based on clearly separated 
components and plug-ins extending a sWfMS. 

The DM activities of BPEL-DM offer common functionality for data access, data 
manipulation, data definition, and for writing data back to a data source. Furthermore, 
SIMPL includes a multitude of data management patterns as further abstraction support. 



Together with the uniform data source access and the portability provided by SIMPL, 
these data management and data access patterns constitute a generic data management 
solution for simulation workflows. This generality enables SIMPL to be used in multiple 
domains of simulations or other scientific applications, such as biology and astronomy, 
and even in the business domain, e.g., for business ETL workflows. 

In contrast to our approach, one could provide data services to accomplish the data 
management for simulation workflows. These services usually offer efficient means for 
data management functionality specific to a small set of domains or problems. Hence, 
they do not provide a consolidated, generic, and flexible way to define data management 
for multi-domain simulation workflows. Nevertheless, since we use BPEL as workflow 
language, we allow services to be the implementation of data management tasks as well. 
Furthermore, BPEL processes also offer their functions via service interfaces. So, our 
approach may even be used to define data services that support special needs of certain 
domains or problems. 

To the best of our knowledge, no other approach includes an abstraction support to 
define data management operations that is based on generic data management patterns. 
Typically, workflow modelers have to define low-level details of data management, such 
as concrete DM commands. By distinguishing the data management operations that are 
necessary for simulations between different abstract patterns, we can reduce the degrees 
of freedom in defining the respective operations. This eases the definition and 
implementation of abstraction mechanisms for individual patterns. Furthermore, the 
patterns can be seen as building blocks for composing data provisioning workflows, e.g., 
ETL workflows, via process fragment technology [EUL09]. This increases flexibility at 
runtime and reduces modeling costs at build time. 

5.2 Extensibility of SIMPL 

The specifications of the SIMPL core operations and of the DM activities of BPEL-DM 
are independent of the underlying data sources. The same holds for the logical data 
source descriptors and the logical data container names. Hence, they do not need to be 
extended or adapted when SIMPL should support additional kinds of data sources. We 
only need to add according data sources connectors as well as data converters and XML 
schema definitions for data set variables. Furthermore, the implementations of 
connectors and converters as well as the XML schema definitions can typically be 
derived from already existing implementations or definitions. 

In the same sense, we may extend or customize BPEL-DM by additional activities. Like 
data services, these activities could account for specific needs of a certain scientific 
domain or problem. To do that, we need to add new SIMPL core operations and their 
implementations by data source connectors, but only if the already existing operations 
are not suitable. In order to add a new data management pattern to the DM pattern plug-
in of the function catalog, suitable rewrite rules have to be defined. These rules describe 
how the pattern is to be converted into executable workflow parts. Altogether and in 
contrast to previous approaches, e.g., see the approaches compared in [Vr08], we can 
typically reuse much of the already existing code for extending SIMPL. 



5.3 Optimization of Data Management for Simulation Workflows 

Our BPEL-DM approach combines the definition of activities for data management and 
simulation at the same level of abstraction. This offers a huge potential for a 
consolidated optimization at both the workflow and the data processing level. In [Vr07], 
the authors present a flexible approach to optimize workflows with embedded data 
management operations, in particular SQL statements. Independent of the underlying 
data sources, this approach shows a huge optimization potential that induces significant 
performance improvements for workflows. Furthermore, it can be easily applied to other 
approaches for embedded data management operations, e.g., to our BPEL-DM approach. 
Due to these optimization options, the SIMPL framework is well suited for a data 
management and data provisioning abstraction efficiently dealing with huge, 
heterogeneous, and distributed data objects. 

5.4 The Bone Remodeling Workflow in the SIMPL Framework 

As a proof of concept, we developed a prototype that implements SIMPL and relevant 
parts of the associated sWfMS architecture. This prototype uses the Eclipse BPEL 
Designer1 as scientific workflow modeler and the Apache Orchestration Director 
Engine2 (ODE) as workflow execution engine and deployment component. Based on the 
prototype, we implemented the workflow for a bone remodeling simulation (BRS) 
presented in Section 2.2. Its activities involve several heterogeneous data sources, e.g., 
databases, CSV files, unstructured documents, or image files. The SIMPL core and the 
metadata of the resource management provide a uniform access to these data sources. 

 

Fig. 8. Workflow for bone remodeling simulation enhanced with SIMPL 

Figure 8 shows the BRS workflow using the SIMPL framework. In particular, we show 
the BPEL-DM activities implementing the main steps of the workflow and its data 
provisioning at the bottom of the figure. In the preprocessing phase, the workflow 
creates more than ten input data files each with a size up to one gigabyte. Without the 
framework, scientists have to select all needed input data, transform the data, and store 

                                                           
1 http://www.eclipse.org/bpel/ 
2 http://ode.apache.org/ 
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results into files in the PANDAS environment. SIMPL helps to automate these tasks, 
thereby reducing the error rate. Input data for the BRS activity Define Simulation Body, 
e.g., bone information or material parameters, are typically stored in public databases or 
in private file systems. The simulation workflow invokes a separate ETL workflow that 
converts the data and transfers it into the PANDAS environment. It consists of 
RetrieveData activities that load the input data into BPEL variables. Afterwards, the 
workflow transforms the data via an assign activity, and WriteDataBack activities write 
the results into the target files. The activities Adjust Initial/Boundary Conditions and 
Create Simulation Commands operate according to the same procedure except that they 
read their input data from structured CSV files. Hence, they also use RetreiveData and 
WriteDataBack activities for data selection and transmission. 

