
An Approach to Combine Data-Related and
Control-Flow-Related Compliance Rules

Daniel Schleicher∗, Stefan Grohe, Frank Leymann∗, Patrick Schneider§, David Schumm∗, Tamara Wolf

∗Institute of Architecture of Application Systems
University of Stuttgart

Stuttgart, Germany
lastname@iaas.uni-stuttgart.de

§Fraunhofer Institute for Industrial Engineering IAO, Germany
Patrick.Schneider@iao.fraunhofer.de

Abstract—Compliance of IT-enabled business processes is a
research area gaining more and more attraction for enterprises
today. Many enterprises are on the gap of installing workflow
systems within their premises. During this process they need to
make sure that several regulations, coming from governments
or enterprise-internal institutions, are obeyed. We argue that
the compliance regulations, enterprises are faced with today,
can be built using a number of atomic compliance rules. Until
now only control-flow-related atomic compliance rules have
been identified in literature. In this paper we extend this
list with several data-related atomic compliance rules. We
further show how control-flow-related compliance rules and
data-related compliance rules can be combined. A fundamental
finding that we made in our work with industrial use case
partners from EU projects, as well as projects with customers,
is that for the specification of control-flow-related compliance
rules data issues must also be considered.

The main contribution of this paper is a collection of
combined compliance rules implementing complex compliance
requirements which consist of atomic control-flow related and
data-related compliance rules.

Keywords-Compliance, business process, constraint, pattern

I. INTRODUCTION

The divide and conquer approach is one of the main
techniques for humans to create solutions for problems that
are too big to be solved as a whole. This is also true for
the act of designing business processes. Human business
process designers should be able to fully concentrate on the
main problem which they want to solve with a new business
process.

Today compliance of business processes is becoming more
and more important for enterprises. Business processes are
subject to be compliant with requirements coming from
various sources, like laws or enterprise-internal regulations.
Thus, it is crucial to separate the act of designing a business
process and implementing a business goal from the act of
designing a compliant business process. Tools should support
human business process designers when they are making a

modification to a business process. When this modification
would violate a certain compliance rule the tool should notify
the human business process developer.

In the following we use the term compliance rule to
describe formally defined compliance requirements. Thus,
the term compliance requirement is used to describe ab-
stract requirements coming from laws or enterprise-internal
regulations.

In this paper we focus on the two main kinds of compliance
requirements for business processes, data-related require-
ments and control-flow requirements. There are also some
compliance rules which need the concept of a role to be
defined properly. The role that is able to execute a certain
activity can be specified within a business process model. It
thus is part of a data-related requirement. However, there are
few works [1], [2] in literature which present a collection
of different atomic compliance rules which are of interest
in business process design. Thus, the paper has two main
contributions.

The first contribution is the extension of the collection of
compliance requirements proposed by Turetken et al. [1]
which are related to business process management. In
our work in the MASTER EU project1 we encountered
several compliance rules extending the list presented in [1].
During our investigations we experienced that data-related
compliance requirements must be considered in order to
create completely specified compliance rules. Therefore, we
added the new dimension of data-related compliance rules
to this list.

The second contribution is the combination of atomic
control-flow related compliance rules and data-flow related
compliance rules. Here, we extend patterns proposed by
Turetken et al. and add the new dimension of data-related
compliance rules. These patterns can be used to incorpo-

1http://www.master-fp7.eu

rate complex compliance rules in business processes. We
introduce the concept of a rule tree which supports the com-
bination of different kinds of atomic compliance rules. These
atomic compliance rules can be specified using arbitrary
languages. In order to verify such combined compliance
rules we developed an algorithm. The prototype uses plugins
to verify different parts of a combined compliance rule. Each
plugin can handle a certain formal language that may be
used to specify a combined compliance rule.

