
© ACM 2011
This is the author's version of the work. It is posted here by permission of ACM for
your personal use. Not for redistribution. The definitive version is available
at ACM: http://doi.acm.org/10.1145/2578903.2579140

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

@inproceedings{FehlingLRS2011,	
	 	 author	 	 	 	 =	 {Christoph Fehling and Frank Leymann and Ralph Retter and

 David Schumm and Walter Schupeck},	
	 	 title	 	 	 	 	 =	 {An	 Architectural	 Pattern	 Language	 of	 Cloud-‐based	

	 	 	 	 Applications},	
	 	 booktitle	 =	 {Proceedings	 of	 the	 18th	 Conference	 on	 Pattern	 Languages	 of	

	 	 	 	 Programs	 (PLoP)},	
	 	 year	 	 	 	 	 	 =	 {2011},	
	 	 publisher	 =	 {ACM},	
	 	 doi	 	 	 	 	 	 	 =	 {10.1145/2578903.2579140}	
}	

:

Christoph Fehling, Frank Leymann, Ralph Retter, David Schumm, and Walter
Schupeck. 2011. An architectural pattern language of cloud-based applications. In
Proceedings of the 18th Conference on Pattern Languages of Programs (PLoP '11).
ACM, New York, NY, USA, , Article 2 , 11 pages. DOI=10.1145/2578903.2579140
http://doi.acm.org/10.1145/2578903.2579140

Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{fehling, leymann, retter, chumm}@iaas.uni-stuttgart.de

Daimler AG
Epplestr. 225,70546 Stuttgart, Germany

walter.schupeck@daimler.com

An Architectural Pattern Language
of Cloud-based Applications

Christoph Fehling1, Frank Leymann1, Ralph Retter1, David Schumm1, Walter Schupeck2

Institute of Architecture of Application Systems

An Architectural Pattern Language
of Cloud-based Applications

Christoph Fehling, Frank Leymann,
Ralph Retter, David Schumm

Institute of Architecture of Application Systems
University of Stuttgart

Universitätsstr. 38, 70563 Stuttgart, Germany

{fehling, leymann, retter, schumm}
@iaas.uni-stuttgart.de

Walter Schupeck

Daimler AG
Epplestr. 225,70546 Stuttgart, Germany
walter.schupeck@daimler.com

ABSTRACT
The properties of clouds – elasticity, pay-per-use, and
standardization of the runtime infrastructure – enable cloud
providers and users alike to benefit from economies of scale,
faster provisioning times, and reduced runtime costs. However, to
achieve these benefits, application architects and developers have
to respect the characteristics of the cloud environment.
To reduce the complexity of cloud application architectures, we
propose a pattern-based approach for cloud application design and
development. We defined a pattern format to describe the
principles of cloud computing, available cloud offerings, and
cloud application architectures. Based on this format we
developed an architectural pattern language of cloud-based
applications: through interrelation of patterns for cloud offering
descriptions and cloud application architectures, developers are
guided during the identification of cloud environments and
architecture patterns applicable to their problems. We cover the
proceeding how we identified patterns in various information
sources and existing productively used applications, give an
overview of previously discovered patterns, and introduce one
new pattern. Further, we propose a framework for the
organizations of patterns and the guidance of developers during
pattern instantiation.

Categories and Subject Descriptors
C.2.4 [Computer System Organization]: Computer-
Communication Networks – distributed systems. D.2.11
[Software]: Software Architectures – patterns. D.2.2 [Software]:
Software Engineering – design tools and techniques, decision
tables.

General Terms
Management, Documentation, Performance, Design, Reliability,
Standardization, Languages.

Keywords
Cloud Computing, Architecture, Patterns, Decision Table.

1. INTRODUCTION
Cloud computing has significantly changed the way in which
IT resources can be used. Required resources can be reserved
on-demand and freed when no longer needed. They are billed on a
pay-as-you-go basis [25]. Further, it currently seems that the use
of cloud technologies leads to a standardization of software stacks
[35]: ready-to-use machine images and services are either offered
by the cloud provider or created by application developers for
reuse in multiple applications and environment configurations.
The most significant properties of clouds can be summarized as
follows [22] [39]: elasticity – the number of resources available to
an application can be flexibly adjusted to fit with the current
demand; pay-per-use – resource costs are billed based on the time
interval during which they are used; standardization – the use of
hardware virtualization and provider-supplied platform services
standardizes runtime environments of applications in the cloud.

To use the full capacity of such a powerful environment, a cloud
application developer, however, needs to incorporate certain
architectural principles and functionality in cloud-based
applications. A simple migration of an existing application
running on a single machine to the cloud only results in minor
benefits and may even reduce the applications availability, if
architectural principles are not followed properly [45]. Instead, the
elasticity and pay-per-use pricing models of clouds benefit the
application developer best, if resources are distributed and their
management is automated. This automation has to be enabled in
the application itself or by using management functionality of the
provider. Therefore, application developers need to employ the
management interfaces of the used clouds to start and stop
machines, monitor resource usage and access functionality
supplied by the provider. Even though there is significant effort
made by the industry to standardize these cloud management
interfaces [12] [40] [20] [21], the usage of provider-specific
functionality often leads to a tight coupling of the developed
application to a specific cloud provider. The industry driven
evolution of cloud interfaces and functionality also leads to cloud
offerings being hard to compare. Their common underlying
concepts are often obfuscated or remain non-public. As a
consequence, cloud application development is difficult in
requirements management and is bound to a specific cloud
provider, e.g., development for Windows Azure [30] differs from
development for Google’s AppEngine [8] or Amazon Web
Services (AWS) [44].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission. A preliminary version of this paper
was presented in a writers' workshop at the 18th Conference on Pattern
Languages of Programs (PLoP). PLoP'11, October 21-23, Portland,
Oregon, USA. Copyright 2011 is held by the author(s). ACM 978-1-
4503-1283-7

The problem to make cloud providers interchangeable cannot be
solved in general, because offered platforms comprising services
and runtime infrastructures differ in functionality and supported
programming languages, for example. However, patterns of
frequently applied practice can help to describe reoccurring
requirements of applications and guide developers during the
creation of such applications. In this scope, we contribute a
proceeding how to discover patterns in different information
sources. In addition to describing reoccurring good solutions in a
pattern format, we propose to also provide abstract descriptions of
frequent requirements in the format as well. We exemplify the
proposed pattern format in one new pattern and give an overview
of other patterns we discovered. A catalog of these existing
patterns that we identified during the collaboration with Daimler
AG, a large German car manufacturer, is given in [14] and is
available online1. We used the pattern format to describe (i)
different cloud types, (ii) the resources they offer, (iii) the way in
which they offer these resources, and finally (iv) how to build
cloud applications on top of cloud resources. We captured
interrelations between patterns in a decision recommendation
table that guides application developers during the identification
of applicable patterns. Further, a framework is proposed that
supports tasks for pattern organization, identification, and
automated instantiation.

