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Abstract: Adequate data management and data provisioningracag the most
important topics to cope with the information exgm intrinsically associated
with simulation applications. Today, data exchamggh and between simulation
applications is mainly accomplished in a file-styleanner. These files show
proprietary formats and have to be transformed raieg to the specific needs of
simulation applications. Lots of effort has to heeist to find appropriate data
sources and to specify and implement data transfioorms. In this paper, we
present SIMPL — an extensible framework that presid generic and consolidated
abstraction for data management and data provigjom simulation workflows.
We introduce extensions to workflow languages amaiashow they are used to
model the data provisioning for simulation workflewased on data management
patterns. Furthermore, we show how the framewopgpstts a uniform access to
arbitrary external data in such workflows. This oxes the burden from engineers
and scientists to specify low-level details of datanagement for their simulation
applications and thus boosts their productivity.

1 Introduction

Workflows have long been used to meet the need§ stipport for business processes.
Workflows are compositions of tasks by means ofsahor data dependencies that are
carried out on a computer using a workflow managensystem (WfMS) [LR99].
Recently, workflow technology has found applicatiorihe area of scientific computing
and simulations for implementing complex scientédjplications and the tersagientific
workflow has been coined [TDGO07]. Simulations, as a sulfsstientific applications,
are typically compositions of complex calculaticarsd data management tasks, which
makes them good candidates for the realization akflows. For instance, partial
differential equations have to be solved to deteemiemporal or spatial changes of
simulated objects, e.g., of the structure of airtarcrash test.

Accessing and provisioning huge amounts of hetereges and distributed input data as
well as generating huge intermediate and final data are some of the major challenges
of simulation workflows [TDGO07][Gi07][DCO08]. Typidalata management activities in
simulation workflows are extraction, transformatiamd load operations (ETEWU10].



In [Vr07], the authors discuss workflow technolaggy the key technology to cope with
heterogeneous applications and data stores. Iniitle this argumentation and as
proposed by [MaO5], our work is based on an ETL kffow approach, i.e., ETL
operations of simulation workflows are modeled ardcuted via workflow technology.

Today, the data management and data provisionirggmilation applications is mainly
accomplished in a file-style manner. These filesvwsproprietary formats and inevitably
have to be transformed into the appropriate forthat simulations require. Most of
current scientific workflow management systems (8\8$) lack a generic, consolidated,
and integrated data management abstraction thatagaa with huge and heterogeneous
data sets. They use several specialized technslogiig., custom workflow activities or
services, to access data. Lots of effort must leetsip find appropriate data sources and
to specify and implement necessary data transfoomet which brings in additional
complexity for scientists. This is in particulauér for simulations involving multiple
domains since each domain has its own requirenagntsolutions for data handling and
thus render the data source and application envieoih even more heterogeneous. A
consolidated abstraction support would remove tiredn from engineers and scientists
to specify low-level details of data managementtli@ir simulation applications.

In this paper, we present SIMPL (SimTech — InfoioratManagement, Processes, and
Languages) — an extensible framework that addreiseslack of abstraction and
generality for data provisioning in current simidat workflow technology. SIMPL
provides unified access methods to access arbiteatgrnal data in simulation
workflows while metadata describe the mappings betwtheir interfaces and the
concrete access mechanisms. At the modeling lewel, framework extends the
workflow language by a small set of activities thightly embed data management
operations for any kind of data source. When sutladivity is executed, it uses the
unified access methods of SIMPL to seamlessly actes specified data source. To
further assist the workflow modeler in defining itbgd data management tasks in
simulation workflows, we introduce data managenpatterns, e.g., patterns for ETL
operations. In this paper, we show that these qpati®@ combination with the activities
for data management and the unified access metlafidsy to define the data
provisioning for simulations in multiple domains agell as for other scientific
applications, such as biology, astronomy, or eardkg science. We discuss the
extensibility of the SIMPL framework with respect additional kinds of data sources
and data management patterns. Furthermore, wdrdtasthe huge potential for a
consolidated optimization that SIMPL makes poss#éseit combines the definition of
activities for data management and simulation etsdime level of abstraction.

The rest of this paper is organized as follows:tiSec2 illustrates the motivation to
enhance an existing architecture of sWfMSs by thdP& framework and shows its
integration into this architecture. Afterwards, @t 3 provides details on major aspects
of modeling data management tasks in simulatiorkfdmwrs, while Section 4 deals with
the underlying approach to unify heterogeneous sscoeechanisms for different data
sources. We then discuss the benefits and drawladodgr framework and evaluate it
via an example simulation workflow in Section 5.l&ed work is afterwards discussed
in Section 6. Finally, Section 7 concludes and Ifature work.



2 The SIMPL Framework

The SIMPL framework is designed as an extensiosctentific workflow management
systems. Hence, we first sketch the main comporefrgsich a system according to the
architecture of SWfMSs introduced in [G611]. Aftemds, we discuss the motivation to
enhance this architecture, illustrate the main etsppy means of a sample workflow,
and show the architectural integration of the SIMRImework.

2.1 Scientific Workflow Management Systems

Scientific Workflow Management System
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Fig. 1. Architecture of a scientific workflow managemeypstem, cf[GO11]

The architecture of scientific workflow managemegstems presented in Figure 1 is
based on the workflow technology for business amdiyction workflows as defined in
[LR99]. The scientific workflow modelers{VF Modeler) of the GUI supports the
modeling of workflow specifications and corresparglideployment information. The
function catalog provides a list of available services as well asustomizable set of
easy-to-model functions that can be used in wovkflmodels. With the help of the
monitor component, users may constantly observe workfleacetions and identify
unexpected events or faults. Tiresult display component presents the final outcome of
simulations as well as intermediate results in g agpropriate for the user.