Our findings are mainly based on two EU funded IT
projects dealing with compliance of business processes,
COMPAS2 and MASTER. In COMPAS we designed an
architectural framework to support business process compli-
ance. In MASTER we designed a solution to monitor, audit,
and enforce the compliant execution of business processes.
In MASTER two real-world case studies have been used
during the project to evaluate the results of the research. The
first case study is placed in the health care sector. Here,
an Italian hospital provided information on how a drug
dispensation should be performed. There are strict compliance
requirements regarding the administration of a drug or a
drug trial study [3]. The second use case partner was a
Spanish insurance company. Here, a process is described that
starts when an agency of that insurance company requests
information regarding a client of that agency [4], [5]. We
identified compliance requirements in interviews with the
partners and analysed the business processes of the use case
partners. The findings have been published in [6].

In our investigations we encountered many kinds of
compliance requirements like non-functional compliance
requirements or security related compliance requirements.
However, in this paper we focus on the most central
compliance requirements that mainly deal with the structure
of the business process model. Due to our research direction,
the collection of atomic compliance rules and combined
compliance rules we identified is limited by the kinds of
business processes we worked with. It is also limited by the
kinds of problems we encountered during our research and
our work with industry partners. In this paper we focus on
design time verification of control-flow and data-flow related
compliance problems in the business process domain. Thus,
we do not cover the following compliance problems. We do
not answer the questions how secure or robust, for example,
an implementation of a business process may be. We do not
deal with quality of services problems, like response times
of a business process. We do not consider the resources a
business process may use. Resources can for example be
humans or machines taking part in a business process.

With these limitations, we observed that there are two
kinds of compliance rules for business processes: control-
flow compliance rules and data-flow compliance rules.

In this paper we use the business process modelling and

2http://www.compas-ict.eu

notation language (BPMN) in the version 2.0 [7] to illustrate
the used processes. BPMN is a well tooled and widely
adopted notation in the field of business process management.
In BPMN data-objects are used to store the data used within
a business process. Data associations connect these data-
objects to the inputs and outputs of the activities which use
this data.

The paper is structured as follows. Section II shows a
running example which is used throughout the paper to
illustrate the different aspects of the approach. Section III
provides an introduction to the compliance patterns approach
presented by Turetken et al. It also shows related work.
Control-flow related atomic compliance rules are presented in
Section IV. Data-flow related compliance rules are presented
in Section V. Section VI shows an example of a combination
of data-flow compliance rules and control-flow compliance
rules. A prototype implementing the concepts to combine
data-flow and control-flow compliance rules is presented in
Section VII. The paper concludes with Section VIII.

II. RUNNING EXAMPLE

Figure 1 shows a business process written in BPMN. This
business process implements the steps that have to be taken
to process a credit request in a bank. After the credit request
has been received by the bank a manager has to approve it
when the requested amount is above 10.000$. In either of
these cases an account manager has to approve the credit
request afterwards. The last two steps of the credit approval
business process are executed in parallel. The message board
of directors is informed about the new credit and a message
is sent to the customer detailing if the credit request has
been approved or not. For reasons of simplicity we only
show two data-objects in Figure 1. The business process
model shows two compliance domains (dashed ellipses). A
compliance domain is a concept we developed to annotate
business process models with compliance rules. Details about
this concept are presented next.

Compliance domains [8] are used to annotate business
processes with data-related compliance rules. They also
represent physical runtime infrastructures where different
parts of a business process are executed on. A business
process can be split apart using compliance domains and run
on different physical infrastructures like cloud environments
or a data-centre of an enterprise [9]. All activities contained
within a compliance domain can only use services which run
within the physical runtime infrastructure of the compliance
domain where the invoking activity resides.

The main purpose of compliance domains is to restrict the
data-flow within a business process model. With this means,
it is possible to forbid the use of certain data for certain
activities within a business process model, for instance.

Receive
Credit

Request

Manager
Approval

Account
Manager
Approval

Message to
Board of
Directors

Message to
Customer

true

Credit Request
> 10.000$?

Accounting
Clerk

false

Figure 1. Example BPMN process

III. RESEARCH FOUNDATIONS

In this section we introduce the notion of atomic com-
pliance rules and present a number of them mentioned in
literature. We further show related work in the field of
compliance rules for business processes with focus on data-
flow.

