
Institute of Architecture of Application Systems, University of Stuttgart, Germany,
firstname.lastname@iaas.uni-stuttgart.de

Designing for CAP - The Effect of Design Decisions on the
CAP Properties of Cloud-native Applications

Vasilios Andrikopoulos, Christoph Fehling, Frank Leymann

These publication and contributions have been presented at
CLOSER 2012

CLOSER 2012 Web site: http://closer.scitevents.org

© 2012 SciTePress. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the SciTePress.

@inproceedings{Andrikopoulos2012,
author = {Vasilios Andrikopoulos and Christoph Fehling and Frank Leymann},
title = {Designing for CAP ‐ The Effect of Design Decisions on the CAP

Properties of Cloud‐native Applications},
booktitle = {Proceedings of the 2nd International Conference on Cloud

Computing and Service Science, CLOSER 2012,
18‐21 April 2012, Porto, Portugal},

year = {2012},
pages = {365‐374},
publisher = {SciTePress}

}

:

Institute of Architecture of Application Systems

DESIGNING FOR CAP
The Effect of Design Decisions on the CAP Properties of Cloud-native Applications

Vasilios Andrikopoulos1, Christoph Fehling1 and Frank Leymann1
1 Institute of Architecture of Application Systems, University of Stuttgart, Universitätsstr. 38, Stuttgart, Germany

{vasilios.andrikopoulos,christoph.fehling,frank.leymann}@iaas.uni-stuttgart.de

Keywords: CAP Theorem, Cloud Patterns, Cloud-native Applications Design

Abstract: The limitations of distributed systems to satisfy the combination of consistency, availability and network
partitioning tolerance requirements are well-documented and formally proven. There is however a limited
amount of works discussing the impact of these limitations on designing applications native to the Cloud.
This work addresses this particular need by proposing an approach for considering these requirements while
designing an application. Our contributions are therefore a methodology for Cloud-native application design
which considers consistency, availability and network partitioning tolerance, and a framework instantiating
this methodology by using design patterns and their realization solutions on the Cloud. We also show how
the proposed methodology can be used in practice to design an application solution with desired properties.

1 INTRODUCTION

Cloud computing has been heralded as the
realization of John McCarthy's utility computing
vision, where computing is organized and offered as
a public utility like electricity and water (Leymann,
2009). Cloud computing allows enterprises to
outsource applications, systems and even their IT
infrastructure to the Cloud, using one or more of the
provisioned infrastructure or software services.
Amazon.com, for example, offers Cloud solutions
with usage-based costing, where interested parties
can install and run their software without having to
care about previously critical issues like
infrastructure investment, computing power and
network connectivity (Varia, 2010). Salesforce.com
altered radically the enterprise computing landscape
by offering customizable services on the Cloud
which were traditionally embedded in the IT domain
of the enterprise. Cloud computing has ushered a
new era of consuming and producing information
and information technology by migrating the
processing and storage of the information from small
scale, limited purpose computing platforms like PCs,
laptops and server machines to large scale, general
purpose platforms offered “somewhere on the
Cloud”.

Despite its revolutionary nature however, Cloud
computing is underpinned by the same fundamental
principles and laws governing large, distributed

networked systems. One of the most important
principles is a conjecture that Eric Brewer put
forward in his keynote speech at the ACM
Symposium on the Principles of Distributed
Computing (PODC) in 2000 (Brewer, 2000). Brewer
observed that there are three fundamental systemic
requirements in any distributed environment that
exist in a special relationship with each other:
consistency (whether all parts of the system see the
same data at the same time), availability (what
percentage of time the system is up and functioning
properly) and network partitioning (if the system is
tolerant to network failures). His conjecture is that
only two out of these three requirements can actually
be satisfied at any time by a distributed system. This
hypothesis was later formally proven by Seth Gilbert
and Nancy Lynch of MIT (Gilbert, Lynch, 2002),
making it known as the CAP theorem (from the
initials Consistency, Availability and network
Partitioning).

By its definition, the CAP theorem is restricting
the capacity of any distributed system to satisfy
requirements related to the CAP properties, and as
such it has a direct impact on these requirements.
This impact is even bigger for applications in the
Cloud where elasticity, i.e., being able to deal with
shifting computational demands by scaling up or
down accordingly, is one of the basic pillars of the
paradigm. Elastic applications should be able to
maintain similar (or better) CAP behaviour

independent of their scale and rely on their design to
do so. Studying and analyzing therefore the effect of
various architectural decisions on the behaviour of
the resulting application with respect to the CAP
theorem becomes an important issue and is the
proposed goal of this work.