The deployment component transforms workflow models into engine-internal
representations and installs them onekezution engine that executes instances of these
workflows. Theauditing component records runtime events related to wondland
activities, e.g., the start time of a workflow rurhe monitoring component uses these
events and indicates the states of workflow rurtge ffrovenance component records
data that goes beyond simple auditing informatiod that enables the reproducibility of
workflow executions. Theservice bus primarily discovers and selects services that
implement workflow activities, routes messages, tmdsforms data. Besides that, it
connects workflows to other external, usually dtdteesources, e.g., to data sources.
The resource management component maintains metadata for such externalress as
well as for services. Theervicelresource discovery component queries this metadata or
external registries to find a list of candidatevems or resources by means of descriptive



information, e.g., semantic annotations. Thisrigty be used by the function catalog of
the GUI, for late binding of services and resourcgsfor rebinding of failed activities.
This naturally implies the ability to use the madgl tool during the execution of
workflow instances to enable ad-hoc changes of fhasis [SK10].

In this architecture, scientific workflows may asseand handle huge, heterogeneous,
and distributed data objects, e.g., via servicasvéver, the challenge still remains to
provide a consolidated and integrated data manageatestraction that is able to deal
with such data objects. This abstraction suppordrie of the key requirements for
scientific workflow management [TDGO07][Gi07][DCO08h the following, we illustrate
this challenge using a bone remodeling simulationkélow.

2.2 Simulation Workflow for Bone Remodeling

Figure 2 shows the activities and relevant input antput data of a workflow for a bone
remodeling simulation (BRS) that is used to redeaieletal disorders, e.g., of human
femur. The PANDAS framework calculates the struetof a bone under a specific load
using the finite element method (FEM) [KME10]. Therkflow is divided into three
phases: preprocessing, solving, and post-processing

Preprocessing Phase Solving Phase Postprocessing Phase

Solve Matrix —
O_-—-—.l S 4" e }—>O
Bone Body data FEM Initial/Boundary Simulation FEM Matrix QE %

information parameters conditions commands Grid  Ax=b

(intermediate) Pictures
Results

Fig. 2. Workflow for bone remodeling simulation

In the preprocessing phase, it starts by loading basic information atiba bone to be
simulated from different databases or file systeBxamples of this information are a
bone structure and material parameters. The seaotindty extracts FEM parameters
from a file, e.g., interpolation functions. Aftermds, the workflow adjusts initial
conditions that configure the bone structure foe ttart time of the simulation.
Furthermore, it defines boundary conditions, etlge, time-dependent pressures from
outside on the upper joint of the bone that cowedpo the human way of moving. The
last preprocessing activity writes a set of simatatommands to a file. For example, it
chooses a matrix solver and defines the discraizatf the continuous simulation time
into n time steps tto t,. In practice, a simulation involves thousandsumihstime steps.

In thesolving phase, the workflow uses the input to create ahasnatrix equations for
generating the intermediate and final results ef $hmulation. For each time stgpit
creates an FEM grid that is the basis to set upixnatjuationsAx = b that are then
solved. The FEM grid contains thousands or milliohsnesh points and their relations.
This mesh information is typically stored in mairemmory, but may also be persisted
into files or databases for further usage in thetypoocessing phase. The latter also



holds for the matriXA and the vectors andb. The solving phase ends after time step t
The workflow then stores intermediate and finalhessbased on the vectarsn comma
separated value (CSV) files. Thest-processing phase transforms these CSV files into
another file format suitable for visualization teol

Altogether, the workflow carries out a multiplicitygf data management and data
provisioning activities. These activities involveveral huge data sets as well as
heterogeneous data sources and data formats,datghases, CSV files, unstructured
text documents, and image files. Most of the damagement operations are performed
as manual tasks, implying a high error rate. A genand consolidated data
management abstraction would decrease this erter Farrthermore, it would remove
the burden from scientists to specify low-levelailstof data management.

2.3 Architecture and main Components of SIMPL

Figure 3 shows how the SIMPL framework extends d\®/to provide an abstraction
for data management and data provisioning. Forebetadability, we leave out
components of the sSWfMS architecture that are eletvant for SIMPL. Th&MPL core
component, embedded in the service bus, providéiedihogical interfaces to any kind
of data source. We enhance the resource managememonent with metadata that
describe the mappings between these unified irtesfand the concrete and possibly
heterogeneous access mechanisms.datemanagement (DM) activity modeling plug-

in of the sWF modeler and tHaM activity execution plug-in of the execution engine
provide data management activities for simulatioorkflows. These activities may
either be directly used in simulation workflows they may be part of separate ETL
workflows that encapsulate data provisioning preessfor simulation workflows. The
DM pattern plug-in of the function catalog assists the workflow medéh defining the
necessary data management operations. It contbstgaeat data management patterns
that allow to model typical data provisioning tasks simulation workflows. The
following sections discuss the SIMPL components @lnd-ins in detail.

Scientific Workflow Management System
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Modeling Plug-in
DM
Activity
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ivi ] Metadata ! Metadata Service/
DRIV [ | I — Management | | | Integration Resource
xecution Plug-in I Implementation | ! — ! T Discovery
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Engine DM Activity e Data I_| Metadata for | |
Connector Converter Unified Access
Mechanism

Fig. 3. The SIMPL framework integrated into a SWfMS arebitire



3. Modeling Data Management for Simulation Workflows

In this section, we deal with major aspects of niodedata management tasks in
simulation workflows. We introduce various extemsioto workflow languages that
allow for the definition of these tasks. The DMigity modeling plug-in makes these
extensions available to the workflow modeler, whsrthe DM activity execution plug-
in covers their runtime behavior. Furthermore, Weve how data management patterns
facilitate the definition of data management tasksimulation workflows.

