

Stuttgart Research Centre for Simulation Technology (SRC SimTech)

SimTech – Cluster of Excellence

Pfaffenwaldring 7a

70569 Stuttgart

publications@simtech.uni-stuttgart.de

www.simtech.uni-stuttgart.de

Peter Reimann
 b
 ∙ Michael Reiter

 a
 ∙ Holger Schwarz

 b
 ∙ Dimka Karastoyanova

 a
 ∙ Frank Leymann

 a

SIMPL – A Framework for Accessing External Data in

Simulation Workflows

Stuttgart, March 2011

a
 Institute of Architecture of Application Systems (IAAS)

University of Stuttgart,

Universitaetsstrasse 38

70569 Stuttgart, Germany

Firstname.Lastname@iaas.uni-stuttgart.de

www.iaas.uni-stuttgart.de

b
 Institute of Parallel and Distributed Systems (IPVS)

University of Stuttgart,

Universitaetsstrasse 38

70569 Stuttgart, Germany

Firstname.Lastname@ipvs.uni-stuttgart.de

www.ipvs.uni-stuttgart.de

Abstract Adequate data management and data provisioning are among the most important topics to

cope with the information explosion intrinsically associated with simulation applications. Today, data

exchange with and between simulation applications is mainly accomplished in a file-style manner.

These files show proprietary formats and have to be transformed according to the specific needs of

simulation applications. Lots of effort has to be spent to find appropriate data sources and to specify

and implement data transformations. In this paper, we present SIMPL – an extensible framework that

provides a generic and consolidated abstraction for data management and data provisioning in

simulation workflows. We introduce extensions to workflow languages and show how they are used to

model the data provisioning for simulation workflows based on data management patterns.

Furthermore, we show how the framework supports a uniform access to arbitrary external data in such

workflows. This removes the burden from engineers and scientists to specify low-level details of data

management for their simulation applications and thus boosts their productivity.

Keywords Data Provisioning; Workflow; Scientific Workflow; Simulation Workflow; SIMPL

© Gesellschaft für Informatik

The original publication is available at:

http://www.gi.de/service/publikationen/lni/gi-edition-proceedings-2011/gi-edition-lecture-notes-in-

informatics-lni-p-180.html

http://www.iaas.uni-stuttgart.de/
http://www.ipvs.uni-stuttgart.de/
http://www.gi.de/service/publikationen/lni/gi-edition-proceedings-2011/gi-edition-lecture-notes-in-informatics-lni-p-180.html
http://www.gi.de/service/publikationen/lni/gi-edition-proceedings-2011/gi-edition-lecture-notes-in-informatics-lni-p-180.html

SIMPL – A Framework for Accessing External Data
in Simulation Workflows

Peter Reimann2, Michael Reiter1, Holger Schwarz2, Dimka Karastoyanova1, and
Frank Leymann1

1 Institute of Architecture of Application Systems, University of Stuttgart
Firstname.Lastname@iaas.uni-stuttgart.de

2 Institute of Parallel and Distributed Systems, University of Stuttgart
Firstname.Lastname@ipvs.uni-stuttgart.de

Abstract: Adequate data management and data provisioning are among the most
important topics to cope with the information explosion intrinsically associated
with simulation applications. Today, data exchange with and between simulation
applications is mainly accomplished in a file-style manner. These files show
proprietary formats and have to be transformed according to the specific needs of
simulation applications. Lots of effort has to be spent to find appropriate data
sources and to specify and implement data transformations. In this paper, we
present SIMPL – an extensible framework that provides a generic and consolidated
abstraction for data management and data provisioning in simulation workflows.
We introduce extensions to workflow languages and show how they are used to
model the data provisioning for simulation workflows based on data management
patterns. Furthermore, we show how the framework supports a uniform access to
arbitrary external data in such workflows. This removes the burden from engineers
and scientists to specify low-level details of data management for their simulation
applications and thus boosts their productivity.

1 Introduction

Workflows have long been used to meet the needs of IT support for business processes.
Workflows are compositions of tasks by means of causal or data dependencies that are
carried out on a computer using a workflow management system (WfMS) [LR99].
Recently, workflow technology has found application in the area of scientific computing
and simulations for implementing complex scientific applications and the term scientific
workflow has been coined [TDG07]. Simulations, as a subset of scientific applications,
are typically compositions of complex calculations and data management tasks, which
makes them good candidates for the realization as workflows. For instance, partial
differential equations have to be solved to determine temporal or spatial changes of
simulated objects, e.g., of the structure of a car in a crash test.

Accessing and provisioning huge amounts of heterogeneous and distributed input data as
well as generating huge intermediate and final data sets are some of the major challenges
of simulation workflows [TDG07][Gi07][DC08]. Typical data management activities in
simulation workflows are extraction, transformation, and load operations (ETL) [Mü10].

In [Vr07], the authors discuss workflow technology as the key technology to cope with
heterogeneous applications and data stores. In line with this argumentation and as
proposed by [Ma05], our work is based on an ETL workflow approach, i.e., ETL
operations of simulation workflows are modeled and executed via workflow technology.

Today, the data management and data provisioning of simulation applications is mainly
accomplished in a file-style manner. These files show proprietary formats and inevitably
have to be transformed into the appropriate format the simulations require. Most of
current scientific workflow management systems (sWfMSs) lack a generic, consolidated,
and integrated data management abstraction that can cope with huge and heterogeneous
data sets. They use several specialized technologies, e.g., custom workflow activities or
services, to access data. Lots of effort must be spent to find appropriate data sources and
to specify and implement necessary data transformations, which brings in additional
complexity for scientists. This is in particular true for simulations involving multiple
domains since each domain has its own requirements and solutions for data handling and
thus render the data source and application environment even more heterogeneous. A
consolidated abstraction support would remove the burden from engineers and scientists
to specify low-level details of data management for their simulation applications.

