
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{lastname}@iaas.uni-stuttgart.de

Service-based Integration of Human Users in
Workflow-driven Scientific Experiments

Dimka Karastoyanova, Dimitrios Dentsas, David Schumm,
Mirko Sonntag, Lina Sun, and Karolina Vukojevic

© 2009 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

@inproceedings{KDDS+12,
author = {Dimka Karastoyanova and Dimitrios Dentsas and David Schumm and

Mirko Sonntag and Lina Sun and Karolina Vukojevic}
title = {Service‐based Integration of Human Users in Workflow‐driven

Scientific Experiments},
booktitle = {Proceedings of the 8th IEEE International Conference on

eScience, eScience 2012, 8‐12‐10‐2012, Chicago, IL, USA},
year = {2012},
publisher = {IEEE Computer Society Press}

}

:

Institute of Architecture of Application Systems

Service-based Integration of Human Users in
Workflow-driven Scientific Experiments

Dimka Karastoyanova, Dimitrios Dentsas, David Schumm,
Mirko Sonntag, Lina Sun, and Karolina Vukojevic
Institute of Architecture of Application Systems (IAAS)

University of Stuttgart
Stuttgart, Germany

lastname@iaas.uni-stuttgart.de

Abstract—The use of information technology in research and
practice leads to increased degree of automation of tasks and
makes scientific experiments more efficient in terms of cost,
speed, accuracy, and flexibility. Scientific workflows have proven
useful for the automation of scientific computations. However,
not all tasks of an experiment can be automated. Some decisions
still need to be made by human users, for instance, how an
automated system should proceed in an exceptional situation. To
address the need for integration of human users in such
automated systems, we propose the concept of Human
Communication Flows, which specify best practices about how a
scientific workflow can interact with a human user. We
developed a human communication framework that implements
Communication Flows in a pipes-and-filters architecture and
supports both notifications and request-response interactions.
Different Communication Services can be plugged into the
framework to account for different communication capabilities of
human users. We facilitate the use of Communication Flows
within a scientific workflow by means of reusable workflow
fragments implementing the interaction with the framework.

Keywords- Scientific Workflows, Human Communication
Flows, Cyber-infrastructure, Communication Services.

I. INTRODUCTION
Scientific workflows enable the automation of scientific
experiments and are thus beneficial to scientists in terms of
easier modeling, cost, speed, accuracy, and flexibility.
Workflows implement the logic of an experiment by
composing and connecting domain-specific functions and code
modules, enabling so-called programming-in-the-large, known
as a concept from workflow technology [28]. Many concepts
and approaches to leverage workflows in e-Science have been
proposed [8], coining the term Scientific Workflow
Management Systems (SWfMS). Many of the currently
available SWfMS cover a broad spectrum of scientific problem
domains, e.g., Kepler [21], Triana [22], Taverna [23], and
Pegasus [24], however, the technologies used are not in all
cases applicable for additional domains. In contrast, the
workflow technology used in business environments is
designed to be generic and applicable for various business
processes or the integration of enterprise applications. Business
workflow languages and systems focus more on business-
critical aspects like interoperability, standardization, scalability,

robustness, and transactionality. Since many of these aspects
are also relevant for workflow-driven scientific experiments,
our approach is to enhance and extend conventional business
workflow technology to also meet the requirements and needs
of e-Science applications [10]. The major goal is to create a
flexible cyber-infrastructure that provides the benefits of
business workflow systems and supports scientists in the
design, execution, monitoring, and analysis of experiments. We
build on standards like the Business Process Execution
Language (BPEL) for workflow design and execution [14].
Domain-specific, scientific computation functions to be used in
workflows are wrapped using Web service technology [15].

In scientific experiments not all tasks can be automated and
therefore an interaction of the SWfMS with human users is
often needed. In business workflow technology, this is
addressed by so-called human task management and worklist
applications, e.g. for BPEL an integration of human users is
already in place [11, 12]. Making this functionality available in
e-Science experiments is a first step, but not yet sufficient.
Consider the following example scenario in which a human
user needs to be involved in a scientific workflow: A scientist
has to go on a business trip to a conference abroad for one
week. Prior to his departure he starts a long-running simulation
experiment. During the conference he has no direct access to
the running workflow that coordinates the computations. In
case the simulation enters an error state, he can only react to
this failure after returning from the conference trip, assuming
the SWfMS does not typically provide remote monitoring and
control functionality. Therefore, valuable computing time may
be wasted and the simulation results get delayed. The approach
presented in this paper changes this scenario: Before leaving
for the conference, the scientist extends the simulation
workflow with reusable workflow fragments [4] which
represent logic to activate a communication flow. In case of an
error, a communication flow is activated and informs the
scientist about the error and proposes different actions, e.g.
retry or abort. Based on presence information of the scientist
[16], a particular communication channel is chosen. For
example, when not present in the lab and not online in his
messenger, the scientist will receive an e-mail with the error
log attached and a set of predefined options for error handling.
The scientist can also forward the error message to another
person who is present in the lab or who has remote access to

