Institute of Architecture of Application Systems

Enabling Tenant-Aware Administration and Management
for JB1 Environments

Steve Strauch™, Vasilios Andrikopoulos™, Santiago Gomez Saez”,
Frank Leymann®, Dominik Muhler?*

* Institute of Architecture of Application Systems,
University of Stuttgart, Germany
{firstname.lasthname}@iaas.uni-stuttgart.de

* Center of Excellence F&R,
SAP (Schweiz) AG, Switzerland
dominik.muhler@sap.com

BIBTRX:
@inproceedings{StrauchALM2012,
author = {Steve Strauch, Vasilios Andrikopoulos, Santiago Gomez Saez,
Frank Leymann, and Dominik Muhler},
title = {Enabling Tenant-Aware Administration and Management for JBI

Environments},

booktitle = {Proceedings of the 5th IEEE International Conference on Service-
Oriented Computing and Applications, SOCA 2012,
17-19 December 2012, Taipei, Taiwan},

year = {2012},
pages = {206-213},
publisher = {IEEE Computer Society}

© 2012 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

ote
3
25¢%
.
.

-
G

trete
QXRRR

X
28K
Lo

it Universitat Stuttgart

Germany

NN
- *
:. OO0
T,
o 22,

LOCS
*e
-

ot
R

*e

Enabling Tenant-Aware Administration and Management for JBI Environments

Steve Strauch, Vasilios Andrikopoulos,
Santiago Gémez Sdez, Frank Leymann
Institute of Architecture of Application Systems (IAAS),
University of Stuttgart, Stuttgart, Germany
{firstname.lastname} @iaas.uni-stuttgart.de

Abstract—Enterprise Service Buses (ESBs) constitute a core
middleware technology for each modern Service-Oriented Ar-
chitecture (SOA) solution. Given the popularity of the Cloud
paradigm, which is based on fundamental SOA concepts, it
is only therefore natural to look into how ESBs can be
transformed into native building blocks for Cloud platforms.
As a first step of this effort, in this work we investigate how
ESBs can become multi-tenant aware, i.e. able to support
multiple tenants and their users sharing the same ESB instance.
A generalized architecture based on the JBI specification
implemented by a number of open source ESBs is presented
for this purpose. We demonstrate the feasibility of our proposal
by means of a proof of concept realization and we evaluate the
performance of our solution against a non multi-tenant ESB
that was used as the baseline for our implementation.

Keywords-Multi-tenancy; Enterprise Service Bus (ESB); JBI
specification; Platform as a Service

I. INTRODUCTION

The Enterprise Service Bus (ESB) technology [1] as
the messaging hub between applications addresses the
fundamental need for application integration and as such,
in the last years it has become ubiquitous in service-
oriented enterprise computing environments. ESBs control
the message handling during service invocations and are at
the core of each Service-Oriented Architecture (SOA) [2].
Given the increasing interest of the industrial and research
community in Cloud computing [3], and the fact that the
Cloud computing paradigm is discussed in terms of the
creation, delivery, and consumption of services [4], it is
therefore essential to investigate into how the ESB technology
can be used efficiently in a Cloud-oriented environment.

For this purpose, in this work we focus on making ESBs
multi-tenant aware. Multi-tenancy and virtualization are the
key enablers that allow Cloud computing solutions to serve
multiple customers from a single system instance. Using
these techniques, Cloud service providers maximize the
utilization of their infrastructure, and therefore increase
their return on infrastructure investment, while reducing the
costs of servicing each customer. While many industrial
strength solutions exist for virtualization!, multi-tenancy

I'See for example: http://www.xen.org, http://www.vmware.com/products/,
and http://www.flexiant.com/

Dominik Muhler
Center of Excellence F&R, SAP (Schweiz) AG, Switzerland
dominik.muhler @sap.com

is an issue still under research and as such, it is the
goal for this work. Multi-tenancy has been defined in
different ways in the literature for SOA and middleware,
see for example [5], [6], [7], [8]. Such definitions however
do not address the whole technological stack behind the
different Cloud service models as defined in [3] (i.e. [aaS —
Infrastructure as a Service, PaaS — Platform as a Service,
SaaS — Software as a Service). In this work we define
multi-tenancy as the sharing of the whole technological stack
(hardware, operating system, middleware, and application
instances) at the same time by different tenants and their
corresponding users.

We distinguish between two different consumer types for
multi-tenancy purposes: fenants and users. Tenants separate
the consumers using a multi-tenant service or application
into groups like companies, organizations or departments.
These groups are not necessarily completely disjoint since a
consumer may belong to more than one tenant at the same
time. Users enable the differentiation between consumers
potentially belonging to more than one tenant and therefore
introduce a finer level of granularity. Consider for example
the case of a provider offering a multi-tenant Cloud service
in the taxi domain managing client requests and assigning
them to drivers. A small taxi company using this service is a
tenant of this multi-tenant service. The customers of the taxi
company are consuming the service and therefore act as the
users of the tenant. Such differentiation between consumers
using users is essential for performing tasks like accounting
and billing on behalf of the tenant.

