Institute of Architecture of Application Systems

Synchronization of Adaptive Process Models
Using Levels of Abstraction

Monika Weidmann?, Falko Kotterl, Thomas Renner?,
David Schumm?, Frank Leymann?, Daniel Schleicher?

1 Fraunhofer Institute for Industrial Engineering IAO
and University of Stuttgart IAT
Stuttgart, Germany

2 Institute of Architecture of Application Systems,
University of Stuttgart, Germany

BIBTEX:
@inproceedings{Weidmanni1,
author = {Monika Weidmann and Falko K&étter and Thomas Renner and
David Schumm and Frank Leymann and Daniel Schleicher},
title = {Synchronization of Adaptive Process Models

Using Levels of Abstraction},
booktitle = {Proceedings of the 4th International Workshop on
Evolutionary Business Processes (EVL-BP 2011),
in conjunction with the 15th IEEE International
EDOC Conference (EDOC 2011)},
{2011},
{IEEE Computer Society}

year
publisher

}

© 2011 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

Universitat Stuttgart

sweers* Germany

Synchronization of Adaptive Process Models Using Levels of Abstraction

Monika Weidmann, Falko Koetter, Thomas Renner
Fraunhofer Institute for Industrial Engineering IAO
and University of Stuttgart IAT
Stuttgart, Germany
Email: firstname.lastname @iao.fraunhofer.de

Abstract—Today many companies use several technologies,
modeling languages, and software tools for designing, analyzing,
and executing their business processes. The need for adapting
processes to new requirements, to reuse parts of processes, and
to involve different stakeholders in the process design leads
to process changes on multiple process models of different
granularity and level of abstraction. These changes cause a
need for process models on different abstraction levels to be
synchronized in order to avoid inconsistencies. To bridge the
resulting Business IT gap, we introduce an approach which
supports the creation and adaptation of business processes on
different abstraction levels based on reusable process building
blocks. The advantage of the approach is that changes of the
process can be driven by IT and Business in the same manner,
though on different levels of abstraction. In addition to the
methodology for this approach, we define reusable process
building blocks, describe sychronization mechanisms, and pro-
pose a supporting infrastructure. We show the application of
these concepts in a real world case study.

Keywords-Adaptive Business Processes, Sychronization, Ab-
straction Levels, Business Process Management

I. INTRODUCTION

Many companies have recognized that adaptive cross-
company business process management is important for
their business success [1]. Changing market conditions
and legal requirements force companies to work towards
adaptive business processes [2]. Additionally, the increasing
adoption of business process automation allows providing
interfaces for outsourcing process steps and using electronic
services from all over the world. However, most companies
do not yet execute their business processes in terms of
business process technology, but are in early stages of process
definition, for example in textual form or with non-executable
notations [3] [4]. Most companies see Business Process
Management (BPM) as either a top down methodology for
process management or a systematic approach for process
management [3]. However, the need to involve various
stakeholders in process modeling causes that processes are
modeled on more than one abstraction level. Combined with
changing requirements, this leads to the problem to propagate
changes in process models through various abstraction levels.
As each level provides a different view on the same process,
there is a need for consistency between levels. To satisfy this

David Schumm, Frank Leymann, Daniel Schleicher
Institute of Architecture of Application Systems
University of Stuttgart
Stuttgart, Germany
Email: lasthame @iaas.uni-stuttgart.de

need, process models on different abstraction levels need to
be synchronized.

Though some tools promise support for round trip business
process management!, to the best of our knowledge, state-
of-the-art tools in production do not support synchronization
of template-based adaptive process models on various ab-
straction levels. Additionally, in research a need has been
identified to provide a supporting methodology and model
management as well as reuse [5].

Then again, many new technologies, tools, and methods
already have been developed in research, which support
several aspects. Examples are the introduction of views on
processes [6], which allow to add or remove complexity
to process models, and the adding of variability to process
models resulting in adaptable business processes like in [7].
Additionally standards like BPMN [8] have been developed
with the goal to give a notational basis.

We introduce an approach which supports adaptive busi-
ness process management. We describe our vision of template-
based adaptive business processes, integrating concepts which
have been developed in previous research. We therefore
use process building blocks on various abstraction levels in
order to enable reuse and describe the synchrionization of
process models on different abstraction levels. Additionally,
we outline a methodology describing the involved roles and
how these concepts can be applied, including the needed
tool support. Further on we introduce a use case and show
several aspects of the introduced methodology.

This paper is structured as follows. In Section II the
relevant related work in business process management in
industry as well as in academia is described. In Section III we
describe our vision of synchronization of adaptive business
process models on different abstraction levels, including
a conceptual overview and the description of solution
elements as well as their interrelation. A methodology for
using our concept in creating adaptable multi-level business
processes is given in Section IV. The use case is provided in
Section V. Finally a conclusion and an outlook are provided
in Section VI.

lwww.eclarus.com, www.lombardisoftware.com

II. RELATED WORK

In this section we examine related work in the following
categories: business process alignment, views on business
processes, and adaptive business processes.