The work presented in [10] shows several data-related
compliance problems for business processes. We used this
paper as a source and picked the data-related compliance
problems which can be automatically verified.

There are few works dealing with data-related compliance
processes in the area of business process design. In [11]
the authors extend BPMN-Q, a query language that can
be used to query for business process models which fulfil a
certain set of compliance rules. The extension to this language
makes it data-aware. With this extension it is now possible to
incorporate variable states in the queries. The argumentation
in the paper is that, depending on the state of a variable, the
process execution may continue in another direction. Thus,
the extension presented in this paper deals with the control-
flow of a business process in the first place. The data-related
compliance rules we present in this paper can be seen as a
separate kind of compliance rule. They are not influencing
the control-flow of a business process in the first place.

Publication [12] deals with control objectives to be
applied to business processes. Here, also data-related control
objectives are mentioned. However, no formal representation
of such a data-related control objective is given.

In [13] Knuplesch et al. show how data-aware compliance
rules can be modelled using a simple notation. They also
integrate their approach on defining data-aware compliance
rules with LTL formulas. We basically use a similar approach
to define data-aware compliance rules. In Section VI we
show how they can be integrated in an LTL formula where

combinations of atomic control-flow-related compliance rules
and atomic data-related compliance rules are used. However,
the focus of the approach presented in [13] lies on the
automatic verification of compliance rules. The paper presents
an approach on how states of variables of a business process
model can be used in the automatic verification of the
business process model. The states of variables are directly
related to the control-flow of a business process because at
a control-flow fork, variables are used to decide in which
direction the business process execution would proceed.

In this paper we go further and present a number of data-
related compliance rules which do not impact the control-flow
of a business process in the first place.

The interrelation of reusable process artifacts implementing
compliance requirements on one side, and the compliance
patterns approach by Turetken et al. has been explored in [14].

Related work in the direction of rule-patterns to be used
to develop compliant business processes has been done by
Turetken et al. [1]. Here, the authors describe how control-
flow related compliance rules can be expressed as patterns
to be used by non-technical business process developers.
Further, these patterns are used in a generic compliance
conceptual model, also presented in the paper. We add the
missing dimension of data-related compliance rules to this
approach.

Besides [1] there is another paper presenting a taxonomy
of compliance rules in the area of business process design [2].
In this work, atomic control-flow related compliance rules
are presented. We use these two works as the foundation.

IV. ATOMIC CONTROL-FLOW COMPLIANCE RULES
DERIVED FROM LITERATURE

In the following we show a number of atomic control-
flow-related compliance rules that we found in literature.
We use them in the remainder of this paper. We use logical

expressions written in Linear Temporal Logic (LTL) in the
head lines of the properties to indicate how they can be
expressed using a formal language. In short, LTL is used to
define formulae on future paths. It extends first order logic
by introducing temporal operators. There is a number of
temporal operators defined in LTL. In this paper we only use
the G operator. G means always, globally. If the G operator
is placed in front of a formula A this means A should always
be true. The variables in these short logical expressions are
process constructs like activities or process fragments. In
Table I we show for every atomic compliance rule if it already
has been mentioned in literature. We mention this also in
the description of every atomic compliance rule.

The atomic compliance rules we present in the following
are formulated in a positive way. The negation of every
following compliance rule is also an atomic compliance rule.

A. Presence of Activities: G(A)

The term presence of activities denotes that a compliance
rule is valid when a certain set of activities is present. In
other words, activities implementing certain functionality, are
used in a process model. This atomic compliance rule has
been discussed in [1].

Example Use Case: In the credit approval process of
our example shown in Section II there should be an activity
implementing the credit approval by an account manager.

B. Execution Order of Activities: G(A ⇒ B)

With this compliance rule it is ensured that a predefined set
of activities is executed in a predefined order. In a separation
of duties scenario there are normally two check activities
which need to be executed in a predefined order to verify if
for example a document is valid.

Example Use Case: In our running example (see Sec-
tion II), the activity account manager approval should always
be executed before the activity message to customer is
executed.