In this context, making an ESB multi-tenant aware means
that the ESB is able to manage and identify multiple tenants
and their users, providing tenant-based identification and
hierarchical access control to them. In other words, the
ESB should provide the appropriate mechanisms that allow
tenant applications to seamlessly interact with it while sharing
one (logical) instance of the ESB. Given the role of the
ESB middleware technology in the technological stack, there
are two fundamental aspects of multi-tenancy awareness:
communication (i.e. supporting message exchanges isolated
per tenant), and administration and management (i.e. allowing
each tenant to configure and manage individually their
communication endpoints at the ESB). Isolation can be further

http://www.xen.org
http://www.vmware.com/products/
http://www.flexiant.com/

decomposed into data and performance isolation between
tenants of the same system. In this paper we scope the
discussion to the administration and management aspect of
multi-tenant aware ESBs.

More specifically, in the following sections we present a
framework enabling multi-tenant aware administration and
management of Java Business Integration (JBI) environments.
The JBI specification [9], created by the Java Community
Process, defines a Java framework that standardizes the
interoperation between service containers, connectivity ser-
vices, and integration services. A number of middleware
technologies like ESBs and application servers implement
the JBI specification, e.g. the open source solutions Open
ESB?, Petals ESB?, Apache ServiceMix*, and GlassFish’.
By basing our approach on the JBI specification we therefore
ensure that we produce a general and reusable solution
that can be replicated across different ESB solutions (and
other technologies that implement the JBI specification). Our
contribution therefore can be summarized by offering:

o A framework enabling the multi-tenant aware adminis-
tration and management of JBI environments.

o A proof-of-concept implementation of our proposal
based on the open source ESB Apache ServiceMix.

« A performance evaluation of our implementation, com-
pared against the Apache ServiceMix version that we
used as a baseline for the development of our solution.

The remaining of the paper is structured as follows:
Section II briefly summarizes the JBI specification and
presents our proposal for an architectural framework enabling
multi-tenant administration and management in JBI environ-
ments, by first identifying the requirements for this purpose.
Section III discusses the realization of this framework using
Apache ServiceMix as a proof-of-concept for our proposal
and Section IV provides a performance evaluation for this
realization. The paper closes with Section V and Section VI
summarizing related work, and concluding with some future
work, respectively.

II. MULTI-TENANT AWARE ADMINISTRATION AND
MANAGEMENT OF A JBI ARCHITECTURE

In this section we briefly introduce the JBI specification
before we define the functional and non-functional require-
ments for enabling multi-tenant aware administration and
management of JBI environments. The requirements have
been identified during our work in the EU research project
4CaaSt®, collaborations with industry partners, and through
literature review. Afterwards we propose an architecture
satisfying these requirements.

20pen ESB: http://openesb-dev.org

3Petals ESB: http://petals.ow2.org

4Apache ServiceMix: http://servicemix.apache.org
5GlassFish: http://glassfish.java.net

6The 4CaaSt project: http://www.4caast.eu

A. Java Business Integration Environment

The JBI specification by the Java Community Process
creates a standard-based environment for integration solutions
and specifies the interaction of JBI components installed into
a JBI container [9]. A JBI container facilitates plugging-in
JBI-compliant components interacting through a Normalized
Message Router (NMR). The NMR is a message-oriented
mediator and ensures loose coupling between JBI components.
JBI components consume or provide services and describe
them according to the WSDL 2.0 specification [10]. There are
two different types of JBI components: Binding Components
(BCs) and Service Engines (SEs). BCs provide connectivity
to external services and mediate between external protocols
and the NMR. SEs provide business logic and transformation
services inside the JBI container. Additionally, JBI specifies
a management framework based on the Java Management
Extensions (JMX) specification for the configuration of JBI
components to cope with individual integration tasks. The
management framework allows to install JBI components,
to deploy service artifacts, called service units, to configure
them, control their state, and control the overall state of the
JBI container. Different service units can be packaged as
service assemblies.

B. Functional and Non-Functional Requirements

Following the discussion about multi-tenancy of PaaS
components, in the context of project 4CaaSt we identified
and categorized a set of functional and non-functional
requirements for multi-tenant aware administration and
management. Toward this goal we also refined the multi-
tenancy characteristics (e.g. tenant awareness) identified
already in the literature, e.g. [11], [5], [6], [7], [8].