In this paper, we present SIMPL (SimTech – Information Management, Processes, and
Languages) – an extensible framework that addresses the lack of abstraction and
generality for data provisioning in current simulation workflow technology. SIMPL
provides unified access methods to access arbitrary external data in simulation
workflows while metadata describe the mappings between their interfaces and the
concrete access mechanisms. At the modeling level, the framework extends the
workflow language by a small set of activities that tightly embed data management
operations for any kind of data source. When such an activity is executed, it uses the
unified access methods of SIMPL to seamlessly access the specified data source. To
further assist the workflow modeler in defining typical data management tasks in
simulation workflows, we introduce data management patterns, e.g., patterns for ETL
operations. In this paper, we show that these patterns in combination with the activities
for data management and the unified access methods allow to define the data
provisioning for simulations in multiple domains as well as for other scientific
applications, such as biology, astronomy, or earthquake science. We discuss the
extensibility of the SIMPL framework with respect to additional kinds of data sources
and data management patterns. Furthermore, we illustrate the huge potential for a
consolidated optimization that SIMPL makes possible as it combines the definition of
activities for data management and simulation at the same level of abstraction.

The rest of this paper is organized as follows: Section 2 illustrates the motivation to
enhance an existing architecture of sWfMSs by the SIMPL framework and shows its
integration into this architecture. Afterwards, Section 3 provides details on major aspects
of modeling data management tasks in simulation workflows, while Section 4 deals with
the underlying approach to unify heterogeneous access mechanisms for different data
sources. We then discuss the benefits and drawbacks of our framework and evaluate it
via an example simulation workflow in Section 5. Related work is afterwards discussed
in Section 6. Finally, Section 7 concludes and lists future work.

2 The SIMPL Framework

The SIMPL framework is designed as an extension to scientific workflow management
systems. Hence, we first sketch the main components of such a system according to the
architecture of sWfMSs introduced in [Gö11]. Afterwards, we discuss the motivation to
enhance this architecture, illustrate the main aspects by means of a sample workflow,
and show the architectural integration of the SIMPL framework.

2.1 Scientific Workflow Management Systems

Fig. 1. Architecture of a scientific workflow management system, cf. [Gö11]

The architecture of scientific workflow management systems presented in Figure 1 is
based on the workflow technology for business and production workflows as defined in
[LR99]. The scientific workflow modeler (sWF Modeler) of the GUI supports the
modeling of workflow specifications and corresponding deployment information. The
function catalog provides a list of available services as well as a customizable set of
easy-to-model functions that can be used in workflow models. With the help of the
monitor component, users may constantly observe workflow executions and identify
unexpected events or faults. The result display component presents the final outcome of
simulations as well as intermediate results in a way appropriate for the user.

The deployment component transforms workflow models into engine-internal
representations and installs them on the execution engine that executes instances of these
workflows. The auditing component records runtime events related to workflows and
activities, e.g., the start time of a workflow run. The monitoring component uses these
events and indicates the states of workflow runs. The provenance component records
data that goes beyond simple auditing information and that enables the reproducibility of
workflow executions. The service bus primarily discovers and selects services that
implement workflow activities, routes messages, and transforms data. Besides that, it
connects workflows to other external, usually stateful resources, e.g., to data sources.
The resource management component maintains metadata for such external resources as
well as for services. The service/resource discovery component queries this metadata or
external registries to find a list of candidate services or resources by means of descriptive

information, e.g., semantic annotations. This list may be used by the function catalog of
the GUI, for late binding of services and resources, or for rebinding of failed activities.
This naturally implies the ability to use the modeling tool during the execution of
workflow instances to enable ad-hoc changes of workflows [SK10].

In this architecture, scientific workflows may access and handle huge, heterogeneous,
and distributed data objects, e.g., via services. However, the challenge still remains to
provide a consolidated and integrated data management abstraction that is able to deal
with such data objects. This abstraction support is one of the key requirements for
scientific workflow management [TDG07][Gi07][DC08]. In the following, we illustrate
this challenge using a bone remodeling simulation workflow.

2.2 Simulation Workflow for Bone Remodeling

Figure 2 shows the activities and relevant input and output data of a workflow for a bone
remodeling simulation (BRS) that is used to research skeletal disorders, e.g., of human
femur. The PANDAS framework calculates the structure of a bone under a specific load
using the finite element method (FEM) [KME10]. The workflow is divided into three
phases: preprocessing, solving, and post-processing.

Fig. 2. Workflow for bone remodeling simulation

In the preprocessing phase, it starts by loading basic information about the bone to be
simulated from different databases or file systems. Examples of this information are a
bone structure and material parameters. The second activity extracts FEM parameters
from a file, e.g., interpolation functions. Afterwards, the workflow adjusts initial
conditions that configure the bone structure for the start time of the simulation.
Furthermore, it defines boundary conditions, e.g., the time-dependent pressures from
outside on the upper joint of the bone that correspond to the human way of moving. The
last preprocessing activity writes a set of simulation commands to a file. For example, it
chooses a matrix solver and defines the discretization of the continuous simulation time
into n time steps t1 to tn. In practice, a simulation involves thousands of such time steps.

In the solving phase, the workflow uses the input to create and solve matrix equations for
generating the intermediate and final results of the simulation. For each time step ti, it
creates an FEM grid that is the basis to set up matrix equations Ax = b that are then
solved. The FEM grid contains thousands or millions of mesh points and their relations.
This mesh information is typically stored in main memory, but may also be persisted
into files or databases for further usage in the post-processing phase. The latter also

Create FEM
Parameters

Bone

information

Body data FEM

parameters
Initial/Boundary

conditions

Simulation

commands

FEM

Grid

Matrix

Ax=b

(intermediate)

Results

Adjust Initial/
Boundary
Conditions

Visualize Results

Pictures

Create
Simulation
Commands

Solve Matrix
Equations

Define Simulation
Body

Preprocessing Phase Solving Phase Postprocessing Phase

holds for the matrix A and the vectors x and b. The solving phase ends after time step tn.
The workflow then stores intermediate and final results based on the vectors x in comma
separated value (CSV) files. The post-processing phase transforms these CSV files into
another file format suitable for visualization tools.

Altogether, the workflow carries out a multiplicity of data management and data
provisioning activities. These activities involve several huge data sets as well as
heterogeneous data sources and data formats, e.g., databases, CSV files, unstructured
text documents, and image files. Most of the data management operations are performed
as manual tasks, implying a high error rate. A generic and consolidated data
management abstraction would decrease this error rate. Furthermore, it would remove
the burden from scientists to specify low-level details of data management.

