
Institute of Architecture of
Application Systems
University of Stuttgart
Stuttgart, Germany

{fehling, leymann, schumm}
@iaas.uni-stuttgart.de

Daimler AG
Stuttgart, Germany

jochen.ruetschling@daimler.com

T-Systems International GmbH
Frankfurt, Germany

{thilo.ewald, michael.pauly}
@t-systems.com

Capturing Cloud Computing
Knowledge and Experience in Patterns

Christoph Fehling, Thilo Ewald, Frank Leymann,
Michael Pauly, Jochen Rütschlin, David Schumm

© 2012 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

@inproceedings{Fehling12,

author = {Christoph Fehling and Thilo Ewald and Frank Leymann and

Michael Pauly and Jochen Rütschlin andDavid Schumm},

title = {Capturing Cloud Computing Knowledge and Experience in Patterns},

booktitle = {Proceedings of the 5th IEEE International Conference on

Cloud Computing, CLOUD 2012},

year = {2012},

pages = {726--733},
doi = {10.1109/CLOUD.2012.124},

publisher = {IEEE Computer Society}

}

:

Institute of Architecture of Application Systems

Capturing Cloud Computing Knowledge and Experience in Patterns

Christoph Fehling1, Thilo Ewald3, Frank Leymann1, Michael Pauly3, Jochen Rütschlin2, David Schumm1

1 Institute of Architecture of
Application Systems
University of Stuttgart

Stuttgart, Germany
{fehling, leymann, schumm}

@iaas.uni-stuttgart.de

2 Daimler AG
Stuttgart, Germany

jochen.ruetschling@daimler.com

3 T-Systems International GmbH
Frankfurt, Germany

{thilo.ewald, michael.pauly}
@t-systems.com

Abstract— The industry-driven evolution of cloud computing
tends to obfuscate the common underlying architectural
concepts of cloud offerings and their implications on hosted
applications. Patterns are one way to document such
architectural principles and to make good solutions to
reoccurring (architectural) cloud challenges reusable. To
capture cloud computing best practice from existing cloud
applications and provider-specific documentation, we propose
to use an elaborated pattern format enabling abstraction of
concepts and reusability of knowledge in various use cases. We
present a detailed step-by-step pattern identification process
supported by a pattern authoring toolkit. We continuously
apply this process to identify a large set of cloud patterns. In
this paper, we introduce two new cloud patterns we identified
in industrial scenarios recently. The approach aims at cloud
architects, developers, and researchers alike to also apply this
pattern identification process to create traceable and well-
structured pieces of knowledge in their individual field of
expertise. As entry point, we recap challenges introduced by
cloud computing in various domains.

Keywords- cloud computing, architecture, patterns

I. INTRODUCTION

Through the use of cloud computing, cloud providers and
their customers benefit from the fundamental cloud
properties: elasticity, pay-per-use, standardization, and
resource sharing. Elasticity empowers cloud users to reserve
and release cloud resources dynamically and based on the
currently experienced workload. Pay-per-use pricing models
ensure that only the temporarily used resources are billed to
customers. The broad availability of reusable cloud services
cause cloud applications, their components, and used
middleware to be standardized and homogenized. This
significantly reduces the complexity of cloud application
runtime environments and, together with the enabled
resource sharing between cloud users, makes cloud
resources a generally available commodity. For these
properties, cloud computing has been recognized as one of
the key IT topics for the next years [39] [5] due to (i) its
ability to cope with extremely large amounts of users, (ii) its
ability to handle vast amounts of data, (iii) its flexibility
when these amounts change suddenly, and (iv) its
customizability regarding various business requirements. To
benefit from this powerful computing environment,

application architects and developers need to follow certain
architectural and management best practices. The
dynamicity of the runtime infrastructure [1], replication of
data [14], handling of resource failure [15], tenant isolation
[5], and the bridging of different cloud environments [24]
have to be incorporated in the applications architecture and
runtime behavior. Many of these challenges are also faced
in non-cloud applications in a similar manner. However, the
strong interrelation of cloud applications with the runtime
environment provided as-a-Service makes clouds a very
complex and diverse environment. Building and executing
cloud applications without considering the specifics of this
environment may result in suboptimal resource utilization
and may even reduce applications’ availability [1].

To tackle the complexity of the cloud environment, we
propose to use patterns, a well-established concept to
describe pieces of knowledge [2] to capture architectural
styles and best practices of cloud computing. We understand
these cloud patterns as human-readable documents sharing a
common format. The patterns are interrelated in a structured
manner and ensure an abstraction of implementation details
and use case specifics to describe reusable solutions to
reoccurring problems. The approach addresses the deficit
that the industry-driven evolution of cloud computing
technologies often results in an implicit application of
architectural patterns. Such implicit use of patterns generally
makes cloud offerings hard to compare, because the common
underlying architectural principles remain non-public or are
obfuscated through offering-specific terminology and
components. In previous works [3] [4] [25], we have already
introduced several patterns capturing cloud architecture
principles and management styles common for different
cloud providers. Because these providers offer large portions
of the applications’ functionality and runtime environments
as-a-Service we have used one and the same format to also
capture the concepts and behavior of different cloud types
and cloud offerings. Using just one format enables the
categorization of cloud providers regarding the patterns they
support and sets the context for architectural patterns to be
implemented by application developers. The use of a
common pattern format, further, eases perception [45] and,
thus, increases cloud technology adoption.