Functional requirements: The following functionalities
must be offered by any JBI environment providing multi-
tenant aware administration and management.

FR, Tenant awareness: A JBI environment must be able
to manage and identify multiple tenants, i.e. tenant-
based identification and hierarchical access control for
tenants and their users must be supported.

FRo Tenant-based configuration: The installation of JBI
components and the deployment of corresponding
configurations for a certain tenant should be managed
in a transparent manner by the JBI environment.

FRg3 Tenant-specific interfaces: A set of customizable inter-
faces must be provided, enabling administration and
management of tenants and users, including both GUIs
and Web services interfaces.

FRy Shared registries: As the JBI environment will be
embedded in a PaaS platform with other applications
demanding similar information, the approach must
come with a shared for other PaaS components registry
of tenants/users and a shared registry of configurations.

http://openesb-dev.org
http://petals.ow2.org
http://servicemix.apache.org
http://glassfish.java.net
http://www.4caast.eu

FRs Backward compatibility: The JBI environment should
be able to handle non multi-tenant aware administration
and configuration by enabling installation of JBI
components and deployment of service artifacts that
are not multi-tenant aware.

Non-functional requirements: In addition to the required
functionalities, JBI environments should also respect the
following properties.

NFR; Tenant Isolation: Tenants must be isolated to pre-
vent them from gaining access to other tenant’s data
(i.e., data isolation) and computing resources (i.e.,
performance isolation). Data isolation can be further
decomposed into communication isolation, referring to
keeping the message exchanges for each tenant sepa-
rate, and application isolation, referring to preventing
applications and services of one tenant from accessing
data of another tenant’s applications or services.

NFRy Security: The necessary authorization, authentication,
integrity, and confidentiality mechanisms must consider
and enforce tenant- and user-wide security policies
when required.

NFRg3 Reusability & extensibility: The multi-tenancy en-
abling mechanisms and underlying concepts should not
be solution-specific and depend on specific technologies
to be implemented. JBI containers and components
should therefore be extensible when required and
reusable by other components in the PaaS model (as for
example in the case of the shared registries functional
requirement).

NFRy Tenant data consistency: Distributed transactions
implementing the ACID principle have to ensure data
integrity between different components modifying data
specific to each tenant, e.g. configuration information.

C. Multi-tenant Aware Administration and Management
Framework

Figure 1 provides an overview of our proposal for a
generic multi-tenant aware administration and management
framework, which fulfills the requirements identified in
the previous section. More specifically, the three layer
architecture consists of a Presentation layer, a Business
Logic layer, and a Resources layer. In the following we
present the components required for each layer of the
architecture and how they address the functional and non-
functional requirements described in Section II-B in a bottom-
up fashion.

1) Resources layer: The Resources layer consists of a
JBI Container Instance Cluster and a set of registries. The
JBI Container Instance Cluster bundles together multiple JBI
containers. In the simplest case, the JBI Container Instance
Cluster may consist of only one (running) JBI container
handling all tenants and users using an implementation of
the framework for multi-tenant aware administration and

management. Since this however may create performance
issues, a clustering mechanism similar to the one provided
for example by Apache ServiceMix is recommended to be
used. In order to enable multi-tenancy in any JBI Container
Instance, these containers, and all other JBI components
installed in the container (see SectionII-A), must be multi-
tenant aware, i.e. able to operate with multiple tenants and
users administrating and configuring the same instance of the
JBI container. For a JBI Container Instance in particular, this
means that BCs and SEs are able to handle service assemblies
containing tenant and user specific configuration information,
and process them accordingly in a multi-tenant manner (FR3).
For example, a new tenant and user specific endpoint has to
be created for interaction with a JBI component whenever a
service artifact is deployed to this JBI component. Thereby,
communication isolation is ensured (NFR;).

The installation/uninstallation and configuration of BCs
and SEs in a JBI Container Instance is performed by means
of a set of standardized interfaces. While these interfaces,
and all other components of the JBI Container Instance, are
multi-tenant aware, special care has to be taken to ensure
backward compatibility (FRj5). This means that installation
and configuration of non multi-tenant aware JBI components
must still be possible. Processing of non multi-tenant aware
service assemblies has to be performed normally. Within the
Resource layer we also introduce three different types of
registries. The Service Registry stores the services registered
with the JBI environment, as well as the service assemblies
for the configuration of the BCs and SEs installed in each
JBI Container Instance in the JBI Container Instance Cluster
in a tenant-isolated manner [12] (NFR;). Currently we are
focusing on the approach that each JBI Container Instance of
the JBI Container Instance Cluster has the same BCs and SEs
installed. As the BCs and SEs are common, and in order to
offer the possibility of horizontal scalability support [13], a