To perform the FEM, the BRS activity Create FEM Parameters has to select certain 
interpolation functions from an unstructured text document that summarizes all available 
functions. SIMPL is based on forwarding DM commands to data sources, but the 
underlying file system does not support executing extractions of unstructured data via 
DM commands. Hence, SIMPL is not able to directly select these functions. We need 
data services that select all necessary information and store it into workflow variables. A 
WriteDataBack activity subsequently copies this data into the PANDAS environment.  

During the solving phase, the activity Solve Matrix Equations calculates matrix 
equations for several time steps. For each step, it stores all relevant data, i.e., the 
intermediate results, the FEM grid, and the matrix and vectors into a database inside the 
PANDAS environment. For selected time steps, a repeatedly executed IssueCommand 
activity in the simulation workflow persists snapshots of these data for further 
processing, e.g., for analyzing or for recovery purposes. A typical BRS produces 100 or 
even more of such data snapshots each with a size of about two megabytes. After the last 
time step, the IssueCommand activity stores the final result. 

The last BRS activity Visualize Results transforms these results and other data, such as 
the FEM grid, into a format suitable for visualization tools. For example, it joins the 
FEM grid data and the simulation results for selected time steps of the solving phase in 
order to create images that combine this information. To automate this, IssueCommand 
activities of an ETL workflow select the necessary data and transform and match it. 

The BRS workflow benefits from SIMPL in various ways. SIMPL provides a uniform 
access to all involved heterogeneous data sources, i.e., databases, CSV files, 
unstructured text documents, and image files. Furthermore, it allows to automate the data 
management activities that have previously been performed manually. This reduces the 
error rate and the time the scientists have to spend for these activities. We chose ETL 
workflows for the preprocessing and the post-processing phase since they may transfer 
data directly between the involved data sources. So, we can reduce costs for transmitting 
high amounts of data and decrease workload for data processing within the simulation 
workflow. During the solving phase, an IssueCommand activity could even transform all 
FEM data into formats suitable for different solvers, e.g., parallel solvers, i.e., SIMPL 
helps to switch between these different solvers. Altogether, SIMPL offers a data 
management abstraction that is well suited for simulation workflows such as the BRS. 



6 Related Work 

Federated information systems integrate different kinds of data sources and provide a 
homogeneous schema for heterogeneous source systems [Bu99]. However, they 
typically involve multiple and sophisticated integration processes that have to be 
executed for each data source access. In simulation applications the sources are highly 
heterogeneous and we need to cope with huge amounts of data. Thus, complex 
integration processes may show poor performance. In that case, a peer-to-peer-based 
approach seems more suitable as it employs less complex integration processes between 
pairs of data sources. The generality of our approach recommends it to be used for both a 
federated and a peer-to-peer-based solution. This also holds for conventional ETL tools. 
But in contrast to our approach, they rather work with various access mechanisms and 
data management operators that are specific for a certain kind of data source. 

Scientific applications recently adopted the facilities of grid infrastructures as well as the 
Service Oriented Architecture (SOA) [TDG07]. The most prominent solution for grid- 
and service-based data management is the Open Grid Services Architecture – Data 
Access and Integration3 framework (OGSA-DAI). It encapsulates heterogeneous and 
distributed data sources via services that provide access abstractions for the data sources. 
A user may define data integration workflows that orchestrate interactions with these 
services. However, the workflows and workflow tasks of OGSA-DAI are implemented 
directly in programming languages. If simulation workflows that rely on conventional 
workflow technology use OGSA-DAI as data management solution, they will not exploit 
the optimization potential of a consolidated definition of the processing activities for 
data management and simulation [Vr07]. Furthermore, the abstraction support offered by 
OGSA-DAI only relies on the customized abstractions offered by the individual services, 
while we provide a generic and unified abstraction mechanism. 

The Scientific Data Management Center (SDM Center) offers an end-to-end data 
management approach that mainly deals with efficiently analyzing data produced by 
scientific simulations or experiments [Sh07]. It offers efficient and parallel access 
routines to storage systems and technologies to support the better understanding of data. 
The latter comprises, for example, routines for specialized feature discovery, algorithms 
for parallel statistical data analysis, and efficient indexes over large and distributed data 
sets. On top of this, the Kepler sWfMS provides the robust automation of processes for 
generating, collecting, and storing the results of simulations or experiments as well as for 
data post-processing and analyzing the results [Lu06]. In contrast to the SDM Center, 
our approach does not deal with data analysis, but with data provisioning for simulation 
workflows and an appropriate abstraction support. Kepler also offers workflow activities 
to seamlessly access data sources, in particular for local file systems, relational database 
systems, and data streams coming from sensor networks. However, each of these 
activities directly deals with the heterogeneities regarding access mechanisms of the 
considered data sources instead of using generic and unified interfaces. 