2.3 Architecture and main Components of SIMPL

Figure 3 shows how the SIMPL framework extends a sWfMS to provide an abstraction
for data management and data provisioning. For better readability, we leave out
components of the sWfMS architecture that are not relevant for SIMPL. The SIMPL core
component, embedded in the service bus, provides unified logical interfaces to any kind
of data source. We enhance the resource management component with metadata that
describe the mappings between these unified interfaces and the concrete and possibly
heterogeneous access mechanisms. The data management (DM) activity modeling plug-
in of the sWF modeler and the DM activity execution plug-in of the execution engine
provide data management activities for simulation workflows. These activities may
either be directly used in simulation workflows or they may be part of separate ETL
workflows that encapsulate data provisioning processes for simulation workflows. The
DM pattern plug-in of the function catalog assists the workflow modeler in defining the
necessary data management operations. It contains abstract data management patterns
that allow to model typical data provisioning tasks for simulation workflows. The
following sections discuss the SIMPL components and plug-ins in detail.

Fig. 3. The SIMPL framework integrated into a sWfMS architecture

3. Modeling Data Management for Simulation Workflows

In this section, we deal with major aspects of modeling data management tasks in
simulation workflows. We introduce various extensions to workflow languages that
allow for the definition of these tasks. The DM activity modeling plug-in makes these
extensions available to the workflow modeler, whereas the DM activity execution plug-
in covers their runtime behavior. Furthermore, we show how data management patterns
facilitate the definition of data management tasks for simulation workflows.

3.1 Workflow Language Extensions for Data Management

The Business Process Execution Language (BPEL) [Oa07] is the de-facto standard to
define and execute business processes based on the control-flow oriented orchestration
of service interactions. In [AMA06], BPEL is recommended for modeling and executing
scientific workflows and simulation workflows. The main benefits stated are its modular
design, its flexibility regarding generic XML data types and late binding of services as
well as the fault, compensation, and event handling capabilities. In addition, many BPEL
engines offer further capabilities, such as user interaction, workflow monitoring, or
recovery of workflows. Due to these benefits of BPEL and in line with previous work,
we define the Business Process Execution Language extension for Data Management
(BPEL-DM) that extends BPEL by further activity types. We call activities of these new
types data management (DM) activities. They reflect workflow tasks with embedded
data management operations that are seamlessly issued against data sources. The major
activity types of BPEL-DM are: IssueCommand, RetrieveData, and WriteDataBack.
Each of these activities calls the SIMPL core and sends the data management operation
to it in order to deal with heterogeneous data source access mechanisms.

In the following, we use the term data source for a system that stores and manages data,
e.g., a database or a file system. A data source receives and executes DM commands.
Examples are SQL statements, shell commands of operating systems, or paths to files.
The latter are used to load the content of a file into the process context of the workflow.
Each of the DM activities has a BPEL variable as input parameter referring to the data
source that executes the embedded DM command. We name such BPEL variables data
source reference variables. A reference is a logical data source descriptor that is either a
logical name or a document describing some functional or non-functional requirements
for a data source. A logical name describes exactly one data source that is associated
with the name in the resource management component. A requirements description can
be used for choosing and binding a data source at runtime.

A data source manages several data containers. Each container is an identifiable
collection of data, e.g., a table in a database system or a file in a file system. Data
container reference variables refer to a data container via a logical name. The resource
management component maps this name to a concrete locator that uniquely identifies the
container within the data source. A data set variable acts as target container for loading
data into the process context of a workflow. Appropriate XML schema definitions
specify the contents of these variables and must cope with the differences between

several kinds of data sources. For example, we use an XML RowSet structure for any
table-oriented data, such as data from an SQL database or from a CSV-based file. XML
database systems, as another example, may already provide certain XML schema
definitions or they may need to store arbitrary XML data within BPEL variables.

We now detail on the three DM activity types. The IssueCommand activity can be used
for data manipulation or data definition, for example. Besides the data source reference,
it has a DM command as additional input parameter and issues this command against the
specified data source. The engine that executes the activity expects a notification
whether the DM command has been executed successfully by the data source or not.
After a notification of success, the engine continues workflow execution according to the
specified control flow. In case of a failure, it enables fault handling mechanisms.

The RetrieveData activity also has a DM command as input parameter that is passed to
the data source. The DM command must produce data. For instance, it may be a
SELECT statement or a path to a file. When the data source has executed the command
successfully, the result data is transmitted back to the execution engine. An additional
input parameter of the activity defines a data set variable that stores this result data. In
case of a failure, the execution engine is notified and enables fault handling mechanisms.

The WriteDataBack activity is the counterpart of the RetrieveData activity. It writes data
from the process context of a workflow back to a data source. The activity accepts one
identifier for a data set variable and one for a data container reference variable as input
parameters. It stores the data set of the first variable in the data container referred by the
second one. As a result, the execution engine gets a notification of success or failure and
proceeds like in the case of the IssueCommand activity.

Data container reference variables may furthermore be used as parameters in DM
commands of the IssueCommand or RetrieveData activities, e.g., in the FROM clause of
an SQL SELECT statement. The same holds for other BPEL variables, e.g., string or
integer variables used for comparisons in predicates. The workflow execution engine
resolves all these variables, i.e., it reads the variable value and inserts this value at the
position within the command where the variable has been referenced beforehand. In
order to identify a variable in a DM command and distinguish it from other command
items, the variable is marked by surrounding hash marks (e.g., ‘#’). Regarding a data
container reference variable, only the logical name of the data container is inserted in the
command. The SIMPL core is later responsible for mapping this name to the data
source-specific container identifier by querying the resource management component.

3.2 Abstraction Support through Data Management Patterns

The SIMPL framework provides a set of data management patterns that cover major data
provisioning tasks for simulation workflows. The workflow designer picks appropriate
patterns from a list provided by the DM pattern plug-in of the function catalog. He/she is
then assisted in defining the concrete data management operation for each chosen pattern
in a semi-automatic approach instead of defining all details of the operation on his/her
own. In the following, we illustrate the pattern-based approach via an example.

Join
DM-P

(a) Original, parameterized data join pattern

Assign=

WriteDataBack
DM-A

RetrieveData1
DM-A

RetrieveData2
DM-A

(d) Transformation if all variables refer to data
containers in different data sources

IssueCommand
DM-A

(b) Transformation if all variables refer to database
tables in the same SQL database

RetrieveData
DM-A

(c) Transformation for same case as in (b) except
that output variable directly stores join result

Fig. 4. Data join pattern and its transformation into executable workflow specifications

Figure 4(a) shows a pattern that represents a join of two data sets. Instead of defining
concrete data management operations that execute the join, the modeler only needs to set
some parameter values, i.e., two input variables, one output variable, and a join
condition. Each of the input or output variables may hold data within the process context
of the workflow, e.g., via a data set variable of BPEL-DM. Another option is that they
refer to external data, e.g., via a data container reference variable. The respective data
sets of the two input variables are joined according to the specified join condition. The
result of this join is stored in the output variable or in the data container it refers to.