In the field of the alignment of business processes much
work has been done already. We have seen how business
processes can be aligned using various algorithms (semantic,
syntactic, structural matching) [9], sometimes considering
different abstraction levels. Change propagation has for
example been dealt with in [10]. However, the usage of
process fragments as reusable incomplete parts of a process
model for change propagation across abstraction levels has
not been in the focus. [11] gives an overview of change
patterns of business processes. These patterns generally
specify which changes of a business process are possible.
Examples for such changes are parallelization of activities
or the replacement of process fragments. The concept of
vertical alignment of process models in general has been
reviewed in [12]. The problems of alignment have been stated,
but no change propagation method has been proposed. A
generic method for handling dependencies across different
models has been presented in [13]. The changes to process
models during their complete lifecycle have been studied in
[14]. To summarize the existing approaches, research has
been done on alignment and change propagation in models in
general and partly also on process models in detail. There still
persists the need to define a structured approach for enabling
adaptivity in process models on different abstraction levels,
to describe the synchronization of these levels including a
methodology with different roles and stakeholders, and to
introduce supporting tools.

An important related research topic deals with views on
business processes [6] [15]. In contrast to the work in the
field on alignment of business processes, views can be used
to specify different viewpoints on a single business process
model. Considering one model as the main process, views
can show certain aspects - like aggregation of information
or fading out information. If a change is done in the process
model, the view definition is still valid and therefore the
view of the process model is updated automatically after the
change. The view itself is typically read-only and not used
for changing process models itself.

In the fields of creating flexible, adaptive, or config-
urable business processes various approaches have been
introduced [16] [7] [17] [18]. These approaches allow
modeling processes at design time with certain flexibility,
enabling the creation of several process variants. Additionally,
most approaches allow modeling of dependencies between
design decisions. However, these approaches typically do
not consider abstraction level-based decisions. The synchro-
nization across abstraction levels has not been considered
so far using these dependency concepts. In the field of
reuse of parts of business processes the notion of process

fragments is gaining momentum [19]. However, using these
fragments for adapting processes top down or bottom up
has not yet been discussed. In the field of compliance an
approach for introducing refinement layers and propagation
of compliance requirements through business process layers
has been introduced [20].

The notion of abstraction levels is inherent to the field of
business process design today - they have been mentioned
and introduced in [8] and [21] among others. However, the
problem of change propagation is not addressed here.

To summarize the existing approaches, none of them have
introduced the concept of adaptive business processes on
abstraction levels, considering the synchronization as well as
the reuse of process building blocks. In this paper, we will
extend the approach of Adaptive Business Process Modelling
in the Internet of Services (ABIS) [18] in order to support
these use cases. In the next section, we will describe our
approach for fulfilling these requirements.

III. ABSTRACTION LEVELS FOR ADAPTIVE BUSINESS
PROCESSES

In this section we (1) describe the main concept of our
solution, (2) define the notion of abstraction levels in the
scope of this paper, and (3) propose an infrastructure for
synchronization of process models across different abstraction
levels. In contrast to previous approaches, we do not try to
solve change propagation in business processes in general,
but we use a process template based concept. We describe
reusable process building blocks and their dependencies
across different abstraction levels in order to enable adap-
tation by various stakeholders. Additionally, we introduce
a methodology, showing which stakeholders can use which
methods and models in order to design and change process
models at various abstraction levels, and describe how these
process models are synchronized. We choose BPMN 2.0
as notational basis in this paper, but the approach could be
extended for other notations.

We introduce solution elements according to the conceptual
model shown in Figure 1. It shows the three solution
elements concerning (1) the adaptive process, (2) process
synchronization, and (3) the infrastructure. In the course of
the next sections these concepts are defined and described
in detail.

A. Underlying Concept: Abstraction Level

In context of the conceptual model in Figure 1, the
abstraction level (see top of the figure) is the main concept
introduced in this paper. A business process is defined in
several levels, differing in detail and abstraction. These n
abstraction levels Ly, where k = 0..n — 1 form a hierarchy,
from the most abstract (top) level Ly, to the least abstract
(bottom) level L,, — 1. Depending on the modeling task, n
has to be chosen carefully. According to existing research

defined forong

specifie:
Abstraction Profile Tool Palette

isa isa

[Usage Palette] [Modeling Palette]

creates creates

Infrastructure

Adaptive Process

Process Variant

derivedfrom

isa .
isa

usedtocreate

Process Repository

stores

Process Building Block

- refines
Abstraction Level

based ontwo adjacent based onone

isonan

restricts choice

Process Synchronization

contains

usedin))
Process Template Process Fragment Variable Region

has alternatives

| Predefined Region |

isa

Figure 1.

and the state of the art [21] [8], we chose n = 3 in the scope
of this paper:

o General Business Level L, is the level for business
users with basic skills in process design, however not
with focus on technical aspects. Only basic modeling
capabilities without any technical details are available.
This is the most abstract level providing the best
overview for the management.