the workflow system in order to perform more advanced failure
recovery. This scenario is just one example where involvement
of human users is useful. Further examples are: status updates
to be sent frequently (e.g. notifications about simulation
completeness), approvals to be made (e.g. if results should be
sent to a poster printer), or enquiries for parameters (e.g. for
specifying data quality properties) and others. The concept we
propose in this paper does not focus on one particular scenario,
but on a general solution for seamless integration of the human
way of working with workflow-driven scientific experiments.

As initial step, we devised an abstract architecture of a
workflow-driven infrastructure for scientific computations that
allows human intervention [3]. In cooperation with industry
partners we then specified the flows in detail, message formats,
and data structures required for human communication [1].
Based on these foundations we refined and implemented the
approach [5, 6]. In this paper, we present the essential
contributions and key conclusions of these efforts.

The paper is structured follows. In Section II we present an
architectural overview of the approach, covering
communication participants, flow of messages, and key
components with their interrelations. In Section III we describe
the Human Communication Manager (HCM). In Section IV we
discuss different services that can be used for communication
with human users over a variety of channels. In Section V we
describe how the framework seamlessly integrates with
workflow-driven scientific experiments. Our implementation is
presented in brief in Section VI. In Section VII we compare our
approach with related work. The paper concludes with a
summary and outlook on future work in Section VIII.

II. ARCHITECTURAL OVERVIEW
To establish communication between a sender (i.e. a scientific
workflow) and a receiver (i.e. a human user) we use different
components and protocols, as illustrated in Figure 1. The
communication initiator, e.g. a scientific workflow, sends a
request to the ‘Human Communication Manager’, which
coordinates the routing of the request to the human user.
Depending on the user’s availability and preferences a
‘Communication Service’ is invoked to deliver the message to
a device that is currently being used by the human user.
Depending on the chosen communication channel, different
protocols come into play, for example SMTP for e-mail
delivery. In case the initiator expects a response, the human
user sends a response (dashed grey arrows in Figure 1) to the
corresponding service, which returns it to the HCM. The
response is checked for syntactic correctness and delivered to
the initiator either via a callback or by means of polling.

We distinguish three major types of messages exchanged
between the different components (see Figure 2). The initiator
prepares a ‘Communication Request Message’ containing the
message payload (i.e. the communication message) and
parameters interpreted by the HCM. These parameters include
the recipients, information about if and until when a response is
required, which communication channel should be used, and
details about the expected response format.

Communication
Initiator

Human
Communication

Manager

Communication
Service
(E-Mail)

Communication
Service

(Task Manager)

Communication
Service

(Messenger)

Worklist
Application

(John.Smith)

Webmail
Application

(john@smith.com)

Messenger
Application

(John.Smith)

SOAP/
HTTP

SOAP/
HTTP

SOAP/
HTTP

Mail/
SMTP

Text/
XMPP

Figure 1. Components and protocols involved in communication between a

communication initator and a human user’s communication device.

The HCM extracts the ‘Communication Message’ and
passes it to a Communication Service via the chosen
communication channel. This service transforms the message
properties into a ‘Channel-specific Message’, which allows
proper rendering of the information sent to the human user. The
service also processes the expected response message and
transforms it into a service- and channel-specific response
template. More details about message structures and data
formats can be found in [1].

Communication
Configuration

Communication
Message

Communication
Message
Properties

From:
To:
Date:
Time:

Error.log

Re Fw X
SWfMS
Scientist
27.06.2012
10:31 am

The service
DUNE has failed.
Retry? (Yes | No)

extract

 Initiator Human Communication Manager Communication Service Human User

transform

Communication
Request Message

Communication
Message

Channel-specific
Message

Figure 2. Message trandformations on the route to the human user.