More specifically, in the following we present a
design methodology for Cloud-native applications
which is oriented towards connecting design
decisions with an estimation of the CAP behaviour
of the resulting application. Furthermore, we show
how the methodology can be realized as an
extension of the Cloud Pattern Framework presented
in (Fehling et al., 2011a). Finally, we validate our
proposal using a scenario running through the paper.

The rest of the paper is as follows: Section 2
motivates the need for a CAP-oriented design
methodology by means of an example. Section 3
discusses the CAP theorem in more detail and
presents the proposed application design
methodology. Section 4 shows how the methodology
can be realized in practice, while Section 5 discusses
validation. Finally, Section 6 summarizes the related
work, before providing some conclusions and
possible future directions in Section 7.

2 MOTIVATING EXAMPLE

For illustrative purposes, consider the familiar
example of a simple Web shop application as
depicted in Figure 1. Customers browse through
offered items using the Web shop user interface
(Webshop UI). If they decide to order an item, it is
packaged and sent to them by one of the stock
managers in the shop using a management interface
(Management UI). Both user interfaces access a
common data store (Stock Database) containing the
item descriptions and their availability. The
complete Web shop is hosted on a local data centre,
belonging to the shop owner. The web shop,
however, experiences very high workloads during
specific times of the year, for example, when
Christmas approaches. The shop owner therefore
decides to use elastic cloud resources to cope with
such alternating workloads.

Consulting online resources, he decides to
completely outsource his data store and shop
interface to the Cloud, where he can use the
elasticity and scalability offered by it. He decides
however not to outsource the management interface
and continues hosting it on premises. The new
architecture of the Web shop is shown in Figure 2.
While the new Web shop fulfils the expectations in
terms of computational resources in periods of

increased activity, the owner is very quickly faced
with a new problem: fulfilling the orders depends on
the link between the management interface and the
data store on the Cloud. Frequent network failures in
this link force the stock managers to wait before
processing an order, essentially creating a bottleneck
in the application.

In the following sections we are going to discuss
how the shop owner (or more specifically, the
application designer on his behalf) would have been
able to foresee this problem before actually
implementing the application.

3 CAP-ORIENTED DESIGN

3.1 Design decisions & CAP
properties

Since 2000 when Brewer posed his conjecture
and until today, a number of works have appeared in
the literature discussing the implications of the CAP
theorem in system design, see for example (HP,
2005), (Helland, 2007), (Kossmann, 2010],
(Mietzner et al., 2010). These discussions however
stay on the level of particular cases and best
practices and do not identify or organize the
underlying principles of systems design for the
Cloud. For purposes of visualization, it is more
appropriate to think of the CAP properties as a
triangle (see Figure 3), and the various systems

Figure 1 Web shop example: on premises architecture

Figure 2 Web shop example: moving to the Cloud

positioned within areas of this triangle. The strict
interpretation of Brewer's theorem would position all
systems on one of the sides of the triangle. In
practice however, system designers and developers
trade some degree of e.g., consistency for
availability and network partitioning. Proposed
solutions like the one discussed in (Pardon, 2008),
where all three properties of CAP can be satisfied
(not, however, at the same time), confirm that there
is actually space to outmanoeuvre the constraints
imposed by the CAP theorem with clever design.

Systems like the Amazon.com online store, for
example, allow customers to buy items without
ensuring their physical availability at the time of
purchasing. If, e.g., a copy of the requested book is
not currently available in stock then it can either be
purchased transparently to the customer through a
third party, or the fulfilment of the order can be
delayed until it becomes available (or ultimately
some kind of compensation can be offered). The
reasoning here is that customers should always be
served, even in case of (internal to the systems of
Amazon.com) network failures and even inventory
inconsistencies. The consistency of the system will
actually only be eventually ensured by a set of
corrective actions (Vogels, 2009). Thus, in terms of
Figure 3, it can be said that the Amazon.com store is
positioned somewhere on the lower part of the
triangle and closer to its A vertex. Other systems
like for example online travel agencies, trade
availability for consistency and network partitioning
tolerance by making sure that no two customers
book the same ticket, even in the presence of
network failures. In this manner they essentially
position themselves closer to the C-P side of the
triangle.