« Analytical Process Level L is a more detailed descrip-
tion of the process. It includes advanced elements, which
require a deeper understanding of business process
semantics. Here, error handling and advanced event
handling are added.

o Detailed Technical Level L, In contrast to the analyt-
ical level, this level contains technical details like web
service endpoint references, fault handlers, and other
process execution semantics. It is used to define an
executable business process for a workflow engine.

B. Concept 1: Adaptive Process

In Figure 1 the supporting concepts for adaptive processes
are shown in the lower left corner. Depending on the previous
work, process fragments are usually defined as incomplete
processes which cover a reusable part of functionality [19].
In [18] we introduced a notation which allows modeling
process fragments in BPMN through the usage of special
variability elements. These process fragments can then be
inserted into so-called process templates to create process

usedto

Conceptual model for synchronization of adaptive business processes on different levels on abstraction

i)

Fragment Variable Link

Start Link

Variable Region

{3 Fragment
End Link

Figure 2. Selected ABIS modeling elements

variants. To achieve this, process templates contain variable
regions. A variable region is a new BPMN element which
serves as a placeholder for a process fragment chosen from
a list of alternatives. We will refer to process fragments and
templates as process building blocks, as they are used to
enable the creation and adaptation of process variants (see
Figure 1). We introduce the notion of process items, which
are either process building blocks or process variants.

For the scope of this paper the concepts of a variable
region, a fragment start link, a fragment end link, and a
variable fragment link are relevant (see Figure 2). Each
process fragment contains one fragment start and fragment
end link, which serve to connect an inserted fragment to the
incoming and outgoing sequence flows of the corresponding
variable region. Process fragments are modeled in BPMN and
can contain variable links, at which additional sequence flows
can be connected to and from the process template during
insertion. Figure 3 shows an example of such an insertion.
The process fragment on the left contains one fragment start
link, one fragment end link, and one additional variable link.
It is inserted in the process template in the middle. The

result is shown on the right. Note that the fragment links are
resolved during insertion.

For the purpose of this paper, we extend the process
template with the notion of a free region - a free region
is a variable region for which no process fragments have
been predefined. Thus, a fragment may be modeled on the
fly during variant creation.

C. Concept 2: Process Synchronization

In addition to the concepts for adaptive processes, the

synchronization of the process models needs to be supported.

Elements for this task are shown in the right of Figure 1. We
introduced a dependency concept in [22]. It is possible to
define dependencies between the choices of variable regions
in order to (1) define in which order they are filled and (2)
to limit the alternatives at a choice depending on previous
choices. For this work, we define that a variable region 1
depends on a variable region 2 if the choice for variable
region 2 has to be made first and affects the alternatives for
variable region 1. We described the dependency concept only
for dependencies in one process model, that means that no
abstraction levels have been considered so far. We call these
dependencies intra-level dependencies in this work.

To support or automate propagation of changes between
abstraction levels to synchronize the process models, some
kind of matching between elements and selected fragments on
different levels has to be introduced. We extend the existing
concept to support inter-level dependencies from one level
to another. Consider a variable region on level Lj, which is
neither the highest nor the lowest level. The choice at this
variable region may depend on other choices on Lj; which
have to be made beforehand, as well as on choices made on
the levels Lg. . r_1. In turn the choice made at this variable
region may influence choices on level Ly41. ,,—1. Therefore,
we introduce additional inter-level dependencies in between
two abstraction levels Ly and Ly, . As the business logic
is defined at the uppermost level and should be unaware
of the implementation details, we only consider top down
dependencies, so decisions on a more abstract level affect
the lower level design decisions and not vice versa. Thus, a

level Ly, is influenced only by the levels Ly...Lg_1 above it.

To reduce modeling complexity and preserve level isolation,
a level Ly can only have inter-level dependencies to the
level Lj_; directly above it. Other dependencies arise due
to transitivity.

Consider a process template on level Lj, which is
connected to the corresponding process templates on the
lower level Ljy;. A template on level L; can influence
multiple templates on Lj;. For example, if on a more
detailed level one process is split into one main process and
several subprocesses, adaptation of the higher level process

influences the main process as well as the subprocesses.