3.1 Workflow Language Extensions for Data Managemen

The Business Process Execution Language (BPEL)7OaOthe de-facto standard to
define and execute business processes based aorttrel-flow oriented orchestration
of service interactionsn [AMAO6], BPEL is recommended for modeling anceenting
scientific workflows and simulation workflows. Tieain benefits stated are its modular
design, its flexibility regarding generic XML datgpes and late binding of services as
well as the fault, compensation, and event handlaypabilities. In addition, many BPEL
engines offer further capabilities, such as uséeraction, workflow monitoring, or
recovery of workflowsDue to these benefits of BPEL and in line with jpoes work,
we define the Business Process Execution Languatgnson for Data Management
(BPEL-DM) that extends BPEL by further activity 8g We call activities of these new
types data management (DM) activities. They reflect workflow tasks with embedded
data management operations that are seamlessbdisglainst data sources. The major
activity types of BPEL-DM areissueCommand, RetrieveData, and WriteDataBack.
Each of these activities calls the SIMPL core agmads the data management operation
to it in order to deal with heterogeneous data@@access mechanisms.

In the following, we use the terdata source for a system that stores and manages data,
e.g., a database or a file system. A data soumEves and executd3M commands.
Examples are SQL statements, shell commands ohtipgrsystems, or paths to files.
The latter are used to load the content of a ffite the process context of the workflow.
Each of the DM activities has a BPEL variable gsutrparameter referring to the data
source that executes the embedded DM command. Ve sach BPEL variabledata
source reference variables. A reference is dogical data source descriptor that is either a
logical name or a document describing some funation non-functional requirements
for a data source. A logical nhame describes examly data source that is associated
with the name in the resource management compoAerquirements description can
be used for choosing and binding a data souragngitme.

A data source manages sevedaka containers. Each container is an identifiable
collection of data, e.g., a table in a databas¢esy®r a file in a file systenData
container reference variables refer to a data container via a logical name. f@ssurce
management component maps this name to a conocetiot that uniquely identifies the
container within the data source.data set variable acts as target container for loading
data into the process context of a workflow. Appiaie XML schema definitions
specify the contents of these variables and mupe asith the differences between



several kinds of data sources. For example, weans€ML RowSet structure for any
table-oriented data, such as data from an SQL databr from a CSV-based file. XML
database systems, as another example, may alreadideg certain XML schema
definitions or they may need to store arbitrary Xkfta within BPEL variables.

We now detail on the three DM activity types. TiseueCommand activity can be used
for data manipulation or data definition, for exdenfBesides the data source reference,
it has a DM command as additional input parametdrissues this command against the
specified data source. The engine that executesathigity expects a notification
whether the DM command has been executed sucdgsbfuthe data source or not.
After a notification of success, the engine corgmworkflow execution according to the
specified control flow. In case of a failure, itadshes fault handling mechanisms.

The RetrieveData activity also has a DM command as input paramtgigr is passed to
the data source. The DM command must produce dRta.instance, it may be a
SELECT statement or a path to a file. When the datace has executed the command
successfully, the result data is transmitted backhé execution engine. An additional
input parameter of the activity defines a datavsetable that stores this result data. In
case of a failure, the execution engine is notifiad enables fault handling mechanisms.

TheWriteDataBack activity is the counterpart of theetrieveData activity. It writes data
from the process context of a workflow back to sadsource. The activity accepts one
identifier for a data set variable and one for tadmntainer reference variable as input
parameters. It stores the data set of the firshlol in the data container referred by the
second one. As a result, the execution engineagetiification of success or failure and
proceeds like in the case of ttesueCommand activity.

Data container reference variables may furthermmeeused as parameters in DM
commands of théssueCommand or RetrieveData activities, e.g., in the FROM clause of
an SQL SELECT statement. The same holds for othiELBvariables, e.g., string or

integer variables used for comparisons in predicaiéne workflow execution engine

resolves all these variables, i.e., it reads thréabke value and inserts this value at the
position within the command where the variable haen referenced beforehand. In
order to identify a variable in a DM command anstidguish it from other command

items, the variable is marked by surrounding hasinken(e.g., ‘#). Regarding a data
container reference variable, only the logical narhhe data container is inserted in the
command. The SIMPL core is later responsible foppiag this name to the data

source-specific container identifier by querying tesource management component.

3.2 Abstraction Support through Data Management Pagerns

The SIMPL framework provides a set of data managepatterns that cover major data
provisioning tasks for simulation workflows. The rkflow designer picks appropriate
patterns from a list provided by the DM patternggin of the function catalog. He/she is
then assisted in defining the concrete data manageoperation for each chosen pattern
in a semi-automatic approach instead of defininglefails of the operation on his/her
own. In the following, we illustrate the patternsied approach via an example.



inputVariable1 = “input1“
bm-P - inputVariable2 = “input2* DM-A . LOAD FILE #input1#
ﬂ Join joinCondition = “natural join* &> RetrieveDatal 5 xowseti#
outputVariable = “output* l
(a) Original, parameterized data join pattern

DM-A . SELECT * FROM #input2#
RetrieveData2
INSERT INTO #outputé & > #rowSet2#

DM-A
f] IssueCommand (SELECT * FROM #inputt# l

NATURAL JOIN #input2#)
COPY (#rowSet1#

(b) Transformation if all variables refer to datsbp — Assign NATURAL JOIN #rowSet2#)
tables in the same SQL database l TO #rowSet3#
’ SELECT * FROM #input1# )
DM-A DM-A _« «
i NATURAL JOIN #nput2# ] inputDataSet = “rowSet3
ﬁ> RetrieveRaig > #output# by E’ WriteDataBack targetContainer = “output”

(c) Transformation for same case as in (b) exte@} Transformation if all variables refer to data
that output variable directly stores join result containers in different data sources

Fig. 4. Data join pattern and its transformation into exable workflow specifications

Figure 4(a) shows a pattern that represents agptwo data sets. Instead of defining
concrete data management operations that exeaujeith) the modeler only needs to set
some parameter values, i.e., two input variables®e output variable, and a join
condition. Each of the input or output variablesyrhald data within the process context
of the workflow, e.g., via a data set variable ¢fEB_-DM. Another option is that they
refer to external data, e.g., via a data contaiefarence variable. The respective data
sets of the two input variables are joined accagrdinthe specified join condition. The
result of this join is stored in the output vargbk in the data container it refers to.