The overall architecture is depicted in Figure 3. The
Workflow Modeling and Monitoring Environment [10] is a
rich client application for workflow design and execution
control. In order to integrate scientific workflows with human
users, predefined and reusable workflow fragments (aka
process fragments or fragments) are used. The fragments
represent the logic for invoking the HCM using standard
workflow language constructs and can be shared in a Fragment
Library [4]. A fragment is a connected sub-graph of a
workflow graph typically used as a reusable artifact to enrich
existing workflows with particular logic – in our case with
logic related to the interaction with the HCM.

In the rich client platform we realize the human task
integration through a worklist plug-in which offers a feature-
rich interface for managing tasks, e.g. for claiming an open
task, for suspending a running task, or for sorting by
importance. Responses to a started task can be made by filling
a form. The human user can then also perform semi-automated
tasks, which require the usage of further Scientific Applications
and access to information sources like a Provenance Store.

The Workflow Execution Environment executes the
workflow, i.e. it orchestrates Scientific Services to perform an
experiment. When a workflow fragment for communication
with a human user is reached, the HCM is invoked, which
routes the task to the human user.

Chemshell
Service

Dune
Service

Workflow Modeling and
Monitoring Environment

Online
Service

SMS
Service

Messenger
Service

E-Mail
Service

Gnuplot
Service

Pandas
Service

Process
Fragments

Workflow
Execution

Environment
Workflow

Editor
Execution

Control

Deploy,
Control

Monitor

Human
Communication

Manager

Task
MgmtIntegrated

Worklist

Service
Credentials

Scientific
Application

Scientific
Application

Scientific
Application

Use

Scientific Services

Invoke

Communication ServicesInvoke

Invoke

W W W

Interact

Interact

Provenance
Store

Fragment
Library

Figure 3. Architecture considering heavyweight (worklist) and lightweight

(service-based) integration of human users in scientific workflows.

If the user is signed-in within the rich client the task will
appear on the worklist. Otherwise, the task is routed to one of
the Communication Services. Depending on the devices the
human user had registered, a service capable of the required
transport protocol routes the task to the user. In case of two-
way communication, responses are sent back via the chosen
communication channel.

III. HUMAN COMMUNICATION MANAGER
In this section, the key perspectives of the HCM are presented
from a flow perspective, component architecture perspective,
and message-oriented realization perspective.

A. Human Communication Flows
We have conducted several case studies with scientists working
in the domain of simulation technology [25, 26]. In these case
studies, workflows for scientific experiments and simulations
have been developed to orchestrate scientific computation
functions that are wrapped using Web services. The case
studies show that in many cases a notification about certain
events, status changes, and completeness updates of the
computation would be useful, beyond the GUI of the workflow
editor and monitor as this information is also useful when the
scientist is out of the lab for a longer time. Further discussions
showed that there are many scenarios in which also a two-way
communication is very useful, like parameter selections, data
checking and correction, and approvals, e.g. if simulation
results should be sent to a poster printer or not.

Figure 4 shows a generalized communication flow,
designed using the Business Process Model and Notation
(BPMN) [20]. This flow captures the requirements from the
case studies, comprising one-way and two-way commu-
nication. In the following, we describe the main reasons for the
design of the flow. Typically, notifications and two-way
communication – contact a user and process a response by the
user – are considered trivial. However, this straightforward
flow does not consider the user’s ‘presence’, which states the
availability status of a user on a given communication channel,
e.g., the status in an instant messaging application [16].
Another step before a user is contacted is to select the device
with the shortest response time. Also, if multiple users are able
to answer a request, the user who is “best” available should be

chosen. A timeout mechanism is employed to deal with lost
responses and hence to prevent waiting infinitely for a
message. Furthermore, the initiator of a communication can
predefine a default response that should be returned in case the
user does not respond. This leads to a distinction between flow
branches for ‘response required’ and ‘response optional’.
Sometimes human users do not use the right response format or
do not provide all required information. Thus, a cycle for
invalid responses needs to be added. This is the last step in the
generalized flow for communication (Figure 4), which supports
the flow types notification, response required, and response
optional. It considers the features presence, validation,
timeouts, and predefined responses. The communication flows
can be realized as a workflow or as a message-oriented system;
we chose the latter. This is reflected in the HCM architecture
and communication processing.

Initiator Human Communication Manager

Query Users
and Devices

Validate
Response

Timeout

 Valid?

yes
no

Re-contact
User(s)

Contact
User(s)

Response
requested?

yes

no

Increase
Task

Importance

Response
optional?

yes

Default

Send
Response

Await
Response

no

Figure 4. Generalized Human Communication Flow.

B. Human Communication Manager Architecture
The HCM is hosted by an Application Server. It consists of
several conceptually separated components, shown in Figure 5.