To enable other experts to capture their knowledge about
cloud computing in this form, we cover in this paper how
cloud architectural patterns can be identified, structured,

organized, and provided as teaching materials. We aim at
supporting the following groups and their concerns with a
concise cloud pattern-based approach. First, presentation of
information in a pattern format enables application
architects to quickly absorb a large body of knowledge and
to understand the impact that cloud computing, associated
technologies, and products have on application architectures.
The patterns, thus, capture how architectural decisions
impact the functional and non-functional properties of cloud
applications. The interrelations between patterns for the
cloud environment and those for cloud applications describe
cross-cutting concerns between application architecture and
the runtime environment. Second, cloud patterns provide
abstract knowledge about cloud products to application
developers. Quickly changing and evolving cloud application
implementations and available cloud offerings may be easier
coped with, because abstract template solutions, contained in
the pattern descriptions, may be applied to different cloud
technologies. A pattern catalog with a well-defined semantic
of pattern relations additionally helps developers during the
discovery and use of patterns applicable in their concrete use
cases. Third, abstract pattern-based descriptions of concepts
can be used in education and ensure a longer persistence and
relevance of obtained knowledge, because of their focus on
abstracted information rather than on concrete
implementations and offerings.

Regarding the research design and methodology, we
provide in this paper a blueprint for the identification and
compilation of cloud patterns in different architecture
domains to guide experts. By following a verified pattern
identification guide that was peer-reviewed by the pattern
community [3], the process result is traceable and the
identification re-doable. We, further, present an expert-
reviewed cloud pattern format to readily express cloud
architectural concepts to speed up adoption of the pattern
approach in the cloud community. Finally, we give an
overview of key cloud architectural domains in which
pattern identification is promising. For each domain, we
point to existing cloud architectural patterns and give
pointers to other patterns discovered in them. The major
contributions of this paper are (i) a clear process for the
traceable identification of cloud patterns, (ii) a flexible and
concise pattern format, (iii) two patterns capturing our recent
findings about cloud application architecture, and (iv) an
entry point to target domains where the approach may be
applied by experts.

The remainder of the document is structured as follows:
Section II covers our motivation from a practical point of
view, describing two architectures from different cloud
providers which do not share a common pattern approach.
Section III presents the do-it-yourself identification process
for cloud patterns. Two patterns we abstracted from the
motivating examples are given in Section IV. Section V
points to further domains we identified as key for future
cloud pattern research. Related work is discussed in Section
VI. Section VII concludes the paper and lists the lessons
learned.

II. MOTIVATION

In industry, cloud providers already make use of pattern-
based descriptions and provide vendor-specific pattern
formats and graphical notations. These patterns can be used
to model cloud applications hosted on these providers’
clouds. In the following, we use the graphical notation of
patterns for Microsoft Windows Azure [6] and Amazon
AWS [8] to describe one and the same exemplary scenario
for both providers.

WEB ROLE 2+

M M

WEB ROLE

E‐Mail Server

Corporate Data Center

Service Bus
Connection

Service Bus
Connection

Database
Load BalencerUsers

System
Manager

Integration
Service

Figure 1: Exemplary scenario modeled for Windows Azure

Consider a simple cloud application with a web-based
user interface to access data. This application shall scale
elastically with changing workloads. Additionally, if a
certain number of resources have been provisioned, a human
system manager shall be notified via e-mail. The
administrator has to approve further resource provisioning
via a management user interface to control the costs
generated by the application.

Figure 1 depicts this scenario modeled using the pattern
icons for Windows Azure [48]. Users access a so-called
combined web role hosting the user interface. The term
“combined” is used, because in our scenario, this user
interface web role additionally offers a Web service interface
through which its utilization may be obtained. Another web
role hosting the management interface accesses this Web
service interface to determine an adequate number of user
interface web roles, which it provisions. When the number of
user interface web roles has reached a threshold, the
management interface web role accesses a corporate e-mail
server to inform a system manager. Since there is currently
no e-mail service directly available in Windows Azure, this
e-mail is sent through a service bus connection to a local data
center where the corporate email server is hosted (currently,
there is no icon for such servers).
In Figure 2, the exemplary scenario has been modeled with
graphical icons provided for Amazon AWS [46]. Whereas
Amazon does not explicitly use the term ’pattern’ to refer to
these icons, their use is very similar to the patterns provided
for Windows Azure. In our motivating example, users access
a set of EC2 instances (virtual servers) [8], which host the
user interface, through a load balancer. The EC2 instances
access Amazon’s SimpleDB [8] to access provided data. The

EC2 instances are further monitored by CloudWatch [8].
Using this monitoring service, an alarm can be defined using
an Amazon-specific rule language. The rule states that the
system administrator shall be notified via the e-mail
functionality provided by the Amazon Simple Notification
Service (SNS) [8] when a certain number of EC2 instances
have been started. The administrator can then access
Amazon’s Auto Scaling [8] service to adjust the maximum
number of allowed EC2 instances.

