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Abstract—Enterprises often have no integrated and 
comprehensive view of their enterprise topology describing 
their entire IT infrastructure, software, on-premise and off-
premise services, processes, and their interrelations. Especially 
due to acquisitions, mergers, reorganizations, and outsourcing 
there is no clear ‘big picture’ of the enterprise topology. 
Through this lack, management of applications becomes 
harder and duplication of components and information 
systems increases. Furthermore, the lack of insight makes 
changes in the enterprise topology like consolidation, 
migration, or outsourcing more complex and error prone 
which leads to high operational cost. In this paper we propose 
Enterprise Topology Graphs (ETG) as formal model to describe 
an enterprise topology. Based on established graph theory 
ETG bring formalization and provability to the cloud. They 
enable the application of proven graph algorithms to solve 
enterprise topology research problems in general and cloud 
research problems in particular. For example, we present a 
search algorithm which locates segments in large and possibly 
distributed enterprise topologies using structural queries. To 
illustrate the power of the ETG approach we show how it can 
be applied for IT consolidation to reduce operational costs, 
increase flexibility by simplifying changes in the enterprise 
topology, and improve the environmental impact of the 
enterprise IT. 

Keywords-enterprise topology; enterprise topology graph; 
cloud; formalization; search; IT consolidation. 

I.  INTRODUCTION 
IT costs as well as the complexity of IT landscapes are 

increasing rapidly [1] due to reorganizations, new 
technologies, mergers, acquisitions, and outsourcing. The 
constant change often causes a loss of insight into the 
enterprise topology which hinders its continuous 
improvement and makes an overall IT strategy and 
governance hard to realize. The lack of a consistent and 
machine-readable enterprise topology slows down adaptation 
to new requirements and market demands, integration, and 
IT consolidation. All of these are major challenges for IT 
departments and management alike, crucial challenges to 
stay competitive [2]. For example, research has shown that 
especially for mergers and acquisitions integration of IT is 
one of the key success factors [3][4]. IT consolidation, which 
has a high potential for cost savings, is today widely realized 
by introducing server virtualization in datacenters. The scope 
of consolidation can even be broadened to include all on-
premise and off-premise infrastructure, middleware, and 
application components. However, due to the high 

complexity and number of dependencies new approaches are 
required, not only to IT consolidation, but also to make 
complex IT landscapes manageable and flexibly changeable. 

In this paper we define the Enterprise Topology Graph 
(ETG) which enables different stakeholders to capture and 
manage all relevant IT components, spanning private, 
community, public, and hybrid clouds, within an 
organization. We propose the ETG as a graph-based model 
comprised of nodes and edges of arbitrarily customizable 
types, holding an extensible set of properties. IT components 
of an enterprise are employed as nodes that are linked 
together with their logical, functional, and physical 
relationships represented by edges in the graph. In this paper 
we show that exploiting graph theory through ETG has the 
potential to solve a wide range of problems in cloud research 
and enterprise computing. Approaches defined as formal 
graph or set algorithms can be applied efficiently to the ETG, 
which reflect a consistent representation of the realities in the 
enterprise topologies. To illustrate the ETG approach, we 
present a methodology for consolidation in enterprise 
topologies to support IT departments mastering IT 
consolidation in a generic, reusable, and efficient way. 

We applied the following research design: We started 
with a literature survey which is summarized in Section V. 
The survey showed that existing topology models lack 
formality and focus on modeling applications. Based on 
summarization and abstraction of existing concepts we 
defined a first formalization of an Enterprise Topology 
Graph. We then used this formal model to define, 
implement, and evaluate an exemplary application: ETG-
based IT consolidation. This practical application demanded 
to also define a search algorithm on ETG and it guided us to 
further refine the graph model. The resulting main 
contributions of this paper are therefore (i) a formalized, 
graph-based model for enterprise topologies which enables 
the practical application of graph theory to cloud and 
enterprise computing problems. (ii) An efficient search 
algorithm, which is able to locate structures in the ETG. (iii) 
Based on this foundation, we present a methodology for 
ETG-based IT consolidation, which addresses consolidation 
on infrastructure, platform, and software layer. 

The remainder of this paper is structured as follows: We 
present Enterprise Topology Graphs along their formal 
definition and ETG example in Section II. In Section III, we 
show an efficient search algorithm on the ETG. As 
exemplary application of ETG we present the consolidation 
methodology in Section IV. The literature survey we 
conducted is reviewed in Section V. In the summary and 



outlook in Section VI we describe future work to increase the 
applicability of ETG, e.g., specifying reusable operations. 