A set of rewrite rules specifies the transformations of abstract and parameterized patterns
into workflow parts that carry out the necessary data management operations, e.g., via
DM activities of BPEL-DM. The given parameters of the patterns and metadata that
describe the characteristics of the data sources to be accessed, e.g., their query
capabilities, determine which rewrite rule is to be applied for a certain pattern. Figure 4
shows three rewrite rules for our join example. If the two input variables and the output
variable of the join pattern refer to database tables in one and the same SQL database, an
IssueCommand activity of BPEL-DM with an embedded set-oriented INSERT statement
may execute the join (Figure 4(b)). In case the output variable directly stores the join
result, we use a RetrieveData activity with a SELECT statement (Figure 4(c)). If all
three variables refer to data containers in different data sources, the transformation
becomes more complex. Assume that we need to perform a join between the content of a
CSV-based file and a relational database table and that another database table is the
target container for the join result. Then, we may use two RetrievaData activities that
load the contents of the two input data containers into the process context of the
workflow. A subsequent BPEL assign activity joins them, and a WriteDataBack activity
stores the join result into the target database table (Figure 4(d)).

As described above, metadata about the data sources to be accessed are one basis for
deciding on the rewrite rule to be applied for a certain pattern. Hence, we must not apply
rewrite rules until it is clear which data sources the data management tasks need to
access. In case of a static data source binding during deployment time, we apply rewrite

rules shortly before this deployment phase. If data sources are bound at runtime, we will
convert each pattern into a single process fragment and use process fragment technology
to dynamically integrate this fragment into an already executing workflow [EUL09].

Besides our join example, the DM pattern plug-in contains further patterns and
according rewrite rules for typical data provisioning tasks of simulation workflows. This
covers patterns for the transmission of data from one resource to another or for ETL
operations [Mü10][TDG07]. ETL operations may be loading or retrieving a bulk of data,
filtering a data set as well as joining, merging, or normalizing two data sets.

4 Unified Access Mechanism

Now, we illustrate the approach to unify different kinds of data source access
mechanisms. This includes the SIMPL core and its unified logical interfaces to data
sources, the metadata to map these interfaces to the underlying access mechanisms, and
the interaction between the components of the service bus during data source access.

IssueCommand
Op

RetrieveData
Op

WriteDataBack
Op

IssueCommand
DM-A

RetrieveData
DM-A

WriteDataBack
DM-A

Fig. 5. Data sent between DM activities and SIMPL core operations

4.1 SIMPL Core

The SIMPL core defines a set of generic operations to access arbitrary data sources, i.e.,
the specifications of the operations are independent of the underlying kinds of data
sources. They are geared to the DM activities of BPEL-DM and named accordingly:
IssueCommand, RetrieveData, and WriteDataBack. Each DM activity calls the SIMPL
core operation that shares the name of the activity. Figure 5 shows which contents of the
input parameters of each activity are sent from the workflow execution engine to the
corresponding SIMPL core operation and which message or data the activity expects as a
reply. Regarding the interaction between workflows and data sources, the SIMPL core
operations only forward DM commands, result data, or notifications. They do not
implement any complex data transformations or analyses as this would contradict our
assumption of workflow activities seamlessly accessing data sources.

Each SIMPL core operation expects a logical data source descriptor as input in order to
identify the data source where the data management operation is to be executed. The
IssueCommand operation gets a DM command as further input, and the RetrieveData
operation a DM command that produces data. The WriteDataBack operation expects a
data set and an identifier of the data container to insert the data set, e.g., a logical
container name. The IssueCommand and WriteDataBack operation both deliver a
message to the workflow execution engine that indicates whether the data management
operation has been successfully executed or not. The RetrieveData operation delivers the
result data produced by the input DM command in case of success. The workflow
execution engine may then store this result data in the data set variable specified for the
calling RetrieveData activity. In case of failure, the operation delivers a failure message.

Different kinds of data sources rely on different access routines and further properties for
data access, e.g., different authentication mechanisms or query capabilities. Hence, the
generic access operations of the SIMPL core have to be implemented for concrete data
sources or sets of data sources. Data source connectors provide this implementation and
account for the specific properties of data sources. For example, we use a data source
connector for data sources that are based on JDBC access mechanisms. Another
connector supports the application programming interface of a certain file system. Some
data sources do not support all SIMPL core operations. For instance, sensor nets do not
allow for writing data back as they are only able to deliver data. In such a case, the
corresponding data source connectors do not provide these operations as well.

The SIMPL core additionally provides data converters that transform data from the
output format of a data source connector to an XML-based format for the process
context of the workflow and vice versa. For instance, a data converter transforms data
between the JDBC result set format and the XML RowSet format of BPEL-DM. Such
data converters may be used for data retrievals or for writing data back to a data source,
i.e., for the RetrieveData and WriteDataBack operations and activities.

4.2 Metadata for Mappings to Heterogeneous Access Mechanisms

We enhance the resource management component of the service bus with metadata about
data sources. These metadata describe the mappings between the unified interfaces of the
SIMPL core and the underlying and possibly heterogeneous data source access
mechanisms. Four kinds of objects may be registered in the resource management
component: data sources, data containers, data source connectors, and data converters.
Figure 6 shows the classification of the corresponding metadata as well as the
cardinalities of associations between individual metadata classes.

A logical source name is unique for each data source and acts as its identifier within the
SIMPL framework. It can be used as logical data source descriptor within workflows,
e.g., in a data source reference variable of BPEL-DM. This constitutes an abstraction
offered to the modeler since he/she does not need to deal with real interfaces or security
entities. The interface description contains information about the interface of the data
source, in particular an endpoint to access it. The security entities, such as usernames
and passwords, enable authorized data source access. The description of further

functional or nun-functional properties typically includes properties of the data source
like the maximally expected response time. Such properties may refer to requirements
specified in a logical data source descriptor in order to perform a late binding of data
sources. The data container objects describe the containers that are managed by the
associated data source. They have a logical container name assigned that acts as a
container reference in workflows, e.g., in a data container reference variable of BPEL-
DM. This name is mapped to the concrete local container identifier that uniquely
identifies the container within the data source.