Presentation [Web Service API] [Web Ul]
A A
| |
k2 k2

Access Layer

Tenant Registry Manager]

Logic Configuration Registry Manager]

Service Assembly Manager

JBI Container Manager]

[
Business [
[
[

Service Registry Manager]

Message Broker

W

JBI Container
Instance Cluster

Resources

=

Tenant Registry
Database

=)

Service Registry
Database Cluster,

Configuration
Registry Database

Figure 1. Overview of multi-tenant aware Administration and Management
Framework

load balancer (not shown in Fig. 1) must retrieve the required
service assemblies from the Service Registry and deploy
them to the corresponding JBI components after installing the
JBI components when starting an additional JBI Container
instance, e.g., to cover increased load. As we propose to
share the Service Registry with other PaaS components, e.g.,
composition engines (FR4), and for the sake of reusability
(NFR3), we recommend to realize the Service Registry as a
database cluster to avoid performance bottlenecks.

The Tenant Registry stores a set of users for each tenant
and the corresponding unique identifiers (FR;). Additionally,
each tenant and user may have associated properties such
as tenant or user name represented as key-value pairs
(NFR3). Moreover the password required for login before
administration and configuration of the JBI environment
is stored in the Tenant Registry represented as hash value
generated with MD5 (NFRy). All these data are stored in a in
a multi-tenant manner (NFR;). The Configuration Registry
stores all configuration data created by a tenant and the
corresponding users, except from the service registrations
and configurations stored in the Service Registry. The
Configuration Registry stores for example the configuration of
JBI Container Instances (FR2), the mapping of JBI Container
Instances to tenants (FR;), and the mapping of permissions to
roles according to the role-based access control mechanisms
offered by the Access Layer component in the next layer
(NFR; and NFR»).

When a tenant or user interacts with the multi-tenant
aware JBI environment, the data in more than one registry
might have to be changed. Consequently all operations and
modifications on the underlying resources have to be handled
as distributed transactions based on a two-phase commit
protocol [14] so that a consistent state of all resources is
ensured (NFR4). As many JBI components from several JBI
Container Instances in the cluster might participate in the
distributed transaction and this might lead to performance
bottlenecks we recommend to decouple them from the
distributed transactions using messaging with guaranteed
delivery [15], e.g. a Message Broker (see Fig. 1).

2) Business Logic layer: The Business Logic layer
contains an Access Layer component, encapsulating the
functionality that ensures tenant awareness and security
(FR; and NFR», respectively). The Access Layer acts as
a multi-tenancy enablement layer [5] based on role-based
access control [16]. The tenants and their corresponding
users have to be identified and authenticated once when the
interaction with the JBI environment is initiated. Afterwards,
the authorized access should be managed by the Access
Layer transparently. Prior to authentication and identification
of tenants and users, the Access Layer component handles
authorization by registering tenants and users and granting
them access to JBI Container Instances (NFRj). Therefore,
in case of a multi-tenant aware interaction with the system,
each tenant and user has to identify themselves by providing

a unique fenantID and userID (FRy).

In addition to the Access Layer component, the Busi-
ness Logic layer also contains a set of Managers (Fig. 1)
encapsulating the functionality to interact with underlying
components in the Resources layer. The Tenant Registry,
Configuration Registry, and Service Registry Managers
implement the business logic required to retrieve and store
data in the corresponding registries. The JBI Container
Manager installs and uninstalls BCs and SEs in each JBI
Container in the cluster, while the Service Assembly Manager
takes care of configuring them appropriately by deploying
and undeploying service artifacts. Both managers are using
the standardized interfaces provided by each JBI Container
Instance for this purpose, as discussed in the Resources layer.

3) Presentation layer: The Presentation layer contains two
components allowing the customization, administration, and
interaction with an implementation of the multi-tenant aware
administration and management JBI environment: the Web UI
and the Web service API. The Web UI offers a customizable
interface for human and application interaction with the
system, allowing for the administration and management
of tenants and users (FRg). The Web service API offers
the same functionality as the Web UI, but also enables the
integration and communication of external components and
applications (NFR3). For both interface mechanisms, security
aspects such as integrity and confidentiality of incoming
messages must be ensured (NFRy) by, for example, using
Web Services Security (WS-Security) for the Web service API
and Secure HTTP connections for the WebUI. A discussion
on the particular mechanisms to be used for this purpose is
out of scope of this work.