II. THE ENTERPRISE TOPOLOGY GRAPH 
An Enterprise Topology Graph (ETG) is a graph-based 

model for enterprise topologies capturing all entities of 
enterprise IT and their logical, functional, and physical 
relationships. The conceptual model in Figure 1 depicts 
generic nodes and edges, which can be typed and refined to 
precisely define their semantics. Nodes and edges are both 
entities which can have an arbitrary number of properties. An 
ETG is a set of entities and their mapping onto types. Node 
types and edge types are structured in trees which are defined 
globally, i.e., they are not part of a definition of a particular 
ETG, but referenced in it and extensible. Segments are 
subgraphs of an ETG, representing a certain connected part 
of an ETG by holding only a subset of its entities. 

 
Figure 1.  Conceptual Model of Enterprise Topology Graph 

Representing enterprise topologies as formal graph 
enables the application of all knowledge in graph analysis 
and processing to improve the enterprise architecture. 
Without having done a detailed evaluation about this, we 
expect ETG to have hundreds of thousands of nodes. The 
ETG definition presented in our work is mainly influenced 
by TOSCA, the OASIS Topology and Orchestration 
Specification for Cloud Applications [5]. As of today, 
TOSCA seems to be the most complete, non-proprietary 
specification for describing applications and their 
management. ETG generalize TOSCA concepts to extend 
their purpose of describing application models towards the 
representation of enterprise topology instances. TOSCA 
represents a blueprint of a particular application, whereas on 
instance level ETG reflect many different (TOSCA) 
application instances present in the enterprise topology. 

A. Node Types and Edge Types 
Each entity is typed to bring domain-specific knowledge 

to the generic ETG entities. To establish a taxonomy 
between different levels of abstraction in types, we propose 
to structure them in trees, as shown in Figure 2. In [6] we 
successfully applied type trees to assigning functionalities 
applicable to certain types of entities to the type tree. When 
 

 
Figure 2.  Exemplary extract of node type tree and edge type tree 

applicable to a complete subtree the functionality is assigned 
to the respective node, e.g., start and stop to the Application 
Server node in Figure 2. Furthermore, type-specific aspects 
are assigned to leaves in the tree, e.g., port configuration to 
the Tomcat node in Figure 2. Based on our research we 
identified three fundamental edge types: hosted-on, depends-
on, and communicates-with. For nodes, the types are much 
more diverse. 

The usage of types enforces certain properties of their 
entities. This includes, for example, common functionality 
(like being an application server, hosting applications of a 
certain type, or a relational database, managing data in 
tables), attributes (like id, name), or offered operations with a 
predicable behavior to the outside (like start, stop, suspend). 
These properties are not explicitly modeled in the ETG, but 
tools using an ETG can rely on the fact that entities of a 
certain type follow the requirements of this type.  

Additionally, this typing system helps to generalize and 
refine the graph. Generalization, for example, could replace 
detailed types with more general ones (e.g., replace type 
Linux with Operating System) or aggregate certain nodes and 
edges to reduce the ETG’s complexity. For instance, an ETG 
can be made more abstract by aggregating all nodes from 
platform level and below. Refinement adds more details to 
the ETG by retrieving more information about an entity or 
assigning a more detailed type. In general, mechanisms to 
adjust the level of information abstraction depending on the 
application scenario are ongoing work. 
Definition I (Node Types and Edge Types) 

The sets 𝑁𝑜𝑑𝑒𝑇𝑦𝑝𝑒𝑠  and 𝐸𝑑𝑔𝑒𝑇𝑦𝑝𝑒𝑠  contain the 
available types for nodes and edges respectively. 
Definition II (Relation of Types) 

Types are structured as trees, whereas each type may be 
present in multiple branches. This structure of types is 
denoted in the function 𝑝𝑎𝑟𝑒𝑛𝑡𝑇𝑦𝑝𝑒𝑠, whereas the inverse 
function is 𝑐ℎ𝑖𝑙𝑑𝑇𝑦𝑝𝑒𝑠. The functions for 𝐸𝑑𝑔𝑒𝑇𝑦𝑝𝑒𝑠 are 
defined analogical. 

𝑝𝑎𝑟𝑒𝑛𝑡𝑇𝑦𝑝𝑒𝑠:𝑁𝑜𝑑𝑒𝑇𝑦𝑝𝑒𝑠 → 2𝑁𝑜𝑑𝑒𝑇𝑦𝑝𝑒𝑠  

𝑐ℎ𝑖𝑙𝑑𝑇𝑦𝑝𝑒𝑠:𝑁𝑜𝑑𝑒𝑇𝑦𝑝𝑒𝑠 → {𝑥 | 𝑥 ∈ 𝑁𝑜𝑑𝑒𝑇𝑦𝑝𝑒𝑠}, 
𝑝 ⟼ {𝑐 | 𝑝𝑎𝑟𝑒𝑛𝑡𝑇𝑦𝑝𝑒𝑠(𝑐) = 𝑝} 
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B. Entities 
The Enterprise Topology Graph is a directed, possibly 

cyclic graph that is constructed out of two basic entities, 
nodes and edges. The graph is directed to denote in which 
direction the semantic meaning introduced through edge 
types has to be interpreted. The ETG may be cyclic due to 
the ability to capture a wide variety of semantic information. 
Definition III (Nodes) 