Figure 2: Exemplary scenario modeled for Amazon AWS

Both scenarios describe the same architectural concept:
they tightly integrate human management interaction into the
automated management of the application to ensure that the
dynamicity of the cloud is not hindered by lengthy offline
management tasks. We argue that this inherent architectural
concept appears very different depending on the cloud
provider for which it is expressed. This is due to a number of
limitations of the provider-specific models. First, they
always consider concrete services of providers, but the
available functionality may differ. Second, providers employ
different level of abstraction regarding the cloud service
model they offer, i.e., IaaS, PaaS, or SaaS. We see this as an
important motivation to provide a common, abstract pattern
format to capture common architectural concepts abstracting
from the models and implementations of different cloud
providers.

III. IDENTIFICATION OF PATTERNS

Based on existing pattern descriptions from other
domains, cloud patterns we identified earlier [4], and a
pattern format reviewed and improved through the pattern
community [3], we have compiled a pattern identification
process, depicted in Figure 3. It formalizes the pattern
identification we followed in our work and assists experts to
identify, capture and distill implicit knowledge into reusable
cloud patterns. The step-by-step process ensures traceability
of the identification efforts, and incorporates a continuous
evolution and improvement of discovered patterns. We
support this process with a pattern authoring toolkit 1 . It
includes an Excel template for capturing information
sources, a Word template containing the pattern format, and
a PowerPoint template guiding the creation of pattern icons
and sketches by providing a set of reusable shapes.

1 http://cloudcomputingpatterns.org/authoringtoolkit.zip

1.
Customization
of the Pattern

Format

2.
Collection

of Information
Sources

3.
Classification
of Information

Sources

4.
Abstraction

of Architectural
Concepts

5.
Creation and
Classification
of Patterns

6.
Iterative

Improvement

Figure 3: Overview of the Pattern Identification Process

A. Step 1: Customization of the Pattern Format

Based on available works on patterns and the formats
used for describing them, we defined the pattern format
contained as a Word template in the pattern authoring toolkit.
This format allows the omission of optional sections, which
are then summarized with mandatory sections as indicated in
the Word template. Further customization, for example, the
inclusion of video material, code samples etc. is incorporated
as annotations. This enforces a common format to ease
adoption and comprehension while allowing arbitrary
customization for a specific use case.

Each pattern is identified by a unique name and has an
icon associated with it. This icon is used as graphical
representation for the pattern in architectural diagrams. Then,
a driving question states the problem solved by the pattern to
enable readers to quickly check if the pattern fits to problems
at hand. The following context section describes the
environment in which the pattern may be used, going into
greater detail. In addition to a textual description, other
patterns may be referenced here that form the environment.
In this scope, the expression of cloud types and cloud
offerings in the pattern format [4] has proven to be very
valuable. The context section is followed by stating the
explicit problem solved by the pattern. This section is
optional, because the driving question and the context
section may already be sufficient. Then, a brief solution
section provides the pattern reader with a list of steps to
follow. It is supported by a graphical sketch depicting the
architectural elements employed by the pattern. Especially,
this sketch may contain icons of other patterns. The outcome
after the application of the pattern is described in detail in the
result section. In this section, new challenges may be
covered that arise in the resulting environment and, in doing
so, patterns may be referenced addressing these challenges.
In the optional variations section different styles to apply the
pattern may be described, if the differences between the
variants do not justify their description as individual patterns.
Additional references to other patterns than those referenced
by the context or result section are covered next. Especially,
the following references used in many pattern formats [9]
[10] [2] should be covered: composition – the pattern uses
another pattern; refinement – the pattern provides a more
detailed version of another more abstract pattern;
generalization – the pattern abstracts from a more concrete
pattern, which is especially useful to refer to provider-
specific models if they implement the pattern, for example,
like those of the exemplary scenario described in Section II.
Known uses of the pattern are provided to give practical
examples in which the pattern has been applied, as well as

pointers to information sources from which it was abstracted.
Finally, a section of annotations may be used to point to
arbitrary documents, code samples, videos etc. supporting
the pattern reader during the comprehension and
implementation of the pattern.

B. Step 2: Collection of Information Sources

In this step, different information sources are collected.
To support this step, we provide an Excel spreadsheet
contained in the pattern authoring toolkit. The toolkit further
contains example spreadsheets filled with the information
sources used to extract the patterns presented in this paper.
For each information source, general information, such as
document names, hyperlinks etc. are collected. Further, the
cloud computing relevant information obtained from the
sources is summarized. This summarization should be
expressed respecting the context of the information source
and its domain specific terms. There should not be any
interpretation or abstraction in this step to make the pattern
that is abstracted from this information source traceable to its
unaltered origin. Examples for information sources are
provider guidelines, knowledge about existing applications,
books, and journals.