Different system requirements therefore lead to
vastly different system design solutions, and
different systems (in this case Cloud-native
applications) end up in different areas of the triangle
in Figure 3. Identifying the key decisions and their
underlying principles, and connecting them with
particular CAP properties is necessary for making
sure that a Cloud-native application design fits its
desired characteristics. Positioning the application in
the triangle is however not trivial. As demonstrated
in the previous section, application design usually
entails a series of architectural decisions, with each
one of them having potentially a different effect on
the CAP properties of the application. Furthermore,
particular implementation decisions like e.g., the
choice of platform for hosting an application have an
indirect effect on other decisions like the way the
clients will access the application. Architectural
decisions are therefore in a feedback loop and their
effect for the CAP properties can only be estimated
by taking into account their interplay dependencies.

3.2 Application design methodology

The CAP-oriented Cloud-native application
design methodology presented here aims to address
the requirements discussed above. It comprises of
5+1 phases, illustrated in Figure 4 and presented in
the following.

Identify CAP Requirements: the first phase requires
of the application developer to identify the
envisioned CAP properties of the designed
application. For example, in the Web shop scenario
discussed in the previous section, the migrated to the
Cloud system requirements effectively call for
stronger consistency, with network partitioning
tolerance as a secondary goal, and availability only
third. Actually positioning the desired outcome in
the triangle of Figure 3 provides the application
designer with a qualitative feel of the requirements
that he is building towards.

Capture Design Decisions: the second phase
consists of recording the various decisions made by
the application designer. This involves in the case of
the Web shop scenario, the decision to use a public
Cloud for hosting the application, the storage model
chosen etc. Capturing these decisions (and indeed
facilitating the design of the application) is better
performed, as we will discuss in the following
section, by means of a decision support system like
the one discussed in (Zimmerman et al., 2009) (see
related work section for further information).

Select *aaS Solutions: the third phase of the
methodology complements the previous phase by
translating the various abstract design decisions into
concrete Software-, Platform- or Infrastructure-as-a-
Service (*aaS) solutions. For the Web shop, for
example, this may entail using the Amazon Web
Services data storage solution. In principle, design

Figure 3 The CAP properties of a
distributed system.

decisions like the data storage model to be followed
should “drive” the *aaS solution options. Choosing a
particular solution however may influence
previously taken design decisions with respect to its
CAP properties. This may require a revisit of the
previous phase, shown by the backward arrow in the
loop of Figure 4.

Estimate CAP properties: during this phase, the
CAP properties of the various solutions are
combined in order to provide an estimate of the
overall CAP properties of the designed application.
In order to achieve this estimation the selected *aaS
solutions must be already annotated with
information about their CAP properties. The
annotation can be expressed for example as a triplet
ሺܿ, ܽ, ,ܿ ሻ with ܽ, ∈ ሾെ1,1ሿ, where values closer to
1 signify a strong correlation with a property, while
values close to -1 show a strong negative correlation.
Estimating the properties of the system in this case
can be performed by doing a weighted sum of the
various values for each property, normalized in the
[-1,1] range. The advantage of this approach is that
the result can be visualized in Figure , which allows
a designer to easily assess whether the designed
application satisfies the requirements identified in
the first phase. More sophisticated methods like log
mining and stochastic methods can be used both for
the actual extraction of the CAP properties of each
*aaS solution and for their combination into one
ሺܿ, ܽ, .ሻ triplet

Based on whether the estimated CAP properties of
the application satisfy its defined CAP requirements,
the designer can choose either to proceed with the
Development, Deployment and Provisioning of the
actual application (not in the scope of this work), or
re-enter the design cycle through the Update Design
& Solutions phase. During this stage the designer
attempts to identify and isolate the design decisions
and *aaS solutions that produced the undesired
outcome. Since changing any of them may have an
impact on the overall design of the system, it is then
required to re-enter the design decision/*aaS
solution loop before estimating again the (new) CAP
properties. This cycle may be repeated a number of
times until a desired outcome is achieved.