The set 𝑁  contains all the nodes of an ETG. A node 
represents everything that is part of an enterprise topology. 
Nodes represent the building blocks that applications need to 
operate sufficiently, for instance a specific workflow, a Web 
service, a user interface, a middleware component, or 
infrastructure element. Like in other modeling approaches, 
the granularity determining what is represented in the model 
is up to the modeler or extraction algorithm analyzing the IT 
landscape. We advocate that ETG should contain all 
information available and thus should be as fine-grained and 
detailed as possible. The more fine-grained an ETG is 
modeled the better results may be achieved during search, 
consolidation, and other tasks executed on ETG. 

The function  𝑛𝑜𝑑𝑒𝑇𝑦𝑝𝑒  associates one node with a 
specific type from the set of 𝑁𝑜𝑑𝑒𝑇𝑦𝑝𝑒𝑠. 

𝑛𝑜𝑑𝑒𝑇𝑦𝑝𝑒:𝑁 → 𝑁𝑜𝑑𝑒𝑇𝑦𝑝𝑒𝑠,𝑛 ⟼ 𝑡 

Definition IV (Edges) 
The set 𝐸 ⊆ 𝑁 × 𝑁  contains directed relationships 

between two nodes. The type of an edge defines its 
semantics, for example, denoting that one node is ‘hosted-
on’ another node. We do not constrain the use of edges 
between nodes, thus, some ETG may have cycles as 
described above. For usability reasons we define the function 
E which returns the set of incoming and outgoing edges of a 
Node. Additionally we define 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝐸𝑑𝑔𝑒𝑠  and 
𝑜𝑢𝑡𝑜𝑔𝑖𝑛𝑔𝐸𝑑𝑔𝑒𝑠 analogous if only edges with this specific 
direction are of interest. 

𝐸:𝑁 → 𝑁 × 𝑁,𝑛 ⟼ {(𝑓, 𝑡)|(𝑓, 𝑡) ∈ 𝐸 ∧ (𝑓 = 𝑛 ∨ 𝑡 = 𝑛)} 

𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝐸𝑑𝑔𝑒𝑠:𝑁 → 𝑁 × 𝑁, 
𝑛 ⟼ {(𝑓, 𝑡)|(𝑓, 𝑡) ∈ 𝐸(𝑛) ∧ 𝑡 = 𝑛} 

The function 𝑒𝑑𝑔𝑒𝑇𝑦𝑝𝑒 associates one node with a specific 
type from the set of 𝐸𝑑𝑔𝑒𝑇𝑦𝑝𝑒𝑠. 

𝑒𝑑𝑔𝑒𝑇𝑦𝑝𝑒:𝐸 → 𝐸𝑑𝑔𝑒𝑇𝑦𝑝𝑒𝑠, 𝑒 ⟼ 𝑡 

Definition V (Entities) 
The set 𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 = 𝑁 ∪ 𝐸 holds all the nodes and edges 

of an ETG. This set is used by the following definitions. 

C. Properties 
Properties capture the domain-specific knowledge of 

ETG entities as key-value-pairs. They are used to represent 
properties of the entity, information augmented by tools or 
algorithms, implementation artifacts, or non-functional 
requirements. For instance, an ETG can be augmented with 
runtime information indicating workload gathered from 
monitoring. The different types of properties are uniquely 

identified and distinguished by URIs, which specify the 
structure and data type of the value. 
Definition VI (Property Keys) 

As property keys we use URIs [7] which enable both, 
hierarchical structuring and extensibility. Properties can be 
grouped using the structure of the URI. 

𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝐾𝑒𝑦𝑠 = {𝑢𝑟𝑖 | 𝑢𝑟𝑖 ∈ 𝑅𝐹𝐶3986} 

Definition VII (Property Values) 
Valid attribute values are represented by the set 

𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑉𝑎𝑙𝑢𝑒 which explicitly includes structured strings, 
for example, XML documents or URIs, and binary data like 
a Java Web Archive (WAR). Multiple values can be 
condensed into one value by using a type-specific list format. 
Definition VIII (Properties) 

The generic properties function returns the attributes of 
an entity. The different kind of data stored in properties is 
not distinguished by using different functions. Property keys 
define the semantic of the value and what data type can be 
expect from the value. 

𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠:𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 → 𝐸𝑛𝑡𝑖𝑡𝑦𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠
⊆ 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝐾𝑒𝑦𝑠 × 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑉𝑎𝑙𝑢𝑒𝑠 

D. Final Definitions 
Based on the preceding definitions the Enterprise 

Topology Graph and its Segments are defined as follows: 
Definition IX (Enterprise Topology Graph) 

The Enterprise Topology Graph consists of the set of 
nodes, edges, and their type mappings. The ETG only 
includes the assignment function of node types and edge 
types (𝑛𝑜𝑑𝑒𝑇𝑦𝑝𝑒 and 𝑒𝑑𝑔𝑒𝑇𝑦𝑝𝑒), but not the set of types 
(𝑁𝑜𝑑𝑒𝑇𝑦𝑝𝑒𝑠  and 𝐸𝑑𝑔𝑒𝑇𝑦𝑝𝑒𝑠 ) because they represent a 
global set which is not bound to a specific ETG. 

𝐸𝑇𝐺 = {𝑁,𝐸,𝑛𝑜𝑑𝑒𝑇𝑦𝑝𝑒, 𝑒𝑑𝑔𝑒𝑇𝑦𝑝𝑒} 

This definition not only allows the application of algorithms 
based on graph theory, but also algorithms with low 
complexity operating on the sets of nodes and edges. 
Definition X (Segment) 

A segment is a part of an ETG, which is called subgraph 
in graph theory. The number of entry and exit nodes is not 
limited, i.e., it may be greater than one. A segment’s nodes 
must be connected. 

𝑆𝑒𝑔𝑚𝑒𝑛𝑡 = {𝑆𝑁 ⊆ 𝑁, 𝑆𝐸 ⊆ 𝐸,𝑛𝑜𝑑𝑒𝑇𝑦𝑝𝑒, 𝑒𝑑𝑔𝑒𝑇𝑦𝑝𝑒} 

Segments are the concept to refer to parts of an ETG and the 
corresponding edges. Segments can be used to reduce 
complexity of algorithms, whose runtime typically decreases 
with the number of processed entities. Also for human 
readers, interested only in a particular aspect included in the 
ETG, work is made easier through segmentation. 

E. ETG Example 
Figure 3 illustrates the ETG approach by depicting one 

segment of a larger ETG. The ETG segment contains two 
virtual machines hosting nodes of the type Tomcat  
 



 
Figure 3.  Exemplary ETG 

application server and relational database management 
systems (RDBMS). On the application server two Web 
services are hosted with one of them connecting to the 
RDBMS. Some nodes have properties, for example, the 
virtual machines are located in the European Union (EU) and 
are augmented with utilization. A graphical notation for ETG 
is not explicitly defined yet. Therefore we use an intuitive 
notation explained in the legend of Figure 3. 

III. SEARCH IN ENTERPRISE TOPOLOGY GRAPHS 
An essential algorithm required frequently for the 

management of large ETG is search. The approach for 
search in ETG we present in the following does not only 
locate certain nodes or properties by comparing strings, but it 
allows using ETG segments as queries. Consequently, the 
algorithm enables finding complex structures in the ETG. 
For example, we can locate all nodes hosted on outdated 
Tomcat application servers. As shown in Figure 4 the query 
contains a node of the type Tomcat with the property 
version=5.5. This query could be implemented in code, but a 
generic search algorithm specifying this query as segment, 
i.e., in the same model the ETG is already defined, provides 
a comprehensible, reusable, and generally applicable 
solution. To increase flexibility, we offer wildcards for the 
types and properties of entities, indicating to the search 
algorithm that any value is valid. Figure 4 depicts the 
aforementioned query visually, including one wildcard as 
type of the node hosted-on the Tomcat node. When applying 
this query to the ETG example in Figure 3, the two results 
would be the two Web services in the upper left of the figure. 

A. Search Algorithm 
The input of the algorithm is an ETG (cf. definition IX) to 

search on and a query in form of an ETG segment (cf. 
definition X). The output is a set of zero or more segments 
representing the nodes and edges in the graph that match the 
search query. 

 
Figure 4.  Search query defined as ETG segment locating arbritrary typed 

nodes which are hosted on Tomcat servers with version 5.5 

The described ETG problem can be reduced to the 
problem of graph isomorphism evaluating the equality of 
two graphs. Subgraph isomorphism decides if a graph S (the 
search query) is isomorph to a subgraph of G (the ETG). 
This is the case if any node in S can be mapped to one node 
in G and each edge existing between two nodes in S also 
exists between these nodes in G [8]. Graph isomorphism is 
well-researched and we list corresponding algorithms in 
Section V. We apply subgraph isomorphism to searching on 
ETG through identifying all subgraphs, i.e., search results, of 
G matching S. Our implementation is built upon the VF2 
algorithm presented by Cordella et al. in [9] with some 
extensions discussed in the following. VF2 solves the 
problem of (sub) graph isomorphism for directed graphs and 
was proven to be efficient for large graphs [9] which 
qualifies it for usage in ETG. Core of the algorithm is a 
recursive function deciding if an isomorphism was found or 
if the current state can be extended towards an isomorphism. 
Special care is given to the recursive function regarding 
spatial complexity. The search tree is pruned by a set of 
syntactical feasibility rules which are the main contribution 
of VF2 compared to its predecessor. 