III. REALIZATION

For purposes of implementation of our approach we
extended the open source ESB Apache ServiceMix version
4.3.0 (hereafter referred to simply as ServiceMix) and
integrated it with the newly developed Web application
JBIMulti2 for enabling multi-tenant aware administration and
management. The name JBIMulti2 is based on the fact that the
Web application enables multi-tenant aware administration
and management of both BCs and SEs. The extension
to ServiceMix and the integration with the JBIMulti2 is
illustrated in the form of a deployment diagram in Fig. 2.
Components and libraries being reused are marked in gray.
ServiceMix is based on the OSGi Framework [17]. OSGi
bundles realize the ESB functionality complying to the JBI
specification [9]. In the following we present the realization
of the components in the different layers of the framework
in a bottom-up fashion, similarly to the presentation of
Section II-C.

A. Resources layer

ServiceMix is provided with several JBI components, i.e.
the SE for Apache Camel enables usage of Enterprise Integra-

Web Application

<< JSF component>> << JAX-WS component>>
WebGUI WebService
<< EJB component>>
AccessLayer
<< EJB component> << EJB component> << EJB component>> << EJB component>>
ServiceRegistry TenantRegistry ConfigurationRegistry JBIContainerManager

Vi I

<< JMS topic>> << PostgreSQL>

<< PostgreSQL>

<< PostgreSQL>>

N
1
|
|
1
|
!
d
1
|
|
1
|
1
|
|
1
|

ManagementMessages ServiceRegistry TenantRegistry ConfigurationRegistry|
\ mmmmmmn e
, << library>>

| Apache Service Mix Instance II : JBIPackagingBinding
: f
—— " '
Apache Service Mix Instance I |
<< library>> :
<< OSGi service>> << OSGi service invocation>> JBIManagementXMLBinding !
JMSManagement Service [~~" -~ - ~"~"- "~ 1 ,
1
1
1
1
1

g .
25
o
343
ERAN
a <
=
2 9
S v
E
(1]

<< JBI component>> << JBI component>>
servicemix-http-mt servicemix-camel-mt

\/ ! !

<< library>>
TenantContextXMLBinding

Figure 2.

tion Patterns [15]. The original ServiceMix BC for HTTP and
the original Apache Camel SE were extended in our prototype
in order to support multi-tenancy (see the servicemix-http-mt
and servicemix-caml-mt components in Fig.2). In addition,
ServiceMix was extended by an OSGi-based management
service (JMSManagement Service component), which listens
to a JMS topic for incoming management messages sent by
the Web Application (Fig.2). For JMS messaging we use
the message broker Apache ActiveMQ version 5.3.17. The
ServiceRegistry, TenantRegistry, and ConfigurationRegistry
components are realized based on PostgreSQL version 9.1.18.

B. Business Logic layer

As the Web Application might modify more then one
resources, all operations are handled within distributed
transactions. The Web Application itself implements the
Presentation and Business Logic layers of the proposed
architecture (Fig. 2). It is running in the Java EE 5 application
server JOnAS version 5.2.2°, which can manage distributed
transactions. As the management components of the underly-
ing resources are implemented as EJB components, we use
container-managed transaction demarcation, which allows

7 Apache ActiveMQ: http://activemq.apache.org
8PostgreSQL: http://www.postgresql.org
9Java Open Application Server: http://wiki.jonas.ow2.org

Deployment diagram of prototype realization of multi-tenant aware Administration and Management Framework

the definition of transaction attributes for whole business
methods, including all resource changes [18].

As the AccessLayer acts as a multi-tenancy enablement
layer based on role-based access control we defined two
distinct categories of roles interacting with the system:

o The system role differentiates between system adminis-
trators and tenant users, with each tenant user belonging
to one tenant. Both system roles are mutually exclusive.

o The tenant role classifies tenant users into tenant
administrators and tenant operators.

As the system administrator configures the whole system
and assigns quotas of resource usage he does not belong
to any tenant. Thus, the system administrator has unlimited
permissions and is allowed to interfere in the actions of the
tenant users. The tenant users consume the quotas of resource
usage to deploy service assemblies or to register services.
Tenant administrators define roles and assign permissions to
them. These roles are assigned to tenant operators who then
access the resources using a resource contingent given by
the tenant administrator. Each tenant user can have multiple
tenant administrator roles and tenant operator roles. The
union of the permissions of all tenant roles determines which
tasks a tenant user can execute. A contingent defines a group
of resources of the same type such as a concrete BC, SE,
or WSDL service description and the maximum number of

http://activemq.apache.org
http://www.postgresql.org
http://wiki.jonas.ow2.org

resources the group can contain. It is important that the
system administrator assigns a default tenant administrator
role to at least one tenant user to enable the corresponding
tenant to perform actions. This scheme realizes the Role-
Based Access Control model [16].

C. Presentation layer

The Presentation layer consists of the WebGUI and the
Web Service API (Fig.2). The WebGUI has been specified
and designed based on JavaServer Faces version 1.2, but the
implementation is still ongoing. Users of one system role
have a completely separated WebGUI from users of another
system role.