4 CAPTURING DECISIONS
THROUGH DESIGN PATTERNS

In the previous section we presented a CAP-
oriented design methodology for Cloud-native
applications. The next step is to make this
methodology concrete and demonstrate how it can
be instantiated into a set of methods and tools for
application design. For this purpose, in the following
we focus on presenting the Cloud Pattern
Framework introduced in (Fehling et al., 2011a), as
the enabler of our methodology.

Identify CAP
Requirements

Capture Design
Decisions

Select *aaS
Solutions

Estimate CAP
Properties

Development,
Deployment &
Provisioning

Update Design
& Solutions

Figure 4 The CAP-oriented Cloud-native application design methodology.

4.1 Cloud Application Patterns

Architectural patterns are used in many
computer science domains to capture good solutions
to reoccurring problems in an abstract common
descriptive format, e.g. (Hohpe, Woolf, 2004),
(Gamma et al., 1995). A catalogue of patterns may
then be used to guide application developers during
the implementation. In our previous work, we
abstracted the architectural principles of cloud
computing from existing cloud applications and
cloud offerings and compiled them into a pattern
catalogue (Fehling et al., 2011b), available also
online at http://cloudcomputingpatterns.org. In
contrast to other pattern catalogues, we extend the
use of the patterns to also describe the aspects of
Cloud that are not implemented by the developer.
This is necessary since cloud applications rely
heavily on runtime environments offered by cloud
providers. We describe the common concepts and
behaviour of the environments in the same pattern
format to ease their perception (Petre, 1995). This
also allows the description of the environment in
which a developer may apply cloud architectural
patterns through their interrelation to other patterns
by describing their cloud types and their offerings.

An overview of the resulting cloud pattern
classes is given in Figure 5. Cloud Types & Service
Models contain pattern-based descriptions of the
cloud environment. For example, there is a pattern
for public clouds – accessible by everyone, private
clouds – accessible within one company, community
clouds – accessible for a certain number of
companies, and hybrid clouds – a combination of at
least two of the other types of clouds. The cloud
environment that is described by this pattern class
contains cloud offerings providing computation,
storage, and communication functionality. These
cloud offering patterns abstract from the concrete
products of cloud providers; for example, Amazon
S3 or Windows Azure Storage are abstracted by the

blob storage pattern. Architecture patterns may then
be connected with these offering patterns to guide
application developers when using these offerings.

4.2 Cloud Pattern Framework

To guide the application developer during the
selection of applicable patterns for his concrete use
case and cloud environments, in (Fehling et al.,
2011a) we introduced the Cloud Pattern
Framework. In addition to the catalogue of patterns,
a central component of the framework is a Decision
and Solution Capturing component, enabled by a
Decision Recommendation Table which captures the
relations between the different patterns. We
differentiate relations identifying the patterns to be
(i) strongly related, (ii) mutually exclusive, and (ii)
unrelated. Using this table (an excerpt of which is
depicted in Figure 6), an application developer
iteratively selects patterns and receives
recommendations for other patterns that may be
applicable as well. Possible conflicts in the pattern
selection can be identified through the evaluation of
exclusion relations.

For example, an application developer may start
by selecting patterns that describe the cloud
environment at hand for which the application is
being developed. He selects the hybrid cloud pattern
in the decision recommendation table, because the
application uses different clouds for different
application components. Based on this selection, the
cloud component gateway (Fehling et al., 2011c)
pattern is recommended to the developer. This
pattern describes how application components may
be made accessible in different cloud environments
in case of communication restrictions and has
therefore a strong relation to the hybrid cloud
pattern.

C
lo
u
d
C
o
m
p
o
n
e
n
t

G
at
ew

ay

El
as
ti
c
In
fr
as
tr
u
ct
u
re

Lo
w
‐a
va
ila
b
le

C
o
m
p
u
te

N
o
d
e

H
ig
h
‐a
va
ila
b
le

C
o
m
p
u
te

N
o
d
e

Public Cloud – + +

Private Cloud – + +

Community Cloud – + + +

Hybrid Cloud + + +

+ : strong relation
– : exclusion
Empty : no relation

Figure 5 Pattern Classes in the Cloud Pattern
Catalogue.

Figure 6 Excerpt of the Decision Recommendation Table.