In the following we describe how we implemented and 
optimized VF2 to suit ETG requirements: 

(i) In ETG edges are typed and may have properties 
which must be inspected during search. VF2 does not regard 
edges and evaluates them always together with the two 
connected nodes. To overcome this we represent ETG edges 
as nodes and introduce plain directed edges between nodes 
representing ETG nodes and nodes representing ETG edges. 
With this, we gain the ability to formulate complex searches 
towards edges without changing the core graph algorithm. 

(ii) VF2 checks the validity of states with a set of 5 
syntactical feasibility rules. To verify the semantics of the 
respective domain the function Fsem is defined. For our use 
case we implement Fsem to check if the type and properties 
on entities match the search query. For a specific type a node 
being a semantic match must be of this type or any subtype 
of the given type, i.e., ⋃ 𝑐ℎ𝑖𝑙𝑑𝑇𝑦𝑝𝑒𝑖�𝑛𝑜𝑑𝑒𝑇𝑦𝑝𝑒(𝑠)�∞

𝑖=1 . If 
no restriction on the type of the entity should be applied a 
wildcard type matching all other types is used. If properties 
are provided in the search query their values must exactly 
match to be valid. Additionally, a wildcard can be used as 
value which is used to enforce the existence of a property. 
Otherwise, if a property is not defined on a node of S, it may 
or may not exist on the respective node of G. Formally Fsem 
is defined as follows: 

𝐹𝑠𝑒𝑚:𝑁𝑆 × 𝑁𝐺 → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}, (𝑠,𝑔) ⟼ 
𝑛𝑜𝑑𝑒𝑇𝑦𝑝𝑒(𝑔) ∈ �𝑊𝐼𝐿𝐷𝐶𝐴𝑅𝐷 ∪ 𝑛𝑜𝑑𝑒𝑇𝑦𝑝𝑒(𝑠) ∪
⋃ 𝑐ℎ𝑖𝑙𝑑𝑇𝑦𝑝𝑒𝑖�𝑛𝑜𝑑𝑒𝑇𝑦𝑝𝑒(𝑠)�∞
𝑖=1 � ∧ ∀(𝑘, 𝑣) ∈

𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠(𝑠): 𝑣 = 𝑊𝐼𝐿𝐷𝐶𝐴𝑅𝐷 ∨ (𝑘, 𝑣) ∈ 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠(𝑔)  

In future work we would like to extend Fsem to support 
more complex conditions on property values than wildcard 
and equality, for example, to state that a value starts with a 
certain string or matches a certain regular expression. 
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(iii) Instead of returning the first result found and 
stopping the algorithm we implemented our search algorithm 
to store the result to a list and continue search for further hits.  

(iv) VF2 generates a large (i.e., |𝑁𝑆| ∗ |𝑁𝐺|) set of node 
pairs (the candidate pair set) to which the feasibility rules 
are applied. Many unnecessary computations are done with 
mappings which cannot be extended to a result. This can be 
improved by choosing a start node out of S. The key 
property of the search query is that each node contained in 
the graph S must exist in each of the results. Based on this 
we select one node in S as start node and apply the semantic 
feasibility rules only to the node pairs created by combining 
the start node with each node in the ETG. This results in a 
much smaller number of initial mappings to process (|𝑁𝐺|). 

We argue that the probability that extending the mapping 
fails is higher for nodes in S with many restrictions. This is 
the case when a type is defined instead of using a wildcard 
type, restrictions on properties are imposed, and the node has 
lots of edges. To let unnecessary search branches fail fast, 
instead of processing them, we propose using a heuristic to 
choose a start node with many restrictions. We define the 
function which evaluates the nodes in the search segment 
based on the number of restrictions they impose. The node 
with the highest rating is selected and used as start node. 

𝑟𝑎𝑡𝑖𝑛𝑔: 𝑁𝑜𝑑𝑒𝑠 → 𝑖𝑛𝑡,𝑛 ⟼ 5 ∗ (𝑛𝑜𝑑𝑒𝑇𝑦𝑝𝑒(𝑛) ≠
𝑊𝐼𝐿𝐷𝐶𝐴𝑅𝐷) + |𝑝𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠(𝑛)| + 2 ∗

(|𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝐸𝑑𝑔𝑒𝑠(𝑛)| + |𝑜𝑢𝑡𝑔𝑜𝑔𝑖𝑛𝑔𝐸𝑑𝑔𝑒𝑠(𝑛)|)  

The last optimization (iv) highlights the advantage that 
algorithms on ETG can switch between using the sets of 
entities and the graph structure of the entities. 