Depending on the process fragment chosen in a variable
region on level Ly, one or several fragments on the lower

level L;11 may be chosen automatically. However, even
when no explicit modelling of bottom up dependencies is
considered, by evaluating top down dependencies these can
also be used to propagate changes bottom up to a higher
level. Consider a different fragment chosen on Lj, which
in turn violates a dependency to Ly_;. If validity is to be
preserved, a different choice has to be made on L;_;. We
consider three types of changes: top down, bottom up, and
middle out:

e Top down: Considering the creation of a business
process, we start from the level Ly and then create
Ly, Lo, .., L,, using the appropriate process template of
each level. Decisions like the choice of process frag-
ments to be inserted in the respective process template,
are propagated top down throughout the process model
using inter-level dependencies. Additionally, comments
can be made on the higher level, specifying in a textual
notation the behavior in complex situations, which are
not supported by the higher level modeling palette.
Therefore, the missing pieces are to be filled in on
the lower level and correlated to the comment they
implement.

o Bottom up: Details are added on a lower level, which
fit to one of three cases: (a) the additions correspond
to a specific comment on the higher level, (b) they
affect the higher level process model, or (c) they do not
affect the higher level process model. In case (a) the
correlated comment needs to be stored in addition to the
diagram information. In case (b) the change needs to be
considered and validated by the responsible person on
the next higher level. If any dependencies are violated
by the low-level-change, an appropriate choice needs
to be made on the next higher level. In case (c) no
propagation is necessary.

e Middle out: Details are changed on a level Lj, where
0 < k < n, in between two levels Ly_1 and Lj4.
This results in a top down as well as in a bottom up
propagation of the affected parts of a process. Bottom
up propagation needs to take place first, as the changes
on the lower level may lead to irreconcilable constraints
on the next higher level, if inter-level dependencies
cannot be satisfied considering the state of the lower
level. If bottom up propagation is successful, top down
propagation can take place, which allows the detailed
specification of the newly added process information.

Note propagation to another level may lead to recursive
propagation from this level onward. For example, a change
on the general business level Ly may result in a change of
the analytical process level L; which in turn necessitates
a change on the detailed technical level Lo. While it is
generally possible to create inconsistent process items, the
process designer needs to ensure that the dependencies in
the process models can be satisfied.

Fragment Link In Send !essage Fragment Link Out

+

To "Receive Message"
Eocess Fragment

Figure 3.

D. Concept 3: Infrastructure

Here we describe an overview of the resulting solution
infrastructure with the following elements:
o Tool support for modeling and applying changes to
processes
o Process repository for reuse and update of process items
o Tool support for synchronization of process models top
down and bottom up
Tool support For each level Ly a modeling tool palette
M (Ly,) is defined, consisting of a particular subset of BPMN

2.0 elements and the variability modeling elements of ABIS.

For the modeling palette M (Ly,1), the set of elements
M(Ly) is extended with the new characteristic elements
Cry1 : M(Lky1) = M(Ly) U Cqq. Therefore, on each

lower level all elements of the levels above are available.

On the lowest level L,,_; the complete set of BPMN 2.0
elements is recommended to be supported. For creating and
adapting process variants using existing process items, an

additional tool palette is needed. We call this a usage palette.

The definitions of the contents of both tool palettes according
to the type of the user are stored in so-called abstraction
profiles. These match the skill of the user and the right to
adapt and model process items to the according tools.

Process repository In order to create process variants
from process building blocks, these need to be stored and
retrieved accordingly. We consider a process repository to
exist, which stores the process building blocks with additional
information - which abstraction level it belongs to for
example. Additionally some process fragments correspond
to other process fragments on other levels. This information
needs to be stored in the repository infrastructure as well. A
fragment can be positioned on a certain level Ly, if it only
contains elements which are allowed on this level.

Tool support for synchronization Considering inter- and
intra-level dependencies, automated support for propagating
changes or additional process information (like requirements)

needs to be introduced for supporting the process modelers.

In Table I we show an overview of possible propagation
techniques and how these can be used for the top down
and bottom up propagation in the use cases of the design
of a process and the change of a process model. We came
across these solution elements during our case study, where
we considered three different change propagation settings as
described in Section V.

Variable Region)|

Receive Message

®

Send Message

Receive Message
Eocess Variant

Eocess Template

Example for a fragment insertion in ABIS

IV. METHODOLOGY

For enabling round trip adaptive business processes at mul-
tiple abstraction levels, the adaptive parameters of a business
process need to be identified. These can be positioned on
various abstraction levels. It is important to distinct higher
level design decisions from detailed technical decisions in
order to define a role model to separate the responsibilities
for the abstraction levels. We consider six distinct roles, as
we suppose the number of abstraction levels to be three
as described in Section III-A and distinguish two types of
users: experts, who are responsible for modeling process
building blocks on their respective abstraction levels, and
users, who create and adapt process variants based on these
building blocks. The experts are supported by the modeling
tool palette, the business users by the usage tool palette (see
Section III-D). This results in a total of six roles: business
expert, business user, process expert, process user, execution
expert, and execution user.

We consider seven distinct settings. First, we consider the
propagation direction of changes: (a) top down, (b) bottom up,
and (c) middle out. Additionally, the following use cases are
considered: (1) building block creation, (2) variant creation,
and (3) variant change.

Top down process building block creation: No process
templates exist on any level. A business expert designs
adaptive processes creating new process templates and
fragments to fill them. On the next lower level, the same
template then can be used and extended by the process expert
- for example by searching connected fragments on lower
abstraction levels, or by explicitly adding or modeling details.