Human Task Manager. The foundations for human tasks
have been laid in the Bangkok project [7, 13], an open source
human task manager. Appropriate extensions have been made
to Bangkok for loose coupling of Communication Devices and
Communication Services. These extensions also include
security mechanisms prohibiting unauthorized access to the
Worklist API and presentation layer components.

Messaging. The messaging component manages all
interactions of the components of the business logic layer in a
message-oriented way. The underlying routing engine provides
the necessary orchestration logic as mandated by human
communication flows. It executes all the needed functionality
with the help of specific message processors. Transactional

behavior and reliability concerns are being handled by an
integrated message broker, which is also responsible for all
interactions with the persistent Message Store.

Frontend Manager. The Frontend Manager consists of all
functions which act as a link between the business logic layer
and the presentation layer.

Task
Database

Human Task Manager
(Project Bangkok)

Message
Store

Ap
pl

ic
at

io
n

Se
rv

er

Worklist API

Authorization

Messaging

Message Router

Message Processor

Frontend Manager

Worklist Controller

User Registration

Communication Manager

Task Selection

Response Manager

Command Interpreter

Response Validator

Service Registration

Device Registration

Web Frontend

Worklist

Administration

Communication API

Initiation API

Integration API

Business Logic
Persistence

Presentation
&

 Interfaces

Figure 5. Architecture of the Human Communication Manager.

Communication Manager. Human response messages are
intrinsically unstructured. This is especially true for text-based
messages as they are not rigorously bounded and restricted to
predefined response structures. To cope with this phenomenon
it is essential to validate and interpret all incoming messages
from human users in order to make them understandable for the
HCM. For these purposes the Communication Manager offers
specialized classes of filters like the Command Interpreter. This
interpreter identifies all substrings of the response message
conforming to a set of regular expressions which correspond to
predefined commands utilizing the HCM’s public interfaces.
The command #help, for example, can be used to obtain a list
of all available commands. Other commands, which are very
useful in many scenarios, are ‘#forward’ – to forward a task to
another user, ‘#useChannel’ – to move the task to another
communication channel, and ‘#resend’ – to start over with a
task. If no command has been identified in a response message
the HCM assumes that the message signals a completion of a
task and validates it against the response schema.

Communication API. The HCM offers two distinct
Application Programming Interfaces (API) exposed as Web
services. The Integration API handles the communication with
all registered Communication Services. The Initiation API on
the other hand provides an asynchronous method for
instantiating new tasks and a callback mechanism for receiving
responses to be delivered to the communication initiator.
Details about the communication services which integrate with
the communication API are covered in Section IV.

Web Frontend. The presentation layer provides a feature-
rich, Web-based frontend. It comprises a visual representation
of the worklist, dynamically generated forms for processing
tasks as well as administration functions for managing user
accounts, services, and devices.

C. Human Communication Processing
This part focuses on the exact orchestration rules used by the
Messaging component to achieve correct routing behavior.
These rules, depicted in Figure 6, are specified based on the
nomenclature and definitions introduced by the Enterprise
Integration Patterns (EIP) [9].

Incoming initiation messages must pass syntactic and semantic
validation checks before they are made persistent by a message
queue (Step 1, Figure 6). Depending on the flow type,
messages are routed through intermediate steps involving task
creation. Note that this detour is only required for two-way
communication flows (Step 2). At this point a content-based
router separates notification messages sending them to their
final destinations after storing them (Step 3). The alternative
route, taken when a response is requested, leads up to the
central response loop (Step 4). This construct handles all
incoming human user input coming either from communication
devices or the Web-based frontend. Depending on the chosen
input source the provided message parameters are routed to the
Worklist Controller or to the Command Interpreter where text-
based commands are identified. The message processor
validates responses for matching the required response schema.
Previously stored and unfinished tasks are also selected and
routed periodically to this point. In case of a failed or finished
task the response loop is exited (Step 5). If no valid response
message was provided after a certain time-frame, optional
response messages are enriched with a predefined answer and
sent back to the initiator, i.e. to the scientific workflow.
Mandatory response messages, however, are kept in the
worklist with an increased importance level until they are
chosen by an Earliest-Deadline-First algorithm at a later
selection cycle.

D. Advanced Aspects
Response schema. We propose a sufficiently rich subset of the
XML Schema specification for modeling task structures and
for validating their responses, i.e. for the data provided by a
human user. The subset includes the standard primitive data
types (e.g. string, decimal, integer) and restrictions (e.g.
enumeration, length). Complex types include sequence,
choice and all, with the attributes required, optional,
maxOccurs and minOccurs. The instantiation of the
response schema into a response template is specific to the used
service and channel and is thus discussed in Section IV.