A set of rewrite rules specifies the transformadiof abstract and parameterized patterns
into workflow parts that carry out the necessartadaanagement operations, e.g., via
DM activities of BPEL-DM. The given parameters betpatterns and metadata that
describe the characteristics of the data sourcebetoaccessed, e.g., their query
capabilities, determine which rewrite rule is todpplied for a certain pattern. Figure 4
shows three rewrite rules for our join examplehH two input variables and the output
variable of the join pattern refer to databaseasilih one and the same SQL database, an
IssueCommand activity of BPEL-DM with an embedded set-orient®dlSERT statement
may execute the join (Figure 4(b)). In case thepuuvariable directly stores the join
result, we use #&etrieveData activity with a SELECT statement (Figure 4(c)).alf
three variables refer to data containers in differdata sources, the transformation
becomes more complex. Assume that we need to pedqgoin between the content of a
CSV-based file and a relational database tablethatlanother database table is the
target container for the join result. Then, we nisg twoRetrievaData activities that
load the contents of the two input data contairiats the process context of the
workflow. A subsequent BPEL assign activity joihem, and a\riteDataBack activity
stores the join result into the target databasle f@&igure 4(d)).

As described above, metadata about the data sotrdes accessed are one basis for
deciding on the rewrite rule to be applied for gaia pattern. Hence, we must not apply
rewrite rules until it is clear which data sourdbe data management tasks need to
access. In case of a static data source bindinggldeployment time, we apply rewrite



rules shortly before this deployment phase. If datarces are bound at runtime, we will
convert each pattern into a single process fragmetituse process fragment technology
to dynamically integrate this fragment into an athg executing workflow [EULQ9].

Besides our join example, the DM pattern plug-imtems further patterns and
according rewrite rules for typical data provisiogpitasks of simulation workflows. This
covers patterns for the transmission of data frora pesource to another or for ETL
operations [Mu10][TDGO7]. ETL operations may bedimey or retrieving a bulk of data,
filtering a data set as well as joining, mergingnormalizing two data sets.

4 Unified Access Mechanism

Now, we illustrate the approach to unify differekinds of data source access
mechanisms. This includes the SIMPL core and itfieghlogical interfaces to data
sources, the metadata to map these interface® tonttterlying access mechanisms, and
the interaction between the components of the eewiis during data source access.

Data Management ' { SIMPL Core
Activities Logical Data Source Descriptor (LDSD); Operations
DM Command
DM-A > 0
@ IssueCommand _ ﬁ IssueCommand

Notification of Success/Failure

LDSD; DM Command producing Data

RetrieveData %’5 RetrieveData
Result Data / Failure Message

DM-A

4

LDSD; Data Set; Identifier for Data Container

DM-A > o .
Ba WriteDataBack _ ﬁ: WriteDataBack
Notification of Success/Failure

‘\\ r

Fig. 5. Data sent between DM activities and SIMPL coreraf@ns

4.1 SIMPL Core

The SIMPL core defines a set of generic operatioreccess arbitrary data sources, i.e.,
the specifications of the operations are independérthe underlying kinds of data
sources. They are geared to the DM activities oEBPM and named accordingly:
IssueCommand, RetrieveData, andWriteDataBack. Each DM activity calls the SIMPL
core operation that shares the name of the activiggure 5 shows which contents of the
input parameters of each activity are sent fromwloekflow execution engine to the
corresponding SIMPL core operation and which messaglata the activity expects as a
reply. Regarding the interaction between workfloavel data sources, the SIMPL core
operations only forward DM commands, result data,notifications. They do not
implement any complex data transformations or a®yas this would contradict our
assumption of workflow activities seamlessly actegdata sources.



Each SIMPL core operation expects a logical datmcgodescriptor as input in order to
identify the data source where the data managemgeration is to be executed. The
IssueCommand operation gets a DM command as further input, gredRetrieveData
operation a DM command that produces data. WhieeDataBack operation expects a
data set and an identifier of the data containemsert the data set, e.g., a logical
container name. ThéssueCommand and WriteDataBack operation both deliver a
message to the workflow execution engine that atéic whether the data management
operation has been successfully executed or netRélhieveData operation delivers the
result data produced by the input DM command irecaf success. The workflow
execution engine may then store this result dathérdata set variable specified for the
calling RetrieveData activity. In case of failure, the operation detwva failure message.

Different kinds of data sources rely on differeat@ss routines and further properties for
data access, e.g., different authentication mesh@nior query capabilities. Hence, the
generic access operations of the SIMPL core haveetonplemented for concrete data
sources or sets of data sourd@ata source connectors provide this implementation and
account for the specific properties of data sourEes example, we use a data source
connector for data sources that are based on JD&@ss& mechanisms. Another
connector supports the application programmingfate of a certain file system. Some
data sources do not support all SIMPL core operati&or instance, sensor nets do not
allow for writing data back as they are only aldedeliver data. In such a case, the
corresponding data source connectors do not prakiee operations as well.