Top down process variant creation: A set of process
building blocks for each level exists. A business user
creates a process variant using the process building blocks
on the highest level, specifying additional requirements
by comments. On the next lower level, the appropriate
process building blocks are used by the process user. Some
choices can be made automatically by evaluating inter-level
dependencies. Other choices have to be done manually, either
by selecting fragments or by modeling custom elements in
a free region, which are then correlated to the additional
requirements they satisfy. Likewise, the execution user creates
a variant of the template on the lowest level.

Top down process variant change: A business user
makes a change on the general business level, either by

Table T
FORMS OF CHANGE PROPAGATION

Support through

H Top down propagation

Bottom up propagation

Middle out propagation

Automatic propagation through de-
pendencies

Applicable (possible inconsisten-
cies during change)

Applicable (for top down part,
which is done last)

Semi-automatic propagation (rec-
ommendation) of process fragments

Applicable using dependency con-
cept; possibility of inconsistencies
causes need of notification mecha-
nisms

Applicable through extension of
dependency concept (going back-
wards)

Applicable: first bottom up, then
top down

Highlighting of propagated changes
in the process model for visualiza-
tion and sign off

Applicable; combine with auto-
matic propagation

Applicable; combine with auto-
matic propagation

Applicable; combine with auto-
matic propagation

Visualization through superimpos-
ing possible process fragments on
mouse over

Applicable; combine with (semi-)
automatic propagation

Eventually applicable (backtracking
in the dependency concept to allow
bottom up propagation)

Applicable (see top down and bot-
tom up propagation)

Matching of process elements to
comments on a higher level

Applicable; show corresponding
comments describing requirements

Applicable; Combine with propaga-
tion and visualization

Applicable (see top down and bot-
tom up description)

during design on lower level

Sign off process for implemented -
requirements

Applicable Applicable

choosing different fragments or by changing a comment. This
change needs to be propagated to the lower levels by the
respective designers using inter-level dependencies, as well
as choosing fragments manually or by modeling elements in
a free region. If new elements are modeled this way, they
need to be correlated to the requirement on the upper level.

Bottom up process building block creation: An exe-
cutable process already exists, albeit it is neither adaptable
nor specified on multiple levels. An execution expert takes
this process and replaces the parts which shall be variable
by variable regions, modeling the extracted parts as process
fragments. Alternatively, automatic pattern recognition may
be used to find existing fragments which are contained in
the initial process. Then, additional fragments are defined
which enable the creation of differing variants, thus achieving
adaptability of the initial process. The resulting process
template is then signed off by the process expert, which then
adapts the process building blocks for the higher level. After
each successive level is created, top down propagation needs
to take place so the lower levels satisfy the requirements of
the upper levels. Inter-level dependencies need to be added
after the next higher levels have been created.

Bottom up process variant creation: A series of process
building blocks for each level exist, and a variant shall be
created by starting at the lower level. This approach disregards
the advantages of the abstraction concept and therefore it is
not considered here.

Bottom up process variant change: An execution user
makes a change on the detailed technical level. If this change
does not affect the higher levels, no propagation is necessary.
If the change affects the higher level, it has to be signed
off by the process user. If the change passes, it needs to
be propagated bottom up. To achieve this, new fragments
have to be chosen either manually or by suggestion using

inter-level dependencies. Newly modeled elements need to
be matched to new or existing elements and/or comments.
To assist the user with this task, process building blocks
may be superimposed to show the location of lower level
changes within the context of the upper level template. The
resulting process variant on this level needs to be signed
off and propagated as well. If signing off is denied on any
level, all changes on lower levels need to be reverted. Finally,
if a change is implemented at the highest level, top down
propagation needs to take place in case changes on the higher
level in turn affect the lower levels.

Middle out process building block and variant cre-
ation: These two use cases can be handled as a combination
of top down and bottom up approaches, as described above.

Middle out process variant change: A process designer
performs a change on the analytical process level. If this
change does not affect the higher level, top down propagation
can be performed as described. If it affects the higher level,
middle out propagation has to take place. First, bottom up
propagation is performed as described. Then, if the change
is signed off at the top level, top down propagation follows.

V. CASE STUDY

In this section we introduce a real world case study we
came across in our work in the openXchange project’. We
will first describe the basic setting with all levels and process
building blocks, before we show how changes are propagated
and the process models are synchronized.

A. Basic Setting

We consider a process of active claims management in
the insurance industry. We call the claimant or injured party
customer. After an event of damage has happened, it is

2www.openxchange-project.de

possible for the insurance to replace or repair the broken
commodity instead of paying money or bills for the customer.
Figure 4 shows the process building blocks of this example for
the abstraction level L, consisting of one process template
and five process fragments. Depending on the contract it
might be necessary for the insurance to get the consent
of the customer - either for each action to be taken (see
fragment 0B), or for all actions at once (see fragment 0C'),
or not at all (see fragment 0A). The action of assignment
can be done either by placement of the assignment in a
pool (see fragment 0D), where possible appointees can sign
up for assignments, or by directly searching for a matching
appointee (see fragment OF). In the real world use case other
constellations are also possible, but for reasons of space we
consider only the setting described above.