Response time. Certain factors can be considered in order to
compute future response probabilities and to shorten the
waiting interval. Studies conducted in [17] propose a
probabilistic model of individual e-mail.

Figure 6. Message-oriented perspective on the processing steps of the communication between a scientific workflow and human users.

The approach defines a cascading non-homogeneous
Poisson process as a double-chain hidden Markov model,
allowing for an efficient inference algorithm with which a
survival function of these Poisson-distributed random variables
can be computed and used. When using such models in the
HCM, the probability of receiving a response to a submitted
request can be calculated at any time. In case a response is
unlikely, the task can be rerouted.

Reliability. In order to avoid message loss, persistent
message queues guarantee the atomic behavior between critical
sections coupled with specific error handling protocols, like
attempting multiple automated redeliveries. As one of many
possible recovery strategies this approach increases the
robustness and reliability of the system. Beside the
transactional aspect, the HCM was specifically designed to
handle concurrent access of shared resources in multi-threaded
and multi-user environments and to avoid race conditions
through various synchronization techniques.

IV. HUMAN COMMUNICATION SERVICES
The aim we followed in the architecture was to consider both
tight integration with a workflow modeling and monitoring
environment and a lightweight and pluggable integration with a
variety of channels. Human Communication Services serve the
lightweight form of integration. After integration of a new
service in the HCM by registering the protocol and its endpoint
reference, users can register new devices that can be reached
through the newly established communication channel. In this
section, we dwell on only two of the Communication Services
we used in order to show their features and differences. We
also present a generic service template for implementing new
Communication Services.

A. e-mail Service
The e-mail service provides a communication channel with two
significant properties: (1) the channel is asynchronous, i.e., a
human user does not need to be present on his device to receive
messages and (2) the messaging capabilities of the channel
vary depending on the architecture and implementation.
Figure 7 depicts the architecture of an e-mail service which
does not implement a complete mail server but which uses a
provider like Yahoo! Mail. Depending on the provider used by
the service for sending messages, the messaging capabilities
change. For example, Yahoo! Mail currently supports subject,
body, and attachments up to 25 MB in total size. The service
manages all messages in database tables, one for e-mails to be
sent (Outbox), one for e-mails received (Inbox), and one for
correlation and storage of requests by the HCM and responses
by human users.

The e-mail service contains multiple sub-components. The
Communication Request Handler is invoked by the HCM. It
instantiates the XSD of the requested response and appends it
as a response template to the message body. Thus, the
instantiated response template is specific for the
communication service and channel. As described in [6], an e-
mail service may provide the response template as valid XML
instance, where the requested information elements are filled
with example values.

Furthermore, the e-mail service generates and adds a unique
identifier to the e-mail subject for correlation of sent and
received e-mails. It puts the prepared e-mail in the Outbox. The
Mail Sender sub-component periodically processes the Outbox
table and sends all prepared e-mails via an external Mail
Server. The timing of the polling is defined in a local
configuration. The credentials for the used Mail Server account
are either passed to the e-mail service by the HCM or pre-
defined in the local configuration.

E-Mail Service

Invoke
Communication
Request Handler

Mail Sender

Mail Server
(User Account)

Mail ReceiverMail Processor

Human
Communication

Manager
Response/

Callback

OutboxInbox

Mail Server
(Service Account)

Requests &
Responses

Config

Figure 7. Architecture of the e-mail service using an external mail server.

A human user can then perform a task by simply replying to
the e-mail and filling out the response template in the e-mail
body. The Mail Receiver periodically polls the Mail Server for
new messages, which are then stored in the Inbox table. The
Mail Processor periodically processes all new mails stored in
the Inbox table, deletes spam messages and stores correlated
user responses in the Requests & Responses table. Periodically,
the Communication Request Handler checks if tasks have been
completed. In case a task is complete, the callback of HCM is
invoked returning the response. The e-mail service can also be
used stand-alone without the HCM. However, for two-way
communication some of the logic realized in the HCM is
needed in the e-mail service, like validation of responses and
timeout handling. This was investigated in [6].