We claim that the use of a pattern format beyond good solutions
for frequent problems eases requirements management, while the
introduced framework enforces the standardization of the
application development and application runtimes. This
standardization is required to reduce the management complexity
of a company’s application landscape [37], which is a major cost
driver for IT infrastructures [19]. Further, a pattern catalog may be
used to document architectures of developed applications in a
more standardized manner and teach cloud computing concepts to
developers [17].

The paper’s further structure is the following: Section 2 gives an
overview of the research design we employed for pattern
identification. In Section 3, we introduce the format for cloud
application architecture patterns and cover one new pattern.
Further, this section gives a summary of the catalog of patterns
that we compiled for cloud types, cloud service models, and cloud
application architectures using the described research design.
Based on this catalog, Section 4 defines a pattern-driven
application development method for cloud applications and
proposes a framework to guide developers during this process.
Section 5 concludes the paper by summarizing the aspects
covered in the paper and provides an outlook on future research in
the field.

2. RESEARCH DESIGN
In this section, we discuss the research design and the steps,
which we followed to identify the patterns and to capture them in
a pattern catalog. In this scope, the sources of information were
(i) collaboration with the Daimler AG (ii) literature survey of
exiting work on pattern languages, cloud provider documentation
and whitepapers, and (iii) self-experience originating from our
work on provisioning systems and cloud application development.
Based on this information, we performed a set of steps to identify
patterns.

1 http://www.cloudcomputingpatterns.org

2.1 Industry Collaboration
During the collaboration with the Daimler AG, we investigated
how cloud customers employ cloud resources to build distributed
applications, for example, to let drivers determine how far their
electric cars can travel [27]. Daimler AG has also used software
design patterns successfully in the past to homogenize distributed
application landscapes [9]. Additionally, to using cloud resources
as a customer, Daimler AG offers multiple applications as a
service, which experience challenges that can be addressed using
cloud computing technologies. For example, car2go [10] is a car
sharing service offered in different cities in Germany, the US, and
Canada. Users of this service use an online application to find
available cars, make reservations etc. Similar functionality is
offered to individual companies by FleetBoard [11]. Architectural
concepts and principles of these applications were abstracted to
general patterns presented in this paper.

2.2 Literature Survey
To identify a suitable pattern format, we covered existing work on
pattern languages. [24] and [26] cover a general structure of such
languages and their design. The concrete pattern format that we
employed is mainly inspired by existing pattern language
definitions, most important [18] and [15]. Existing patterns were
also reviewed for their applicability to cloud computing, because
many of the challenges faced by cloud applications are similar to
those of standalone applications, grid applications, messaging
based applications etc. Existing patterns having a different scope,
for example, describing concepts for standalone application
development have been transferred to distributed cloud
applications. Also, existing patterns were identified that can be
applied to cloud applications with minor to no adjustments.
Concepts of these patterns were expressed in the same pattern
format as the rest of the catalog to increase readability by using a
homogeneous representation of patterns [36].

To determine common principles of cloud computing, we have
reviewed further literature. In [22], the basics of cloud computing
are covered. The relevant cloud service models are described,
which are used to offer different type of IT resources to customers
on demand. Further, we reviewed industry definitions of cloud
computing [25] and its use cases [43] as well as its business
models and multi-tenancy concepts [7].

To cover architectural guidelines of cloud providers, we have
evaluated cloud offerings of Amazon [1], Windows Azure [30],
T-Systems [42], and Google [16]. Central architectural novelties
introduced by cloud computing that were observed are the
relaxation of consistency models and componentization of
applications. Relaxation of consistency is used to increase
availability and performance, but it also results in eventual
consistency of data stores [46] [41] [5]. Componentization of
applications is used to scale each application component
individually according to the workload currently experienced [44]
[45].

The central focus during the literature survey was the abstraction
of common underlying concepts to form the basis for pattern
descriptions.

2.3 Self-Experience with Cloud Applications
User-centric customization of applications and their automated
provisioning is of major importance in the area of cloud
computing. Customizability enables a cloud application provider
to increase the size of the addressable customer market, which is
important to the economic success of a cloud offering [7].

[31] describes means to model applications and their variability,
so that cloud application providers may offer applications via
self-service interfaces and automate their provisioning. Customers
may use the self-service interfaces to adjust an application to their
needs and provision it in different environments depending on the
desired service levels.

Together with another industry partner, T-Systems, the ICT
subsidiary of Deutsche Telekom, we investigated how to address
law and security regulations in cloud architectures [4]. Further, we
investigated together how to enable application variability [32].
We found that the application architecture needs to be designed
specifically with flexibility in mind and identified four different
classes of variability: data variability means that the data objects
stored by the application can be adjusted; provisioning variability
refers to the above mentioned possibility to use different
environments for the execution of the application; functional
variability allows the user to adjust the processes supported by the
application; user interface variability refers to the interface of an
application being adjustable, for example, regarding its language.
We also identified architectural principles and one pattern that
capture the essence of variability and configurability in the
application architecture [13].

2.4 Pattern Identification
To identify and describe reoccurring good solutions to problems
in cloud application development and to capture common
concepts of clouds and their offerings, the following steps have
been performed.
Step 1: Definition of the pattern format – based on the available
work on pattern languages covered, we chose the sections of our
pattern format.
Step 2: Identification of significant concepts – the significant
concepts were extracted from the set of information sources, such
as architectural guidelines of cloud products, existing cloud
applications, existing architectural patterns from other domains,
and Daimler-internal architecture guidelines. To be significant,
concepts had to fulfill one of the following characteristics:

� The concept is referred to by a term that is reoccurring in
multiple sources of information.

� The concept is important to the application development in
terms of application management, availability, scalability,
elasticity, and pay-per-use.

� The concept describes a solution to a cloud-specific problem,
for example, how to share application components between
multiple users while isolating them from another
(multi-tenancy).

� The concept distinguishes the solution from other similar
solutions. For example, the privacy guaranteed by a cloud
offering and the displayed accessibility were used to describe
clouds as being ”public” or “private”.

Step 3: Identification of irrelevant details – since the reviewed
information was often provider-specific or use-case-specific, it
contained aspects that were only relevant in that scope. Irrelevant
information was identified if it fell into one of the following
categories:

� Description of provider supplied interfaces and details of
their invocation, for example, the specification of message
formats and transfer protocols.

� Description of the functionality that an application shall
display in a concrete use-case.

� Background information on general cloud use that serves as
the introduction to a concrete use-case or architectural
guideline.