Next is one atomic control-flow compliance rule we did
not find in literature, yet.

C. Parallel Activities: G(A || B)

Figure 1 also shows an example for parallel activities.
The activities message to board of directors and message
to customer are running in parallel. This is a new atomic
compliance rule, we did not find in literature, yet.

Example Use Case: In the running example (see Section II),
the activities message to board of directors and message to
customer should be executed in parallel to save the company
time and money. Table I shows a list of all control-flow
related compliance rules mentioned before.

V. ATOMIC DATA-FLOW RELATED COMPLIANCE RULES

In this section we present a new kind of atomic compli-
ance requirement, namely data requirements. We abbreviate

Table I
LISTING OF CONTROL-FLOW RELATED COMPLIANCE RULES

Pattern name New Formal Term
Presence of activities G(a)
Execution order of activities A⇒ B
Parallel activities X A || B

activities in the form of A1 . . . An and data-objects in the
form of DO1 . . . DOn. We also do not use LTL to define the
atomic data-related compliance rules in this section, because
with LTL it is possible to specify logical terms on the future
of an execution path in a business process. This property
cannot be used with data-related compliance rules. Instead,
we use a syntax that is related to Java. We use a dot notation
to access the contents of data-objects and operators like ==
to test for equality, for example. The atomic compliance rules
we present in the following are formulated in a positive way.
The negation of every following compliance rule is also an
atomic compliance rule.

A. Type of Data-Object: DO.type == T

With this atomic compliance rule a data-object can be
constrained to objects of a certain data-type.

Example Use Case: The type of an input data-object for
an activity that expects an integer as input should be integer.

B. Range of Data-Object: DO.range == R

This compliance requirement describes a constraint on the
data that may be present during the execution of a business
process. It can be applied to a data-object in a business
process to constrain its data type, for example.

Example Use Case: The data-object shown in Figure 1
may be restricted to only contain data of type credit request,
which may be an XML complex type.

This kind of compliance rule can also be used to describe
forbidden states that a business process must never reach
at run time. One example to illustrate this is the exclusion
of semantic failures at run time of a business process. The
transaction amount of a credit request must never be negative.

C. Data Location: DO.location == L

There are cases when the location of data within a business
process is important. To explain that we will define what
location of data means within the context of a business
process. Afterwards we show an example detailing where it
is important to know the location of data within a business
process.

The location of data is bound to the location of the
activities which use this data for execution. As we saw before
compliance domains can be used to split a business process
model. Every compliance domain then can be executed on a
different physical run-time environment like a private data-
centre or a public cloud. Thus, the location of a data-object
is determined by the location of the activity which uses

the data from this data-object. The location of an activity
is determined by the compliance domain it resides in. The
output of an activity does also matter because the data has
to pass the activity in order to get to the output data-object.
Another aspect of data location is visibility. In BPMN, one
can define areas of visibility. Sub processes are such areas
for example. BPMN constructs which reside within such
an area of visibility are only visible from other constructs
residing in the same area of visibility. To be more concrete,
data-objects which reside within a sub process are not visible
for BPMN constructs residing outside of the sub process.
Thus, such data-object cannot be used by activities residing
outside of a sub process.

Example Use Case: The physical location L of the data-
object shown in Figure 1 may be restricted by the surrounding
compliance domain. This compliance domain may represent
a data-centre of an enterprise.

To show the importance of this data location compliance
requirement we assume a business process which is designed
as a whole by a human business process designer and then
split and executed in different physical locations. These
physical locations can be cloud environments or data centres.
It is crucial for enterprises today to know on which physical
locations their data is stored because of different sometimes
colliding laws.

It may be that a European enterprise does not want that
any of its data is physically stored in the USA, because of the
different legal situation in the USA and Europe concerning
data management. A good real-world example could be the
conflicting ”Patriot Act” and the German Data Security and
Privacy legislation (Bundesdatenschutzgesetz) [15].

D. Restricted Data Input of Activity: A1.input ==
DO1.customerId

Another compliance requirement which is related to the
requirement described in Section V-C is restricted data input.
In contrast to the data location compliance requirement the
focus of restricted data input lies on the activities which use
data in order to execute their tasks.