As already shown in Figure 2 the ABIS modeling elements
are used. Most important are the triangles, which show where
a process fragment will be connected to the corresponding
process template. The white and black triangle show the
connection of the incoming and outgoing edges in the variable
region, whereas the semi-filled triangle is a variable link,
which allows additional incoming and outgoing sequence
flows. It is variable in order to ensure higher reusability in
various process templates.

On level L; the use case is refined, showing not only the
basic steps, but more details about the error handling and the
course of events (see Figure 5). Note that additional BPMN
elements are used, for example the event-based gateway. The
process is now modeled using the loop construct of BPMN,
also considering the possibility of a time out. The example
contains five variable regions and five process fragments on
this level. We do not consider the level Lo for reasons of
space.

An overview of the process building blocks and their
interconnection is shown in Figure 6. The process template
on level Ly on the top of the picture contains two variable
regions. For variable region 01 the corresponding alternatives
are process fragments 0A, 0B, and 0C, for variable region
02 process fragments 0D and OF can be used. On the lower
half of the figure one can see the process template on level
L, with a total of five variable regions, one of which is
a free region - that means for this region no predefined
alternatives (process fragments) exist and it needs to be
modeled separately.

Within level Lg no intra-level dependencies exist. However,
a total of four inter-level dependencies have been defined.
The choices at variable regions 11 and 12 depend on the
choice in variable region 01, whereas the choices in variable
regions 13 and 14 depend on the choice of variable region
02. On L4, one can also see that two intra-level dependencies
are defined - variable region 12 depends on 11, whereas 14
depends on 13.

B. Configuration

We consider the following configuration on Ly, where the
consent from the customer is handled up front and a pool
is used: VR(01) = 0B,V R(02) = 0D. Additionally, the
business user decides to add a comment to V R(02), which
describes that in case of an overdue activity there needs
to be checked manually what happened to the assignment.
See the complete process variant on Lg in Figure 7. On
L this configuration leads automatically via propagation to
VR(11) = 1A, VR(12) = 1B,VR(13) = 1D,VR(14) =
1C' (see Figure 8). Note that the fragment 1E in Figure 5
is modeled on the fly during variant creation by the process
user and already applied in Figure 8.

C. Change 1: Top Down Propagation

We consider top down propagation by automatic propa-
gation first. For example, on the business level it is decided
that the customer is not asked for his consent, because due
to a change in the contracts this is not necessary anymore.
Therefore the choice of variable region 01 is changed from
fragment 0B to fragment 0A, causing in variable region
11 and in variable region 12 that fragment 1B has to be
used, which means no consent from the customer is needed
on L; as well. Changes on a higher level are propagated
through inter-level dependencies to the next lower level - if
intra-level dependencies are violated, more changes need to
be performed at that level. In Figure 6 the dependencies are
shown. It is also possible to model that several higher-level
decisions and several same-level decisions combined affect
a lower-level decision. This accounts for variable region 12 -
it depends on the choice in variable region 01 as well as the
choice in variable region 11.

A different case is the change of higher-level requirements
through manual edits. If for example an error management
requirement is described in a comment on Ly at the inserted
fragment for variable region 02 Perform actions, it is then
considered as a requirement for the free region 15. Changes
in this requirement are then propagated down and need to be
visualized at L. The edit on L; to fulfill such a requirement
needs to be propagated back bottom up in order to ensure the
edit has reached its goal. In our example, the new process
fragment 1F is created to be inserted in free region 15. This
can be done directly within L1 during the binding process,
but the process fragment is stored in a reusable way in a
process repository anyways (see Section III-D).

D. Change 2: Bottom Up Propagation

On the other hand, if for example a change is proposed for
variable region 11 at L, this change needs to be propagated
backward through the inter-level dependencies and signed
off at Ly. If not, the change cannot be committed. In our
example it might be that on the lower level the process
user makes a proposal for the improvement of a process by
not asking the consumer for consent for each assignment,

Eﬂcess Template LO

~

Get consent
of customer
(VRO1)

Define actions
to be taken

5/

Perform
actions (VR0D2)

)

EGCESS Fragment 0A

IEOCESS Fragment 0B

/>

Get consent
for all actions
up in front

Ea(ess Fragment 0C

Get consent
for each
single action

@: For legend of elements see Figure 2

Assign to pool

Lzmcess Fragment OE

Assign directly

Eo:ess Fragment 0D

Assign to pool

Figure 4. Use case showing process templates and fragments for abstraction level Lo

Eﬁcess Template L1

Get consent
of customer
(VR11)

Get consent ’

Create Perform first :
of customer f 1 second action
(VR12) assignment action (VR13) (VR14)

mn

Perform

Eocess Fragment 1A

Get consent
from customer

Eocess Fragment 1B

A,

Erocess Fragment 1C

& =

en ~ {:}
assigsnmgnt to @ A

Search for
appointee appointee
® A3
time out

o,

@: For legend of elements see Figure 2

Figure 5.

therefore not using fragment 1A at V' R11, but rather using
fragment 1B at VR11 and 1A at V R12. Therefore at V R01
of the higher level L, the corresponding fragment 05 needs
to be replaced with fragment 0C', which might be proposed
automatically by going backwards through the dependencies
and highlighting the change at the higher level. Only after
sign off at Ly the change is finalized.