Fig. 6. Classification of metadata to unify heterogeneous data source access mechanisms

As described in Section 4.1, data source connectors implement the SIMPL core
operations for the data sources they are associated with. Connectors may also be used for
multiple data sources, e.g., one connector for all JDBC-based database systems. There
might be multiple implementations for a single data source connector registration or data
converter registration. In that case, one of these implementations has to be chosen during
data source access via additional selection mechanisms, e.g., via the approach of [Ka07].
However, we do not further deal with this aspect for the sake of simplicity.

When a data source is registered or when its registration is updated, the user may directly
associate a connector to it. If the user is not sure which connector may handle the data
source, he/she may use its connector properties description. It describes the properties a
connector must have in order to connect to the data source. A similar description, i.e., the
source properties description, is associated with each data source connector. It describes
the properties a connector expects from associated data sources. For instance, both
properties descriptions name the SIMPL core operations the associated data source and
data source connector support. They are matched to each other to decide on the correct
connector for the data source. The same matching can be used when a connector
registration is added or updated to find all data sources the connector may handle.

A data source connector is furthermore associated with a description of a data format for
a converter. It denotes the data format in which the connector delivers output data to a
requestor or expects input data from it. A data converter has a similar data format

Data Source

Connector

Object

Data Converter

Object

Data Source

Object

0..N

1

0..M 0..N

1

1

1

1

1..M

0..N

11

0..1

1..N 1..N

1

1..N 1

Matching

0..1 1

1

0..1

Logical Source

Name

Interface

Description

Security Entity

Source Properties

Description

Data Format for

Converter

Data Format for

Connector

Data Format for

Workflow

Connector Properties

Description

Description of Further Fct.

or Non-Fct. Properties

Data Container

Object

Logical Container

Name

Local Container

Identifer

1

1

1

1

1 0..N

Unique Identification

description associated. These data format descriptions are used to map connectors and
converters to each other during the registration of either objects or the update of a
registration. So, only those connectors and converters are associated with each other that
rely on the same data format. The second data format description associated to a data
converter denotes the format in which the converter expects input sent from a workflow
and in which it sends its output back to the workflow, e.g., XML RowSet of BPEL-DM.
The pair of data formats associated with a converter defines between which formats it is
able to transform data. As a constraint, this format pair uniquely identifies a data
converter object, i.e., there is at most one converter object for each possible pair.

We enhance the resource management component with the functionalities metadata
management, metadata provisioning, and metadata integration (see Figure 3). Metadata
management ensures a persistent and transactional storage of the metadata as well as the
management of the metadata schema. The metadata provisioning provides metadata
information to other components of the sWfMS. It offers a query interface for one or
more query languages, e.g., SQL. Besides, it may also offer further repository services
that go beyond simple query answering. For example, a service may execute a series of
queries that each resolves a selection rule that is used for late binding of data sources.
The metadata integration is responsible for integrating metadata from internal and
external metadata sources and for dealing with according heterogeneities, in particular
regarding the metadata schemas and their contents. Such metadata sources can be, e.g.,
users that access the resource management component via the GUI, external registries
that also describe data sources, and the external data sources themselves. Each of these
sources may register metadata objects with associated metadata. They may also be asked
to complement the metadata after another party has registered an object. For example, a
user may register a data source, which then provides all data containers it manages.

4.3 Data Source Access using the SIMPL Framework

Fig. 7. Interaction of service bus components to prepare data source access

When a workflow accesses a data source via a logical data source descriptor, the SIMPL
framework needs to map this descriptor to all information that is necessary for data
source access. This information consists of the interface description, a security entity, the
suitable data source connector, and the suitable data converter. Furthermore, it needs to
map logical names of referenced data containers to local container identifiers. In the
following, we describe how the components of the service bus interact with each other to

achieve this mapping. Figure 7 shows this interaction in case the logical data source
descriptor sent to the SIMPL core (step 1) contains a requirements specification for a
data source. In case it contains a logical name, we skip steps 2 to 5.

The SIMPL core sends the requirements specification to the discovery component (2).
The latter queries the resource management component to map the requirements to a set
of data source names that identify data sources meeting the claimed requirements (3 and
4). The discovery component then chooses one of these names based on selection criteria
in the requirements specification and sends the chosen name back to the SIMPL core (5).
The latter queries the resource management component with the source name to retrieve
the above-mentioned information that is necessary for data source access (6 and 7). This
information is used to access the data source and to execute the SIMPL core operation
that is identified by the calling workflow activity (8), e.g., an IssueCommand activity
calls the IssueCommand operation. Strictly speaking, we execute the implementation of
this operation as provided by the data source connector identified before.

If the workflow performs a data retrieval or write back, we will need to identify exactly
one of the converters that are associated with the identified connector. For that purpose,
the workflow engine sends the data type of the BPEL variable that holds the data to be
retrieved or written back to the SIMPL core. This data type determines the correct
workflow-specific format of the converter. This data format and the connector-specific
format assigned to the resolved connector uniquely identify the correct converter.

5 Discussion and Evaluation

In this section, we discuss the benefits and drawbacks of the SIMPL framework. In
particular, our discussion covers generality issues of SIMPL, its extensibility, and
optimization opportunities for data management in simulation workflows. Afterwards,
we evaluate SIMPL via the example workflow for bone remodeling of Section 2.2.

5.1 Generic Data Management for Simulation Workflows

The generic access operations of the SIMPL core, the metadata to describe data sources,
and the logical data source descriptors provide a uniform access to arbitrary
heterogeneous data sources. This eases the integration of further data management
techniques in addition to BPEL-DM. Besides that, we can port the SIMPL core and the
metadata management to other sWfMS implementations, which may use different
workflow engines, different workflow languages, or even different solutions for
modeling data management and data provisioning. The high degree of portability of the
framework is basically achieved by its architecture based on clearly separated
components and plug-ins extending a sWfMS.

The DM activities of BPEL-DM offer common functionality for data access, data
manipulation, data definition, and for writing data back to a data source. Furthermore,
SIMPL includes a multitude of data management patterns as further abstraction support.

Together with the uniform data source access and the portability provided by SIMPL,
these data management and data access patterns constitute a generic data management
solution for simulation workflows. This generality enables SIMPL to be used in multiple
domains of simulations or other scientific applications, such as biology and astronomy,
and even in the business domain, e.g., for business ETL workflows.