After completion of step three, steps two and three were iterated.
Discussions with different architects and developers were used to
ensure an objective classification of the identified concepts. In this
scope, we found that it can be especially helpful to incorporate
persons unfamiliar with the domain as they are the target audience
for found patterns.

Step 4: Abstract description of significant concepts – based on
the filtered information sources, abstract descriptions of the
significant concepts were created. They were used to state the
essential information left in information sources after the
significant concepts were summarized and the irrelevant ones
were omitted. For example, an abstracted description based on
information obtained from Amazon’s white papers [45] [44] was
that cloud applications using Amazon’s Cloud Offerings (Amzon
Web Service, AWS) [1] had to be componentized, so that
component could be scaled out individually.
Step 5: Pattern Creation and Classification – reoccurring
abstracted descriptions obtained from different information
sources were compiled into patterns based on the defined pattern
format. We classified patterns into four classes: cloud service
models – concepts describing the style in which different
IT resources are offered in clouds; cloud types – descriptions of
properties and behavior of different clouds; cloud offerings–
description of the functionality and behavior of different cloud
offerings used for computation, communication, and storage;
cloud application architectures – concepts how applications can
be built on top of cloud offerings.
Step 6: Iterative Improvement – during the last three steps, we
had multiple discussions with Daimler AG employees regarding
the readability and the usability of patterns in application
development projects. Further, we identified how an overview of
the patterns can be given to application developers. In the future,
iterative improvement of the found patterns will insure the
following qualities: (i) comprehensibility – developers and
architects are supervised while designing applications to analyze
how well patterns support them; (ii) completeness – exiting
applications are modeled with the patterns to identify aspects that
cannot be expressed; (iii) expressiveness – pattern
implementations are compared to the information sources to
verify that pattern implementations do not miss any relevant
detail.

3. PATTERNS OF CLOUD APPLICATIONS
Based on the described research design and the pattern format, we
have identified and described cloud types, cloud service models,
cloud offerings and their behavior, as well as cloud application
architectures that are built on top of such offerings. Through
description of the provider side (cloud types, cloud service modes
and cloud offerings) in the same form and catalog, the
identification of application architectural patterns relevant for a
developer is simplified, because patterns are set into perspective
using relations among them. A uniform way to describe
information also eases perception [36]. In the following, we cover
the used pattern format, introduce the new cloud component
gateway pattern, and give an overview of the other patterns that
we have discovered so far [14].

3.1 Pattern Format
The pattern format comprises the following sections. It has been
developed during Step 2 described in Section 2.4.
Name – patterns are identified by a unique name that specifies the
purpose of the pattern or the entity in the application architecture
that is described by the pattern.
Icon – each pattern is also identified by a graphical icon to be
used in architectural diagrams. Icons were designed to resemble
equally sized boxes that contain minimal graphical elements and
may be used in the description of more complex patterns that are
composed of multiple other patterns.
Driving Question – at the beginning of the detailed pattern
description, the problem solved by the pattern is given in form of
a short question. Since cloud application developers use the
pattern catalog to search for solutions to questions at hand, this
form eases the identification of relevant patterns.
Context – for each pattern the conditions under which the
described problem may arise are given. References to other
patterns may be used to describe the context. Especially, the
pattern descriptions of cloud types and cloud offerings can be
referred to in this section. Therefore, their description in a pattern
format significantly eased the description of the environment in
which an application architectural pattern can be applied and vice
versa, it eased describing the requirements a pattern has on the
environment.
Challenges – while the driving question allows a quick perception
of the essential problem solved by the pattern, a detailed
description of all challenges is given in this section.
Solution – this section gives instructions on how to address the
challenges using the pattern. Instructions are given in the form of
short steps to follow.
Sketch – explanation of the solution employed by the pattern is
guided by a graphical sketch. It depicts the fundamental
architectural components of the solution. This sketch may also
contain icons of other patterns that the described pattern uses in its
solution.
Result – in addition to the brief solution statement, the result
section describes in greater detail how the required steps can be
implemented and what the outcome will be. Additional challenges
that arise under these new conditions may also be covered here.
Relations to other patterns – the pattern may be used in the
context of other patterns, which can be referenced here. Also,
patterns having similar challenges or context can be pointed to
using this section. Patterns outside of the catalog can also be
referenced here on which the described pattern is based or has
been derived from.
Variations – often, a pattern can be applied in slightly different
forms. If these differences are not significant enough to justify
their description as completely separate patterns, they are covered
in this section.
Known Uses – concrete applications, use cases, cloud offerings,
and documents are referenced here from which the pattern has
been abstracted.
Annotations – for the purpose of extensibility, patterns may be
annotated with additional artifacts related to their instantiation on
concrete platforms, their behavior, monitoring of the state of
contained components etc. We propose the annotations of
runtime-specific and cloud environment-specific artifacts to

patterns in the catalog. Especially, annotations may be used to
guide developers during the configuration of the runtime
environment which serves an implemented pattern as runtime.
Because this information is cloud environment-specific, we do not
organize it in the same catalog as the pattern descriptions.
Not all types of annotation are applicable to all patterns in the
same way. For example, a pattern describing a cloud type can be
annotated with names and services levels of providers offering
that type of cloud. Patterns describing cloud offerings can be
annotated with process models, sequence diagrams or code
snippets describing how to use them in applications. Additionally,
standardized monitoring models, interface descriptions, and event
specifications can be annotated to patterns. This can be used to
ensure a standardized extraction of monitoring information given
a custom implementation of a pattern.

3.2 Cloud Component Gateway Pattern
Based on the pattern format, we described the discovered patterns.
The cloud component gateway pattern was discovered during the
analysis of the Windows Azure App Fabric [28] offered by
Microsoft and the WSO2 Enterprise Service Bus [48], a product
of WSO2. Provider web sites, development guidelines, life
product presentations and discussions with technical consultants
were used as information sources for these cloud offerings of
respective companies.
To obtain the underlying concepts, we omitted irrelevant details,
such as exemplary implementation code or specific transport
protocols. From the remaining relevant information, we abstracted
to obtain the common underlying concepts. We found that both
providers offered functionality to enable communication between
environments for which communication was restricted. The
common abstract concepts are (i) two different environments are
bridged, (ii) inaccessible functionality is mocked, and (iii) access
to the mocked functions are relayed using unrestricted
communication channels that originally were not intended for this
communication. We compared these concepts to existing patterns
from other domains and found a relation to the proxy pattern [6]
and the façade pattern [6] used in standalone applications.
The abstracted concepts and information obtained from existing
patterns was distilled into the pattern format followed by
collaborative iterations and reviews to identify challenges arising
after the application of the pattern. During these iterations, the
relations of the following cloud component gateway pattern to
other patterns have also been identified.