The complexity of our search algorithm based on VF2 is 
𝒪(𝑒! ∗ 𝑒), 𝑒 = |𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠𝐺| in the worst case [9] and 𝒪(𝑒) in 
the best case. We improved the best case which is finding a 
single node in the ETG by introducing the selection of the 
start node (iv). In this case the start node or nodes in G are 
already the search results and only one pass over all ETG 
nodes is required. 

B. Evaluation Results 
We evaluated our search algorithm with a set of ETG 

samples to analyze its performance characteristics for 
different types of search queries. Both, the formal ETG 
definition and search algorithm, have been implemented 
using Java. Table 1 shows the runtime in seconds we 
achieved on a standard notebook. 

TABLE I.  RUNTIME IN SECONDS OF ETG SEARCH QUERIES 

Search Query ETG samples 
#nodes 100 1,000 10,000 100,000 
# edges 250 2,500 25,000 250,000 

(i) Node of arbritrary type with 
a certain property 0.003 0.003 0.007 0.019 

(ii) Arbritrary typed node 
hosted on typed node (Figure 4) 0.005 0.005 0.015 0.020 

(iii) Complex structure of typed 
nodes and edges (11 entities) 1.625 1.692 1.710 1.760 

(iv) Same as query (iii) but 
nodes are not typed 0.130 0.499 4.257 40.423 

These measurements show that even for complex 
structured queries the runtime of the search algorithm only 
increases slowly with the size of the sample ETG, as long as 
there are not that many wildcards contained in the query. 
Query (iv), with wildcards used for all node types, shows a 
different characteristic. Due to the low number of restrictions 
it is closer to subgraph isomorphism than the other queries. 

IV. ETG APPLICATION EXAMPLE:  
CONSOLIDATION OF IT INFRASTRUCTURES 

Consolidation in general is the process of aggregating or 
merging multiple similar entities into one. Consolidation in 
the context of cloud computing is currently mainly focused 
on virtualization, i.e., the consolidation of multiple physical 
servers as virtual machines on one physical server [10]. 
However, performing consolidation on the enterprise 
topology enables to broaden the scope of consolidation to 
consider infrastructure, platform, and software layer. 

The methodology we propose identifies consolidation 
possibilities and provides pluggable extension points to 
automate the actual consolidation through type-specific 
implementations. A generic automated consolidation is not 
possible due to type-specific configurations or requirements. 
For example, one cannot generally assume that the migration 
of an application running on application server A onto 
application server B, which hosts similar applications, is 
generally possible. The information needed to decide this 
may be contained in the ETG, but the evaluation must be 
done by a domain expert or a domain-specific algorithm. 

All domain-specific consolidation knowledge is captured 
in a so-called consolidation strategy, in reference to the 
strategy pattern in programming [11]. As depicted in 
Figure 5, a consolidation strategy consists of an extraction 
query, a target query, and a strategy implementation, which 
may be performed by a human expert or automation code. 
The extraction query identifies candidate segments in the 
ETG that a consolidation strategy is able to consolidate. 
Beyond the identification of candidate segments in this 
example, further properties like low utilization, outdated or 
not supported software or hardware, insufficient quality of 
service are applicable. The target query locates candidate 
segments in the ETG where the consolidation candidates 
might be migrated to. Based on type-specific knowledge and 
evaluation the strategy implementation migrates the 
 

 
Figure 5.  Exemplary consolidation strategy consisting of two queries and 

an implementation. 
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consolidation candidates to the identified target and adapts 
the environment accordingly, for example, by reconfiguring 
or removing nodes not used anymore. 

A. Consolidation Methodology 
Our consolidation methodology supports two scenarios: 

First, consolidate a segment, segment to consolidate in 
Figure 5, into the target ETG, as shown in Figure 5. This 
may be applied during IT consolidation in reorganizations, 
mergers, and acquisitions to integrate IT without creating a 
high degree of duplication. Second, both queries can be 
applied to one ETG to optimize the enterprise topology. The 
exemplary consolidation strategy to illustrate our 
methodology aims to consolidate outdated Tomcat 
application servers from an acquired partner company whose 
IT should be integrated into the existing enterprise IT. 

The following methodology shows which steps a 
consolidation strategy follows: 

(i) Similarity – The extraction query, bottom right of 
Figure 5, is used to find possible consolidation candidates in 
the segment which should be consolidated. In our exemplary 
consolidation strategy we would like to locate Tomcat nodes 
of version 5.5. The target query, bottom left of Figure 5, 
identifies possible consolidation targets in the ETG. In the 
example we aim at improving the enterprise topology and 
therefore restrict the Tomcats located by the target query to 
version 7. Both queries are executed on the respective ETG 
using the search algorithm presented in Section III. 