C. Step 3: Classification of Information Sources

The summarized knowledge extracted from the
information sources, is classified regarding the architecture
domain and challenge it addresses. The pattern authoring
toolkit includes the domains of existing patterns [4] and
suggests challenges, for example, availability, automation,
scalability, pay-per-use, or tenant-isolation. During the
classification process the summaries created for information
sources may be split up into multiple entries to allow a fine-
granular classification. For example, Amazon EC2 gives the
guideline [1] [11] to divide application functionality among
distributed virtual machines and availability zones,
addressing the architectural challenge of availability.

D. Step 4: Abstraction of Architectural Concepts

Until now, the summarized knowledge extracted from the
various information sources remains provider-specific or
application-specific. It, therefore, needs to be abstracted to
inherent architectural concepts. During this step, summaries
may again be split up. For example, the above mentioned
redundancy of virtual machines is also suggested by IBM for
WebSphere Clusters [33]. Both sources can be abstracted to
the concept of ‘distribution of application components
among different and redundant cloud resources’. In the
corresponding column of the Excel sheet, abstract concepts
are reused as much as possible. This allows a grouping of
summarized knowledge regarding the abstracted concepts
using Excel’s filtering functionality.

E. Step 5: Creation and Classification of Patterns

Based on the abstract concepts, patterns are now
compiled from the information sources. Since patterns are
not invented, but identified and discovered from existing
solutions, ensuring a suitable level of abstraction is always a
challenge. For this task, the pattern writer reviews

information sources with the same abstracted architectural
concept addressing the same architectural challenge. While
pattern writing itself cannot be automated, we argue that the
prior classification and abstraction of information sources
eases this step. Further, it ensures an adequate level of
abstraction of the created patterns by filtering product-
specific information.

F. Step 6: Iterative Improvement

Our industry collaboration and discussions with pattern
experts (see acknowledgements) have shown that patterns
evolve continuously through discussion in a community.
This community should be heterogeneous, thus, should
contain experts and beginners alike to ensure that obtained
patterns contain all necessary information while remaining
comprehensible. As patterns are created by many different
participants, an alignment of graphical elements can be
pursued during the revision for a more a consistent look-and-
feel. For example, an icon to depict a virtual machine should
look the same or at least similar in different pattern catalogs.
According to Moody [12], one of the key success factors of a
graphical notation is ‘cognitive effectiveness’, which he
refers to as the speed, ease and accuracy with which humans
read diagrams of a notation. Moody describes many further
aspects of good notations, for example, he argues that
cognitive and perceptual limits need to be respected for
diagram complexity management. Therefore, during iterative
improvement, graphical designers are involved to obtain
easy to understand graphics. This has been proven useful, as
exemplified for learning patterns described by [13].

IV. EXEMPLARY PATTERNS

We provide two exemplary patterns from different
domains that we identified using the pattern authoring
toolkit. The information sources for these patterns are
included in the pattern authoring toolkit. The following
pattern descriptions are based on the pattern format of the
Word template also included in the pattern authoring toolkit.

A. Human Integration in Automated Systems Management

How can the dynamicity and flexibility of the
cloud be ensured even if IT management
tasks have to be performed by humans?

Context: hardware virtualization and the standardization
of runtime platforms have enabled very flexible provisioning
capabilities of clouds. New resources like virtual servers can
be started and stopped within minutes. However, a company
may have to handle many additional tasks associated with
this provisioning and deprovisioning of cloud resources,
such as obtaining management approvals, budgeting,
documentation etc. If these tasks are not sped up in a similar
fashion as the resource provisioning and deprovisioning, the
beneficial effects of cloud computing are reduced drastically.

Solution: human interaction is reduced as much as
possible. If human interaction is required, it is integrated in
automated management flows via various communication
channels. The pattern sketch is depicted in Figure 4.

Monitoring

Elasticity &
Provisioning

Figure 4: Sketch of the Systems Management with Human Integration

Result: to take advantage of cloud computing, a
company has to minimize the human interactions required in
its IT management processes. For example, budget approval
tasks should not consider single servers, but a certain amount
of money for which arbitrary offerings of a cloud provider
may be obtained. Approving every start of a new virtual
machine in the cloud would be inefficient. If human
interactions are required, for example, to provide critical
encryption keys, administrators and business personnel
should be integrated into automated management processes.
Depending on the importance of the task at hand, different
interaction styles and communication channels should be
used. For example, informational messages about a cloud
application may be propagated via RSS or Twitter. If a
critical action is required, a system administrator may
provide commands via a text message from a cell phone.

Relations to other patterns: in [52], we describe
different interaction styles how humans may be integrated in
management tasks. For example, ‘user notification’ describes
how informational data can be provided to humans. ‘User
response required’ describes how an input may be obtained
from humans and optionally escalates the communication
channels the longer the system has to wait for input.

Known uses: Amazon CloudWatch [8] allows the
descriptions of systems states to inform a systems manager
via e-mail, text messages etc.

B. Eventually-consistent User Interface

How can the user interface of an application
cope with eventual consistency of used data
stores?