Navigating through the table in a similar manner
from more higher-level to more low-level patterns
(e.g., type of data storage or communication
mechanisms) provides the designer with a set of
choices for *aaS Solutions that implement the
particular pattern. At this point the designer can
simply choose which solution to use for the
application design. The actual guidance through the
recommendation table, and the recording of the
various decisions that were taken is performed by
the Decision & Solution Capturing module, shown
in Figure 7. The Cloud Pattern Framework therefore
provides us with a set of useful building blocks
(pattern catalogue, recommendation table, decision
and solution capturing) for realizing the CAP-
oriented application design methodology described
in the previous section – as far as the decision
capturing and *aaS solution selection phases of
Figure 4 are concerned. In the following we show
how it can be augmented with CAP information in
order to realize the Estimate CAP Properties phase.

4.3 CAP-oriented Cloud Pattern
Framework

In order to be able to estimate the CAP
properties of an application in design we extend the
Cloud Pattern Framework in three ways, as shown in
Figure 7.

More specifically, as a first step we annotate the
*aaS Solutions contained in the Cloud Pattern
Catalog with CAP Annotations. These annotations
are triplets ሺܿ, ܽ, ,ܿ	 ሻ, where ܽ, ∈ ሾെ1,1ሿ, in
the manner discussed in Section 3.2. Currently, the
triplets ሺܿ, ܽ, ሻ are calculated by aggregating the
values provided by different Cloud application
developers by means of a questionnaire. The
Amazon SimpleDB data storage service, for
example, implementing the NoSQL Storage pattern,
comes with two modes of operation: strict
consistency (closer to traditional RDBMS) and
eventual consistency. In the former mode, it is
annotated with the triplet ሺ0.6, 0.25, 0.4ሻ, while in
the latter with ሺ0.3, 0.75, 0.75ሻ. Similarly, providing
a MySQL server as a cloud offering (e.g. being
deployed inside a Windows VM in Windows
Azure), and implementing the Relational Datastore
pattern is annotated with ሺ0.95, 0.4, െ0.25ሻ since it
is only marginally tolerant to network partitioning.

The actual values of the triplets are meant to
provide a qualitative feeling of how strongly positive
or negative CAP behaviour is exhibited by the *aaS
solution, and they can only be interpreted in relation
to each other. For example, the value ܿெ௬ௌொ ൌ 0.95
stands for a solution much more oriented towards
consistency than e.g. ܿௌ_ா௩௧௨ ൌ 0.3.

While currently these values are only aggregations
of the opinions of a limited group of Cloud
developers, in the future we plan to expose them to
the users of the implementation of our proposed
approach, and allow for providing their own
perceived values. By these means we aim to be able
to provide a more up-to-date annotation set which is
in a feedback loop with its consumers. In addition,
we shall be also able to allow designers to add
annotations for systems that do not appear in the
Pattern Catalogue, provided that they are first related
to an appropriate pattern.

For the second part of extending the Cloud
Pattern Framework we focus on the providing a CAP
Estimator (Figure 7) module. The estimator takes as
input from the Decision & Solution Capturing
module the list of *aaS solutions already selected by
the designer. It then retrieves the appropriate CAP
annotations for these solutions and calculates the
overall CAP triplet for the application by doing an
average of each of the properties:

 ሺܿ, ܽ, ሻ௦௧௧ௗ ൌ

ଵ

∑ ሺܿ, 	ܽ, ሻ	

ୀଵ .

For a Cloud application for example that
comprises a MySQL server installed inside a
Windows VM on Azure (implementing the
Relational Datastore pattern as we saw above) with
annotation ሺ0.9, 0.7, െ0.25ሻ and a management UI
as a set of JSP pages on a local JBoss server

Figure 7 CAP extension of the Cloud Pattern Framework.

(implementing the Stateless Component pattern)
annotated with the triplet ሺ0.5,0.0,0.75ሻ the
estimated CAP properties are

ሺc,a,pሻMySQL_Azureൌ	

ൌ
1
2
ሺ0.90.5,	0.70.0,	0.75-0.25ሻ	

ൌሺ0.7,	0.35,	0.25ሻ

The estimated CAP properties show a system
with high consistency but low availability and little
tolerance in network partitioning (since it depends
on the UI/Database link in order to operate
correctly).