In contrast to our approach, one could provide data services to accomplish the data
management for simulation workflows. These services usually offer efficient means for
data management functionality specific to a small set of domains or problems. Hence,
they do not provide a consolidated, generic, and flexible way to define data management
for multi-domain simulation workflows. Nevertheless, since we use BPEL as workflow
language, we allow services to be the implementation of data management tasks as well.
Furthermore, BPEL processes also offer their functions via service interfaces. So, our
approach may even be used to define data services that support special needs of certain
domains or problems.

To the best of our knowledge, no other approach includes an abstraction support to
define data management operations that is based on generic data management patterns.
Typically, workflow modelers have to define low-level details of data management, such
as concrete DM commands. By distinguishing the data management operations that are
necessary for simulations between different abstract patterns, we can reduce the degrees
of freedom in defining the respective operations. This eases the definition and
implementation of abstraction mechanisms for individual patterns. Furthermore, the
patterns can be seen as building blocks for composing data provisioning workflows, e.g.,
ETL workflows, via process fragment technology [EUL09]. This increases flexibility at
runtime and reduces modeling costs at build time.

5.2 Extensibility of SIMPL

The specifications of the SIMPL core operations and of the DM activities of BPEL-DM
are independent of the underlying data sources. The same holds for the logical data
source descriptors and the logical data container names. Hence, they do not need to be
extended or adapted when SIMPL should support additional kinds of data sources. We
only need to add according data sources connectors as well as data converters and XML
schema definitions for data set variables. Furthermore, the implementations of
connectors and converters as well as the XML schema definitions can typically be
derived from already existing implementations or definitions.

In the same sense, we may extend or customize BPEL-DM by additional activities. Like
data services, these activities could account for specific needs of a certain scientific
domain or problem. To do that, we need to add new SIMPL core operations and their
implementations by data source connectors, but only if the already existing operations
are not suitable. In order to add a new data management pattern to the DM pattern plug-
in of the function catalog, suitable rewrite rules have to be defined. These rules describe
how the pattern is to be converted into executable workflow parts. Altogether and in
contrast to previous approaches, e.g., see the approaches compared in [Vr08], we can
typically reuse much of the already existing code for extending SIMPL.

5.3 Optimization of Data Management for Simulation Workflows

Our BPEL-DM approach combines the definition of activities for data management and
simulation at the same level of abstraction. This offers a huge potential for a
consolidated optimization at both the workflow and the data processing level. In [Vr07],
the authors present a flexible approach to optimize workflows with embedded data
management operations, in particular SQL statements. Independent of the underlying
data sources, this approach shows a huge optimization potential that induces significant
performance improvements for workflows. Furthermore, it can be easily applied to other
approaches for embedded data management operations, e.g., to our BPEL-DM approach.
Due to these optimization options, the SIMPL framework is well suited for a data
management and data provisioning abstraction efficiently dealing with huge,
heterogeneous, and distributed data objects.

5.4 The Bone Remodeling Workflow in the SIMPL Framework

As a proof of concept, we developed a prototype that implements SIMPL and relevant
parts of the associated sWfMS architecture. This prototype uses the Eclipse BPEL
Designer1 as scientific workflow modeler and the Apache Orchestration Director
Engine2 (ODE) as workflow execution engine and deployment component. Based on the
prototype, we implemented the workflow for a bone remodeling simulation (BRS)
presented in Section 2.2. Its activities involve several heterogeneous data sources, e.g.,
databases, CSV files, unstructured documents, or image files. The SIMPL core and the
metadata of the resource management provide a uniform access to these data sources.

Fig. 8. Workflow for bone remodeling simulation enhanced with SIMPL

Figure 8 shows the BRS workflow using the SIMPL framework. In particular, we show
the BPEL-DM activities implementing the main steps of the workflow and its data
provisioning at the bottom of the figure. In the preprocessing phase, the workflow
creates more than ten input data files each with a size up to one gigabyte. Without the
framework, scientists have to select all needed input data, transform the data, and store

1 http://www.eclipse.org/bpel/
2 http://ode.apache.org/

IssueCommand
DM-A

IssueCommand
DM-A

RetrieveData
DM-A

WriteDataBack
DM-A

Assign= WriteDataBack
DM-A

RetrieveData
DM-A

WriteDataBack
DM-A

RetrieveData
DM-A

WriteDataBack
DM-A

Data Service

results into files in the PANDAS environment. SIMPL helps to automate these tasks,
thereby reducing the error rate. Input data for the BRS activity Define Simulation Body,
e.g., bone information or material parameters, are typically stored in public databases or
in private file systems. The simulation workflow invokes a separate ETL workflow that
converts the data and transfers it into the PANDAS environment. It consists of
RetrieveData activities that load the input data into BPEL variables. Afterwards, the
workflow transforms the data via an assign activity, and WriteDataBack activities write
the results into the target files. The activities Adjust Initial/Boundary Conditions and
Create Simulation Commands operate according to the same procedure except that they
read their input data from structured CSV files. Hence, they also use RetreiveData and
WriteDataBack activities for data selection and transmission.

To perform the FEM, the BRS activity Create FEM Parameters has to select certain
interpolation functions from an unstructured text document that summarizes all available
functions. SIMPL is based on forwarding DM commands to data sources, but the
underlying file system does not support executing extractions of unstructured data via
DM commands. Hence, SIMPL is not able to directly select these functions. We need
data services that select all necessary information and store it into workflow variables. A
WriteDataBack activity subsequently copies this data into the PANDAS environment.

During the solving phase, the activity Solve Matrix Equations calculates matrix
equations for several time steps. For each step, it stores all relevant data, i.e., the
intermediate results, the FEM grid, and the matrix and vectors into a database inside the
PANDAS environment. For selected time steps, a repeatedly executed IssueCommand
activity in the simulation workflow persists snapshots of these data for further
processing, e.g., for analyzing or for recovery purposes. A typical BRS produces 100 or
even more of such data snapshots each with a size of about two megabytes. After the last
time step, the IssueCommand activity stores the final result.

The last BRS activity Visualize Results transforms these results and other data, such as
the FEM grid, into a format suitable for visualization tools. For example, it joins the
FEM grid data and the simulation results for selected time steps of the solving phase in
order to create images that combine this information. To automate this, IssueCommand
activities of an ETL workflow select the necessary data and transform and match it.