Context: eventual consistency of cloud storage offerings

is of vital importance for the availability and performance of
a cloud application [14]. By allowing inconsistencies
between data replicas, the performance and availability i.e.,
tolerance towards network partitioning, may be enabled [15].
However, this affects the state information that an
application can provide, which is problematic if the business
case expects consistent data.

Solution: design the functions supporting the business
case so that they do not depend on knowledge about the
consistent overall system state. Therefore, provide data
abstractions, approximations, and tendencies whenever
possible. The pattern sketch is depicted in Figure 5.

Result: traditionally, many business cases assumed
consistent information to be handled by application.
However, in many cases this quality of information is
unnecessary.

Abstraction

100 120 200 100

Figure 5: Sketch of the Eventually-consistent User Interface Pattern

Instead, users may be provided with approximations or
abstractions, for example, in the form of progress bars, traffic
lights, or other categories.

Relations to other patterns: if the business case is
designed to incorporate and support the application of the
eventual-consistency pattern [4], data stores implementing
this pattern, for example No-SQL storage [4], may be
employed in the application.

Known Uses: SFPark [22] provides information about
parking space availability in San Francisco. Since timely
information is not always available and hard to retrieve from
garage management systems, availability is only described as
high, medium, or low. WallMart’s online store [23] abstracts
the availability of products to in stock, limited quantity, and
out of stock. In this case, the abstraction is better suited for
the business case: if absolute numbers were provided to
customer, he or she would need to know how many items
were sold in the past in order to interpret them.

V. ARCHITECTURE DOMAINS RELEVANT FOR
CLOUD COMPUTING

Cloud applications have to follow three fundamental
architectural principles: componentization – the functionality
of a cloud application is divided into loosely coupled
components; distribution and redundancy – multiple
instances of application components are distributed among a
set of redundant cloud resources; automated management –
resource provisioning and deprovisioning are automated to
increase beneficial effects of the cloud’s elasticity.
Resiliency towards failing resources is ensured by handling
resource failures automatically. These architectural concepts
have already been captured as cloud patterns [4], but there
are still undiscovered architectural concepts out there
addressing the challenges of cloud computing. Given the
pattern identification process described in Section III, we
now present a collection of challenging domains we consider
qualified for cloud pattern capturing. We identified the
relevance of these domains based on various information
sources: (i) literature on enterprise and software architectures
and middleware [10] [16] [17], (ii) existing cloud
applications [18] [19] [20] and (iii) internal use cases we
worked on in our industry collaboration. The classification of
challenges into the following domains is based on this
information and is presented in alphabetical order. We do not
claim that this is a complete list, but we argue that each
domain has problems with corresponding good solutions to
be discovered and captured for the advancement of cloud
technology.

A. Accounting & Controlling

The use of pay-per-use billing is inherent to cloud
computing. Additionally, providers may offer long term
reservation of resources at a lower price, such as Amazon
Reserved Instances [8]. These are intended for the static
workload of customers. Variable pricing depending on the
overall utilization of a cloud are also available, such as
Amazon Spot Instances [8]. These billing models should be
reflected in the application architecture to reduce runtime
costs. Companies will also be faced with accounting
challenges to keep track of the expenses at different cloud
providers and the various payment models used.

B. Application Migration

Many existing applications could benefit from cloud
computing. Especially, business-noncritical applications
providing information to the public often have little legal
obligations to overcome. However, the environment found in
the cloud differs significantly from internal environments. To
move applications to the cloud, the applications’
infrastructure requirements and how they are respected by
the application architecture need to be reconsidered.

C. Cloud Integration

When using cloud computing, a company often faces the
challenge that different computing environments have to be
integrated. For example, legacy applications may reside in
on-premise data centers, whereas others use a public cloud.
A cloud component gateway [36] may be used in this scope
to bridge different environments. Other technologies to
integrate cloud environments with private data centers or to
ensure a consistent name resolution, such as Amazon VPC
[8], WSO2 Enterprise Service Bus [21], or Microsoft Azure
Connect [47], currently remain provider-specific and have
not been abstracted into an abstract re-usable pattern format.

D. Data Storage

The most influential property of cloud computing
regarding handled data is eventual consistency [14]. While
inconsistency of data replicas is well-researched in
distributed systems [27], cloud computing has shown how
this concept may be employed to increase the availability
and performance of an application [15] to handle large
amounts of data and users efficiently. This behavior of data
stores, however, needs to be respected in the data access
layer of the application. Best practices, made reusable and
easy to grasp as patterns, are required in this scope.

E. License Management

Licenses issued per CPU [41] executing a software are
hard to measure or enforce in the cloud where hardware
virtualization is inherent. This renders the use of many
software products employing this licensing complicated to
impossible in the cloud. Network-based licensing models
[41] consider concurrently running software instances. Since
virtual servers may be started and stopped dynamically in the
cloud, best practices for license management are required to
ensure a compliant deployment of cloud resources, for
example, during automated scaling processes.