In case of the free region 15, the process model to fulfill
the requirement needs to be signed off at the higher level
as well. This could be for example done by showing the
process fragment and communicating a description of how

Free region -
handle
problems
()

Erocess Fragment 1D

[
Send
assignment to

pool

time out

’Ew Process Fragment 1E

Check if
cancelling any
actions is
necessary

' no
Necessary?

&

Cancel
assignments

Use case showing process templates and fragments for abstraction level L1

the requirement has been fulfilled. This could be approved
by a simple confirmation dialog.

In the case of a middle out change on L, it needs to be
propagated not only to Lg, but also to Lo (not shown in the
example). However, middle out propagation is handled by
using mechanisms of bottom up propagation first, before the
top down mechanisms are applied. The reason for this is
that the decisions on the higher levels have usually a higher
significance than the ones on the lower levels. If the change
is not approved at the higher level, the top down propagation
is not performed at all.

Process Process Template L,

Fragment 0A
Process
Process VELELE Var_lablg Fragment 0D
Fragment 0B Region 01 LEgEnz
Process
TrrTEss : Fragment 0E
Fragment 0C I
]
Var_i b!g ‘1 Variable Free_;{seglon - (NewProcess
Process Region12 \ Region14 Fragment 1E)
Fragment1A '
Variable Variable . Pmcestsm
Process Region11 Region13 ragmer
Fragment1B
. Process
intra-level inter-level Fragment1C
: alternatives for dependen dependen
legend: afternativesfor _ depepdency . dependency
Figure 6. Overview of the use case showing process building blocks and their connections
I_Eocess Template LO Process Fragment 0B Eocess Fragment 0D If problems persist - check and
N O A T A T L L L fancel actions if needed)
A N O (R R T L automatic support require
Define actions Getconsent % b -
o ibaltaken for all actions Assign to pool
up in front Done?
o
=

Eocess Template L1

Encess Fragment 1A

Get consent
from customer

P Assign directly

Figure 7. Process variants for Lg

Liiocess Fragment 1D |ﬂu_cess Fragment 1C

c ~ Send < h f ~Send
_reate assignment to b T assignment to
assignment appointee appointee

time out

no

I_;’_?ocess Fragment 1B

£
lEChﬁ_ck if
... cancelling an
IE-W Process Fragment 1E acunnsg is v

necessary ecessary?

assignments

Cancel

Figure 8. Process variants for Lj

VI. FUTURE WORK AND CONCLUSION

In future work we will develop a prototype which extends
the currently available concepts of ABIS and apply them
to the use case. Further on we will refine the methodology
to add more details to the steps in order to enable adaptive
business process modeling. We will consider extending the
approach in order to combine it with monitoring features
and automatically steer the adaptation of processes. Finally
we will also consider change propagation in general process
models and eventually combine it with the ABIS approach.

In this paper we have introduced abstraction levels.
Abstraction levels allow the definition of adaptive process
models in different granularity. The adaptivity is ensured
by using process fragments in process templates. Changes
of process fragments are propagated through the abstraction
levels. This allows synchronization of process models on
different levels of abstraction. The advantage is that though
process models can be standardized, they can still be adapted
starting at multiple abstraction levels.

ACKNOWLEDGMENT

The work published in this article was partially funded by
the openXchange project of the German Federal Ministry of
Economy and Technology under the promotional reference
01MQO09011 and was partially funded by Ericsson. The
author D. Schumm would like to thank the German Research
Foundation (DFG) for financial support of the project within
the Cluster of Excellence in Simulation Technology (EXC
310/1) at the University of Stuttgart.

REFERENCES

[1] N. Dufft, K. Schleife, I. Bertschek, M. Vanberg, T. Bohmann,
A. K. Schmitt, and M. Barnreiter, “Das wirtschaftliche
Potenzial des Internet der Dienste,” p. 199, 2010.