In some occasions it is important that certain data may
not be passed to a certain activity. Or it is important that
certain parts of a data-object may or may not be passed to
an activity. The formal term for this atomic compliance rule
states for example that the input data for activity A1 must
come from data-object DO1. Additional to that it states only
the customerId stored in data-object DO1 can be used as
input for A1.

Example Use Case: There could be a data-related compli-
ance rule stating that the activity accounting clerk should
only use the data-object A shown in Figure 1 as an input.

E. Restricted Data Output of Activity: A1.output == DO1

Analogue to the atomic compliance rule shown in Sec-
tion V-D the output of an activity can be restricted.

Table II
LISTING OF DATA-FLOW RELATED COMPLIANCE RULES

Compliance Rule Description
DO.type == T Type of data-object
DO.range == R Range of data-object
DO.loation == L Data location
A.datainput == D Restricted data input of activity
DO.writes <= 1 Avoid Race Conditions
A1.input == A2.input Use of same data
A.assignee == P1 Assignment of a Person to an Activity

F. Avoid Race Conditions: DO.writes <= 1

For this data-related compliance requirement we define that
a data-object DO knows how many writing data-associations
are writing to it. This number of writing data-associations
needs to be queried using the dot-notation like in the example
in the headline of this atomic compliance rule.

A concurrent write of two activities on the same data-object
may lead to unpredictable behaviour of business process
models. In the following we explain that with an example.
Assuming activities A1 and A2 are writing their results to
the same data-object DO. We further assume, A1 writes
the result before A2 to DO. Now we assume that another
activity A3 is assuming it reads the result of A1 from DO,
this may well not be the case anymore because A2 may have
overwritten the results of A1.

Example Use Case: Examples are process models where
two or more activities update one data-object concurrently.

G. Use of Same Data: A1.input == A2.input

This compliance rule constrains two or more activities in
a business process to have exact the same input data.

Example Use Case: All activities in our running example
business process presented in Figure 1 need to work with
exactly the same credit request document.

H. Assignment of a Person to an Activity: A.assignee ==
P1

This compliance rule is also a data-related compliance
rule because the assigned person for activity A is stored as
meta-data of this activity. In the logical expression for this
atomic data-related compliance rule P1 denotes a specific
person. The assignment of persons to activities in a business
process has been discussed in literature before. We list it
here as an atomic compliance requirement.

Example Use Case: In a business process running in an
hospital it is imaginable that task A and task B must be
carried out by the same doctor. Thus, the same person must
be assigned to tasks A and B.

Table II shows the atomic data-related compliance rules
which have not yet been discussed in literature before. As
stated above we discovered these compliance rules with our
partners until now. There may be further compliance rules
to be discovered in the future.

VI. COMBINATION OF DATA-RELATED AND
CONTROL-FLOW-RELATED ATOMIC COMPLIANCE RULES

In this section we describe a complex compliance rule
that we encountered during our research. For this we use
the atomic compliance rules presented in Section IV to V.
Control-flow related compliance rules imposed on IT-driven
business processes depend in many cases on data-related
compliance requirements and vice versa. This means, for
example, that certain data must be present at a specific
execution point in the business process so that the execution
can be continued. In this section we detail the connection
between the most common control-flow-related compliance
rules and their implications on data-related compliance rules.
We also show data-related compliance rules and possibilities
of combination with control-flow compliance rules. The
aim of this collection of complex compliance rules is to
help human business process developers to easily select
compliance rules on a more abstract level. When such a
compliance rule is applied to a business process model the
constituent atomic compliance rules are applied to the process
model. These atomic compliance rules together implement
the complex compliance rule.

A. Rule Tree: A Means to Compose Atomic Compliance
Rules

Rule trees can be seen as a simple graphical language.
Each rule tree represents a certain complex compliance rule
which is built using atomic ones. The purpose of rule trees is
to present in a graphical way which atomic compliance rules
have been combined in order to built a complex compliance
rule. This enables people with less knowledge in the fields of
formal languages and compliance to specify and understand
complex compliance rules.