B. Google Talk Service
The Google Talk (GTalk) service is different from the e-mail
service. Instant messaging is a synchronous channel – typically
messages are only delivered when both GTalk users are online.
In contrast to the e-mail channel the presence of a human user
can be queried and the instant messaging channel would be
chosen only when the user is online. However, in order to
access the presence of a user and for exchanging messages the
human user has to add his GTalk account as contact
information. Therefore, a part of the user registration happens
outside of the overall framework. One deficiency in instant
messaging is that only one task can be delivered to a user at a
time. After one request has been started by a user, the service
has to wait for a reply before the next request can be sent, i.e.,
the device is blocked. In the e-mail service this problem does
not exist as correlation is made by an identifier added to the
subject. In GTalk interactions there is no body and no subject,
just text transmissions. So the GTalk service has to put all
information into one transmission. For complex requests, the
task is chunked and only one parameter is requested at a time.
The chunking accounts for mobile phone devices with limited
text editing functionality.

In the GTalk service, the user can directly send commands
to the HCM. Figure 8 shows sending of the ‘#help’ command
to get a list of all available commands.

Figure 8. Sending command ‘#help’to the HCM through the GTalk service.

C. Communication Service Template
All Communication Services that have to be integrated with the
HCM must implement a specific Service Endpoint Interface
(SEI) and expose it as a Web service. The SEI operates through
a set of methods with primitive data types instead of one
complex message, which has to be disassembled and analyzed
after each call.

There are three types of methods: (1) getter methods used
by the HCM, e.g., to query the presence status of a human user;
(2) setter methods used by the HCM for setting a message
subject, body, attachments, recipient, response schema, etc.;
and (3) methods to trigger a two-way communication with the
service by exchanging text messages asynchronously. Not
every interface method has to have a proper implementation. In
case a specific service does not consider any attachments, then
the corresponding method is unnecessary. Therefore, it is
important to state the message channel capabilities of a
Communication Service, like the maximum length of subject
and body, if attachments are allowed, and the maximum file
size of attachments. We currently provide such information as
plain text. However, this information could also be provided by
using the policy language WS-Policy [27] that allows
automated matchmaking of services and message requirements.

V. INTEGRATION IN SCIENTIFIC WORKFLOWS
The integration of human users in scientific workflows can

be realized with predefined reusable workflow fragments. The
use of fragments reduces the integration of human
communication in scientific workflows to a ‘drag and drop’
operation during the modeling of scientific workflows. Figure 9
shows a fragment providing asynchronous communication with
the HCM using BPEL [14]. The assign activity
prepareMessage constructs a Communication Request
Message that will be sent to the HCM by the Web service
invocation activity invokeHCM. The message contains both the
actual message to be presented to the human user and
additional information for the HCM. The HCM requires, e.g.,

an EPR pointing to the communication initiator (to whom the
response message should be sent) and an XSD defining the
structure of a valid response.

After sending the message to the HCM, the following pick
construct awaitResponse waits for a response message from
the HCM (callback). When a response message arrives, the
OnMessag’ branch of the pick construct is activated. Then,
the response message is processed in the assign activity
assignResponse, providing the data contained in the human
user’s response for further processing. The pick construct also
contains a handler for timeout, OnAlarm. This construct
addresses scenarios where the human user does not respond
within a given time or when the HCM cannot be reached. The
assignTimeout activity then provides information about the
missing response message.

Figure 9. Example workflow fragment for integration of a human user.

We implemented fragments to communicate with human
users both using the HCM and directly invoking the
Communication Services without the HCM. Note that the
HCM accounts for optimal response time with a large variety
of communication capabilities, whereas the sole use of
Communication Services accounts for easy and fast setup. The
presented fragment realizes an asynchronous communication
with the HCM using a callback mechanism. A different
approach is a polling mechanism not shown here due to space
limitations. Instead of waiting for a response message a
fragment can periodically poll for available response messages;
this however is a decision on the realization and is left to the
discretion of the workflow designer/scientist.

VI. IMPLEMENTATION
As a proof of concept we have implemented an open source
HCM-prototype called SW4H (Scientific Workflows for
Humans). The prototype is licensed under the Apache 2 license
and can be downloaded at [2]. It comes with two prepackaged
Communication Services for e-mail (SMTP) and Google Talk
(XMPP) communication and a service template for custom
service implementations. The solution is based on the Spring
Framework managing transactional behavior, security-
mechanisms as well as providing the IoC-Container (Inversion
of Control). The used Message Broker and Routing Engine are

realized using the Apache ActiveMQ and Apache Camel
frameworks, respectively. The Human Task Manager is
realized by Project Bangkok [13] prototype. The modular
structure of the HCM allows easy extensions with new
Communication Services and upgrades of user- and task-
selection algorithms. The HCM and the Communication
Services use Web service technology for interoperability.