The BRS workflow benefits from SIMPL in various ways. SIMPL provides a uniform
access to all involved heterogeneous data sources, i.e., databases, CSV files,
unstructured text documents, and image files. Furthermore, it allows to automate the data
management activities that have previously been performed manually. This reduces the
error rate and the time the scientists have to spend for these activities. We chose ETL
workflows for the preprocessing and the post-processing phase since they may transfer
data directly between the involved data sources. So, we can reduce costs for transmitting
high amounts of data and decrease workload for data processing within the simulation
workflow. During the solving phase, an IssueCommand activity could even transform all
FEM data into formats suitable for different solvers, e.g., parallel solvers, i.e., SIMPL
helps to switch between these different solvers. Altogether, SIMPL offers a data
management abstraction that is well suited for simulation workflows such as the BRS.

6 Related Work

Federated information systems integrate different kinds of data sources and provide a
homogeneous schema for heterogeneous source systems [Bu99]. However, they
typically involve multiple and sophisticated integration processes that have to be
executed for each data source access. In simulation applications the sources are highly
heterogeneous and we need to cope with huge amounts of data. Thus, complex
integration processes may show poor performance. In that case, a peer-to-peer-based
approach seems more suitable as it employs less complex integration processes between
pairs of data sources. The generality of our approach recommends it to be used for both a
federated and a peer-to-peer-based solution. This also holds for conventional ETL tools.
But in contrast to our approach, they rather work with various access mechanisms and
data management operators that are specific for a certain kind of data source.

Scientific applications recently adopted the facilities of grid infrastructures as well as the
Service Oriented Architecture (SOA) [TDG07]. The most prominent solution for grid-
and service-based data management is the Open Grid Services Architecture – Data
Access and Integration3 framework (OGSA-DAI). It encapsulates heterogeneous and
distributed data sources via services that provide access abstractions for the data sources.
A user may define data integration workflows that orchestrate interactions with these
services. However, the workflows and workflow tasks of OGSA-DAI are implemented
directly in programming languages. If simulation workflows that rely on conventional
workflow technology use OGSA-DAI as data management solution, they will not exploit
the optimization potential of a consolidated definition of the processing activities for
data management and simulation [Vr07]. Furthermore, the abstraction support offered by
OGSA-DAI only relies on the customized abstractions offered by the individual services,
while we provide a generic and unified abstraction mechanism.

The Scientific Data Management Center (SDM Center) offers an end-to-end data
management approach that mainly deals with efficiently analyzing data produced by
scientific simulations or experiments [Sh07]. It offers efficient and parallel access
routines to storage systems and technologies to support the better understanding of data.
The latter comprises, for example, routines for specialized feature discovery, algorithms
for parallel statistical data analysis, and efficient indexes over large and distributed data
sets. On top of this, the Kepler sWfMS provides the robust automation of processes for
generating, collecting, and storing the results of simulations or experiments as well as for
data post-processing and analyzing the results [Lu06]. In contrast to the SDM Center,
our approach does not deal with data analysis, but with data provisioning for simulation
workflows and an appropriate abstraction support. Kepler also offers workflow activities
to seamlessly access data sources, in particular for local file systems, relational database
systems, and data streams coming from sensor networks. However, each of these
activities directly deals with the heterogeneities regarding access mechanisms of the
considered data sources instead of using generic and unified interfaces.

3 http://www.ogsadai.org.uk/index.php

The scientific workflow management system VisTrails, focuses on the exploration and
visualization of results of simulations or experiments as well as on modeling, executing,
and optimizing visualization workflows [Fr06]. It supports tracking revisions of
workflows, i.e., scientists or engineers may interactively adjust their workflows. In order
to maintain the history of workflow execution, data processing, and workflow revisions,
VisTrails captures data and workflow provenance and links them to each other and to the
produced data [Ko10]. This enables reproducibility of processes and simplifies the
exploration of different versions of a workflow as well as its results. In contrast to the
framework presented in this paper, VisTrails does not focus on data provisioning aspects
and abstractions that are necessary for executing all phases of simulations.

Microsoft Trident is a general-purpose scientific workflow workbench [Ba08]. It is built
on top of the Microsoft Windows Workflow Foundation4 (Windows WF), a workflow
environment based on the control-flow oriented Extensible Orchestration Markup
Language (XOML). Trident enhances Windows WF with functionality needed for
scientific workflow management, e.g., automatic provenance capture and the possibility
to model data dependencies between workflow tasks. The activity library of Windows
WF enables customized activity types that could provide a seamless access to data
sources or further abstractions for defining data management operations. However, they
have to be implemented by the modeler himself or shared between several activity
developers. SIMPL offers abstractions via data management patterns that are
automatically converted into executable workflow parts. As an alternative to such
custom activity types, Trident uses services for data access. Similar to OGSA-DAI, this
complicates optimizations over the whole spectrum from the workflow to the data
processing level. Furthermore, Trident workflows may use Dryad for data provisioning
[Is07]. Following the approach of MapReduce [DG04], Dryad supports programmers in
efficiently using multiple resources for executing data-intensive and data-parallel
applications without knowing anything about concurrent programming. However, Dryad
does not deal with data management abstractions in our sense of a generic solution.

Besides the activity library of Windows WF, IBM and Oracle also provide workflow
activities that directly embed data management operations as part of their workflow
products [Vr08]. In contrast to SIMPL, these products do not offer abstractions via data
management patterns and are restricted to SQL statements, while we support any kind of
data source. The external variables of Apache ODE are another approach to seamlessly
access data sources from within workflows. These variables can be mapped to one row
of a table in a database that offers an interface following Java Database Connectivity5
(JDBC). This way, workflows may perform tuple-oriented retrievals and manipulations
on the mapped row. However, set-oriented operations have to be defined via additional
workflow constructs, e.g., loop activities. In [Vr07], the authors proof that such a loop-
based execution of several tuple-oriented operations shows weak performance related to
a set-oriented SQL statement that is wholly executed by the database system. Our
approach supports set-oriented operations by directly integrating SQL statements into the
workflow definition.