In our investigations we saw that compliance rules for
different purposes, like the expression of data-requirements,
or control-flow requirements, are often written in different
formal languages. Therefore, the atomic compliance rules
used in a rule tree can be written in arbitrary formal
languages.

The concept of a rule tree is based on a diploma thesis [16].
It also uses the work of Turetken et al. [1]. Turetken et
al. show that compliance rules written in linear temporal
logic can be combined using named patterns which can be
reused also by non technical people. We extend this approach
in two ways. We define a graphical syntax to show how
atomic compliance rules are put together to form a more
complex compliance rule, and we removed the constraint that
only linear temporal logic can be used to describe complex
compliance rules.

Figure 2 shows a rule tree. Here several control-flow
compliance rules (e.g. activityOrder) and one data-flow
compliance rule (use of same data) are combined to a
separation of duties compliance rule. Complex compliance
rules, implemented by a rule tree, can be applied to a

business process model in the following way. The atomic
compliance rules contained in a rule tree carry placeholders
for activity names. These placeholders must be replaced by
actual names of constructs within the business process model.
These constructs may be single activities or complex business
process structures.

Rule trees are built using the following schema. All inner
nodes of a rule tree are formal operators. Formal operators
that are allowed are AND, OR, and NOT. Leaves of a rule
tree can not be operators. Leaves must contain a formal
definition of a compliance rule.

Algorithm 1 Verify rule tree
1: function VERIFY(BinaryTree ruleTree)
2: boolean result = false;
3: if not ruleTree.isOperator() then
4: return ruleTree.getFormula().verify();
5: else
6: if ruleTree.isNot() then
7: return not verify(ruleTree.getChild());
8: end if
9: result = verify(ruleTree.getLeft());

10: if ruleTree.isAnd() then
11: return result and verify(ruleTree.getRight());
12: end if
13: if ruleTree.isOr() then
14: return result or verify(ruleTree.getRight());
15: end if
16: end if
17: end function

Algorithm 1 shows how rule trees are verified. The
underlying concept is a pre-order traversal of the tree. A
tree is pre-order traversed when the root of a sub-tree is
processed before the left branch and the right branch of the
sub-tree. For reasons and space and simplicity we left out
any null-pointer checks in algorithm 1. The verify-function
in algorithm 1 starts by processing the root node of the
current sub-tree which is a parameter for that function. In
line three it first determines if the root node of the current
sub-tree is an operator. If it is no operator the algorithm
must have reached a leaf of the overall rule tree. The formal
rule (formula) that is attached to that leaf can be verified
(see line 4). If the current root of the sub-tree is an operator
the algorithm determines which one of the three possible
operators is represented by the current root node.

If the current operator is a not-operator (see line 6) the only
child node is verified by invoking the verify function with
the child node of that not-operator. Since the not-operator is
an unary operator, this node can only have one child. If the
current operator is an or-operator or it is an and-operator
the algorithm is processing these binary operators in the
following way. At first the left side of the current sub-tree
is verified by invoking the verify function with the left child

Presence of
A1

Presence of
A2

AND

A1 before A2

A1 Output ==
DO1

AND

AND

Figure 2. Combination of atomic compliance rules to implement a restricted
data movement compliance rule

of the current root node. Afterwards this result is combined
with the verification result of the right side of the sub-tree
using either a logical and operation or a logical or operation.

B. Example: Restricted Data Movement

We came across this compliance rule on one of our
previous works [8]. In this paper certain areas of a business
process model are marked using compliance domains. Data
that is passing the borders of these areas need to be compliant
with a certain set of compliance rules. One example for such
a compliance rule would be that if personal data is transferred
it must be anonymised.

Figure 1 shows two compliance domains (dashed line).
These compliance domains can contain an arbitrary number
of activities. Compliance domains are useful in enterprise
business process environments. For a European enterprise it
may not be advisable to store or process operation-critical
data in the US. This leads to internal regulations stating that
no operation critical data must leave the premises of a certain
data centre.