The Web Service API of the Web Application is realized
based on the Java API for XML-Based Web Services version
2.0. JBIMulti2 Web service interface has to ensure integrity,
confidentiality, and authentication of incoming messages. As
the realization complies to the WS-Security specification,
SOAP messages sent to the Web service API can be signed
and encrypted. Security tokens contain keys or other data
that allow the receiver to validate signatures of message
parts or decrypt message parts. The Web service is based on
the WS-Security X.509 certificate token profile, providing
asymmetric encryption using key pairs. As we conceive
confidentiality and integrity on a per tenant basis it is not
required that tenant users own a X.509 certificate. On the one
hand each tenant interacting with the Web service API has to
be aware of the public key of JBIMulti2. On the other hand
JBIMulti2 has to know the public keys of all tenants, stored
as X.509 certificates in the Tenant Registry, but not validated
at a certificates authority. Authentication is implemented by
using a custom SOAP header element named TenantContext,
which is encrypted and signed. The Tenant Context contains
a tenantID and userID both represented as UUIDs, and the
password of the user. The WSDL documents of the Web
service API are available at http://tiny.cc/web-service-wsdls.

All artifacts required to install and setup JBIMulti2
including a manual are publicly available at http://tiny.cc/
JBIMulti2-install.

IV. EVALUATION

For purposes of evaluating the performance of our ex-
tension of Apache ServiceMix we used the Direct Proxy
Service scenario of the Performance Test Framework for ESB
Implementations!®. This scenario aims to demonstrate the
ability of an ESB to act as a virtualization layer for backend
Web services, operating as a proxy between a client (the
benchmark driver) and a simple echo service on the provider
side. Following the test parameters set by the benchmark,
we used messages with 1K payload sent by 20, 40, 160,
640 and 1280 concurrent users. These users were equally
divided among 1, 2, 4 and 10 tenants, creating 4 test cases:

10performance Test Framework http://esbperformance.org

MT/1T, MT/2T, MT/4T and MT/10T, respectively. For each
of these cases, one request message of 1Kb payload for
each user (composed of random characters) was sent by the
driver to the ESB. The total time in receiving the receipt
acknowledgment by the echo service for each message was
measured, allowing us to calculate the average response time
and throughput at the ESB. For comparison purposes, we
measured the same test cases for the baseline (non multi-
tenant) implementation of Apache ServiceMix; instead of
tenants however, in this case we provided endpoints of
the same service implementation (NonMT/1E, NonMT/2E,
NonMT/4E and NonMT/10E). A warm-up phase of 400
messages for each endpoint or tenant was used before we
took measurements.

The test cases were run using Flexiant’s Flexiscale offer-
ing!! and two Virtual Machines — VM1 with 6GB RAM and 3
CPUs, and VM2 with 4GB RAM and 2 CPUs. Both VM1 and
VM2 run the Ubuntu 10.04 OS. In the VM1 the extended
Apache ServiceMix is deployed, which required also the
deployment of the following components: PostgreSQL 9.1.1
database, Jonas 5.2.2 server and Tomcat 7.0.23 server. The
endpoints deployed in ServiceMix are using HTTP-SOAP.
These were deployed directly in the ServiceMix deployment
folder (for the non multi-tenant scenarios) and through the
JBIMulti2 Application (for the multi-tenant cases). In VM2,
an Apache Tomcat 7.0.23 instance was deployed with the
echo Web service, the benchmark driver, and Wireshark 1.2.7
for monitoring HTTP requests and responses.

Figures 3 and 4 illustrate the average response time
and throughput, respectively, for the different test cases.
Figure 3 shows a significant performance deterioration
when comparing the baseline ESB implementation with 1
service endpoint against our implementation with 1 tenant.
This deterioration however is reduced dramatically as the
number of endpoints/tenants increase, resulting in very similar
performance results when comparing 10 endpoints with 10
tenants, and for the same amount of requests. A similar

Flexiscale http://www.flexiscale.com/

1000

g 100 A —— NonMT/1E
3 \ —8— NonMT/2E
ug» \\ NonMT/4E
E — TTCoo® === NonMT/10E
3 B . A oSS L L LY == MT/IT
& v E&r”i " mr/T

— MT/4T
MT/10T

0 160 320 480 640 800 960 1120 1280
Requests

Figure 3. Average response time per case (log/normal)

http://tiny.cc/web-service-wsdls
http://tiny.cc/JBIMulti2-install
http://tiny.cc/JBIMulti2-install
http://esbperformance.org
http://www.flexiscale.com/

=
)
S

.
o
=3

e
Iy
S

120 = NonMT/1E
~— NonMT/2E
100 a NonMT/4E
80 == NonMT/10E
o e == e IO —— =« =H= MT/1T
e —— NG
<

MT/4T
MT/10T

Throughput (transacitons per second)

[NEEN
s &
|

o

0 160 320 480 640 800 960 1120 1280
Requests

Figure 4. Average throughput per case

conclusion can be drawn for the amount of transactions per
second: as the number of endpoints (for the non multi-tenant
cases) and tenants (for the multi-tenant cases) increases, the
throughput seems to be converging. Given the fact that ESBs
are usually expected to operate with thousands of concurrent
users these results are encouraging; however it is true that
there is much space for improvement and optimization in
our implementation.