Cloud Component Gateway Pattern

How can an application component be made
accessible in one cloud or datacenter, when it
is hosted in a different cloud or datacenter
and the communication between these
environments is restricted?

Context: Multiple applications or their components are
distributed among different clouds or datacenters. The
synchronous or asynchronous communication between these
environments is restricted, for example, through the use of
firewalls. In most applications of this pattern, the inbound
communication from an off-premise environment to an
on-premise environment is restricted:

Figure 1: Sketch of the Cloud Component Gateway Pattern

while the internal components residing in the on-premise
environment may gain access to external components, no external
access to internal components is allowed.
Challenges: Available communication channels between different
computing environments used by a company are often restricted.
While outbound communication is possible, inbound
communication from an off-premise environment may be
restricted completely. However, application components hosted
off-premise may need to access data and functionality of internal
application components that are hosted on-premise, but direct
access to these components is impossible.
Solution: Duplicate the interface of the internal component in the
off-premise environment. This duplicate mocks the internal
component’s interface and forwards accesses to the internal
component.
Sketch: The sketch is depicted in Figure 2.
Result: Since direct access to the internal component is avoided,
its data and functions can be accessed through its duplicate.
Communication channels may be synchronous or asynchronous
and are always established and maintained by the internal
component due to the access restrictions.
In case of synchronous access, a communication channel between
the internal component and its external interface is initiated by the
internal component. Such an access is similar to that to an external
web server, which also has to send information back into
on-premise environments. In contrast to direct access to the
internal component from the outside, the synchronous
communication channel must be maintained at all times by the
internal component, because it cannot be triggered from the
off-premise environment.
Asynchronous access is enabled through the use of message
queues residing in the off-premise environment. Accesses to the
external component are put into a queue from which the internal
component may obtain them. It writes its output to another queue,
where the external component may access it. Again, access to the
internal component cannot be triggered from the outside.
Therefore, a critical design challenges is to determine how often
the internal component polls new messages.
Relations to other patterns: The cloud component gateway can
be used in hybrid clouds2 to address communication restrictions
between computing environments that are integrated. This applies
to the integration of multiple applications as well as to the

2 http://cloudcomputingpatterns.org/?page_id=106

integration of application components comprising a composite
application3. The asynchronous communication may follow the
reliable messaging pattern4 and can guarantee exactly-once
delivery5 or at-least-once delivery6.
Further, the cloud component gateway is based on concepts of the
proxy pattern [6] and the façade pattern [6], which address similar
challenges in standalone applications.
Variations: In principle, this pattern describes an integration
between different environments. Therefore, it may also be used to
integrate two off-premise environments, for example, if the
communication between these environments is restricted in a
similar fashion.
Also, the queues required to realize the asynchronous
communication between the internal component and its interface
component may be hosted by a different provider, a so called
Enterprise Application Integration (EAI) as a Service [38]
provider, or in a specially controlled network segment in the on-
premise environment, a demilitarized zone (DMZ) [23].
Known Uses: Microsoft is offering an implementation of this
pattern using a synchronous communication channel and services
as application components to be integrated. It is part of Windows
Azure AppFabric [28]. If the internal service is developed using
Microsoft development tools, the mocking component can be
generated automatically. In case other internal services need to be
made available off-premise, an additional on-premise service has
to be developed that accesses the existing service.
WSO2 offers asynchronous access to internal components as part
of the WSO2 enterprise service bus [48]. If this enterprise service
bus (ESB) is installed on-premise and in an off-premise
environment, so-called “service gateways” may be used to make
services accessible in both environments.
Annotations: Use of the Windows Azure implementation is
described in [29]. Documentation for the WSO2 service gateways
is given by [47].

3.3 List of Patterns in the Catalog
We give an overview of previously discovered patters in the form
of a list containing pattern names, their icons, and driving

3 http://cloudcomputingpatterns.org/?page_id=240
4 http://cloudcomputingpatterns.org/?page_id=195
5http://cloudcomputingpatterns.org/?page_id=199
6 http://cloudcomputingpatterns.org/?page_id=204

Cloud Component Gateway

On�premise environmentFi
re
w
al
l

Off�premise environment

Internal
Component

Mocking
Component

synchronous communication channel

write

read

read

write

questions. The list is divided into separate sections for the
different classes of patterns describing cloud service models,
cloud types, cloud offerings, and cloud application architectures.
This representation was inspired by [18]. During the cooperation
with Daimler AG, we found that it enabled an easy access to
patterns, because developers could identify patterns based on the
graphical icon and the question they were trying to solve.
We make no claim to provide a complete list of patterns for any
scenario, because cloud computing is still a very new research
area. Also note that the catalog contains existing patterns that
have been transformed into the pattern format used in the catalog.
For these patterns a reference to the original source is given after
their name.

Cloud Service Models

Infrastructure as a Service:
How can IT infrastructure be offered dynamically
over a network?

Platform as a Service: How can IT platforms be
offered dynamically over a network?

Software as a Service: How can software be
offered dynamically over a network?

Composite as a Service: How can composite
application be offered dynamically over a network?

Cloud Types

Public Cloud: How can elastic IT services be
offered concurrently to different companies?

Private Cloud: How can elastic IT services be
offered exclusively for internal use of one company?

Hybrid Cloud: How can elastic IT services be
offered to multiple companies, whilst some services
are used exclusively by one company and may even
be provided by it?

Community Cloud: How can elastic IT services be
offered concurrently to a certain set of companies?

Cloud Offerings

Elastic Infrastructure: How can IT resources by
offered dynamically and on-demand?

Low-available Compute Node: How can compute
services be offered at low costs if their availability is
relaxed?

High-available Compute Node: How can compute
services be offered if their availability is of vital
importance?

Strict Consistency: How can the availability of a
storage solution be increased while consistency is
ensured at all times?

Eventual Consistency: How can the availability
and performance of a distributed storage solution be
increased if the requirement on consistency is
loosened?

Relational Data Store: How can data elements be
stored so that relations between their attributes and
those of other elements can be expressed and
complex queries based on these attributes are
possible?

Blob Storage: How can large data elements be
stored and organized centrally and made available
over a network?

Block Storage: How can central storage be
accessed similar to local hard drives?

NoSQL Storage: How can a database support
extreme scale-out and a flexible data structure?

Message Oriented Middleware [18]: How can
applications (or application components)
communicate remotely via messages while being
loosely coupled regarding their location and
message format?

Reliable Messaging [18]: How can messages be
exchanged while guaranteeing that messages are not
lost in case of system or communication failures?

Exactly-once Delivery [18]: How can a message
oriented middleware assure that a message send
through it is delivered only once to a receiver?