(ii) Compatibility – The strategy implementation uses 
domain-specific knowledge regarding functional and non-
functional aspects to determine which of the resulting 
segments are compatible with respect to consolidation. In the 
example the configuration and non-functional requirements, 
e.g., the legislative area the infrastructure is located in, of the 
Tomcat nodes must be compared to decide if an application 
can be moved. In addition, the utilization of the 
infrastructure, e.g., memory or CPU, and software, e.g., 
number of connections allowed per license, should be 
considered to evaluate if the nodes in the target segment are 
capable to host the nodes to be consolidated. For this, future 
utilization must be estimated to ensure that none of the nodes 
is over-utilized after the consolidation. 

(iii) Environment – Components cannot be handled 
independent of their environment and relations to other 
components. In the ETG example in Figure 3, the 
environment of the right Web Service would be the RDBMS. 
In general, the environment includes aspects like networking 
or physical locations, which determines accessibility, 
security, and legislative implications of the component. 
Additionally, there are a number of relations to other 
components which must be analyzed, for example, databases 
or Web services. These relations must be reestablished after 
the consolidation, which might for instance require a 
network reconfiguration, or that corresponding nodes are 
also migrated by recursively invoking another consolidation 
strategy. In any case, the references to the nodes must be 
changed, i.e., the connection string to the database or Web 
service must be adapted. This is processed by the 

consolidation strategy, because the place this information is 
stored depends on the node type. 

(iv) Execution – After the consolidation is planned and 
evaluated it must be translated into technical actions to 
perform the actual consolidation. In our example the 
respective applications and their data are migrated to the 
target environment, dependencies to and from the 
environment are updated, the application is started in the 
target segment, and shut down and deprovisioned in the old 
one. The details of this process depend on the used cloud 
management system. The generation of automated 
workflows out of the high level decision how to consolidate 
certain components is an interesting field of future research. 

(v) Progress – The consolidated parts are now marked 
and the process is repeated using the available consolidation 
strategies until everything has been consolidated or no 
further consolidation is possible anymore. 

B. Discussion 
The methodology proposed in this section describes the 

consolidation of components from a conceptual viewpoint in 
order to illustrate how ETG can be used as a basis to tackle 
challenges in cloud and enterprise computing. 

Due to availability requirements some nodes must not be 
hosted on the same physical infrastructure or must even be 
located in different geographic regions. These and similar 
optimization criteria are captured through edges with a 
dedicated edge type. To document this non-functional 
requirement the ETG is augmented with additional edges, to 
make this information available to consolidation strategies.  

One reason for the increased efficiency in the cloud is 
multi-tenancy, which is realized through sharing resources 
between multiple tenants. When sharing a physical machine 
by running multiple virtual machines on it, the operating 
system and middleware are duplicated for each tenant. If the 
tenants are sharing the middleware, the overhead is reduced. 
On the other side the isolation decreases accordingly, which 
must then be enforced using appropriate mechanisms. 
Consolidation strategies introduce resource sharing on the 
highest possible layer, according to the cloud layers 
software, platform, and infrastructure [12], to maximize the 
savings of the consolidation. Another way to improve 
consolidation is the use of so-called adapter which allows 
hosting nodes on other nodes to which they have not been 
compatible before, as described in [6]. 

V. RELATED WORK 
The results of our literature survey are structured into two 

sections: Section V.A observes how topologies and 
enterprise architectures are currently modeled. Section V.B 
presents the related work regarding search algorithms and 
discusses current research in IT consolidation. 

A. Models for Enterprise Topology 
Enterprise Architecture Management (EAM) defines the 

layers business, process, integration, software, and 
infrastructure [13]. Two of the most important aspects are (i) 
a holistic view with respect to all enterprise architecture 
layers and (ii) the alignment of business and IT [14]. ETG 



support this by representing nodes in the integration, 
software, and infrastructure layer, and their dependencies. 
Despite capturing technical details the presented search 
algorithm and consolidation methodology show how ETG 
can be used to achieve business goals. Fran et al. [15] 
describe a domain-specific language based on the Meta 
Modeling Language [16]: The IT domain-specific Modeling 
Language (ITML) contains a fixed set of entities like 
hardware, software, services, and processes, which can be 
refined if needed, and a fixed set of relations. ETG are more 
generic and enable modeling on multiple levels of 
granularity while still providing strong typing through 
structured node types and edge types, as presented in Section 
II. Schweda [17] presents how to create tailored languages 
capturing enterprise-specific aspects of enterprise 
architectures by defining best practice building blocks. These 
building blocks are on a high level of abstraction and may be 
technically realized by a number of ETG entities in the 
enterprise topology. 

There are data models expressing dependencies of IT 
infrastructure elements [20], these are unsuitable and 
incomplete to express the whole enterprise topology. The 
generality of the ETG, however, enables the mapping of 
these data to ETG entities. Therefore, existing management 
tools supporting CIM [20], SNMP [21], and so on may be 
used to extract an ETG from a company’s infrastructure. 