Figure 5 shows the maximum and average CPU utilization
for both the baseline and the extended ESB implementations.
The utilization was measured throughout the execution of
all the requests in each test case, and was normalized for
the number of processors in VM1. Figure 5 shows that the
average CPU utilization is consistently higher for the multi-
tenant implementation and for the same amount of requests;
maximum CPU utilization however varies. When combined
with the results of the previous figures, it can be concluded
that our multi-tenant ESB implementation increases CPU
utilization for levels of performance that are comparable to
the non multi-tenant one. While each service tenant however
can be configured and managed individually, as discussed in
the previous sections, each endpoint in the non multi-tenant
implementation can only be configured once and uniformly
across all consumers of the service.

Further evaluation of the performance of our proposal is in
any case required, including for example the memory needs
of JBIMulti2 and the Extended Apache ServiceMix, and
investigating the trends in CPU (and memory) utilization in
depth. In addition, a comparison of the performance of our
multi-tenant solution against a) using a separate instance per
cluster for each tenant, and b) horizontally scaling the ESB
by adding more VM images and splitting the traffic between
them is required. This is a direction that we are currently
working on.

V. RELATED WORK

Existing approaches on enabling multi-tenancy for mid-
dleware typically focus on different types of isolation in
multi-tenant applications for the SaaS delivery model, see
for example [5]. As discussed also in [8] however, only few

100

90 +

80 -+

60 N\ \—

& Max

40 + N\ N\ N\ AN N @ Average

CPU Utilization (%)
g

. e
& S (& & 4 O & $
§\ é\\ §\ $\ §\ “(\\ @\’\/ é\\\,
& K & %°Q
Figure 5. Maximum and average CPU utilization per case (normalized

over all CPUs)

PaaS solutions offer multi-tenancy awareness allowing for
the development of multi-tenant applications on top of them.
The work of Walraven et al. [8] follows a similar approach
to ours with respect to using tenant context information to
allow for multi-tenant aware administration and management,
while ensuring data isolation. Our work however proposes
a more generic approach built around any ESB technology
that complies with the JBI specification, and does not require
the implementation of a dedicated support layer for these
purposes.

Focusing on the ESB technology, in [19] we surveyed a
number of existing ESB solutions (ServiceMix, Microsoft
BizTalk Server, JBoss ESB, Mule ESB, OW2 Petals ESB,
IBM WebSphere ESB, and WSO2 ESB) and evaluated
their multi-tenancy readiness. Our investigation showed that
the surveyed ESB solutions in general lack in support
of multi-tenancy. Even in the case of products like IBM
WebSphere ESB'? and WSO2 ESB'® where multi-tenancy is
part of their offerings, multi-tenancy support is implemented
either based on proprietary technologies like the Tivoli
Access Manager (in the former case), or by mitigating the
tenant communication and administration on the level of the
message container (Apache Axis 2'# in the latter case). In
either case, the used method can not be applied to other ESB
solutions and as a result no direct comparison of the applied
multi-tenancy enabling mechanisms can be performed.

The approach presented in this paper differs from existing
approaches by integrating multi-tenancy independently from
the implementation into the ESB. Therefore, our solution
can also be applied and reused to enable multi-tenancy for
other PaaS offerings, e.g., composition engines. Moreover
our architecture realizes a broader range of functional and

12IBM WebSphere ESB: http://tiny.cc/IBMWebSphereESB
13WS02 ESB: http://wso2.com/products/enterprise-service-bus/
14 Apache Axis: http://axis.apache.org/axis2/java/core/

http://tiny.cc/IBMWebSphereESB
http://wso2.com/products/enterprise-service-bus/
http://axis.apache.org/axis2/java/core/

non-functional multi-tenancy requirements, in contrast to the
existing approaches focusing on a subset of them.