At-least-once Delivery [18]: How can the
performance of a messaging system be increased if
duplicate messages are acceptable?

Cloud Application Architectures

Composite Application: How can application
functionality be distributed and composed from
various sources?

Loose Coupling: How can the dependencies
between applications and their components be
reduced?

Stateless Component: How can data loss be
avoided if a component of an application fails or is
removed from the application?

x

=!

=

Idempotent Component [18]: How can a
component receiving messages handle duplicate
messages?

Map-Reduce: How can the performance of
complex queries on large data sets be increased if
the used storage solution does not support such
queries natively?

Elastic Component: How can the number of
application components, that are scaled-out, be
adjusted automatically based on system utilization?

Elastic Load Balancer: How can the number of
application components, that are scaled-out, be
adjusted automatically based on the number of
requests?

Elastic Queue: How can the number of application
components, that are scaled-out, be adjusted
automatically based on the number of asynchronous
requests in an optimized fashion?

Watchdog: How can a high available application be
realized using unreliable compute nodes?

Update Transition: How can a componentized
application be updated seamlessly, when new
versions of application components or the used
middleware, operating system etc. become
available?

Single Instance Component [33]: How can an
application component be shared between multiple
tenants, if individual configuration is not required?

Single Configurable Instance Component [33]:
How can an application component be shared
between multiple tenants if individual configuration
is required?

Multiple Instance Component [33]: How can an
application component be provided to multiple
tenants who configure it, if sharing is unfeasible?

4. PATTERN-BASED APPLICATION
DEVELOPMENT
In the following, we introduce a method to obtain a set of
applicable patterns from given requirements and propose the use
of annotations on these patterns to assist their instantiation.

4.1 Populating a Decision Recommendation
Table
The basic assumption for the proceeding we propose is the
availability of a decision recommendation table containing pattern
interrelations of a given catalog. Here, we use the catalog of
patterns described in Section 3 as basis. The resulting decision
recommendation table is depicted in Table 1. It contains pattern
interrelations of three different types.
1. The strong cohesion relation (+) states that one pattern is

likely to be combined with the related pattern. For example,
in a public cloud, where individual resources are likely to
display a low availability, patterns to distribute application

functionality among multiple resources and monitor these
resources have a strong cohesion to the public cloud pattern7.

2. The exclusion relation (-) states that two patterns cannot be
combined. For example, the use of high available compute
nodes renders the use of patterns handling component failure
on the application level unnecessary. Therefore, such
patterns have an exclusion relation to the high availability
compute node pattern8.

3. The undetermined relation (o) states that neither “strong
cohesion” nor “exclusion” exists between two patterns. For
example, patterns addressing the availability of applications
are likely to be unrelated to patterns addressing security,
because these requirements are mainly orthogonal.

To populate the decision recommendation table, the relations
between all patterns were initially set to being undetermined.
Then, relations were obtained from the pattern descriptions
themselves. For example, if a pattern uses another pattern to
describe its context, it is strongly related to it. This is the case for
the hybrid cloud pattern setting the context for the cloud
component gateway pattern. In the same fashion, a pattern may
explicitly state that it cannot be combined with another pattern.
Further exclusion relations were determined based on the
experience of the authors. Many of these relations were straight
forward, because the problem solved by one pattern does not
occur in the context of another pattern. For example, the cloud
component gateway pattern addresses challenges arising during
the integration of different environments. It therefore has an
exclusion relation to all patterns describing homogeneous cloud
types (public, private, community). In these cloud types, the cloud
component gateway pattern is not useful. Additionally, the
information sources described in Section 2 were analyzed to
obtain pattern relations. If the set of information sources from
which a pattern was obtained displayed a large overlap with the
set of information sources of another patterns, it was investigated
if these patterns are strongly related.

After the decision recommendation table has been populated,
relations between patterns should be bi-directional. Therefore, the
table should be symmetric regarding its diagonal. If this is not the
case, references between patterns may be missing in the pattern
descriptions. As a side effect, the decision recommendation table
can, thus, be used during the iterative improvement of pattern
descriptions performed in Step 6 described in Section 2.4.

4.2 Identification of Applicable Patterns
The inclusion of patterns describing cloud types, cloud service
models, and cloud offerings guides the developer during the
identification of applicable cloud application architecture patterns
as follows: the developer can start by selecting patterns that
describe the environment in which the developed application will
be deployed. Based on these selections, cloud application
architecture patterns are then recommended to him or her for
implementation. The developer selects patterns in the decision
recommendation table that shall be used and omits those that
cannot be used. Conflicting selections can then be detected. The
developer has to resolve these conflicts manually by deciding
which patterns are more important to him or her.

7 http://cloudcomputingpatterns.org/?page_id=90
8 http://cloudcomputingpatterns.org/?page_id=156

1.1

1.2

Table 1: Decision Recommendation Table

As a result of a selection, four different sets of patterns can be
discriminated: (i) patterns chosen explicitly by the developer; (ii)
patterns that are likely to be applicable as well, thus, they are
interrelated to the set of chosen patterns via the “strong cohesion”;
(iii) patterns of which the applicability is undetermined; (iv)
patterns that cannot be used. After each selection, these sets can
be visualized, for example, through highlighting entries in the
decision table with different colors. The list of applicable patterns
is then refined iteratively by the developer to obtain the effective
set of patterns applicable in the concrete use case.

For example, a developer starts by selecting the hybrid cloud
pattern, because he or she knows that two different types of
clouds shall be used as an integrated runtime environment.
Further, the developer selects NoSQL9 to be used as storage.
Based on this selection of cloud type and cloud offering patterns,
cloud architectural patterns are recommended for implementation.
The cloud component gateway pattern is recommended due to a
strong cohesion to the hybrid cloud pattern and the map-reduce
pattern is recommended, because it has a strong cohesion to the