[2] J. Hill, “Five Predictions for How BPM Will Evolve,’
2010, last accessed 13.01.2011. [Online]. Available:
http://www.documentmedia.com

[3] C. Wolf and P. Hermon, “The State of Business
Process Management 2010,” BPTrends Reports (February
2010), 2010, last accessed 13.01.2011. [Online]. Available:
http://www.bptrends.com/surveys_landing.cfm

[4

—

S. Patig, V. Casanova-Brito, and B. Voegeli, “IT Requirements
of Business Process Management in Practice - an Empirical
Study,” in Business Process Management, ser. Lecture Notes
in Computer Science, R. Hull, J. Mendling, and S. Tai, Eds.
Springer Berlin / Heidelberg, 2010, vol. 6336, pp. 13-28.

M. Indulska, J. Recker, M. Rosemann, and P. Green, “Business
Process Modeling: Current Issues and Future Challenges,” in
Advanced Information Systems Engineering, ser. Lecture Notes
in Computer Science, P. van Eck, J. Gordijn, and R. Wieringa,
Eds. Springer Berlin / Heidelberg, 2009, vol. 5565, pp.
501-514.

[6] R. Eshuis and P. Grefen, “Constructing Customized Process
Views,” Data Knowl. Eng., vol. 64, pp. 419-438, 2008.

[71 M. Rosemann and W. M. P. V. D. Aalst, “A configurable
reference modelling language,” Information Systems, vol. 32,
no. 1, pp. 1-23, 2007.

[5

—

[8] Object Management Group (OMG), “Business Pro-
cess Model and Notation (BPMN) Version 2.0,”
2009, last accessed 13.01.2011. [Online]. Available:

http://www.omg.org/spec/BPMN/2.0/

[9] R. Dijkman, M. Dumas, L. Garcia-Banuelos, and R. Kaarik,
“Aligning Business Process Models,” in 2009 IEEE Interna-
tional Enterprise Distributed Object Computing Conference.
ITeee, 2009, pp. 45-53.

[10] M. Weidlich, M. Weske, and J. Mendling, “Change Prop-
agation in Process Models using Behavioural Profiles,” in
IEEE International Conference on Services Computing 2009
(SCC’09). IEEE, 2009, pp. 33-40.

[11] B. Weber, M. Reichert, and S. Rinderle-Ma, “Change Patterns
and Change Support Features - Enhancing Flexibility in
Process-Aware Information Systems,” Data & knowledge
engineering, vol. 66, no. 3, pp. 438-466, 2008.

[12] M. Weidlich, A. Barros, J. Mendling, and M. Weske, “Vertical
Alignment of Process Models - How Can We Get There?” En-
terprise, Business-Process and Information Systems Modeling,
pp- 71-84, 2009.

[13] L. Bodenstaff, A. Wombacher, M. Reichert, and R. Wieringa,
“MaDe4IC: an Abstract Method for Managing Model De-
pendencies in Inter-Organizational Cooperations,” Service
Oriented Computing and Applications, vol. 4, no. 3, pp. 203—
228, Jun. 2010.

[14] B. Weber, S. Sadiq, and M. Reichert, “Beyond Rigidity
- Dynamic Process Lifecycle Support,” Computer Science-
Research and Development, vol. 23, no. 2, pp. 47-65, 2009.

[15] D. Schumm, F. Leymann, and A. Streule, “Process Viewing
Patterns,” in Proceedings of the 14th IEEE International EDOC
Conference (EDOC 2010). 1EEE Computer Society Press,
Oct. 2010, pp. 1-10.

[16] A. Hallerbach, T. Bauer, and M. Reichert, “Guaranteeing
Soundness of Configurable Process Variants in Provop,” in
IEEE International Conference on E-Commerce Technology,
2009, pp. 98-105.

[17] S. Meerkamm, “Configuration of Multi-Perspectives Variants,”
in Ist International Workshop on Reuse in Business Process
Management (rBPM10), Hoboken, NJ, USA, 2010.

[18] M. Weidmann, F. Koetter, M. Kintz, D. Schleicher, and
R. Mietzner, “Adaptive Business Process Modeling in the
Internet of Services (ABIS),” in Proceedings of the Sixth
International Conference on Internet and Web Applications
and Services (ICIW), 2011.

[19] D. Schumm, D. Karastoyanova, O. Kopp, F. Leymann,
M. Sonntag, and S. Strauch, “Process Fragment Libraries for
Easier and Faster Development of Process-based Applications,”
Journal of Systems Integration, vol. 2, no. 1, pp. 39-55, 2011.

[20] D. Schleicher, T. Anstett, F. Leymann, and D. Schumm,
“Compliant Business Process Design Using Refinement Layers,”
in OTM 2010 Conferences, T. D. et al. R. Meersman, Ed.

Springer, Oct. 2010.

[21] B. Silver, BPMN Method and Style: A levels-based methodol-
0gy for BPM process modeling and improvement using BPMN
2.0. Cody-Cassidy Press, 2009.

[22] F. Koetter, M. Weidmann, and D. Schleicher, “Guaranteeing
Soundness of Adaptive Business Processes using ABIS,” in
Proceedings of the 14th International Conference on Business
Information Systems (BIS 2011), Poznan, Poland, 2011.