The compliance rules being annotated to compliance
domains restrict the data set that can be processed or stored
within a certain compliance domain. Thus, in the modelling
phase of a business process tools can detect if certain data is
sent to a compliance domain that would violate one or more
data-related compliance rules.

Equation 1 shows the atomic compliance rules that have
to be combined in order to produce a compliance rule for
the compliance requirement of restricted data movement.
In this combined compliance rule the ∧ operator is used
to combine eight atomic compliance rules. In this example
for restricted data movement we want to restrict the data
movement between the two compliance domains shown in
Figure 1. We take a closer look at activities account manager
approval and Message to board of directors for this example.
We assume the right compliance domain can only handle non-
sensitive data. This means the activities contained within the
right compliance domain may be executed in a public cloud

environment. Thus, the restriction on the data movement here
is that only the identifier of the person requesting a credit
may be forwarded from the left compliance domain to the
right one. This concretely means that the input for activity
message to board of customers consists of two parts. The
identifier of the person coming from data-object B and some
other details coming from data-object C. In the following
we describe these atomic compliance rules in detail.

In the first part of Equation 1 it is assured that activities
A1 and A2 are present and that activity A1 is always
executed before activity A2. Then, the locations of the used
data-objects (DO) in the business process model are set to
compliance domains CD1 and CD2. Afterwards it is set that
the output data of activity A1 is stored in DO1 and that
activity A2 does not get its input data from DO1. This is
the main part of the equation stating that data should not be
moved directly between A1 and A2. In this part we make
sure that the output data of activity A1 cannot be the input
data for activity A2.

G(A1) ∧G(A2) ∧G(A1 → A2)

∧DO1.location == CD1 ∧DO2.location == CD2

∧A1.output == DO1 ∧A2.input == DO1.requestId

∧A2.input == DO2 (1)

For space reasons, the rule tree shown in Figure 2 shows
a fraction of the atomic compliance rules presented in
Equation 1. To validate this rule tree Algorithm 1 is used.
It traverses the tree in pre-order until the algorithm reaches
a leaf. In the case of the rule tree shown in Figure 2 it is
the left most leaf of the rule tree stating that activity A1’s
output is written to data-object DO1. In order to verify this
atomic data-related compliance rule a plugin is chosen that
can verify data-related compliance rules. After the first leaf
is validated the algorithm moves on the middle and-operator.
It sees that this tree node is an operator and moves on to
the leaves of this operator. It verifies them using a plugin
that can verify atomic control-flow-related compliance rules.
Afterwards the left most and-operator can be verified by the
algorithm. The algorithm moves to the top and-operator and
continues with the right most leaf. The algorithm provides
the verification result when all operators in the rule tree have
been processed.

VII. PROTOTYPE

Using the web-based BPMN editor Oryx, we have added
support for control-flow and data-flow related compliance
rules in previous works.

For this paper we implemented the rule tree concept and
added support to graphically design compliance rules in
linear temporal logic (LTL). Figure 3 shows the compliance
wizard dialogue containing a graphical representation of a
rule tree. In this rule tree several LTL compliance rules and
one data-aware (data-transfer) compliance rule are combined

schleidl
Sticky Note
Das hier ist eine definition eines fragments mit datenflusss. nur mit complianceregeln, besser ist es statt == eine funktion zu nehmen

Figure 3. Prototype: Compliance wizard containing rule tree

using and operators. The rule tree can be graphically built
using control-flow related or data-flow related compliance
rules that are stored in a compliance rule repository. After
the rule tree for a specific BPMN business process model
has been built, it is automatically stored in the repository.

Compliance rules can be written using a graphical syntax
so that together with the rule tree concept, it is easier for non-
technical people to define control-flow related compliance
rules. The rule tree can be applied to an existing business
process model by attaching the rule to a compliance domain,
for example. Currently the activity names used in the attached
compliance rule must match the activity names of the
activities residing in a compliance domain. In the future
we want to provide a wizard where it is possible to map
activity names in compliance rules to process constructs in
a step-by-step manner.