The SIMPL core additionally providedata converters that transform data from the
output format of a data source connector to an Xdked format for the process
context of the workflow and vice versa. For ins@na data converter transforms data
between the JDBC result set format and Xl RowSet format of BPEL-DM. Such
data converters may be used for data retrievalsronriting data back to a data source,
i.e., for theRetrieveData andWriteDataBack operations and activities.

4.2 Metadata for Mappings to Heterogeneous Accessddhanisms

We enhance the resource management component sdi¥iee bus with metadata about
data sources. These metadata describe the mafqatwgsen the unified interfaces of the
SIMPL core and the underlying and possibly hetemeges data source access
mechanisms. Four kinds of objects may be registémethe resource management
component: data sources, data containers, dataeseonnectors, and data converters.
Figure 6 shows the classification of the corresfpropdmetadata as well as the
cardinalities of associations between individuatadata classes.

A logical source name is unique for each data source and acts as itdifide within the
SIMPL framework. It can be used as logical datar@®wescriptor within workflows,
e.g., in a data source reference variable of BPEL-Dhis constitutes an abstraction
offered to the modeler since he/she does not redeal with real interfaces or security
entities. Theinterface description contains information about the interface of théada
source, in particular an endpoint to access it. 3doarity entities, such as usernames
and passwords, enable authorized data source acthssdescription of further



functional or nun-functional properties typically includes properties of the data source
like the maximally expected response time. Suclpgnties may refer to requirements
specified in a logical data source descriptor ideorto perform a late binding of data
sources. Thealata container objects describe the containers that are managed by the
associated data source. They havéogical container name assigned that acts as a
container reference in workflows, e.g., in a daiatainer reference variable of BPEL-
DM. This name is mapped to the concrébeal container identifier that uniquely
identifies the container within the data source.

Data Source
Object

_Matching

1

: 1 1 ata Source
Connector
Object

1.N

0.1

Fig. 6. Classification of metadata to unify heterogeneaita dource access mechanisms

As described in Section 4.-data source connectors implement the SIMPL core
operations for the data sources they are assoaiatkdConnectors may also be used for
multiple data sources, e.g., one connector fodRBC-based database systems. There
might be multiple implementations for a single dsdarce connector registration or data
converter registration. In that case, one of tliegdementations has to be chosen during
data source access via additional selection mestmanie.g., via the approach of [Ka07].
However, we do not further deal with this aspecttfie sake of simplicity.

When a data source is registered or when its ragjish is updated, the user may directly
associate a connector to it. If the user is noé sulnich connector may handle the data
source, he/she may use énector properties description. It describes the properties a
connector must have in order to connect to the statace. A similar description, i.e., the
source properties description, is associated with each data source connectdesktribes
the properties a connector expects from associdétd sources. For instance, both
properties descriptions name the SIMPL core opmratthe associated data source and
data source connector support. They are matcheddb other to decide on the correct
connector for the data source. The same matchimgbea used when a connector
registration is added or updated to find all datarses the connector may handle.

A data source connector is furthermore associatddandescription of data format for
a converter. It denotes the data format in which the connedtivers output data to a
requestor or expects input data from it. A dataveoer has a similar data format



description associated. These data format desmmptare used to map connectors and
converters to each other during the registratioreittier objects or the update of a
registration. So, only those connectors and coaxedre associated with each other that
rely on the same data format. The second data fodescription associated to a data
converter denotes the format in which the convesigrects input sent from a workflow
and in which it sends its output back to the warkfl e.g., XML RowSet of BPEL-DM.
The pair of data formats associated with a convelééines between which formats it is
able to transform data. As a constraint, this fdripair uniquely identifies a data
converter object, i.e., there is at most one carvebject for each possible pair.

We enhance the resource management component hdtHuhctionalities metadata
management, metadata provisioning, and metadatgration (see Figure 3)etadata
management ensures a persistent and transactional storatje ohetadata as well as the
management of the metadata schema. bdata provisioning provides metadata
information to other components of the sSWfMS. Ifecd a query interface for one or
more query languages, e.g., SQL. Besides, it msy affer further repository services
that go beyond simple query answering. For exangkervice may execute a series of
queries that each resolves a selection rule thasesl for late binding of data sources.
The metadata integration is responsible for integrating metadata from imé¢rand
external metadata sources and for dealing with rdtng heterogeneities, in particular
regarding the metadata schemas and their cont®nth metadata sources can be, e.g.,
users that access the resource management compoaghe GUI, external registries
that also describe data sources, and the exteatalsturces themselves. Each of these
sources may register metadata objects with assdcmetadata. They may also be asked
to complement the metadata after another partydgistered an object. For example, a
user may register a data source, which then preatlelata containers it manages.

4.3 Data Source Access using the SIMPL Framework

Service Bus
1. Logical Data
Source Descriptor‘ 2. Requirements Specification N Service/
SIMPL Core Resource
8. Data Source 5. Chosen Source Name Discovery
Access
A A
6. Query with 3. Query for Qualif.
Source Name Data Sources
Resource [+
L | Management
7. Information Necessary 4. Logical Source Names
for Data Source Access

Fig. 7. Interaction of service bus components to prepata source access

When a workflow accesses a data source via a lod@ta source descriptor, the SIMPL
framework needs to map this descriptor to all infation that is necessary for data
source access. This information consists of therfiate description, a security entity, the
suitable data source connector, and the suitalite amverter. Furthermore, it needs to
map logical names of referenced data containedsdal container identifiers. In the

following, we describe how the components of thwise bus interact with each other to



achieve this mapping. Figure 7 shows this inteoacth case the logical data source
descriptor sent to the SIMPL core (step 1) containequirements specification for a
data source. In case it contains a logical nameskigesteps 2 to 5.