F. Monitoring, Analysis, and Reporting

Cloud computing is often considered for the aspect of
cost savings. The introduced sharing of resources, however,
can also be exploited for energy savings. In either case,
information about cloud resources has to be collected and
analyzed. For example, the use of environmental resources
may have to be correlated to products of a company since the
public demands to know about the product’s environmental
footprint [38]. Sharing resources between different projects
and products significantly complicates such computations. In
scope of this domain, best practices and architectural
concepts are required to address these cross-cutting concerns
in cloud application monitoring and reporting systems.

G. Multi-Tenant Cloud Middleware

Sharing cloud resources between multiple cloud users,
also called tenants, is a very important concept to benefit
from economies of scale [5]. Hardware virtualization
introduced this sharing for physical hardware, but beneficial
effects increase significantly if middleware is also shared
[43]. However, cloud middleware will have to be redesigned
to ensure isolation of tenants, for example, on the database
layer [5]. Patterns are, therefore, required in this domain to
address challenges, such as tenant-isolation, version
management, customer-specific application customization,
migration of tenants between software versions and runtime
environments etc.

H. Organizational Structures

The introduction of cloud computing to a company may
face ‘political’ challenges. Consuming IT services from a
private cloud may feel like a loss of control, which may
motivate employees to hinder the adoption of cloud
computing. Even though, this domain is not directly
application architecture relevant, we argue that cloud
patterns for organizational change would be helpful to raise
awareness for these organizational challenges as they can be
a limiting factor for cloud computing [40]. Similar patterns
have been generally defined by [26]. Especially in large
companies, provisioning new IT resources or registering new
IT services often require human management approval
hindering automated management. If the organization
structure and processes of a company are not adjusted to
respect cloud computing, the beneficial effects can be
significantly reduced.

I. Security and Compliance

Many of the security issues found in non-cloud
applications are also arising in a cloud environment. These
concepts have been captured in a pattern format [29] and
may be applicable in cloud computing as well. New security
threats arise from malicious use of dynamic cloud resources
or from other cloud users. Regarding compliance, cloud
computing introduces the challenge that a company’s IT has
to compete with public cloud services. Methods how to
address these issues have been investigated [49] but there are
currently no practical solutions to extract patterns from.

VI. RELATED WORK

The background knowledge used in this paper is based on
key works on patterns and their identification and structuring
[28] [9]. The pattern format is largely inspired by Gamma et
al. [2] and Holpe and Wolf [10].

Pattern-based descriptions have been used frequently to
describe good solutions to reoccurring problems during the
architectural design of applications. Patterns for object-
oriented programming are given by [2]. In [10], patterns for
the message-based integration of enterprise applications are
covered. In [29] significant research in the area of security
patterns is described. In [31] we described patterns on how
IT reconsolidation may reduce the environmental impact of
the IT architecture by restructuring application architectures
and supported processes. Some of these patterns likely
address challenges similar to those faced in cloud computing.
However, to be applicable in the context of cloud computing
each pattern would have to be evaluated and possibly needs
to be revised. In contrast to the cloud pattern format that we
propose, many of these patterns do not incorporate pattern
icons to be used in architectural diagrams.

In the field of cloud computing, patterns are gaining
momentum. In industry, they are often used in a less formal
way to present architectural guidelines and advice [50] [51].
In research, patterns have the same intention but are
discussed more formally. Binz et al. [24] researched patterns
for application migration. Regarding an application moved to
the cloud, it covers best practices how to handle differences
of the runtime environments in a pattern format. Further,
[44] introduces a classification for strategies how to migrate
applications to the cloud. Misuse of cloud resources leading
to new security threads has been covered by [30]. This
misuse ranges from using cloud resources for distributed
attacks to hijacking the user accounts of other cloud
customers [32]. The two patterns presented in Section IV
have been identified during our industry collaboration and
from our own experience with cloud applications. Daimler
AG has also used patterns previously to homogenize IT
landscapes [34] and offers cloud applications for car fleet
management [18] [35]. In collaboration with T-Systems we
worked on patterns to enable the customization of cloud
applications’ functionality, data elements, and deployment
[36]. The requirements for such patterns came from an
application used in the German city of Friedrichshafen to
manage the availability and assignment of places in
Kindergartens for approximately 59.000 inhabitants [37].

VII. CONCLUSION

Current industry-driven approaches to model application
architecture diagrams are provider-specific, have different
composition semantics, and use different levels of
abstraction. We argue that a common pattern format should
be used for the abstraction of common underlying principles
inherent to multiple cloud providers. We provided a pattern
identification process and pattern authoring toolkit to make
pattern identification structured and traceable. Challenging
domains introduced by cloud computing were covered,
where the pattern identification can be applied.