There are different approaches describing a (composite) 
application: An application model which includes 
dependency and deployment relations between components 
is formalized in [22]. Mietzner [23] describes cafe which 
supports modeling and deployment of composite 
applications, formalized by a formal definition of an 
application model. Leymann et al. [24] broadens this typing 
model and adds labels (properties in the ETG definition) to 
optimize the distribution of applications between clouds. 
However, types are not structured, i.e., in contrast to our 
work there is no relation between different types. The 
Topology and Orchestration Specification for Cloud 
Applications [5] (TOSCA) is a recently initiated 
standardization initiative at OASIS to define the topology 
and management aspects of applications. The presented ETG 
definition is based on concepts of TOSCA, as detailed in 
Section II, and able to include instances of application 
models described in TOSCA. In essence, all these 
approaches describe application models. ETG however 
represent the enterprise topology including a number of 
instance of these models. [25] presents an UML-based 
approach to model application structures used in the scope of 
topology discovery. The Service Component Architecture 
(SCA) [26] composes applications out of services by 
defining functional relations. Other relations, e.g., where a 
service is deployed, are not captured. In software 
architecture, design, and development languages like the 
Acme architectural description language [18] and UML [19] 
are used. However, they target mostly application 
architectures and do not offer the formality we are looking 
for. To be able to build the code fragments of the described 
applications build tools like Apache Maven capture 
dependencies between code artifacts, but are not able to 

depict other relations, functional or logical. The presented 
approaches either do not have a broad enough typing system, 
which is crucial to bring different semantics found in 
enterprise topologies to generic entities, or they do not 
provide a formal model appropriate for enterprise topologies. 
However, information included in the application models 
may be used to augment the ETG. 

B. Search and IT Consolidation 
To solve the problem of (sub)graph isomorphism 

different algorithms exist: Messmer [27] compares different 
graph matching algorithms. The algorithm of Ullmann [28] 
was already published in 1976 and improved, for example, in 
[8]. McKay [29] solves the graph isomorphism problem by 
transforming the graphs into a canonical data format. In 
some cases though, its runtime is exponential. For search, 
i.e., subgraph isomorphism, we used the VF2 algorithm in 
[9], which argues to provide better performance in terms of 
time and spatial complexity than Ullmann. The concise 
listing of all these works shows how well-elaborated the 
concepts in graph theory are. We take significant advantage 
from that as these results are of enormous help for defining 
ETG-based applications. 

In EAM, consolidation efforts are mostly in the focus of 
the business perspective. Buckl et al. [30], for instance, 
describes patterns to merge and harmonize business 
functionalities after mergers. Business IT alignment after 
mergers and acquisitions is also addressed in [31]. This 
approach states facts about the systems to be consolidated 
and rules as relations between facts. Based on this, 
predictions regarding the impact of business decisions to IT 
can be made. On enterprise topology level, Speitkamp and 
Bichler [32] describe an algorithm for server consolidation, 
as well as heuristics which can be used if the number of 
server is too high for the exact algorithm. [33] describes 
server consolidation through virtualization. Consolidation on 
platform or application level [12] is not investigated in detail 
so far. [34] is a case study of a software consolidation in the 
banking sector, merging three systems after multiple mergers 
into one. Therefore, our approach broadens the consolidation 
scope and additionally exploits the cloud characteristic of 
decreasing costs if resources are shared on higher layers, i.e., 
if an application server is shared the efficiency is higher than 
sharing only the physical server. 

VI. SUMMARY AND FUTURE WORK 
In this paper we presented Enterprise Topology Graphs 

that allow us to comprehensively capture enterprise IT 
landscapes. Based on the formal definition of ETG a generic 
search algorithm has been introduced that enables identifying 
structures in ETG. The presented consolidation methodology 
identifies possible consolidation candidates and targets using 
this search algorithm. Consolidation strategies are defined as 
part of the methodology to capture domain-specific 
knowledge required to evaluate consolidation possibilities 
and to identify concrete actions for realizing them. 

Formalizing enterprise topologies enables the application 
of proven graph algorithms to problems in cloud and EAM 
research, for example, VF2 [9] was used for the search 



algorithm in Section III. Furthermore, the consolidation 
methodology shows how a generic operation on the ETG 
(search) can be easily combined into higher level 
functionality (consolidation). Our vision is to have a broad 
set of basic operations for the ETG as reusable building 
blocks to simplify future research. 

The areas to apply ETG are manifold: Future research 
will address further cloud challenges like analyzing the 
relation of business processes to the services represented in 
enterprise topologies, outsourcing, migration, ensuring 
compliance, modeling of new applications, and approaches 
to gather relevant information to augment the ETG. Due to 
the large number of entities in an ETG mechanisms have to 
be researched to adjust the granularity and level of 
abstraction of the graph. Depending on the problem domain 
the ETG needs to be structured accordingly to only include 
the required information. 
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