The SIMPL core sends the requirements specificatiothe discovery component (2).
The latter queries the resource management comptmemap the requirements to a set
of data source names that identify data sourcesimgethe claimed requirements (3 and
4). The discovery component then chooses one séthames based on selection criteria
in the requirements specification and sends theemoame back to the SIMPL core (5).
The latter queries the resource management compaiignthe source name to retrieve
the above-mentioned information that is necessargé#ta source access (6 and 7). This
information is used to access the data source @meocdcute the SIMPL core operation
that is identified by the calling workflow activit{8), e.g., arlssueCommand activity
calls thelssueCommand operation. Strictly speaking, we execute the im@etation of
this operation as provided by the data source aionéaentified before.

If the workflow performs a data retrieval or writack, we will need to identify exactly

one of the converters that are associated withiddetified connector. For that purpose,
the workflow engine sends the data type of the BR&iiable that holds the data to be
retrieved or written back to the SIMPL core. Thiatad type determines the correct
workflow-specific format of the converter. This ddbrmat and the connector-specific
format assigned to the resolved connector unigigelgtify the correct converter.

5 Discussion and Evaluation

In this section, we discuss the benefits and drakaf the SIMPL framework. In
particular, our discussion covers generality issoésSIMPL, its extensibility, and
optimization opportunities for data managementimusation workflows. Afterwards,
we evaluate SIMPL via the example workflow for beaeodeling of Section 2.2.

5.1 Generic Data Management for Simulation Workflovs

The generic access operations of the SIMPL coeeptbtadata to describe data sources,
and the logical data source descriptors provide nifonm access to arbitrary
heterogeneous data sources. This eases the imeget further data management
techniques in addition to BPEL-DM. Besides that,ca@ port the SIMPL core and the
metadata management to other sWfMS implementatisrisch may use different
workflow engines, different workflow languages, ewen different solutions for
modeling data management and data provisioning.hidite degree of portability of the
framework is basically achieved by its architectusased on clearly separated
components and plug-ins extending a SWfMS.

The DM activities of BPEL-DM offer common functiditg for data access, data
manipulation, data definition, and for writing ddiack to a data source. Furthermore,
SIMPL includes a multitude of data management padtas further abstraction support.



Together with the uniform data source access aedtitability provided by SIMPL,
these data management and data access patternisut®res generic data management
solution for simulation workflows. This generaligyables SIMPL to be used in multiple
domains of simulations or other scientific applicas, such as biology and astronomy,
and even in the business domain, e.g., for bustB&ksvorkflows.

In contrast to our approach, one could provide daiavices to accomplish the data
management for simulation workflows. These servicasally offer efficient means for
data management functionality specific to a smetllaf domains or problems. Hence,
they do not provide a consolidated, generic, aexilfle way to define data management
for multi-domain simulation workflows. Neverthelesénce we use BPEL as workflow
language, we allow services to be the implememaifodata management tasks as well.
Furthermore, BPEL processes also offer their fomstivia service interfaces. So, our
approach may even be used to define data senhaésupport special needs of certain
domains or problems.

To the best of our knowledge, no other approackudes an abstraction support to
define data management operations that is basegtioeric data management patterns.
Typically, workflow modelers have to define low-&hdetails of data management, such
as concrete DM commands. By distinguishing the dsaagement operations that are
necessary for simulations between different abspatterns, we can reduce the degrees
of freedom in defining the respective operationisTeases the definition and
implementation of abstraction mechanisms for irdlial patterns. Furthermore, the
patterns can be seen as building blocks for compgasata provisioning workflows, e.g.,
ETL workflows, via process fragment technology [E)9]. This increases flexibility at
runtime and reduces modeling costs at build time.

5.2 Extensibility of SIMPL

The specifications of the SIMPL core operations ahthe DM activities of BPEL-DM
are independent of the underlying data sources. Semee holds for the logical data
source descriptors and the logical data containeres. Hence, they do not need to be
extended or adapted when SIMPL should support iaddit kinds of data sources. We
only need to add according data sources conneasovgell as data converters and XML
schema definitions for data set variables. Furtloeem the implementations of
connectors and converters as well as the XML schdafaitions can typically be
derived from already existing implementations dirdgons.

In the same sense, we may extend or customize BMEIby additional activities. Like
data services, these activities could account parcific needs of a certain scientific
domain or problem. To do that, we need to add nBMPE core operations and their
implementations by data source connectors, but idrilye already existing operations
are not suitable. In order to add a new data managepattern to the DM pattern plug-
in of the function catalog, suitable rewrite rutesse to be defined. These rules describe
how the pattern is to be converted into executalmekflow parts. Altogether and in
contrast to previous approaches, e.g., see theaqpes compared in [Vr08], we can
typically reuse much of the already existing cooteeixtending SIMPL.



5.3 Optimization of Data Management for SimulationWorkflows

Our BPEL-DM approach combines the definition ofiaties for data management and
simulation at the same level of abstraction. Thiffere a huge potential for a
consolidated optimization at both the workflow ghd data processing level. In [Vr07],
the authors present a flexible approach to optimizekflows with embedded data
management operations, in particular SQL statemémtiependent of the underlying
data sources, this approach shows a huge optimizptitential that induces significant
performance improvements for workflows. Furthermarean be easily applied to other
approaches for embedded data management operatigngp our BPEL-DM approach.
Due to these optimization options, the SIMPL frargwis well suited for a data
management and data provisioning abstraction effiti dealing with huge,
heterogeneous, and distributed data objects.