9 http://cloudcomputingpatterns.org/?page_id=186

In
fr

as
tru

ct
ur

e
as

 a
 S

er
vi

ce
 P

la
tfo

rm
 a

s
a

Se
rv

ic
e

 S
of

tw
ar

e
as

 a
 S

er
vi

ce
 C

om
po

si
te

 a
s

a
Se

rv
ic

e
 P

ub
lic

 C
lo

ud
 P

riv
at

e
C

lo
ud

 H
yb

rid
 C

lo
ud

 C
om

m
un

ity
 C

lo
ud

 E
la

st
ic

 In
fr

as
tru

ct
ur

e
 L

ow
-a

va
ila

bl
e

C
om

pu
te

 N
od

e
 H

ig
h-

av
ai

la
bl

e
C

om
pu

te
 N

od
e

 S
tri

ct
 C

on
si

st
en

cy
 E

ve
nt

ua
l C

on
si

st
en

cy
 R

el
at

io
na

l D
at

a
St

or
e

 B
lo

b
St

or
ag

e
 B

lo
ck

 S
to

ra
ge

 N
oS

Q
L

St
or

ag
e

 M
es

sa
ge

 O
rie

nt
ed

 M
id

dl
ew

ar
e

 R
el

ia
bl

e
M

es
sa

gi
ng

 E
xa

ct
ly

-o
nc

e
D

el
iv

er
y

 A
t-l

ea
st

-o
nc

e
D

el
iv

er
y

 C
om

po
si

te
 A

pp
lic

at
io

n
 L

oo
se

 C
ou

pl
in

g
 S

ta
te

le
ss

 C
om

po
ne

nt
 Id

em
po

te
nt

 C
om

po
ne

nt
 M

ap
-R

ed
uc

e
 E

la
st

ic
 C

om
po

ne
nt

 E
la

st
ic

 L
oa

d
B

al
an

ce
r

 E
la

st
ic

 Q
ue

ue
 W

at
ch

do
g

 U
pd

at
e

Tr
an

si
tio

n
 S

in
gl

e
In

st
an

ce
 C

om
po

ne
nt

 S
in

gl
e

C
on

fig
ur

ab
le

 In
st

an
ce

 C
om

po
ne

nt
 M

ul
tip

le
 In

st
an

ce
 C

om
po

ne
nt

C
lo

ud
 C

om
po

ne
nt

 G
at

ew
ay

Infrastructure as a Service + + + + + + + +
Platform as a Service + + + + - - + + + + + + + + + + + + + + + + + +
Software as a Service + + + + - - - - - - - - - - - - - - - - - - - + + + +

Composite as a Service +
Public Cloud + + + + - - - + + + + + + + + + + -

Private Cloud + + + + - - - + + + + + + + + -
Hybrid Cloud + + + + - - - + + + + + + + + + + + + + + +

Community Cloud + + + + - - - + + + + + + + + + + + + -
Elastic Infrastructure + + + + + + + + + +

Low-available Compute Node + - - + + + + + - + + + +
High-available Compute Node + - - + + + + - + -

Strict Consistency + + + - + + + - + + + +
Eventual Consistency + + + + + + - - + + + + - - + + + +
Relational Data Store + - + + - + + + + + +

Blob Storage + - + + + + + + + + + + +
Block Storage + - + + + + + + + + + + +

NoSQL Storage + - + - + + + + + +
Message Oriented Middleware + - + + + + + + + + + + + + +

Reliable Messaging + - + - + + - - - - + +
Exactly-once Delivery + - + + - + + - + + - - + +
At-least-once Delivery + - + + + - - + + + + - - + +
Composite Application - +

Loose Coupling - + + + + + + + + + + + + + + + + + +
Stateless Component - + + + + + + + + + + + + + + +

Idempotent Component - + + + - + + + + + + +
Map-Reduce + - + + + + + + +

Elastic Component + - + + + + + + + - - - + + + + +
Elastic Load Balancer + - + + + + + + + - - - + + + + + +

Elastic Queue + - + + + + + + + + + + + + + + + + + +
Watchdog + - + + + - + + + + + + +

Update Transition + + + + + + + + + + + + + + + +
Single Instance Component + + + + + + + + + +

Single Configurable Instance Component + + + + + + + + + +
Multiple Instance Component + + + + + + + + + +

Cloud Component Gateway - - + - + + + + + + + +

C
lo

ud
 O

ff
er

in
gs

C
lo

ud
 A

pp
lic

at
io

n
A

rc
hi

te
ct

ur
es

Cloud Application ArchitecturesCloud Offerings
Cloud Service

Models
Cloud Types

C
lo

ud
 S

er
vi

ce
M

od
el

s
C

lo
ud

 T
yp

es
 + : strong cohesion

 - : exclusion

no entry : undetermined

Figure 2: Example of Pattern Annotations

NoSQL pattern. If the developer also selects recommended
patterns, the strong cohesion relations of those patterns are again
evaluated to recommend further patterns. Iterative execution of
these steps leads to a user-driven refinement of the set of patterns
to be used in a concrete solution.

4.3 Instantiation of Applicable Patterns
After the application developer has identified the set of patterns
applicable to his or her problem, annotations are used to assist the
developer also during the setup of the runtime environment and
the creation of the cloud application. Since the structure of
annotations is arbitrary, each pattern can have individual artifacts
associated with it that assist the developer during its instantiation.
We suggest the following artifacts and their use during the
instantiation of patterns: cloud types and cloud service models –
patterns of this class can be associated with information on
concrete cloud providers, their service levels, and pricing
information. Cloud offerings – this class of patterns can be
annotated with a list of concrete offerings of cloud providers.
Beyond human-readable information on how to use these concrete
offerings, we further suggest the annotation of application models
and variability models [32] containing machine-readable
information that can be used to provision the offering. These
models also describe how additionally annotated code snippets
can be adjusted for the provisioned offering. They can then be
used in the application created by the developer. This
customization of annotated models is enabled by
interdependencies. The code snippets associated with an
architectural pattern may for example have dependencies on the
address of a used cloud offering and security keys required to
access it. This information is only available after the cloud
offering has been provisioned for the application developer, who
is then provided with an individually adjusted version of the code
snippets that he or she can use directly to access the offering.
We will now give an example for concrete annotations of
application models and variability models. Also, their use in a
proposed framework to organize, search and instantiate patterns
will be covered. The NoSQL pattern describes a cloud offering.
Therefore, cloud providers are annotated to it, along with multiple
application models and variability models used for the
provisioning of the offering at a provider.

Figure 3: Cloud Pattern Framework

An example for one of such annotations is depicted in Figure 3. It
contains artifacts for the use of Apache CouchDB [3], a NoSQL
database software, on an Amazon EC2 [1] instance, a virtual
machine offered in a public cloud. The application model
describes how the application components are deployed on other
application components. The code snippets are deployed to
Amazon S3 [1] from where they can be downloaded by the
developer. The CouchDB installation is uploaded to an EC2
virtual machine. Amazon S3 and EC2 are modeled as being
provider-supplied meaning that during the provisioning provider-
supplied management interfaces will be accessed. In the
variability model, variability points and their dependencies are
modeled that need to be bound during this provisioning. Each
variability point is associated with a certain phase. During
customization, the user selects from a list of available
implementation languages specified in the language variability
point of code snippet. The variability point for the database
address used in the code must be bound prior to its provisioning.
This means that the code snippet must be adjusted prior to
uploading it to Amazon S3 where it can be accessed by the
application developer. The database address in the code snippet
depends on the address of the CouchDB. The corresponding
variability point of the CouchDB component depends on the host
name of the EC2 virtual machine that becomes available during its
runtime. Based on these dependencies among variability points,
the user is guided through the customization and the order in
which components must be provisioned can be determined [32].