                                                           
3 http://www.ogsadai.org.uk/index.php 



The scientific workflow management system VisTrails, focuses on the exploration and 
visualization of results of simulations or experiments as well as on modeling, executing, 
and optimizing visualization workflows [Fr06]. It supports tracking revisions of 
workflows, i.e., scientists or engineers may interactively adjust their workflows. In order 
to maintain the history of workflow execution, data processing, and workflow revisions, 
VisTrails captures data and workflow provenance and links them to each other and to the 
produced data [Ko10]. This enables reproducibility of processes and simplifies the 
exploration of different versions of a workflow as well as its results. In contrast to the 
framework presented in this paper, VisTrails does not focus on data provisioning aspects 
and abstractions that are necessary for executing all phases of simulations. 

Microsoft Trident is a general-purpose scientific workflow workbench [Ba08]. It is built 
on top of the Microsoft Windows Workflow Foundation4 (Windows WF), a workflow 
environment based on the control-flow oriented Extensible Orchestration Markup 
Language (XOML). Trident enhances Windows WF with functionality needed for 
scientific workflow management, e.g., automatic provenance capture and the possibility 
to model data dependencies between workflow tasks. The activity library of Windows 
WF enables customized activity types that could provide a seamless access to data 
sources or further abstractions for defining data management operations. However, they 
have to be implemented by the modeler himself or shared between several activity 
developers. SIMPL offers abstractions via data management patterns that are 
automatically converted into executable workflow parts. As an alternative to such 
custom activity types, Trident uses services for data access. Similar to OGSA-DAI, this 
complicates optimizations over the whole spectrum from the workflow to the data 
processing level. Furthermore, Trident workflows may use Dryad for data provisioning 
[Is07]. Following the approach of MapReduce [DG04], Dryad supports programmers in 
efficiently using multiple resources for executing data-intensive and data-parallel 
applications without knowing anything about concurrent programming. However, Dryad 
does not deal with data management abstractions in our sense of a generic solution. 

Besides the activity library of Windows WF, IBM and Oracle also provide workflow 
activities that directly embed data management operations as part of their workflow 
products [Vr08]. In contrast to SIMPL, these products do not offer abstractions via data 
management patterns and are restricted to SQL statements, while we support any kind of 
data source. The external variables of Apache ODE are another approach to seamlessly 
access data sources from within workflows. These variables can be mapped to one row 
of a table in a database that offers an interface following Java Database Connectivity5 
(JDBC). This way, workflows may perform tuple-oriented retrievals and manipulations 
on the mapped row. However, set-oriented operations have to be defined via additional 
workflow constructs, e.g., loop activities. In [Vr07], the authors proof that such a loop-
based execution of several tuple-oriented operations shows weak performance related to 
a set-oriented SQL statement that is wholly executed by the database system. Our 
approach supports set-oriented operations by directly integrating SQL statements into the 
workflow definition. 

                                                           
4 http://www.windowsworkflowfoundation.eu/ 
5 http://java.sun.com/products/jdbc/overview.html 



7 Conclusion and Future Work 

In this paper, we introduced SIMPL – an extensible framework that provides a generic 
and consolidated abstraction for data management and data provisioning in simulation 
workflows. It unifies heterogeneous interfaces to different data sources via logical data 
source descriptors, generic access operations, and metadata for mappings to concrete 
data source access mechanisms. We demonstrated that this provides the core 
functionality to uniformly access arbitrary data sources and enables an easy development 
and integration of concrete data management techniques. Based on this, the BPEL-DM 
activities allow for the definition and execution of common data management and data 
provisioning tasks for simulation workflows. Further abstraction support is provided by 
means of generic data management patterns, e.g., patterns for ETL operations. In 
addition to a data source access via services, BPEL-DM offers the combined definition 
of the processing activities for data management and simulation at the same level of 
abstraction. This enables optimizations over the whole spectrum from the workflow level 
to the data level, inducing significant performance improvements of workflows. 
Altogether, the SIMPL framework removes the burden from engineers and scientists to 
specify low-level details of data management for their simulations. It helps them to cope 
with the information explosion intrinsically associated with simulation applications and 
boosts their productivity. 

In future, we will extend the optimization approach for workflows with embedded data 
management operations of [Vr07] to be applicable to the data management in simulation 
workflows. For that purpose, we will work on a set of optimization rules that are suitable 
for simulation workflows and for DM activities of BPEL-DM. Scientists may use several 
parameterized data management patterns within their workflows. Our approach converts 
each pattern into an executable workflow part in isolation from all other patterns. This 
may result in a variety of process fragments for data management and data provisioning 
that show further optimization potential when considered together. To exploit this 
optimization potential, we will combine the conversion of data management patterns 
with the optimization approach for data management. 
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