5.4 The Bone Remodeling Workflow in the SIMPL Framgvork

As a proof of concept, we developed a prototypé ithalements SIMPL and relevant
parts of the associated sWfMS architecture. Thistgbtype uses the Eclipse BPEL
Designet as scientific workflow modeler and the Apache @stration Director
Enginé (ODE) as workflow execution engine and deploynerponent. Based on the
prototype, we implemented the workflow for a bor@modeling simulation (BRS)
presented in Section 2.2. Its activities involveesal heterogeneous data sources, e.g.,
databases, CSV files, unstructured documents, agéniiles. The SIMPL core and the
metadata of the resource management provide arondocess to these data sources.

Preprocessing Phase Solving Phase Postprocessing Phase

Solve Matrix o
C>_-—>-—>-—>-—> S ’—b{ e }—>O

Bone Body data FEM Initial/Boundary Simulation FEM Mamx
information parameters conditions commands Grid  Ax=b
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Fig. 8. Workflow for bone remodeling simulation enhancathv8IMPL

Figure 8 shows the BRS workflow using the SIMPLrfeswvork. In particular, we show
the BPEL-DM activities implementing the main stepfsthe workflow and its data
provisioning at the bottom of the figure. In theeprocessing phase, the workflow
creates more than ten input data files each wifz@ up to one gigabyte. Without the
framework, scientists have to select all neededtigjata, transform the data, and store

! hitp://www.eclipse.org/bpel/
2 http://ode.apache.org/



results into files in the PANDAS environment. SIMPEIps to automate these tasks,
thereby reducing the error rate. Input data forBRS activityDefine Smulation Body,
e.g., bone information or material parameterstygseally stored in public databases or
in private file systems. The simulation workflowokes a separate ETL workflow that
converts the data and transfers it into the PAND&®ironment. It consists of
RetrieveData activities that load the input data into BPEL whies. Afterwards, the
workflow transforms the data via an assign actjviilydWriteDataBack activities write
the results into the target files. The activitigdjust Initial/Boundary Conditions and
Create Smulation Commands operate according to the same procedure excepthitn
read their input data from structured CSV filesnkke they also usketreiveData and
WriteDataBack activities for data selection and transmission.

To perform the FEM, the BRS activiigreate FEM Parameters has to select certain

interpolation functions from an unstructured teatdment that summarizes all available
functions. SIMPL is based on forwarding DM commaridsdata sources, but the
underlying file system does not support executirgaetions of unstructured data via
DM commands. Hence, SIMPL is not able to direc#iest these functions. We need
data services that select all necessary informatiwhstore it into workflow variables. A

WriteDataBack activity subsequently copies this data into theNBAS environment.

During the solving phase, the activitgolve Matrix Equations calculates matrix
equations for several time steps. For each steptoites all relevant data, i.e., the
intermediate results, the FEM grid, and the mang vectors into a database inside the
PANDAS environment. For selected time steps, aatguty executedssueCommand
activity in the simulation workflow persists snapth of these data for further
processing, e.g., for analyzing or for recoveryposes. A typical BRS produces 100 or
even more of such data snapshots each with a S&eoat two megabytes. After the last
time step, théssueCommand activity stores the final result.

The last BRS activityisualize Results transforms these results and other data, such as
the FEM grid, into a format suitable for visualinat tools. For example, it joins the
FEM grid data and the simulation results for selddime steps of the solving phase in
order to create images that combine this infornmatio automate thidssueCommand
activities of an ETL workflow select the necessadaya and transform and match it.

The BRS workflow benefits from SIMPL in various vgaySIMPL provides a uniform
access to all involved heterogeneous data sources, databases, CSV files,
unstructured text documents, and image files. [Eantlore, it allows to automate the data
management activities that have previously beefopaed manually. This reduces the
error rate and the time the scientists have to gfenthese activities. We chose ETL
workflows for the preprocessing and the post-preicgsphase since they may transfer
data directly between the involved data sourcesw®acan reduce costs for transmitting
high amounts of data and decrease workload for plateessing within the simulation
workflow. During the solving phase, &ssueCommand activity could even transform all
FEM data into formats suitable for different sol/ee.g., parallel solvers, i.e., SIMPL
helps to switch between these different solverdogdther, SIMPL offers a data
management abstraction that is well suited for &tian workflows such as the BRS.



6 Related Work

Federated information systems integrate differéntik of data sources and provide a
homogeneous schema for heterogeneous source sy$RuwB9]. However, they
typically involve multiple and sophisticated intagon processes that have to be
executed for each data source access. In simulappfications the sources are highly
heterogeneous and we need to cope with huge amadntiata. Thus, complex
integration processes may show poor performancehdh case, a peer-to-peer-based
approach seems more suitable as it employs lesplernmtegration processes between
pairs of data sources. The generality of our apgreacommends it to be used for both a
federated and a peer-to-peer-based solution. T$oshelds for conventional ETL tools.
But in contrast to our approach, they rather woith warious access mechanisms and
data management operators that are specific fertain kind of data source.

Scientific applications recently adopted the faieiti of grid infrastructures as well as the
Service Oriented Architecture (SOA) [TDGO07]. The shgrominent solution for grid-
and service-based data management is the OpenSerndces Architecture — Data
Access and Integratidrframework (OGSA-DAI). It encapsulates heterogeseand
distributed data sources via services that proamess abstractions for the data sources.
A user may define data integration workflows thathestrate interactions with these
services. However, the workflows and workflow taskSOGSA-DAI are implemented
directly in programming languages. If simulationriftows that rely on conventional
workflow technology use OGSA-DAI as data managensehition, they will not exploit
the optimization potential of a consolidated deiim of the processing activities for
data management and simulation [Vr07]. Furthermthie abstraction support offered by
OGSA-DAI only relies on the customized abstractioffsred by the individual services,
while we provide a generic and unified abstractiachanism.