4.4 Integration of the Pattern Catalog and
Decision Table into a Provisioning System
We envision the necessary tasks for pattern discovery and
instantiation to be supported by a framework depicted in Figure 4.
Components that are not implemented yet have dashed borders in
the Figure. For these components, we have presented the concepts
on which they will rely. The pattern format and the annotation of
arbitrary information to patterns will form the basis for the pattern
catalog component and the runtime annotations component of the
framework. The decision recommendation table will be used in
the decision tool component.
We further propose the following use of the framework. The
application developer first accesses the decision tool, which is
currently in the form of the decision recommendation table (see
Table 1). After the required patterns have been identified, the

Application�Model

Amazon�S3:�
provider�supplied

Pattern
NoSQL

Code�Snippets

Amazon�EC2:�
provider�supplied

CouchDB

Variability�Model

Code�Snippets

CouchDB

language�:�
User�defined
db�address:�
provisioning

address:�
provisioning

Amazon�EC2
host�name:�
runtime

annotates

de
pe

nd
s

de
pe

nd
s

Pattern�Framework

Pattern
Catalog

Runtime�
Annotations

annotates

Decision
Tool

searches

Provisioning�
Tool

provides
list

uses

Provisioning�Flow

uses initiates

Component
Interface

Component
Interface

Component
Interfacecalls

Cloud
ProviderCloud

ProviderCloud
Provider

provisions

?

!

provisioning tool is accessed to instantiate the required runtime
and to provide code snippets as a basis for the custom
implementation. We will use the existing provisioning tool Cafe
[34], which provides the provisioning tool, the provisioning flow
and component interfaces to the framework. The provisioning tool
guides the developer during the customization and provisioning of
pattern implementations and their runtime infrastructures. It
accesses the application models and variability models annotated
to used patterns. Variability points that require user decisions are
obtained from the user. When all of these variability points have
been bound, the customization tool passes the models to the
provisioning flow. This flow analyses the other variability point
dependencies and provisions components in the respective order.
It does so by accessing a set of component interfaces, each
encapsulating the functionality required to setup components.
In the above example, the framework would therefore contain at
least three of these component interfaces for the instantiation of
Amazon EC2 machines, the deployment of Apache CouchDB on
top of a running machine, and the upload of code snippets to
Amazon S3. After the provisioning flow has been executed, it
returns an entry point in the form of an URL to the provisioning
tool. The application developer uses this URL to access the code
snippets that were customized for his or her runtime environment.

5. SUMMARY AND OUTLOOK
As cloud computing is a new field of research and inventions are
mainly industry driven, discussions we had with other researchers
and industry partners alike were often hindered by unclear
definitions of used terms and unclear cloud-specific principles and
concepts. We experienced that the use of a pattern format beyond
the description of good solutions eased these discussions and
helped developers unfamiliar with cloud computing to gain a
quicker access to the field. In this scope, a pattern-based
description also unified architectural guidelines of different
providers laying the basis for a structured teaching of principles
and concepts of cloud computing.
We have presented an approach how to describe the required
architectural structures of cloud applications as patterns. The same
pattern format has also been used to describe cloud types, cloud
service models, and cloud offerings to enable a guided
identification of patterns applicable in a concrete cloud
environment. Further, we have shown how the patterns can be
annotated with provider-specific provisioning information and
code snippets. The proposed approach respects the cloud-specific
dynamicity and flexibility during the development process of
cloud applications by bringing architectural patterns and their
instances closer together. The degree to which this impacts the
development of applications will be investigated further during
the ongoing collaboration with Daimler AG.
Identification and description of cloud architectural patterns
related to legal regulations, security, auditing, trust, and billing are
ongoing. With a growing catalog, the usability of the introduced
decision recommendation table will be reduced for humans.
Therefore, our future work is also to develop additional methods
and tools that use the information contained in the proposed
decision recommendation table to organize patterns, make them
searchable in a comfortable form, and recommend them to
application developers. These recommendations could be based
on other extensions of the decision recommendation table. Each
entry could be associated with information why patterns should be
used together and how this should be realized. This would
effectively transform the decision recommendation table into an
n-dimensional matrix, even less usable by humans.

Another improvement could be the annotation of patterns with
business goals, for example, flexibility or auditability, and
properties enabled by patterns, for example, high availability or
privacy. Based on these tags, users of the catalog may be
presented with questionnaires to inquire their goals and desired
properties and then recommend patterns to them. This may prove
to be a more comfortable entry point to patterns contained in the
catalog.
Finally, the implicit composition of pattern icons, already used in
sketches of patterns using others patterns, could be made explicit
in a pattern composition language. Pattern could be combined
with an architecture definition language to extend architecture
modeling tools, such as ACME [1].

6. ACKNOWLEDGMENTS
Many thanks go to Ernst Oberortner for his insightful comments
and constructive feedback during the review of this paper.
Christoph Fehling, Frank Leymann, Ralph Retter and David
Schumm would like to thank the Daimler AG for the
collaboration.
Additionally, David Schumm would like to thank the German
Research Foundation (DFG) for financial support within the
Cluster of Excellence in Simulation Technology (EXC 310/1) at
the University of Stuttgart.

7. REFERENCES
[1] ABLE group: The ACME Project, 2011.

http://www.cs.cmu.edu/~acme/
[2] Amazon: Amazon Web Services, 2011.

http://aws.amazon.com/
[3] Apache Software Foundation: Apache CouchDB, 2011.

http://couchdb.apache.org/
[4] Brandic I., Dustdar S., Anstett T., Leymann F., Schumm D.:

Compliant Cloud Computing (C3): Architecture and
Language Support for User-Driven Compliance Management
in Clouds. IEEE International Conference on Cloud
Computing, 2010.

[5] Brewer E.A.: Towards Robust Distributed Systems. PODC
Keynote, 2000.
http://www.eecs.berkeley.edu/~brewer/cs262b-2004/PODC-
keynote.pdf

[6] Buschmann F., Henney K., Schmidt D.C.: Pattern-oriented
Software Architecture: On Patterns and Pattern Languages.
Wiley, 2007.

[7] Chong F., Carraro G.: Architecture Strategies for Catching
the Long Tail. MSDN Library, Microsoft Corporation, 2006.
http://www.cistratech.com/whitepapers/MS_longtailsaas.pdf

[8] Ciurana E.: Developing with Google AppEngine. Springer,
2009.