VI. CONCLUSIONS AND FUTURE WORK

In the previous sections, we proposed an approach for
making ESB solutions that comply to the JBI specification
multi-tenant aware, i.e. able to serve multiple consumers
from a single system instance. We identify two aspects for
multi-tenancy awareness: communication, that is, isolated
handling of message exchanges, and administration and
management capabilities offered on a per tenant basis. For
the purposes of this work we focused on the latter aspect.
More specifically, we first provided a short introduction to
JBI and its relationship to the ESB technologies. Then we
proceeded to identify a set of functional and non-functional
requirements for multi-tenancy awareness for ESBs based on
our experiences and literature. Based on this discussion, we
presented a generic multi-tenant aware administration and
management framework based on the JBI specification that
satisfies these requirements. As a proof-of-concept realization
of our proposal we instantiated the architectural framework
in the JBIMulti2 solution. JBIMulti2 is based on Apache
ServiceMix and demonstrates the efficacy of our proposal by
allowing for the successful implementation of multi-tenant
aware administration and management capabilities. By means
of an ESB benchmark, we demonstrated that the performance
of our solution is comparable to that of a non multi-tenant
aware implementation of ServiceMix for a large number of
messages and concurrent users.

Currently, we are in the process of providing a more
thorough performance evaluation along the lines we discussed
in SectionIV. In particular, we are interested in demonstrating
the direct benefits of multi-tenancy on the level of ESBs by
comparing performance against the cost of using multi-tenant
and non multi-tenant aware ESBs. Toward this goal, we are
also working on improving and optimizing the performance of
our implementation. Furthermore, we also aim to address the
various shortcomings that we have identified in the previous
sections (i.e. finalizing the Web GUI component, enabling
horizontal scalability through a load balancer, and realizing
multi-tenant aware dynamic service selection and discovery).

We also plan to take advantage of using the JBI specifica-
tion as the basis of our architectural framework and apply
the same techniques and architectural solutions to non-ESB
solutions, like for example application servers, that comply
with this specification. Finally, in this work we scoped the
discussion to ensuring the isolation of data between different
customers of the ESB. Ensuring performance isolation
(as defined by NFR;) however is an equally important
requirement for multi-tenancy with many implications about
the various customers of the ESB, see for example [7].
For this purpose, we plan to investigate to what extent our
proposed framework is able to ensure performance isolation,
and what mechanisms are required to be put in place.

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the 4CaaSt project (http://www.4caast.eu) part of the Eu-
ropean Union’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement no. 258862.

The authors would like to thank the people at Flexiant,
and in particular Craig Sheridan and Tabs Sharif for their
invaluable help with the evaluation environment.

REFERENCES

[1] D. A. Chappell, Enterprise Service Bus.
Inc., 2004.

O’Reilly Media,

[2] N. Josuttis, SOA in Practice. O’Reilly Media, Inc., 2007.

[3] P. Mell and T. Grance, “The NIST Definition of Cloud
Computing,” 2011.

[4] M. Behrendt et al., “Introduction and Architecture Overview
IBM Cloud Computing Reference Architecture 2.0,” 2011.

[5] C. Guo et al., “A Framework for Native Multi-Tenancy
Application Development and Management,” in Proceedings
of CEC/EEE’07. 1EEE, 2007.

[6] R. Mietzner et al., “Combining Different Multi-Tenancy
Patterns in Service-Oriented Applications,” in Proceedings
of EDOC’09. 1IEEE, 2009.

[71 R. Krebs et al., “Architectural Concerns in Multi-Tenant SaaS
Applications,” in Proceedings of CLOSER’12, 2012.

[8] S. Walraven et al., “A Middleware Layer for Flexible and Cost-
Efficient Multi-tenant Applications,” Middleware’l1, 2011.

[9] Java Community Process, “Java Business Integration (JBI)
1.0, Final Release,” 2005.

[10] R. Chinnici et al., “Web Services Description Language
(WSDL) Version 2.0 Part 1: Core Language,” 2007.

[11] A. Azeez et al., “Multi-tenant SOA Middleware for Cloud
Computing,” in Proceedings of CLOUD’10, 2010.

[12] F. Chong, G. Carraro, and R. Wolter, “Multi-Tenant Data
Architecture,” MSDN, 2006.

[13] D. Pritchett, “BASE: An ACID Alternative,” Queue, vol. 6,
no. 3, 2008.

[14] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed
Systems: Concepts and Design. Addison Wesley, 2005.

[15] G. Hohpe and B. Woolf, Enterprise Integration Patterns.
Addison-Wesley Professional, 2003.

[16] R. S. Sandhu et al., “Role-based Access Control Models,”
Computer, vol. 29, 1996.

[17] OSGi Alliance, “OSGi Service Platform: Core Specification
Version 4.3,” 2011.

[18] Java Community Process, “Enterprise JavaBeans (EJB) 3.0,
Final Release,” JSR-220, 2006.

[19] 4CaaSt Consortium, “Immigrant PaaS Technologies: Scientific
and Technical Report D7.1.1,” Deliverable, 2011.

http://www.4caast.eu

	cover-IEEE
	S8-2