The Scientific Data Management Center (SDM Cent&fers an end-to-end data
management approach that mainly deals with effigieanalyzing data produced by
scientific simulations or experiments [Sh07]. Itfep§ efficient and parallel access
routines to storage systems and technologies toostithe better understanding of data.
The latter comprises, for example, routines forcggized feature discovery, algorithms
for parallel statistical data analysis, and effitiendexes over large and distributed data
sets. On top of this, the Kepler sWfMS provides ribleust automation of processes for
generating, collecting, and storing the resultsioifulations or experiments as well as for
data post-processing and analyzing the resultsg].ud contrast to the SDM Center,
our approach does not deal with data analysiswithtdata provisioning for simulation
workflows and an appropriate abstraction suppoeplir also offers workflow activities
to seamlessly access data sources, in particuldodal file systems, relational database
systems, and data streams coming from sensor retweétowever, each of these
activities directly deals with the heterogeneitregarding access mechanisms of the
considered data sources instead of using genetticiaified interfaces.

% http://www.ogsadai.org.uk/index.php



The scientific workflow management system VisTraitecuses on the exploration and
visualization of results of simulations or experitgeas well as on modeling, executing,
and optimizing visualization workflows [Fr06]. ltugports tracking revisions of
workflows, i.e., scientists or engineers may intéxely adjust their workflows. In order
to maintain the history of workflow execution, datacessing, and workflow revisions,
VisTrails captures data and workflow provenance larié them to each other and to the
produced data [Kol0]. This enables reproducibitify processes and simplifies the
exploration of different versions of a workflow a&ll as its results. In contrast to the
framework presented in this paper, VisTrails doasfocus on data provisioning aspects
and abstractions that are necessary for executipbases of simulations.

Microsoft Trident is a general-purpose scientifiorisflow workbench [Ba08]. It is built
on top of the Microsoft Windows Workflow Foundatfofwindows WF), a workflow
environment based on the control-flow oriented Esiele Orchestration Markup
Language (XOML). Trident enhances Windows WF witindtionality needed for
scientific workflow management, e.g., automaticvemance capture and the possibility
to model data dependencies between workflow taBRks. activity library of Windows
WF enables customized activity types that couldvigi® a seamless access to data
sources or further abstractions for defining datmagement operations. However, they
have to be implemented by the modeler himself @resh between several activity
developers. SIMPL offers abstractions via data maneent patterns that are
automatically converted into executable workflowrtpa As an alternative to such
custom activity types, Trident uses services fdadacess. Similar to OGSA-DAI, this
complicates optimizations over the whole spectruomf the workflow to the data
processing level. Furthermore, Trident workflowsymee Dryad for data provisioning
[1s07]. Following the approach of MapReduce [DGUd{yad supports programmers in
efficiently using multiple resources for executimtata-intensive and data-parallel
applications without knowing anything about coneutrprogramming. However, Dryad
does not deal with data management abstractiomsrisense of a generic solution.

Besides the activity library of Windows WF, IBM ar@racle also provide workflow
activities that directly embed data management ajmrs as part of their workflow
products [Vr08]. In contrast to SIMPL, these pradudo not offer abstractions via data
management patterns and are restricted to SQLstats, while we support any kind of
data source. The external variables of Apache Of@Eanother approach to seamlessly
access data sources from within workflows. Theseblikes can be mapped to one row
of a table in a database that offers an interfatleviing Java Database Connectivity
(JDBC). This way, workflows may perform tuple-oried retrievals and manipulations
on the mapped row. However, set-oriented operatiave to be defined via additional
workflow constructs, e.g., loop activities. In [VA) the authors proof that such a loop-
based execution of several tuple-oriented operatstiows weak performance related to
a set-oriented SQL statement that is wholly exetuig the database system. Our
approach supports set-oriented operations by diredegrating SQL statements into the
workflow definition.

4 http://mww.windowsworkflowfoundation.eu/
® http://java.sun.com/products/jdbc/overview.html



7 Conclusion and Future Work

In this paper, we introduced SIMPL — an extensfbdenework that provides a generic
and consolidated abstraction for data managemehtata provisioning in simulation
workflows. It unifies heterogeneous interfaces iffecent data sources via logical data
source descriptors, generic access operations,matddata for mappings to concrete
data source access mechanisms. We demonstrated thisatprovides the core
functionality to uniformly access arbitrary dataismes and enables an easy development
and integration of concrete data management teahsigBased on this, the BPEL-DM
activities allow for the definition and executioh@mmon data management and data
provisioning tasks for simulation workflows. Furthebstraction support is provided by
means of generic data management patterns, e.gerns for ETL operations. In
addition to a data source access via services, BP#loffers the combined definition
of the processing activities for data management simulation at the same level of
abstraction. This enables optimizations over thele/spectrum from the workflow level
to the data level, inducing significant performaniceprovements of workflows.
Altogether, the SIMPL framework removes the burffem engineers and scientists to
specify low-level details of data management fairtsimulations. It helps them to cope
with the information explosion intrinsically assatgd with simulation applications and
boosts their productivity.

In future, we will extend the optimization approdon workflows with embedded data

management operations of [Vr07] to be applicablthéodata management in simulation
workflows. For that purpose, we will work on a sébptimization rules that are suitable

for simulation workflows and for DM activities offEL-DM. Scientists may use several
parameterized data management patterns within wakflows. Our approach converts

each pattern into an executable workflow part olaon from all other patterns. This

may result in a variety of process fragments fdadaanagement and data provisioning
that show further optimization potential when cdesed together. To exploit this

optimization potential, we will combine the comiers of data management patterns
with the optimization approach for data management.
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