For the presentation layer we provide a Web-based
Worklist Manager together with all administration interfaces
necessary for registering and modifying Communication
Services, devices, and user accounts. The Web frontend can be
used within Eclipse as a view or stand-alone using a common
Web browser, e.g. for performing tasks using a tablet PC.
Based on the Eclipse BPEL Designer project, we can now use
this feature to provide scientists with a rich client platform for
modeling, monitoring, and managing scientific workflows.
Recently, we developed extensions to this platform to support
the usage of workflow fragments for reusing and sharing the
fragments [4]. This extension can be used to easily integrate the
interaction logic between the workflow and the HCM.

VII. RELATED WORK AND COMPARISON
Integration of human users in automated information
processing is a typical requirement for business workflow
systems. As a consequence, most products provide efficient
support, offering a human task manager and a worklist
application, like Intalio Tempo [18]. Standards for human tasks
like WS-HumanTask [11] and integration in business
workflows like BPEL4People [12] have been developed. Such
extension specifications account for portability between
different products but also require extensions of the workflow
modeling and execution environment. We avoided such
extensions by modeling workflow fragments providing the
necessary invocation logic. Our approach provides the worklist
functionality common in business scenarios and additionally
considers the integration of Communication Services. The use
of different services for integration of human users has been
previously applied in industry. For example, the Oracle
workflow suite [19] provides multiple services for one-way
communication, such as for sending short messages to mobile
phones and for sending e-mails. However, in contrast to most
offerings, our approach considers presence of users, loose
integration of Communication Services, and two-way
communication over different channels.

To the best of our knowledge existing SWfMS like Kepler
[21], Triana [22], Taverna [23], or Pegasus [24] do not offer an
integration of human communication in workflows.
Additionally, we have identified two significant differences
between the business process technology used in our approach
and most SWfMS. The first is the focus on Web service
technology for integration and the second is the ability to
perform asynchronous calls. These allow for modeling and
performing request-response interactions with a human user by
means of predefined callbacks; otherwise a polling mechanism
needs to be implemented on the side of the communication
initiator and the HCM. Notification to a user from the
workflow can also be sent either by calling directly a Web
service or through a synchronous call to a program, which in
turn calls a Web service. The concept of workflow fragments in

our approach is common to both WfMS and SWfMS. Although
our fragment approach builds on the workflow language BPEL,
reusable fragments can be applied to other languages in a
similar manner. Besides, some scientific workflow languages
already have ways to capture workflow logic as reusable
components, e.g., via groupings of task structures in
Triana [22].

VIII. SUMMARY AND OUTLOOK
In this work, we have presented different perspectives of our
solution towards integrating interaction with human users in
scientific workflows, including architectural perspectives,
control and message flow perspectives, services, and
implementation. It is important to note that the approach is not
limited to scientific workflows; it can be used by any kind of
communication initiator capable of invoking Web services. The
presented approach significantly facilitates the work of
scientists by taking into account different communication
channels. As we experienced in discussions with scientists, the
beneficial features like availability of different Communication
Services and the possibility to flexibly react to exceptional
situations makes workflow-driven systems even more
appealing and more likely to be applied in future projects.

We presented two Communication Services realizing an
instant messaging and an e-mail channel. Additional channels
can also be enabled, like FTP for transferring large files to and
from a user’s device, Twitter for continuously posting status
updates, Skype/MSN/… for supporting the variety of instant
messaging systems, and encrypted channels for security-
sensitive applications. The work is also relevant to the
developments in the field of combining social media and BPM
Systems, as well as human-supported computing [29].

ACKNOWLEDGMENT
The authors would like to thank the German Research
Foundation (DFG) for financial support of the project within
the Cluster of Excellence in Simulation Technology (EXC
310/1) at the University of Stuttgart.

REFERENCES
[1] D. Schumm, C. Fehling, D. Karastoyanova, F. Leymann, and J.

Rütschlin, “Processes for Human Integration in Automated Cloud
Application Management,” Technical Report No. 2012/02, University of
Stuttgart, 2012.

[2] D. Dentsas, “SW4H – Scientific Workflows for Humans”, Google Code
Project, 2012. Available at http://code.google.com/p/sw4h-2012/

[3] D. Schumm and D. Karastoyanova, “Integrating Humans in Scientific
Workflows: Integrate, Register & Communicate,” In: The 4th SimTech
Status Seminar, Poster, 2011.