The visualization of this result is done by the
Visualizer module in Figure 7. The estimated CAP
properties produced by the CAP Estimator are
positioned in the CAP triangle of Figure 8
(extending that of Figure 3). In the case of
ሺܿ, ܽ, ሻெ௬ௌொ_௭௨, the estimated CAP properties
(illustrated by the dashed triangle) shows a clear
tendency to the C vertex of the triangle, denoting, as
discussed above, strong consistency. The area bound
by the lighter of the inner triangles in the centre of
Figure 8 denotes that one (or more) CAP properties
of the application have a negative value.

Having extended the Cloud Pattern Framework
to cater for the realization of the proposed CAP-
oriented application design methodology, in the
following we are going to validate our proposal by
means of a case study. For this purpose we revisit
the motivating scenario discussed in Section 2.

5 CASE STUDY

Returning to the motivating example, the Web
shop owner starts by annotating the current
architecture with pattern information to determine

the current CAP behaviour as depicted in Figure 9a.
Both user interfaces are Stateless Components (JSP
pages on a JBoss server) relying on a Relational
Datastore (MySQL on Linux), as external state. The
links between them are synchronous and represent

Figure 8 Visualization of the CAP estimation.

a. Initial solution

b. Initial migration to the Cloud

c. Migration with data replication

Figure 9 Web shop case study

data base queries and, therefore, have no pattern
annotated to them. From the *aaS annotations
catalog, we already know that:

ሺܿ, ܽ, ሻௌಳೞೞ ൌ ሺ0.5,0.0,0.75ሻ
and

ሺܿ, ܽ, ሻெ௬ௌொ_௨௫ ൌ ሺ0.95,0.4,0.25ሻ
Therefore:

ሺܿ, ܽ, ሻூ௧ ൌ 1

3ൗ ሺ2 ൈ 0.5 0.95, 2 ൈ 0 0.4,
2 ൈ 0.75 0.25ሻ
ൌ 		 ሺ0.65, 0.13, 0.58ሻ

In a similar manner, and for the migration to the

Cloud shown in Figure 9b, we can see that
ሺܿ, ܽ, ሻெ௧ ൌ ሺ0.68, 0.53, െ0.14ሻ, since
ሺܿ, ܽ, ሻௌொ௭௨ ൌ ሺ0.75, 0.9, െ0.5ሻ,
ሺܿ, ܽ, ሻௌ_ௐோ ൌ ሺ0.5, 0.7, െ0.3ሻ and
ሺܿ, ܽ, ሻ ൌ ሺ0.95, 0.5, െ0.5ሻ. The estimated
CAP properties of the application reflect the
observed ones in practice: much higher availability,
roughly equivalent consistency, but very low
partitioning tolerance (due to the stock management
UI dependency on the availability of the
communication link between the local data centre
and the cloud). This result, and the relationship
between the two application designs, is better
illustrated in Figure 10 where the exchange of
network partitioning for availability is reflected by
the positioning of the respective triangles.

To ensure that the stock manager can work at all
times, the shop owner decides to use the best of both
worlds by replicating the data required by the stock
manager and the customer as shown in Figure 9c.
The information required by the Web shop
component is now contained in a separate catalogue
component in the Cloud. The stock management
component still contains all information about the
goods and their availability. Hourly however, the
data are replicated from the stock database to the
catalogue database by a shell script and a cron job.
This leads eventually to a consistency between the
two data replicas as shown by the Eventual
Consistency pattern annotated to the link. By
calculating in a similar manner as above the
estimated CAP properties, and for
ሺܿ, ܽ, ሻௌ௧ା ൌ ሺെ0.5, 0.5,0.95ሻ, we have
ሺܿ, ܽ, ሻோ௧ ൌ ሺ0.44, 0.5,0.23ሻ.

This design solution therefore ensures that the
availability is increased for both the stock manager
and the customer and enables a system that is
sufficiently partitioning tolerant by sacrificing a
small amount of consistency: both the stock manager
and the customer may access the information in the
application, regardless of the availability of the
communication link between the integrated runtime
environments. The data consistency is however

reduced, resulting in the possible condition that

customers may order goods that are not available,
because the actual product availability is only kept
in the stock database. Therefore, compensation may
be required in some cases, but the overall behaviour
of the system is (probably) more profitable for the
Web shops. Other web shops like Amazon.com
handle item availability in the same fashion. In all
cases however, it is possible for the application
designer to estimate the CAP properties by using the
methodology and tools we discussed in the previous.