A. Lessons Learned

Patterns for Education: we experienced patterns to be well-
perceived as an entry point to cloud computing. The
feedback of readers new to the cloud domain was especially
useful during step 6 of the pattern identification process
(iterative improvement), because we found it difficult for
experts to find an adequate level of abstractions during the
initial identification and description of patterns.
Transparency of Pattern Identification: when presenting
patterns to other persons, especially non-members of the
pattern research community, we often had to explain how
patterns were identified. The presented pattern identification
process enables transparency of this task and allows other to
retrace the steps undertaken to identify a pattern. We found
this increased the credibility of cloud patterns.
Pattern-based Classification of Providers: cloud providers
are hard to compare, because the implications of services
provided in the cloud on application using them are often
obfuscated. We found that the cloud patterns enabled a
classification of providers regarding the patterns supported
by them. Thus, they become easier to compare with each
other as well as with existing IT environments.
Patterns for Documentation: Generally, patterns can be
used in software documentation to reduce its size and
increase its quality [42]. We found that the use of patterns in
documentation increased readability, because the well-
known concept of a pattern could be perceived easier and
quicker while reducing the amount of introductory text
required in documents. Adoption of the pattern approach in
industry confirms this, see motivation in Section II.
Pattern Vocabulary: the defined cloud patterns [4] have
been used as a common vocabulary in discussions with
Daimler AG and T-Systems employees. In this scope, the
abstraction from concrete products proved to be very useful
to bridge different product user communities.

B. Outlook

Capturing cloud architectural principles in provider-
independent patterns is a first step to overcome the
limitations of provider-specific models and notations. In the
future, the used graphical representations of patterns are
revised to improve readability. A pattern composition
language is also required for architecture diagrams with well-
defined semantics. During the design of icons and the
composition language, cognitive requirements will be
considered to ensure ’cognitive effectiveness’ [12].

With a growing size of a pattern catalog, advanced
tooling is needed to organize patterns and make their
relationships explicit in a searchable catalog data model. We
started work on pattern recommendation systems in [3]. With
a larger catalog, these methods will have to be made more
user-friendly. One approach could be the integration with
Web 2.0 technologies to enable comments on patterns,
ratings, or recommendations. We would like to motivate
experts to follow the introduced pattern identification
process to also capture solutions to the challenges introduced
by cloud computing. Further, the revision and discussion of
existing patterns would also be an important step to
establishing a knowledge- and expertise-sharing community.

VIII. ACKNOWLEDGEMENTS

Many thanks go to Robert Hanmer, Gregor Hohpe, Ralph
Johnson, and Joseph Yoder for the helpful discussions. The
authors further thank all participants and reviewers of the
PLoP 2011 for their support and constructive feedback:
Celina Gibbs, Sebastian Günther, Ralph Johnson, Donna
Kaminskyj Long, Mehdi Mirakhorli, Pedro Monteiro, and
Ernst Oberortner. David Schumm would like to thank the
German Research Foundation (DFG) for financial support of
the project within the Cluster of Excellence in Simulation
Technology (EXC 310/1) at the University of Stuttgart.

REFERENCES
[1] J. Varia: “Cloud Architectures,” Technical Report, Amazon, 2010.

[2] E. Gamma, R. Helm, R. Johnson, J. Vlissides, “Design Patterns:
Elements of Reusable Object-oriented Software,” Addison-Wesley,
1995.

[3] C. Fehling, F. Leymann, R. Retter, D. Schumm, W. Schupeck, “An
Architectural Pattern Language of Cloud-based Applications,”
Proceedings of the Conference on Pattern Languages of Programs
(PLoP), 2011.

[4] C. Fehling, F. Leymann, R. Mietzner, W. Schupeck, “A Collection of
Patterns for Cloud Types, Cloud Service Models, and Cloud-based
Application Architectures,” Report No. 2011/05, University of
Stuttgart, 2011.

[5] F. Chong, G. Carraro, “Architecture Strategies for Catching the Long
Tail”, Microsoft Whitepaper, 2006.

[6] Microsoft, Windows Azure. (http://www.windowsazure.com/)

[7] U. Zdun, P. Avgeriou, “Modeling Architectural Patterns Using
Architectural Primitives,” ACM SIGPLAN conference on Object
oriented programming systems languages and applications, 2005.

[8] Amazon.com, Amazon Web Services. (http://aws.amazon.com/)

[9] G. Meszaros, J. Doble, “A Pattern Language for Pattern Writing,”
Pattern Languages of Program Design, 1998.

[10] G. Hohpe, B. Wolf, “Enterprise Integration Patterns: Designing,
Building, and Deploying,” Addison-Wesley, 2004.

[11] Amazon.com, Amazon EC2 Service Level Agreement.
(http://aws.amazon.com/ec2-sla/)

[12] D. Moody, “The Physics of Notations: Toward a Scientific Basis for
Constructing Visual Notations in Software Engineering,” IEEE
Transactions on Software Engineering, 2009.

[13] T. Iba, T. Miyake, M. Naruse, N. Yotsumoto, “Learning Patterns: A
Pattern Language for Active Learners,” Conference on Pattern
Languages of Programs (PLoP), 2009.

[14] W. Vogels. “Eventually Consistent,” Communications of the ACM,
2009.

[15] E. A. Brewer, “Towards Robust Distributed Systems,” PODC
Keynote, 2000.

[16] D. Krafzig, K. Banke, D. Slama, “Enterprise SOA,“ Prentice Hall,
2004.

[17] M. Fowler, “Patterns of Enterprise Application Architecture,”
Addison-Wesley, 2003.