4 http://www.windowsworkflowfoundation.eu/
5 http://java.sun.com/products/jdbc/overview.html

7 Conclusion and Future Work

In this paper, we introduced SIMPL – an extensible framework that provides a generic
and consolidated abstraction for data management and data provisioning in simulation
workflows. It unifies heterogeneous interfaces to different data sources via logical data
source descriptors, generic access operations, and metadata for mappings to concrete
data source access mechanisms. We demonstrated that this provides the core
functionality to uniformly access arbitrary data sources and enables an easy development
and integration of concrete data management techniques. Based on this, the BPEL-DM
activities allow for the definition and execution of common data management and data
provisioning tasks for simulation workflows. Further abstraction support is provided by
means of generic data management patterns, e.g., patterns for ETL operations. In
addition to a data source access via services, BPEL-DM offers the combined definition
of the processing activities for data management and simulation at the same level of
abstraction. This enables optimizations over the whole spectrum from the workflow level
to the data level, inducing significant performance improvements of workflows.
Altogether, the SIMPL framework removes the burden from engineers and scientists to
specify low-level details of data management for their simulations. It helps them to cope
with the information explosion intrinsically associated with simulation applications and
boosts their productivity.

In future, we will extend the optimization approach for workflows with embedded data
management operations of [Vr07] to be applicable to the data management in simulation
workflows. For that purpose, we will work on a set of optimization rules that are suitable
for simulation workflows and for DM activities of BPEL-DM. Scientists may use several
parameterized data management patterns within their workflows. Our approach converts
each pattern into an executable workflow part in isolation from all other patterns. This
may result in a variety of process fragments for data management and data provisioning
that show further optimization potential when considered together. To exploit this
optimization potential, we will combine the conversion of data management patterns
with the optimization approach for data management.

Acknowledgement: The authors would like to thank the German Research Foundation
(DFG) for financial support of the projects within the Cluster of Excellence in
Simulation Technology at the University of Stuttgart.

Bibliography

[AMA06] Akram, A.; Meredith, D.; Allan, R.: Evaluation of BPEL to Scientific Workflows. In:
Proc. of the 6th International Symposium on Cluster Computing and the Grid
(CCGRID ’06), Singapore, Malaysia, 2006.

[Ba08] Barga, R. et. al.: The Trident Scientific Workflow Workbench. In: Proc. of the 4th
International Conference on e-Science, Indianapolis, Indiana, 2008.

[Bu99] Busse, S. et. al.: Federated Information Systems: Concepts, Terminology and
Architectures. Research Report of the Faculty of Computer Science at the Technische
Universität Berlin, 1999.

[DC08] Deelman, E.; Chervenak, C.: Data Management Challenges of Data-Intensive
Scientific Workflows. In: Proc. of the 8th International Symposium on Cluster
Computing and the Grid (CCGRID '08), Washington, DC, 2008.

[DG04] Dean, J.; Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters.
In: Proc. of the 6th Symposium on Operating Systems Design and Implementation, San
Francisco, California, 2004.

[EUL09] Eberle, H.; Unger, T.; Leymann, F.: Process Fragments. In: On the Move to
Meaningful Internet Systems: OTM 2009, Part I. Springer, 2009.

[Fr06] Freire, J. et. al.: Managing Rapidly-Evolving Scientific Workflows. In: Proc. of the 1st
International Provenance and Annotation Workshop (IPAW), Chicago, Illinois, 2006.

[Gi07] Gil, Y. et. al.: Examining the Challenges of Scientific Workflows. In: IEEE Computer,
vol. 40, no. 12, December 2007.

[Gö11] Görlach, K. et. al.: Conventional Workflow Technology for Scientific Simulation. To
appear in: Yang, Y. (ed.); Wang, L. (ed.); Jie, W. (ed.): Guide to e-Science. Springer,
2011.

[Is07] Isard, M. et. al.: Dryad: Distributed Data-Parallel Programs from Sequential Building
Blocks. In: Proc. of the European Conference on Computer Systems (EuroSys),
Lisbon, Portugal, 2007.

[Ka07] Karastoyanova, D. et. al.: Semantic Service Bus: Architecture and Implementation of a
Next Generation Middleware. In: Proc. of the 2nd International ICDE Workshop on
Service Engineering (SEIW 2007), Istanbul, Turkey, 2007.

[KME10] Krause, R.; Markert, B.; Ehlers, W.: A Porous Media Model for the Description of
Adaptive Bone Remodelling. In: Proc. of the 81st Annual Meeting of the International
Association of Applied Mathematics and Mechanics, Karlsruhe, Germany, 2010.

[Ko10] Koop, D. et. al.: Bridging Workflow and Data Provenance using Strong Links. In:
Proc. of the 22nd International Conference on Scientific and Statistical Database
Management (SSDBM), Heidelberg, Germany, 2010.

[LR99] Leymann, F.; Roller, D.: Production Workflow: Concepts and Techniques. Prentice
Hall, Englewood Cliffs, NJ, 1999.

[Lu06] Ludäscher, B. et. al.: Scientific Workflow Management and the Kepler System. In:
Concurrency and Computation: Practice and Experience, vol. 18, issue 10, 2006.

[Ma05] Maier, A. et. al.: On Combining Business Process Integration and ETL Technologies.
In: Gesellschaft für Informatik (ed.): Datenbanksysteme in Business, Technologie und
Web, Karlsruhe, Germany, 2005.

[Mü10] Müller, C.: Development of an Integrated Database Architecture for a Runtime
Environment for Simulation Workflows. Diploma Thesis, University of Stuttgart,
2010.

[Oa07] OASIS: Web Services Business Process Execution Language Version 2.0, 2007.
[Sh07] Shoshani, A. et. al.: SDM Center Technologies for Accelerating Scientific Discoveries.

In: Proc. of the Scientific Discovery through Advanced Computing Conference
(SciDAC 2007), Boston, Massachusetts, 2007.

[SK10] Sonntag, M.; Karastoyanova, D.: Next Generation Interactive Scientific Experimenting
Based on the Workflow Technology. In: Proc. of the 21st IASTED International
Conference on Modelling and Simulation (MS 2010), Prague, Czech Republic, 2010.

[TDG07] Taylor, I.; Deelman, E.; Gannon, D.: Workflows for e-Science - Scientific Workflows
for Grids. Springer, London, UK, 2007.

[Vr07] Vrhovnik, M. et. al.: An Approach to Optimize Data Processing in Business Processes.
In: Proc. of the 33rd International Conference on Very Large Data Bases (VLDB 2007),
Vienna, Austria, 2007.

[Vr08] Vrhovnik, M. et. al.: An Overview of SQL Support in Workflow Products. In: Proc. of
the 24th International Conference on Data Engineering (ICDE 2008), Cancún, México,
2008.

	Deckblatt_SIMPL
	BTW2011_Reimann_Reiter_Schwarz_Karastoyanova_Leymann