[9] DaimlerChrysler TSS GmbH: MDA Success Story ePEP
successful with Model Driven Architecture, 2005.
http://www.omg.org/mda/mda_files/
SuccesStory_DC_TSS_MDO_English.pdf

[10] Daimler AG, car2go, 2010. http://www.car2go.com
[11] Daimler FleetBoard GmbH, FleedBoard, 2011.

http://www.fleetboard.com
[12] Distributed Management Taskforce (DMTF): Interoperable

Clouds Whitepaper, 2011.

[13] Fehling C., Konrad R., Leymann F., Mietzner R., Pauly M.,
Schumm D.: Flexible Process-based Applications in Hybrid
Clouds. Proceedings of the 2011 IEEE International
Conference on Cloud Computing, 2011.

[14] Fehling C., Mietzner R., Leymann F.: A Collection of
Patterns for Cloud Types, Cloud Service Models, and Cloud-
based Application Architectures. Technical Report, 2011.
http://www.iaas.uni-
stuttgart.de/institut/mitarbeiter/fehling/TR-2011-05-
Patterns_for_Cloud_Computing.pdf

[15] Gamma E., Helm R., Johnson R., Vlissides J.: Design
Patterns: Elements of Reusable Object-oriented Software.
Addison-Wesley, 1995.

[16] Google: AppEngine, 2011.
http://code.google.com/appengine/

[17] Hanmer R. S., Kocan K. F.: Documenting Architectures with
Patterns. Bell Labs Technical Journal, Volume 9, Number 1,
2004.

[18] Hohpe G., Wolf B.: Enterprise Integration Patterns:
Designing, Building, and Deploying. Addison-Wesley,
2004.

[19] IBM, Corporate Strategy Analysis of IDC data, 2007.
[20] IEEE: Cloud Profiles Working Group (CPWG), 2011.

http://standards.ieee.org/develop/wg/CPWG-2301_WG.html
[21] IEEE: Intercloud Working Group (ICWG), 2011.

http://standards.ieee.org/develop/wg/ICWG-2302_WG.html
[22] Leymann F.: Cloud Computing: The Next Revolution in IT.

Proceedings of the 52th Photogrammetric Week, 2009.
http://www.ifp.uni-
stuttgart.de/publications/phowo09/010Leymann.pdf

[23] Malik S.: Network Security Principles and Practices. Cisco
Press, 2003.

[24] Martin R.C.: Design Principles and Design Patterns.
http://www.objectmentor.com/resources/articles/Principles_a
nd_Patterns.pdf

[25] Mell P., Grance T.: The NIST Definition of Cloud
Computing. NIST, 2009.

[26] Meszaros G., Doble J.: A Pattern Language for Pattern
Writing.. Pattern Languages of Program Design, 1998.
http://hillside.net/index.php/a-pattern-language-for-pattern-
writing

[27] Microsoft Case Studies: Daimler: Auto Maker Uses Scalable
Cloud Solution to Deliver Internet Services for Electric Car,
2011.
http://www.microsoft.com/casestudies/Case_Study_Detail.as
px?CaseStudyID=4000008606

[28] Microsoft: Windows Azure AppFabric Overview, 2011.
http://www.microsoft.com/windowsazure/appfabric/

[29] Microsoft: Windows Azure AppFabric Service Bus Tutorial,
2011. http://msdn.microsoft.com/en-
us/library/ee706736.aspx

[30] Microsoft: Windows Azure, 2011.
http://www.microsoft.com/windowsazure/

[31] Mietzner R., Leymann F.: A Self-service Portal for Service-
based Applications. Service-Oriented Computing and
Applications (SOCA), 2010.

[32] Mietzner R., Unger T., Leymann F.: Cafe: A Generic
Configurable Customizable Composite Cloud Application
Framework. Proceedings of the Confederated International
Conferences, CoopIS, DOA, IS, and ODBASE, 2009.

[33] Mietzner R., Unger T., Titze R., Leymann F.: Combining
different multi-tenancy patterns in service-oriented
applications. Proceedings of the 13th IEEE International
Conference on Enterprise Distributed Object Computing,
2009.

[34] Mietzner R.: Cafe Project Homepage, 2011.
http://www.cloudy-apps.com/

[35] Naghshineh M., Ratnaparkhi R., Dillenberger D., Doran J.
R., Dorai C., Anderson L., Pacifici G., Snowdon J. L.,
Azagury A., VanderWiele M., Wolfsthal Y.: IBM Research
Division cloud computing initiative. IBM Journal of
Research and Development, 2009.

[36] Petre M.: Why Looking isn’t Always Seeing.
Communications of the ACM, 1995.

[37] Riempp G., Gieffers-Ankel S.: Application portfolio
management: a decision-oriented view of enterprise
architecture. Information Systems and e-Business
Management, 2007.

[38] Scheibler T., Mietzner R., Leymann F.: EAI as a Service -
Combining the Power of Executable EAI Patterns and SaaS.
12th International IEEE Enterprise Distributed Object
Computing Conference, 2008.

[39] Staten J., Yates S., Gillett F. E., Saleh W., Dines R. A.: Is
Cloud Computing Ready For The Enterprise? Forrester
Research, 2008.

[40] Storage Networking Industry Association (SNIA): Cloud
Data Management Interface (CDMI) Whitepaper, 2010.
http://www.snia.org/tech_activities/standards/curr_standards/
cdmi/CDMI_SNIA_Architecture_v1.0.pdf

[41] Tanenbaum A.S., Van Steen M.: Distributed Systems:
Principles and Paradigms. Prentice-Hall, 2003.

[42] T-Systems: Dynamic Services for Infrastructure, 2011.
http://www.telekom.com/dtag/cms/content/dt/en/596392?arc
hivArticleID=953552

[43] Use Case Discussion Group: Cloud Computing Use Cases
White Paper, Version 2.0, 2009.
http://www.opencloudmanifesto.org/Cloud_Computing_Use
_Cases_Whitepaper-2_0.pdf

[44] Varia J.: Cloud Architectures. Technical Report, Amazon,
2010. http://jineshvaria.s3.amazonaws.com/public/
cloudarchitectures-varia.pdf

[45] Varia J.: Architecting for the Cloud: Best Practices.
Technical Report, Amazon, 2010.
http://media.amazonwebservices.com/
AWS_Cloud_Best_Practices.pdf

[46] Vogels W.: Eventually Consistent. Communications of the
ACM, 2009. http://queue.acm.org/detail.cfm?id=1466448

[47] WSO2: WSO2 Enterprise Service Bus Documentation, 2011.
http://wso2.org/project/esb/java/3.0.1/docs/

[48] WSO2: WSO2 Enterprise Service Bus, 2011.
http://wso2.com/products/enterprise-service-bus/

All links were last followed on 15th January 2012.