6 RELATED WORK

Cloud application design (and engineering) is
still a developing research topic, driven mostly by
the industry. Solution providers like Microsoft,
Amazon and IBM have offered best practices on
using their solutions for developing Cloud
applications, see for example (Erl et al., 2010),
(Varia, 2010), (Lau, Birsan, 2011). However, these
are far from systematic software engineering
approaches and they do not explicitly consider CAP
properties. In a similar approach to ours, the work
of (Chee et al., 2011) uses design patterns in cloud
application engineering. However, their focus is on
cloud transformation, i.e. migrating existing
applications to the cloud, instead of designing
Cloud-native applications.

Patterns are commonly used to describe good
solutions to re-occurring problems in a common
format to organize practical knowledge and ease
perception (Petre, 1995). This concept has been used
originally to describe building and city architecture

Figure 10 CAP estimations for different Web shop solutions

(Alexander et al., 1977) and has since been applied
to a large variety of domains, such as learning (Iba et
al., 2009) or business communications (Rising,
2004). Regarding software architecture and runtime
infrastructure, patterns have been defined for object
oriented programming (Gamma et al., 1995) and
messaging-based application integrations (Hohpe,
Woolf, 2004). Furthermore, different pattern
catalogues capture good practices for user
interaction with information (Tidwell, 1998),
(Yahoo, 2011). These patterns have also been
considered during the identification of cloud
computing patterns. Many of them were transformed
or applied to the area of cloud computing.

Capturing design decisions in order to focus and
verify the design process of systems is also
discussed in (Zimmermann et al., 2009), where a
formal model is presented for capturing and reusing
architectural decision knowledge. Furthermore, in
(Harrison et al., 2007), the authors present a pattern-
based approach for architectural decisions. Both
approaches are conceptually close to this work, but
discuss service-oriented and software systems and as
such they are not directly applicable to Cloud-native
applications. Further investigation on how they can
be reused for this purpose is however in our future
goals.

7 CONCLUSIONS

While the CAP theorem has serious implications
for the design of distributed systems (and therefore
also of Cloud-native applications) there are few
works discussing how to design for particular CAP
properties. For this purpose, in this work we
presented an approach for incorporating these
properties into the design of Cloud-native
applications. More specifically, we introduced a
CAP-oriented design methodology which connects
design decisions with existing Cloud solutions and
provides the means to estimate the CAP properties
of an application. This methodology was then
realized by using Cloud patterns in order to capture
the design decisions and a set of annotations on the
various *aaS solutions that realize these patterns. A
visualization approach was also presented that
allows for better perception of the estimated CAP
properties and their impact on the application
design. Finally, the proposed approach was validated
by means of a case study scenario.

In the future we plan to complete the annotation
of the Cloud Pattern Catalog presented in (Fehling et
al., 2011a) so that we can empirically validate our
approach using different scenarios. As part of this
effort, we also plan to extend the *aaS solutions
annotation procedure to as large as possible group of

Cloud experts and offer tooling support for our
methodology as an application in the Cloud. In
addition we also plan to investigate different
possible approaches in combining the CAP
annotations, using for example weighted sums and
other statistical methods. Finally we also intend to
extend the methodology discussed in the previous
for purposes other than CAP estimation, for example
cost estimates and greenness of the application.

ACKNOWLEDGEMENTS

The research leading to these results has partially
received funding from the 4CaaSt project
(http://www.4caast.eu/) from the European Union’s
Seventh Framework Programme (FP7/2007-2013)
under grant agreement no. 258862. This paper
expresses the opinions of the authors and not
necessarily those of the European Commission. The
European Commission is not liable for any use that
may be made of the information contained in this
paper.

REFERENCES

Alexander , C., Ishikawa, S., Silverstein, M., Jacobson,
M., Fijksdal-King, I., 1977. A pattern language:
towns, buildings, construction. Oxford University
Press.

Brewer, E. A., 2000. Towards robust distributed systems.
PODC Keynote.

Chee, Y., Zhou, N., Meng, F. J., Bagheri, S., Zhong, P.,
2011. A Pattern-Based Approach to Cloud
Transformation. Proceedings of the IEEE International
Conference on Cloud Computing (CLOUD).