VIII. CONCLUSION

In this paper we added a new kind of compliance rules
to the list of atomic control-flow related compliance rules
described in literature. We further showed that this new
data-related kind of compliance rules must be combined
with existing control-flow-related compliance rules in order
to fully specify complex compliance rules implementing a
separation of duties compliance requirement, for example. To
support the understanding of combined atomic compliance
rules we introduced the concept of a rule tree.

In the future we want to prepare a concept and prototype so
that a complex compliance rule can be selected and applied
using a wizard to an existing business process model. During
this application process the variables in the compliance
rule to be applied must be mapped to constructs in the
current business process model. We further want to deal
with conflicting compliance rules. Here we want to extend
the existing approach presented in [17] to handle combined
compliance rules.

REFERENCES

[1] O. Turetken, A. Elgammal, W.-J. van den Heuvel, and
M. Papazoglou, “Enforcing Compliance on Business Processes
Through the use of Patterns,” in European Conference on
Information Systems (ECIS 2011). Elsevier, 2011.

[2] A. Elgammal, O. Turetken, W. v. d. Heuvel, and M. Pa-
pazoglou, “Root-cause analysis of design-time compliance
violations on the basis of property patterns,” Tilburg University,
Tech. Rep., 2010.

[3] EMEA, Guideline for Good Clinical Practice, European
Medicines Agency, July 2002.

[4] “MASTER Scenarios,” MASTER EU Project, Deliverable
D1.2.1, 2009.

[5] “Pilot Case Studies Instantiation,” MASTER EU Project,
Deliverable D1.2.3, 2011.

[6] “Stakeholder Requirements Analysis,” MASTER EU Project,
Deliverable D1.1.1, 2009.

[7] Object Management Group (OMG), “Business Process Model
and Notation (BPMN) Version 2.0,” Tech. Rep., 2009.

[8] D. Schleicher, C. Fehling, S. Grohe, F. Leymann, A. Nowak,
P. Schneider, and D. Schumm, “Compliance Domains: A
Means to Model Data-Restrictions in Cloud Environments,” in
Enterprise Distributed Object Computing Conference, 2011.

[9] R. Khalaf, “Supporting business process fragmentation while
maintaining operational semantics : a BPEL perspective,”
Doctoral Thesis, University of Stuttgart, Germany, 2008.

[10] C. Cabanillas, M. Resinas, and A. Ruiz-Cortes, On the
identification of data-related compliance problems in business
processes, 2010, pp. 89–102.

[11] A. Awad, M. Weidlich, and M. Weske, “Specification, verifi-
cation and explanation of violation for data aware compliance
rules,” in International Joint Conference on Service-Oriented
Computing, 2009.

[12] S. W. Sadiq, G. Governatori, and K. Namiri, “Modeling control
objectives for business process compliance,” in BPM, 2007.

[13] D. Knuplesch, L. T. Ly, S. Rinderle-Ma, H. Pfeifer, and
P. Dadam, “On enabling data-aware compliance checking
of business process models,” in Proceedings of the 29th
international conference on Conceptual modeling, 2010.

[14] D. Schumm, O. Turetken, N. Kokash, A. Elgammal, F. Ley-
mann, and W. v. d. Heuvel, “Business process compliance
through reusable units of compliant processes,” Tilburg Uni-
versity, Open Access publications from Tilburg University,
2010.

[15] S. Simitis, Bundesdatenschutzgesetz. Frankfurt: Nomos, 2006.

[16] S. Grohe, “Visualisierung und Implementierung von compli-
ance Scopes,” Diplomarbeit, Universität Stuttgart, Fakultät
Informatik, Elektrotechnik und Informationstechnik, Germany,
Mai 2011.

[17] D. Schleicher, T. Anstett, F. Leymann, and D. Schumm,
“Compliant Business Process Design Using Refinement Layers,”
in OTM 2010 Conferences, T. D. et al. R. Meersman, Ed.
Springer Verlag, Oktober 2010.

	SOCA73-Schleicher.pdf