[4] D. Schumm, D. Dentsas, M. Hahn, D. Karastoyanova, F. Leymann, and
M. Sonntag, “Web Service Composition Reuse through Shared Process
Fragment Libraries,” In: Proceedings of the 12th International
Conference on Web Engineering (ICWE’12), Demo, Springer, 2012.

[5] D. Dentsas, “Einbindung von Menschen in Scientific Workflows,” (in
German), Diploma Thesis No. 3297, University of Stuttgart, 2012.

[6] L. Sun, “Web Services for Human Interaction,” Diploma Thesis No.
3275, University of Stuttgart, 2012.

[7] S. Wagner, “A Concept of Human-oriented Workflows,” Diploma
Thesis No. 2987, University of Stuttgart, 2010.

[8] I. J. Taylor, et al. (Eds.). Workflows for e-Science: Scientific Workflows
for Grids. Springer-Verlag New York, 2006.

[9] G. Hohpe and B. Wolf, “Enterprise Integration Patterns: Designing,
Building, and Deploying,” Addison-Wesley, 2004.

[10] K. Görlach, M. Sonntag, D. Karastoyanova, F. Leymann, and M. Reiter,
“Conventional Workflow Technology for Scientific Simulation,” In:
Guide to e-Science, Springer-Verlag, 2011.

[11] A. Agrawal et al., “Web Services Human Task (WS-HumanTask),”
White Paper, 2007.

[12] Agrawal et al., “WS-BPEL Extension for People (BPEL4People),”
White Paper, 2007.

[13] S. Wagner and T. Unger, “Project Bangkok”, Google Code Project,
2010. Available at http://code.google.com/p/projectbangkok/

[14] Organization for the Advancement of Structured Information Standards
(OASIS), “Business Process Execution Language 2.0 (BPEL),” 2007.

[15] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F.
Ferguson, “Web Services Platform Architecture,” Prentice Hall PTR,
2005.

[16] M. Day, J. Rosenberg, and H. Sugano, “A Model for Presence and
Instant Messaging,” Network Working Group RFC 2778, 2000.

[17] R. D. Malmgren, et al., “Characterizing Individual Communication
Patterns,” In: Proceedings (KDD’09), ACM, 2009.

[18] Intalio, “Intalio Workflow Tempo,” 2009. Available at
http://www.intalio.org/confluence/display/TEMPO/Home

[19] Oracle, “BPEL Process Manager Developer’s Guide,” Version 10g
(10.1.3.1.0), B28981-03, 2007.

[20] Object Management Group (OMG), “Business Process Model and
Notation (BPMN),” OMG Available Specification, Version 2.0, 2011.

[21] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludäscher, and S. Mock,
“Kepler: An Extensible System for Design and Execution of Scientific
Workflows,” In: Proceedings of the 16th International Conference on
Scientific and Statistical Database Management, 2004.

[22] D. Churches, et al., “Programming Scientific and Distributed Workflow
with Triana Services,” In: Concurrency and Computation: Practice and
Experience. Special Issue on Workflows in Grid Systems, 18(10): 1021–
1037, John Wiley & Sons, 2006.

[23] D. Hull, et al., “Taverna: A Tool for Building and Running Workflows
of Services,” In: Journal of Nucleic Acids Research, 34(Web Server
issue): 729–732, Oxford University Press, 2006.

[24] E. Deelman, et al., “Pegasus: Mapping Large-scale Workflows to
Distributed Ressources,” In “Workflows for e-Science—Scientific
Workflows for Grids,” Springer-Verlag, 2007.

[25] M. Sonntag, S. Hotta, D. Karastoyanova, D. Molnar, and S. Schmauder,
“Using Services and Service Compositions to Enable the Distributed
Execution of Legacy Simulation Applications,” In: Proceedings of
ServiceWave, 2011.

[26] P. Reimann, M. Reiter, H. Schwarz, D. Karastoyanova, and F. Leymann,
“SIMPL – A Framework for Accessing External Data in Simulation
Workflows,” In: Proceedings of the 14th BTW 2011, LNI, 2011.

[27] W3C, “Web Services Policy 1.5 - Framework (WS-Policy),” W3C
Recommendation, 2007.

[28] F. Leymann and D. Roller, “Production Workflow – Concepts and
Techniques,” Prentice Hall, 2000.

[29] S. Dustdar and K. Bhattacharya, “The Social Compute Unit.” In: IEEE
Internet Computing 15(3):64—69, IEEE, 2011.

	cover-IEEE_KDDS+12
	INPROC-2012-39 Integration of Human Users