Erl, T., Kurtagic, A., Wilhelmsen, H., 2010. Designing
Services for Windows Azure. MSDN Magazine.

http://msdn.microsoft.com/en-us/magazine/ee335719.aspx
Fehling, C., Konrad, R., Leymann, F., Mietzner, R., Pauly,

M., Schumm, D., 2011c. Flexible Process-based
Applications in Hybrid Clouds. Proceedings of the
2011 IEEE International Conference on Cloud
Computing (CLOUD).

Fehling, C., Leymann, F., Retter, R., Schumm, D.,
Schupeck, W., 2011a. An Architectural Pattern
Language of Cloud-based Applications. Proceedings
of the 18th Conference on Pattern Languages of
Programs (PLoP).

Fehling, C., Leymann, F., Retter, R., Schumm, D.,
Schupeck, W., 2011b. A Collection of Patterns for
Cloud Types, Cloud Service Models, and Cloud-based
Application Architectures. Technical Report
University of Stuttgart.

Gamma E., Helm R., Johnson R., Vlissides J., 1995.
Design Patterns: Elements of Reusable Object-
oriented Software. Addison-Wesley.

Gilbert, S., Lynch, N. A., 2002. Brewer's conjecture and
the feasibility of consistent, available, partition-
tolerant web services. SIGACT News 33(2): 51-59.

Harrison, N., Avgeriou, P., Zdun, U., 2007. Architecture
Patterns as Mechanisms for Capturing Architectural
Decisions, IEEE Software.

Helland, P., 2007. SOA and Newton's Universe. MSDN
Blogs.
http://blogs.msdn.com/b/pathelland/archive/2007/05/2
0/soa-and-newton-s-universe.aspx

Hewlett-Packard Development, 2005. There is no free
lunch with distributed data. HP White Paper.
ftp://ftp.compaq.com/pub/products/storageworks/whit
epapers/5983-2544EN.pdf

Hohpe, G., Woolf, B., 2004. Enterprise Integration
Patterns: Designing, Building, and Deploying.
Addison-Wesley.

Iba, T., Miyake, T., Naruse, M., Yotsumoto, N., 2009.
Learning Patterns: A Pattern Language for Active
Learners. Proceedings of the International Conference
on Pattern Languages of Programs (PLOP).

Kossmann, D., 2010. How new is the cloud? Proceedings
of the IEEE 26th International Conference on Data
Engineering (ICDE).

Lau, C., Birsan, V., 2011. Best practices to architect
applications in the IBM Cloud. IBM Developer Works.
http://www.ibm.com/developerworks/cloud/library/cl-
cloudapppractices/index.html (2011)

Leymann, F., 2009. Cloud Computing: The Next
Revolution in IT. Proceedings of the 52th
Photogrammetric Week.
http://www.ifp.uni-
stuttgart.de/publications/phowo09/010Leymann.pdf

Mietzner, R., Fehling, C., Karastoyanova, D., Leymann,
F., 2010. Combining horizontal and vertical
composition of services. Proceedings of the IEEE
International Conference on Service-Oriented
Computing and Applications (SOCA).

Pardon, G., 2008: A CAP Solution (Proving Brewer
Wrong). Personal Blog.
http://guysblogspot.blogspot.com/2008/09/cap-
solution-proving-brewer-wrong.html

Petre, M., 1995. Why Looking isn’t Always Seeing.
Communications of the ACM.

Rising, L., 2004. Fearless Change: Patterns for
Introducing New Ideas: Introducing Patterns to
Organizations. Addison-Wesley.

Tidwell, J., 1998. A Pattern Language for Human-
Computer Interface Design. Washington University
Tech. Report WUCS-98-25.

Varia, J., 2010. Architecting for the Cloud: Best practices
– Amazon Web Services. Amazon.com white paper.
http://jineshvaria.s3.amazonaws.com/public/cloudbest
practices-jvaria.pdf

Vogels, W., 2009. Eventually consistent. Communications
of the ACM 52(1): 40-44.

Yahoo! Inc., 2011. Yahoo! Design Pattern Library. Online
Resource. http://developer.yahoo.com/ypatterns/

Zimmermann, O., Koehler, J., Leymann, F., Polley, R.,
Schuster, N., 2009. Managing architectural decision
models with dependency relations, integrity
constraints, and production rules. Journal of Systems
and Software 82(8): 1249-1267.

	cover-SciTePress
	designing for cap