[18] Daimler AG, car2go. (http://www.car2go.com)

[19] Peecho. Print as a Service. (http://peecho.com)

[20] Kununu. Job rating site. (http://kununu.com)

[21] WSO2, Enterprise Service Bus. (http://wso2.com)

[22] SFMTA, SFpark. (http://sfpark.org)

[23] Wallmart, Wallmart Online Shop. (http://wallmart.com)

[24] T. Binz, F. Leymann, D. Schumm, “CMotion: A Framework for
Migration of Applications into and between Clouds,” IEEE
International Conference on Service-oriented Computing and
Applications (SOCA), 2011.

[25] C. Fehling, F. Leymann, J. Rütschlin, D. Schumm, “Pattern-based
Development and Management of Cloud Applications, “ Furture
Internet, 2012. (http://www.mdpi.com/1999-5903/4/1/110/)

[26] L. Rising, “Fearless Change: Patterns for Introducing New Ideas:
Introducing Patterns to Organizations,” Addison-Wesley, 2004.

[27] A.S. Tanenbaum, M. Van Steen, “Distributed Systems: Principles and
Paradigms,” Prentice-Hall, 2003.

[28] R.C. Martin, “Design Principles and Design Patterns”, Object
Mentor, 2000.

[29] M. Schumacher, E. B. Fernandez, D. Hybertson, F. Buschmann, P.
Sommerlad, “Security Patterns: Integrating Security and Systems
Engineering,“ Wiley, 2006.

[30] K. Hashizume, N. Yoshioka, E.B. Fernandez, “Misuse Patterns for
Cloud Computing,” Proceedings of the Asian Conference on Pattern
Languages of Programs (AsianPLoP), 2011.

[31] A. Nowak, F. Leymann, D. Schleicher, D. Schumm, S. Wagner,
“Green Business Process Patterns,” Proceedings of the Conference
on Pattern Languages of Programs (PLoP), 2011.

[32] J. Somorovsky, M. Heiderich, M. Jensen, J. Schwenk, N. Gruschka,
L. Lo Iacono, “All Your Clouds are Belong to us – Security Analysis
of Cloud Management Interfaces,” Proceedings of the ACM Cloud
Computing Security Workshop (CCSW), 2011.

[33] IBM, WebSphere MQ, (http://ibm.com/software/websphere/mq/)

[34] DaimlerChrysler TSS GmbH, “MDA Success Story ePEP successful
with Model Driven Architecture,” Whitepaper, 2005.

[35] Daimler FleetBoard GmbH, FleedBoard. (http://www.fleetboard.com)

[36] C. Fehling, R. Konrad, F. Leymann, R. Mietzner, M. Pauly, D.
Schumm, “Flexible Process-based Applications in Hybrid Clouds,”
IEEE International Conference on Cloud Computing (CLOUD),
2011.

[37] Deutsche Telekom, T-City Friedrichshafen. (http://www.t-city.de)

[38] G. Peter, ”Carbon Accounting: Beyond The Calculation and Looking
To The Future,” Green Economy, 2010.

[39] Gartner, ”Gartner Identifies the Top 10 Strategic Technologies for
2011,” Press Release, 2010.

[40] D. Townsend, ”What are the biggest organizational challenges in
adopting cloud,” ServiceMesh.com, 2011.

[41] D. Ferrante, “Software Licensing Models: What’s Out There?,” IT
Professional, 2006.

[42] A. Rüping, “Agile Documentation,” Wiley, 2003.

[43] C. Guo, W. Sun, Y. Huang, Z. Wang, B. Gao, “A Framework for
Native Multi-Tenancy Application Development and Management,”
IEEE CEC/EEE, 2007.

[44] Y. Chee, N. Zhou, F.J. Meng, S. Bagheri, P. Zong, “ A Pattern-based
approach to Cloud Transformation,” IEEE International Conference
on Cloud Computing (CLOUD), 2011.

[45] M. Petre, “Why Looking isn’t Always Seeing,” Communications of
the ACM, 1995.

[46] Amazon.com, AWS Simple Icons for Architecture Diagrams.
(http://aws.amazon.com/architecture/icons/)

[47] Microsoft, Windows Azure Conncect.
(http://www.windowsazure.com/en-us/home/tour/virtual-network/)

[48] D. Pallmann, “Windows Azure Design Patterns”.
(http://www.azuredesignpatterns.com)

[49] I. Brandic, S. Dustdar, T. Anstett, D. Schumm, F. Leymann, R.
Konrad, “Compliant Cloud Computing (C3)” IEEE International
Conference on Cloud Computing (CLOUD), 2011.

[50] S. Guest, “Patters for Cloud Computing”, 2009.

[51] S. Riley, “How to Think Cloud Architectural Design Patterns for
Cloud Computing”.

[52] D. Schumm, C. Fehling, D. Karastoyanova, F. Leymann, J. Rütschlin,
“Processes for Human Integration in Automated Cloud Application
Management,” Report No. 2012/02, University of Stuttgart, 2012.

	cover-IEEE
	INPROC-2012-22 Capturing Cloud Computing Knowledge and Experience in Patterns

